1 /*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "exec/page-protection.h"
15 #include "cpu.h"
16 #include "internals.h"
17 #include "cpu-features.h"
18 #include "idau.h"
19 #ifdef CONFIG_TCG
20 # include "tcg/oversized-guest.h"
21 #endif
22
23 typedef struct S1Translate {
24 /*
25 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
26 * Together with in_space, specifies the architectural translation regime.
27 */
28 ARMMMUIdx in_mmu_idx;
29 /*
30 * in_ptw_idx: specifies which mmuidx to use for the actual
31 * page table descriptor load operations. This will be one of the
32 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
33 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
34 * this field is updated accordingly.
35 */
36 ARMMMUIdx in_ptw_idx;
37 /*
38 * in_space: the security space for this walk. This plus
39 * the in_mmu_idx specify the architectural translation regime.
40 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
41 * this field is updated accordingly.
42 *
43 * Note that the security space for the in_ptw_idx may be different
44 * from that for the in_mmu_idx. We do not need to explicitly track
45 * the in_ptw_idx security space because:
46 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
47 * itself specifies the security space
48 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
49 * space used for ptw reads is the same as that of the security
50 * space of the stage 1 translation for all cases except where
51 * stage 1 is Secure; in that case the only possibilities for
52 * the ptw read are Secure and NonSecure, and the in_ptw_idx
53 * value being Stage2 vs Stage2_S distinguishes those.
54 */
55 ARMSecuritySpace in_space;
56 /*
57 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
58 * accesses will not update the guest page table access flags
59 * and will not change the state of the softmmu TLBs.
60 */
61 bool in_debug;
62 /*
63 * If this is stage 2 of a stage 1+2 page table walk, then this must
64 * be true if stage 1 is an EL0 access; otherwise this is ignored.
65 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
66 */
67 bool in_s1_is_el0;
68 bool out_rw;
69 bool out_be;
70 ARMSecuritySpace out_space;
71 hwaddr out_virt;
72 hwaddr out_phys;
73 void *out_host;
74 } S1Translate;
75
76 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
77 vaddr address,
78 MMUAccessType access_type, MemOp memop,
79 GetPhysAddrResult *result,
80 ARMMMUFaultInfo *fi);
81
82 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
83 vaddr address,
84 MMUAccessType access_type, MemOp memop,
85 GetPhysAddrResult *result,
86 ARMMMUFaultInfo *fi);
87
88 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
89 static const uint8_t pamax_map[] = {
90 [0] = 32,
91 [1] = 36,
92 [2] = 40,
93 [3] = 42,
94 [4] = 44,
95 [5] = 48,
96 [6] = 52,
97 };
98
round_down_to_parange_index(uint8_t bit_size)99 uint8_t round_down_to_parange_index(uint8_t bit_size)
100 {
101 for (int i = ARRAY_SIZE(pamax_map) - 1; i >= 0; i--) {
102 if (pamax_map[i] <= bit_size) {
103 return i;
104 }
105 }
106 g_assert_not_reached();
107 }
108
round_down_to_parange_bit_size(uint8_t bit_size)109 uint8_t round_down_to_parange_bit_size(uint8_t bit_size)
110 {
111 return pamax_map[round_down_to_parange_index(bit_size)];
112 }
113
114 /*
115 * The cpu-specific constant value of PAMax; also used by hw/arm/virt.
116 * Note that machvirt_init calls this on a CPU that is inited but not realized!
117 */
arm_pamax(ARMCPU * cpu)118 unsigned int arm_pamax(ARMCPU *cpu)
119 {
120 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
121 unsigned int parange =
122 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
123
124 /*
125 * id_aa64mmfr0 is a read-only register so values outside of the
126 * supported mappings can be considered an implementation error.
127 */
128 assert(parange < ARRAY_SIZE(pamax_map));
129 return pamax_map[parange];
130 }
131
132 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
133 /* v7 or v8 with LPAE */
134 return 40;
135 }
136 /* Anything else */
137 return 32;
138 }
139
140 /*
141 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
142 */
stage_1_mmu_idx(ARMMMUIdx mmu_idx)143 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
144 {
145 switch (mmu_idx) {
146 case ARMMMUIdx_E10_0:
147 return ARMMMUIdx_Stage1_E0;
148 case ARMMMUIdx_E10_1:
149 return ARMMMUIdx_Stage1_E1;
150 case ARMMMUIdx_E10_1_PAN:
151 return ARMMMUIdx_Stage1_E1_PAN;
152 default:
153 return mmu_idx;
154 }
155 }
156
arm_stage1_mmu_idx(CPUARMState * env)157 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
158 {
159 return stage_1_mmu_idx(arm_mmu_idx(env));
160 }
161
162 /*
163 * Return where we should do ptw loads from for a stage 2 walk.
164 * This depends on whether the address we are looking up is a
165 * Secure IPA or a NonSecure IPA, which we know from whether this is
166 * Stage2 or Stage2_S.
167 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
168 */
ptw_idx_for_stage_2(CPUARMState * env,ARMMMUIdx stage2idx)169 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
170 {
171 bool s2walk_secure;
172
173 /*
174 * We're OK to check the current state of the CPU here because
175 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
176 * changes.
177 * (2) there's no way to do a lookup that cares about Stage 2 for a
178 * different security state to the current one for AArch64, and AArch32
179 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
180 * an NS stage 1+2 lookup while the NS bit is 0.)
181 */
182 if (!arm_el_is_aa64(env, 3)) {
183 return ARMMMUIdx_Phys_NS;
184 }
185
186 switch (arm_security_space_below_el3(env)) {
187 case ARMSS_NonSecure:
188 return ARMMMUIdx_Phys_NS;
189 case ARMSS_Realm:
190 return ARMMMUIdx_Phys_Realm;
191 case ARMSS_Secure:
192 if (stage2idx == ARMMMUIdx_Stage2_S) {
193 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
194 } else {
195 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
196 }
197 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
198 default:
199 g_assert_not_reached();
200 }
201 }
202
regime_translation_big_endian(CPUARMState * env,ARMMMUIdx mmu_idx)203 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
204 {
205 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
206 }
207
208 /* Return the TTBR associated with this translation regime */
regime_ttbr(CPUARMState * env,ARMMMUIdx mmu_idx,int ttbrn)209 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
210 {
211 if (mmu_idx == ARMMMUIdx_Stage2) {
212 return env->cp15.vttbr_el2;
213 }
214 if (mmu_idx == ARMMMUIdx_Stage2_S) {
215 return env->cp15.vsttbr_el2;
216 }
217 if (ttbrn == 0) {
218 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
219 } else {
220 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
221 }
222 }
223
224 /* Return true if the specified stage of address translation is disabled */
regime_translation_disabled(CPUARMState * env,ARMMMUIdx mmu_idx,ARMSecuritySpace space)225 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
226 ARMSecuritySpace space)
227 {
228 uint64_t hcr_el2;
229
230 if (arm_feature(env, ARM_FEATURE_M)) {
231 bool is_secure = arm_space_is_secure(space);
232 switch (env->v7m.mpu_ctrl[is_secure] &
233 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
234 case R_V7M_MPU_CTRL_ENABLE_MASK:
235 /* Enabled, but not for HardFault and NMI */
236 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
237 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
238 /* Enabled for all cases */
239 return false;
240 case 0:
241 default:
242 /*
243 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
244 * we warned about that in armv7m_nvic.c when the guest set it.
245 */
246 return true;
247 }
248 }
249
250
251 switch (mmu_idx) {
252 case ARMMMUIdx_Stage2:
253 case ARMMMUIdx_Stage2_S:
254 /* HCR.DC means HCR.VM behaves as 1 */
255 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
256 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
257
258 case ARMMMUIdx_E10_0:
259 case ARMMMUIdx_E10_1:
260 case ARMMMUIdx_E10_1_PAN:
261 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
262 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
263 if (hcr_el2 & HCR_TGE) {
264 return true;
265 }
266 break;
267
268 case ARMMMUIdx_Stage1_E0:
269 case ARMMMUIdx_Stage1_E1:
270 case ARMMMUIdx_Stage1_E1_PAN:
271 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
272 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
273 if (hcr_el2 & HCR_DC) {
274 return true;
275 }
276 break;
277
278 case ARMMMUIdx_E20_0:
279 case ARMMMUIdx_E20_2:
280 case ARMMMUIdx_E20_2_PAN:
281 case ARMMMUIdx_E2:
282 case ARMMMUIdx_E3:
283 case ARMMMUIdx_E30_0:
284 case ARMMMUIdx_E30_3_PAN:
285 break;
286
287 case ARMMMUIdx_Phys_S:
288 case ARMMMUIdx_Phys_NS:
289 case ARMMMUIdx_Phys_Root:
290 case ARMMMUIdx_Phys_Realm:
291 /* No translation for physical address spaces. */
292 return true;
293
294 default:
295 g_assert_not_reached();
296 }
297
298 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
299 }
300
granule_protection_check(CPUARMState * env,uint64_t paddress,ARMSecuritySpace pspace,ARMMMUFaultInfo * fi)301 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
302 ARMSecuritySpace pspace,
303 ARMMMUFaultInfo *fi)
304 {
305 MemTxAttrs attrs = {
306 .secure = true,
307 .space = ARMSS_Root,
308 };
309 ARMCPU *cpu = env_archcpu(env);
310 uint64_t gpccr = env->cp15.gpccr_el3;
311 unsigned pps, pgs, l0gptsz, level = 0;
312 uint64_t tableaddr, pps_mask, align, entry, index;
313 AddressSpace *as;
314 MemTxResult result;
315 int gpi;
316
317 if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
318 return true;
319 }
320
321 /*
322 * GPC Priority 1 (R_GMGRR):
323 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
324 * the access fails as GPT walk fault at level 0.
325 */
326
327 /*
328 * Configuration of PPS to a value exceeding the implemented
329 * physical address size is invalid.
330 */
331 pps = FIELD_EX64(gpccr, GPCCR, PPS);
332 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
333 goto fault_walk;
334 }
335 pps = pamax_map[pps];
336 pps_mask = MAKE_64BIT_MASK(0, pps);
337
338 switch (FIELD_EX64(gpccr, GPCCR, SH)) {
339 case 0b10: /* outer shareable */
340 break;
341 case 0b00: /* non-shareable */
342 case 0b11: /* inner shareable */
343 /* Inner and Outer non-cacheable requires Outer shareable. */
344 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
345 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
346 goto fault_walk;
347 }
348 break;
349 default: /* reserved */
350 goto fault_walk;
351 }
352
353 switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
354 case 0b00: /* 4KB */
355 pgs = 12;
356 break;
357 case 0b01: /* 64KB */
358 pgs = 16;
359 break;
360 case 0b10: /* 16KB */
361 pgs = 14;
362 break;
363 default: /* reserved */
364 goto fault_walk;
365 }
366
367 /* Note this field is read-only and fixed at reset. */
368 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
369
370 /*
371 * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
372 * R_CPDSB: A NonSecure physical address input exceeding PPS
373 * does not experience any fault.
374 */
375 if (paddress & ~pps_mask) {
376 if (pspace == ARMSS_NonSecure) {
377 return true;
378 }
379 goto fault_size;
380 }
381
382 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
383 tableaddr = env->cp15.gptbr_el3 << 12;
384 if (tableaddr & ~pps_mask) {
385 goto fault_size;
386 }
387
388 /*
389 * BADDR is aligned per a function of PPS and L0GPTSZ.
390 * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
391 * unlike the RES0 bits of the GPT entries (R_XNKFZ).
392 */
393 align = MAX(pps - l0gptsz + 3, 12);
394 align = MAKE_64BIT_MASK(0, align);
395 tableaddr &= ~align;
396
397 as = arm_addressspace(env_cpu(env), attrs);
398
399 /* Level 0 lookup. */
400 index = extract64(paddress, l0gptsz, pps - l0gptsz);
401 tableaddr += index * 8;
402 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
403 if (result != MEMTX_OK) {
404 goto fault_eabt;
405 }
406
407 switch (extract32(entry, 0, 4)) {
408 case 1: /* block descriptor */
409 if (entry >> 8) {
410 goto fault_walk; /* RES0 bits not 0 */
411 }
412 gpi = extract32(entry, 4, 4);
413 goto found;
414 case 3: /* table descriptor */
415 tableaddr = entry & ~0xf;
416 align = MAX(l0gptsz - pgs - 1, 12);
417 align = MAKE_64BIT_MASK(0, align);
418 if (tableaddr & (~pps_mask | align)) {
419 goto fault_walk; /* RES0 bits not 0 */
420 }
421 break;
422 default: /* invalid */
423 goto fault_walk;
424 }
425
426 /* Level 1 lookup */
427 level = 1;
428 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
429 tableaddr += index * 8;
430 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
431 if (result != MEMTX_OK) {
432 goto fault_eabt;
433 }
434
435 switch (extract32(entry, 0, 4)) {
436 case 1: /* contiguous descriptor */
437 if (entry >> 10) {
438 goto fault_walk; /* RES0 bits not 0 */
439 }
440 /*
441 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
442 * and because we cannot invalidate by pa, and thus will always
443 * flush entire tlbs, we don't actually care about the range here
444 * and can simply extract the GPI as the result.
445 */
446 if (extract32(entry, 8, 2) == 0) {
447 goto fault_walk; /* reserved contig */
448 }
449 gpi = extract32(entry, 4, 4);
450 break;
451 default:
452 index = extract64(paddress, pgs, 4);
453 gpi = extract64(entry, index * 4, 4);
454 break;
455 }
456
457 found:
458 switch (gpi) {
459 case 0b0000: /* no access */
460 break;
461 case 0b1111: /* all access */
462 return true;
463 case 0b1000:
464 case 0b1001:
465 case 0b1010:
466 case 0b1011:
467 if (pspace == (gpi & 3)) {
468 return true;
469 }
470 break;
471 default:
472 goto fault_walk; /* reserved */
473 }
474
475 fi->gpcf = GPCF_Fail;
476 goto fault_common;
477 fault_eabt:
478 fi->gpcf = GPCF_EABT;
479 goto fault_common;
480 fault_size:
481 fi->gpcf = GPCF_AddressSize;
482 goto fault_common;
483 fault_walk:
484 fi->gpcf = GPCF_Walk;
485 fault_common:
486 fi->level = level;
487 fi->paddr = paddress;
488 fi->paddr_space = pspace;
489 return false;
490 }
491
S1_attrs_are_device(uint8_t attrs)492 static bool S1_attrs_are_device(uint8_t attrs)
493 {
494 /*
495 * This slightly under-decodes the MAIR_ELx field:
496 * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE;
497 * 0b0000dd1x is UNPREDICTABLE.
498 */
499 return (attrs & 0xf0) == 0;
500 }
501
S2_attrs_are_device(uint64_t hcr,uint8_t attrs)502 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
503 {
504 /*
505 * For an S1 page table walk, the stage 1 attributes are always
506 * some form of "this is Normal memory". The combined S1+S2
507 * attributes are therefore only Device if stage 2 specifies Device.
508 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
509 * ie when cacheattrs.attrs bits [3:2] are 0b00.
510 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
511 * when cacheattrs.attrs bit [2] is 0.
512 */
513 if (hcr & HCR_FWB) {
514 return (attrs & 0x4) == 0;
515 } else {
516 return (attrs & 0xc) == 0;
517 }
518 }
519
S2_security_space(ARMSecuritySpace s1_space,ARMMMUIdx s2_mmu_idx)520 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
521 ARMMMUIdx s2_mmu_idx)
522 {
523 /*
524 * Return the security space to use for stage 2 when doing
525 * the S1 page table descriptor load.
526 */
527 if (regime_is_stage2(s2_mmu_idx)) {
528 /*
529 * The security space for ptw reads is almost always the same
530 * as that of the security space of the stage 1 translation.
531 * The only exception is when stage 1 is Secure; in that case
532 * the ptw read might be to the Secure or the NonSecure space
533 * (but never Realm or Root), and the s2_mmu_idx tells us which.
534 * Root translations are always single-stage.
535 */
536 if (s1_space == ARMSS_Secure) {
537 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
538 } else {
539 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
540 assert(s1_space != ARMSS_Root);
541 return s1_space;
542 }
543 } else {
544 /* ptw loads are from phys: the mmu idx itself says which space */
545 return arm_phys_to_space(s2_mmu_idx);
546 }
547 }
548
fault_s1ns(ARMSecuritySpace space,ARMMMUIdx s2_mmu_idx)549 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
550 {
551 /*
552 * For stage 2 faults in Secure EL22, S1NS indicates
553 * whether the faulting IPA is in the Secure or NonSecure
554 * IPA space. For all other kinds of fault, it is false.
555 */
556 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
557 && s2_mmu_idx == ARMMMUIdx_Stage2_S;
558 }
559
560 /* Translate a S1 pagetable walk through S2 if needed. */
S1_ptw_translate(CPUARMState * env,S1Translate * ptw,hwaddr addr,ARMMMUFaultInfo * fi)561 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
562 hwaddr addr, ARMMMUFaultInfo *fi)
563 {
564 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
565 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
566 uint8_t pte_attrs;
567
568 ptw->out_virt = addr;
569
570 if (unlikely(ptw->in_debug)) {
571 /*
572 * From gdbstub, do not use softmmu so that we don't modify the
573 * state of the cpu at all, including softmmu tlb contents.
574 */
575 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
576 S1Translate s2ptw = {
577 .in_mmu_idx = s2_mmu_idx,
578 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
579 .in_space = s2_space,
580 .in_debug = true,
581 };
582 GetPhysAddrResult s2 = { };
583
584 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, 0, &s2, fi)) {
585 goto fail;
586 }
587
588 ptw->out_phys = s2.f.phys_addr;
589 pte_attrs = s2.cacheattrs.attrs;
590 ptw->out_host = NULL;
591 ptw->out_rw = false;
592 ptw->out_space = s2.f.attrs.space;
593 } else {
594 #ifdef CONFIG_TCG
595 CPUTLBEntryFull *full;
596 int flags;
597
598 env->tlb_fi = fi;
599 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
600 arm_to_core_mmu_idx(s2_mmu_idx),
601 &ptw->out_host, &full);
602 env->tlb_fi = NULL;
603
604 if (unlikely(flags & TLB_INVALID_MASK)) {
605 goto fail;
606 }
607 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
608 ptw->out_rw = full->prot & PAGE_WRITE;
609 pte_attrs = full->extra.arm.pte_attrs;
610 ptw->out_space = full->attrs.space;
611 #else
612 g_assert_not_reached();
613 #endif
614 }
615
616 if (regime_is_stage2(s2_mmu_idx)) {
617 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
618
619 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
620 /*
621 * PTW set and S1 walk touched S2 Device memory:
622 * generate Permission fault.
623 */
624 fi->type = ARMFault_Permission;
625 fi->s2addr = addr;
626 fi->stage2 = true;
627 fi->s1ptw = true;
628 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
629 return false;
630 }
631 }
632
633 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
634 return true;
635
636 fail:
637 assert(fi->type != ARMFault_None);
638 if (fi->type == ARMFault_GPCFOnOutput) {
639 fi->type = ARMFault_GPCFOnWalk;
640 }
641 fi->s2addr = addr;
642 fi->stage2 = regime_is_stage2(s2_mmu_idx);
643 fi->s1ptw = fi->stage2;
644 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
645 return false;
646 }
647
648 /* All loads done in the course of a page table walk go through here. */
arm_ldl_ptw(CPUARMState * env,S1Translate * ptw,ARMMMUFaultInfo * fi)649 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
650 ARMMMUFaultInfo *fi)
651 {
652 CPUState *cs = env_cpu(env);
653 void *host = ptw->out_host;
654 uint32_t data;
655
656 if (likely(host)) {
657 /* Page tables are in RAM, and we have the host address. */
658 data = qatomic_read((uint32_t *)host);
659 if (ptw->out_be) {
660 data = be32_to_cpu(data);
661 } else {
662 data = le32_to_cpu(data);
663 }
664 } else {
665 /* Page tables are in MMIO. */
666 MemTxAttrs attrs = {
667 .space = ptw->out_space,
668 .secure = arm_space_is_secure(ptw->out_space),
669 };
670 AddressSpace *as = arm_addressspace(cs, attrs);
671 MemTxResult result = MEMTX_OK;
672
673 if (ptw->out_be) {
674 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
675 } else {
676 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
677 }
678 if (unlikely(result != MEMTX_OK)) {
679 fi->type = ARMFault_SyncExternalOnWalk;
680 fi->ea = arm_extabort_type(result);
681 return 0;
682 }
683 }
684 return data;
685 }
686
arm_ldq_ptw(CPUARMState * env,S1Translate * ptw,ARMMMUFaultInfo * fi)687 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
688 ARMMMUFaultInfo *fi)
689 {
690 CPUState *cs = env_cpu(env);
691 void *host = ptw->out_host;
692 uint64_t data;
693
694 if (likely(host)) {
695 /* Page tables are in RAM, and we have the host address. */
696 #ifdef CONFIG_ATOMIC64
697 data = qatomic_read__nocheck((uint64_t *)host);
698 if (ptw->out_be) {
699 data = be64_to_cpu(data);
700 } else {
701 data = le64_to_cpu(data);
702 }
703 #else
704 if (ptw->out_be) {
705 data = ldq_be_p(host);
706 } else {
707 data = ldq_le_p(host);
708 }
709 #endif
710 } else {
711 /* Page tables are in MMIO. */
712 MemTxAttrs attrs = {
713 .space = ptw->out_space,
714 .secure = arm_space_is_secure(ptw->out_space),
715 };
716 AddressSpace *as = arm_addressspace(cs, attrs);
717 MemTxResult result = MEMTX_OK;
718
719 if (ptw->out_be) {
720 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
721 } else {
722 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
723 }
724 if (unlikely(result != MEMTX_OK)) {
725 fi->type = ARMFault_SyncExternalOnWalk;
726 fi->ea = arm_extabort_type(result);
727 return 0;
728 }
729 }
730 return data;
731 }
732
arm_casq_ptw(CPUARMState * env,uint64_t old_val,uint64_t new_val,S1Translate * ptw,ARMMMUFaultInfo * fi)733 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
734 uint64_t new_val, S1Translate *ptw,
735 ARMMMUFaultInfo *fi)
736 {
737 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
738 uint64_t cur_val;
739 void *host = ptw->out_host;
740
741 if (unlikely(!host)) {
742 /* Page table in MMIO Memory Region */
743 CPUState *cs = env_cpu(env);
744 MemTxAttrs attrs = {
745 .space = ptw->out_space,
746 .secure = arm_space_is_secure(ptw->out_space),
747 };
748 AddressSpace *as = arm_addressspace(cs, attrs);
749 MemTxResult result = MEMTX_OK;
750 bool need_lock = !bql_locked();
751
752 if (need_lock) {
753 bql_lock();
754 }
755 if (ptw->out_be) {
756 cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
757 if (unlikely(result != MEMTX_OK)) {
758 fi->type = ARMFault_SyncExternalOnWalk;
759 fi->ea = arm_extabort_type(result);
760 if (need_lock) {
761 bql_unlock();
762 }
763 return old_val;
764 }
765 if (cur_val == old_val) {
766 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result);
767 if (unlikely(result != MEMTX_OK)) {
768 fi->type = ARMFault_SyncExternalOnWalk;
769 fi->ea = arm_extabort_type(result);
770 if (need_lock) {
771 bql_unlock();
772 }
773 return old_val;
774 }
775 cur_val = new_val;
776 }
777 } else {
778 cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
779 if (unlikely(result != MEMTX_OK)) {
780 fi->type = ARMFault_SyncExternalOnWalk;
781 fi->ea = arm_extabort_type(result);
782 if (need_lock) {
783 bql_unlock();
784 }
785 return old_val;
786 }
787 if (cur_val == old_val) {
788 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result);
789 if (unlikely(result != MEMTX_OK)) {
790 fi->type = ARMFault_SyncExternalOnWalk;
791 fi->ea = arm_extabort_type(result);
792 if (need_lock) {
793 bql_unlock();
794 }
795 return old_val;
796 }
797 cur_val = new_val;
798 }
799 }
800 if (need_lock) {
801 bql_unlock();
802 }
803 return cur_val;
804 }
805
806 /*
807 * Raising a stage2 Protection fault for an atomic update to a read-only
808 * page is delayed until it is certain that there is a change to make.
809 */
810 if (unlikely(!ptw->out_rw)) {
811 int flags;
812
813 env->tlb_fi = fi;
814 flags = probe_access_full_mmu(env, ptw->out_virt, 0,
815 MMU_DATA_STORE,
816 arm_to_core_mmu_idx(ptw->in_ptw_idx),
817 NULL, NULL);
818 env->tlb_fi = NULL;
819
820 if (unlikely(flags & TLB_INVALID_MASK)) {
821 /*
822 * We know this must be a stage 2 fault because the granule
823 * protection table does not separately track read and write
824 * permission, so all GPC faults are caught in S1_ptw_translate():
825 * we only get here for "readable but not writeable".
826 */
827 assert(fi->type != ARMFault_None);
828 fi->s2addr = ptw->out_virt;
829 fi->stage2 = true;
830 fi->s1ptw = true;
831 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
832 return 0;
833 }
834
835 /* In case CAS mismatches and we loop, remember writability. */
836 ptw->out_rw = true;
837 }
838
839 #ifdef CONFIG_ATOMIC64
840 if (ptw->out_be) {
841 old_val = cpu_to_be64(old_val);
842 new_val = cpu_to_be64(new_val);
843 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
844 cur_val = be64_to_cpu(cur_val);
845 } else {
846 old_val = cpu_to_le64(old_val);
847 new_val = cpu_to_le64(new_val);
848 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
849 cur_val = le64_to_cpu(cur_val);
850 }
851 #else
852 /*
853 * We can't support the full 64-bit atomic cmpxchg on the host.
854 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
855 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
856 * running in round-robin mode and could only race with dma i/o.
857 */
858 #if !TCG_OVERSIZED_GUEST
859 # error "Unexpected configuration"
860 #endif
861 bool locked = bql_locked();
862 if (!locked) {
863 bql_lock();
864 }
865 if (ptw->out_be) {
866 cur_val = ldq_be_p(host);
867 if (cur_val == old_val) {
868 stq_be_p(host, new_val);
869 }
870 } else {
871 cur_val = ldq_le_p(host);
872 if (cur_val == old_val) {
873 stq_le_p(host, new_val);
874 }
875 }
876 if (!locked) {
877 bql_unlock();
878 }
879 #endif
880
881 return cur_val;
882 #else
883 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
884 g_assert_not_reached();
885 #endif
886 }
887
get_level1_table_address(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t * table,uint32_t address)888 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
889 uint32_t *table, uint32_t address)
890 {
891 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
892 uint64_t tcr = regime_tcr(env, mmu_idx);
893 int maskshift = extract32(tcr, 0, 3);
894 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
895 uint32_t base_mask;
896
897 if (address & mask) {
898 if (tcr & TTBCR_PD1) {
899 /* Translation table walk disabled for TTBR1 */
900 return false;
901 }
902 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
903 } else {
904 if (tcr & TTBCR_PD0) {
905 /* Translation table walk disabled for TTBR0 */
906 return false;
907 }
908 base_mask = ~((uint32_t)0x3fffu >> maskshift);
909 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
910 }
911 *table |= (address >> 18) & 0x3ffc;
912 return true;
913 }
914
915 /*
916 * Translate section/page access permissions to page R/W protection flags
917 * @env: CPUARMState
918 * @mmu_idx: MMU index indicating required translation regime
919 * @ap: The 3-bit access permissions (AP[2:0])
920 * @domain_prot: The 2-bit domain access permissions
921 * @is_user: TRUE if accessing from PL0
922 */
ap_to_rw_prot_is_user(CPUARMState * env,ARMMMUIdx mmu_idx,int ap,int domain_prot,bool is_user)923 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
924 int ap, int domain_prot, bool is_user)
925 {
926 if (domain_prot == 3) {
927 return PAGE_READ | PAGE_WRITE;
928 }
929
930 switch (ap) {
931 case 0:
932 if (arm_feature(env, ARM_FEATURE_V7)) {
933 return 0;
934 }
935 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
936 case SCTLR_S:
937 return is_user ? 0 : PAGE_READ;
938 case SCTLR_R:
939 return PAGE_READ;
940 default:
941 return 0;
942 }
943 case 1:
944 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
945 case 2:
946 if (is_user) {
947 return PAGE_READ;
948 } else {
949 return PAGE_READ | PAGE_WRITE;
950 }
951 case 3:
952 return PAGE_READ | PAGE_WRITE;
953 case 4: /* Reserved. */
954 return 0;
955 case 5:
956 return is_user ? 0 : PAGE_READ;
957 case 6:
958 return PAGE_READ;
959 case 7:
960 if (!arm_feature(env, ARM_FEATURE_V6K)) {
961 return 0;
962 }
963 return PAGE_READ;
964 default:
965 g_assert_not_reached();
966 }
967 }
968
969 /*
970 * Translate section/page access permissions to page R/W protection flags
971 * @env: CPUARMState
972 * @mmu_idx: MMU index indicating required translation regime
973 * @ap: The 3-bit access permissions (AP[2:0])
974 * @domain_prot: The 2-bit domain access permissions
975 */
ap_to_rw_prot(CPUARMState * env,ARMMMUIdx mmu_idx,int ap,int domain_prot)976 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
977 int ap, int domain_prot)
978 {
979 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
980 regime_is_user(env, mmu_idx));
981 }
982
983 /*
984 * Translate section/page access permissions to page R/W protection flags.
985 * @ap: The 2-bit simple AP (AP[2:1])
986 * @is_user: TRUE if accessing from PL0
987 */
simple_ap_to_rw_prot_is_user(int ap,bool is_user)988 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
989 {
990 switch (ap) {
991 case 0:
992 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
993 case 1:
994 return PAGE_READ | PAGE_WRITE;
995 case 2:
996 return is_user ? 0 : PAGE_READ;
997 case 3:
998 return PAGE_READ;
999 default:
1000 g_assert_not_reached();
1001 }
1002 }
1003
simple_ap_to_rw_prot(CPUARMState * env,ARMMMUIdx mmu_idx,int ap)1004 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
1005 {
1006 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
1007 }
1008
get_phys_addr_v5(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)1009 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
1010 uint32_t address, MMUAccessType access_type,
1011 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1012 {
1013 int level = 1;
1014 uint32_t table;
1015 uint32_t desc;
1016 int type;
1017 int ap;
1018 int domain = 0;
1019 int domain_prot;
1020 hwaddr phys_addr;
1021 uint32_t dacr;
1022
1023 /* Pagetable walk. */
1024 /* Lookup l1 descriptor. */
1025 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
1026 /* Section translation fault if page walk is disabled by PD0 or PD1 */
1027 fi->type = ARMFault_Translation;
1028 goto do_fault;
1029 }
1030 if (!S1_ptw_translate(env, ptw, table, fi)) {
1031 goto do_fault;
1032 }
1033 desc = arm_ldl_ptw(env, ptw, fi);
1034 if (fi->type != ARMFault_None) {
1035 goto do_fault;
1036 }
1037 type = (desc & 3);
1038 domain = (desc >> 5) & 0x0f;
1039 if (regime_el(env, ptw->in_mmu_idx) == 1) {
1040 dacr = env->cp15.dacr_ns;
1041 } else {
1042 dacr = env->cp15.dacr_s;
1043 }
1044 domain_prot = (dacr >> (domain * 2)) & 3;
1045 if (type == 0) {
1046 /* Section translation fault. */
1047 fi->type = ARMFault_Translation;
1048 goto do_fault;
1049 }
1050 if (type != 2) {
1051 level = 2;
1052 }
1053 if (domain_prot == 0 || domain_prot == 2) {
1054 fi->type = ARMFault_Domain;
1055 goto do_fault;
1056 }
1057 if (type == 2) {
1058 /* 1Mb section. */
1059 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1060 ap = (desc >> 10) & 3;
1061 result->f.lg_page_size = 20; /* 1MB */
1062 } else {
1063 /* Lookup l2 entry. */
1064 if (type == 1) {
1065 /* Coarse pagetable. */
1066 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1067 } else {
1068 /* Fine pagetable. */
1069 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1070 }
1071 if (!S1_ptw_translate(env, ptw, table, fi)) {
1072 goto do_fault;
1073 }
1074 desc = arm_ldl_ptw(env, ptw, fi);
1075 if (fi->type != ARMFault_None) {
1076 goto do_fault;
1077 }
1078 switch (desc & 3) {
1079 case 0: /* Page translation fault. */
1080 fi->type = ARMFault_Translation;
1081 goto do_fault;
1082 case 1: /* 64k page. */
1083 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1084 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1085 result->f.lg_page_size = 16;
1086 break;
1087 case 2: /* 4k page. */
1088 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1089 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1090 result->f.lg_page_size = 12;
1091 break;
1092 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1093 if (type == 1) {
1094 /* ARMv6/XScale extended small page format */
1095 if (arm_feature(env, ARM_FEATURE_XSCALE)
1096 || arm_feature(env, ARM_FEATURE_V6)) {
1097 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1098 result->f.lg_page_size = 12;
1099 } else {
1100 /*
1101 * UNPREDICTABLE in ARMv5; we choose to take a
1102 * page translation fault.
1103 */
1104 fi->type = ARMFault_Translation;
1105 goto do_fault;
1106 }
1107 } else {
1108 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1109 result->f.lg_page_size = 10;
1110 }
1111 ap = (desc >> 4) & 3;
1112 break;
1113 default:
1114 /* Never happens, but compiler isn't smart enough to tell. */
1115 g_assert_not_reached();
1116 }
1117 }
1118 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1119 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1120 if (!(result->f.prot & (1 << access_type))) {
1121 /* Access permission fault. */
1122 fi->type = ARMFault_Permission;
1123 goto do_fault;
1124 }
1125 result->f.phys_addr = phys_addr;
1126 return false;
1127 do_fault:
1128 fi->domain = domain;
1129 fi->level = level;
1130 return true;
1131 }
1132
get_phys_addr_v6(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)1133 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1134 uint32_t address, MMUAccessType access_type,
1135 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1136 {
1137 ARMCPU *cpu = env_archcpu(env);
1138 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1139 int level = 1;
1140 uint32_t table;
1141 uint32_t desc;
1142 uint32_t xn;
1143 uint32_t pxn = 0;
1144 int type;
1145 int ap;
1146 int domain = 0;
1147 int domain_prot;
1148 hwaddr phys_addr;
1149 uint32_t dacr;
1150 bool ns;
1151 int user_prot;
1152
1153 /* Pagetable walk. */
1154 /* Lookup l1 descriptor. */
1155 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1156 /* Section translation fault if page walk is disabled by PD0 or PD1 */
1157 fi->type = ARMFault_Translation;
1158 goto do_fault;
1159 }
1160 if (!S1_ptw_translate(env, ptw, table, fi)) {
1161 goto do_fault;
1162 }
1163 desc = arm_ldl_ptw(env, ptw, fi);
1164 if (fi->type != ARMFault_None) {
1165 goto do_fault;
1166 }
1167 type = (desc & 3);
1168 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1169 /* Section translation fault, or attempt to use the encoding
1170 * which is Reserved on implementations without PXN.
1171 */
1172 fi->type = ARMFault_Translation;
1173 goto do_fault;
1174 }
1175 if ((type == 1) || !(desc & (1 << 18))) {
1176 /* Page or Section. */
1177 domain = (desc >> 5) & 0x0f;
1178 }
1179 if (regime_el(env, mmu_idx) == 1) {
1180 dacr = env->cp15.dacr_ns;
1181 } else {
1182 dacr = env->cp15.dacr_s;
1183 }
1184 if (type == 1) {
1185 level = 2;
1186 }
1187 domain_prot = (dacr >> (domain * 2)) & 3;
1188 if (domain_prot == 0 || domain_prot == 2) {
1189 /* Section or Page domain fault */
1190 fi->type = ARMFault_Domain;
1191 goto do_fault;
1192 }
1193 if (type != 1) {
1194 if (desc & (1 << 18)) {
1195 /* Supersection. */
1196 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1197 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1198 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1199 result->f.lg_page_size = 24; /* 16MB */
1200 } else {
1201 /* Section. */
1202 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1203 result->f.lg_page_size = 20; /* 1MB */
1204 }
1205 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1206 xn = desc & (1 << 4);
1207 pxn = desc & 1;
1208 ns = extract32(desc, 19, 1);
1209 } else {
1210 if (cpu_isar_feature(aa32_pxn, cpu)) {
1211 pxn = (desc >> 2) & 1;
1212 }
1213 ns = extract32(desc, 3, 1);
1214 /* Lookup l2 entry. */
1215 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1216 if (!S1_ptw_translate(env, ptw, table, fi)) {
1217 goto do_fault;
1218 }
1219 desc = arm_ldl_ptw(env, ptw, fi);
1220 if (fi->type != ARMFault_None) {
1221 goto do_fault;
1222 }
1223 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1224 switch (desc & 3) {
1225 case 0: /* Page translation fault. */
1226 fi->type = ARMFault_Translation;
1227 goto do_fault;
1228 case 1: /* 64k page. */
1229 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1230 xn = desc & (1 << 15);
1231 result->f.lg_page_size = 16;
1232 break;
1233 case 2: case 3: /* 4k page. */
1234 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1235 xn = desc & 1;
1236 result->f.lg_page_size = 12;
1237 break;
1238 default:
1239 /* Never happens, but compiler isn't smart enough to tell. */
1240 g_assert_not_reached();
1241 }
1242 }
1243 if (domain_prot == 3) {
1244 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1245 } else {
1246 if (pxn && !regime_is_user(env, mmu_idx)) {
1247 xn = 1;
1248 }
1249 if (xn && access_type == MMU_INST_FETCH) {
1250 fi->type = ARMFault_Permission;
1251 goto do_fault;
1252 }
1253
1254 if (arm_feature(env, ARM_FEATURE_V6K) &&
1255 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1256 /* The simplified model uses AP[0] as an access control bit. */
1257 if ((ap & 1) == 0) {
1258 /* Access flag fault. */
1259 fi->type = ARMFault_AccessFlag;
1260 goto do_fault;
1261 }
1262 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1263 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1264 } else {
1265 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1266 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1267 }
1268 if (result->f.prot && !xn) {
1269 result->f.prot |= PAGE_EXEC;
1270 }
1271 if (!(result->f.prot & (1 << access_type))) {
1272 /* Access permission fault. */
1273 fi->type = ARMFault_Permission;
1274 goto do_fault;
1275 }
1276 if (regime_is_pan(env, mmu_idx) &&
1277 !regime_is_user(env, mmu_idx) &&
1278 user_prot &&
1279 access_type != MMU_INST_FETCH) {
1280 /* Privileged Access Never fault */
1281 fi->type = ARMFault_Permission;
1282 goto do_fault;
1283 }
1284 }
1285 if (ns) {
1286 /* The NS bit will (as required by the architecture) have no effect if
1287 * the CPU doesn't support TZ or this is a non-secure translation
1288 * regime, because the attribute will already be non-secure.
1289 */
1290 result->f.attrs.secure = false;
1291 result->f.attrs.space = ARMSS_NonSecure;
1292 }
1293 result->f.phys_addr = phys_addr;
1294 return false;
1295 do_fault:
1296 fi->domain = domain;
1297 fi->level = level;
1298 return true;
1299 }
1300
1301 /*
1302 * Translate S2 section/page access permissions to protection flags
1303 * @env: CPUARMState
1304 * @s2ap: The 2-bit stage2 access permissions (S2AP)
1305 * @xn: XN (execute-never) bits
1306 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1307 */
get_S2prot_noexecute(int s2ap)1308 static int get_S2prot_noexecute(int s2ap)
1309 {
1310 int prot = 0;
1311
1312 if (s2ap & 1) {
1313 prot |= PAGE_READ;
1314 }
1315 if (s2ap & 2) {
1316 prot |= PAGE_WRITE;
1317 }
1318 return prot;
1319 }
1320
get_S2prot(CPUARMState * env,int s2ap,int xn,bool s1_is_el0)1321 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1322 {
1323 int prot = get_S2prot_noexecute(s2ap);
1324
1325 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1326 switch (xn) {
1327 case 0:
1328 prot |= PAGE_EXEC;
1329 break;
1330 case 1:
1331 if (s1_is_el0) {
1332 prot |= PAGE_EXEC;
1333 }
1334 break;
1335 case 2:
1336 break;
1337 case 3:
1338 if (!s1_is_el0) {
1339 prot |= PAGE_EXEC;
1340 }
1341 break;
1342 default:
1343 g_assert_not_reached();
1344 }
1345 } else {
1346 if (!extract32(xn, 1, 1)) {
1347 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1348 prot |= PAGE_EXEC;
1349 }
1350 }
1351 }
1352 return prot;
1353 }
1354
1355 /*
1356 * Translate section/page access permissions to protection flags
1357 * @env: CPUARMState
1358 * @mmu_idx: MMU index indicating required translation regime
1359 * @is_aa64: TRUE if AArch64
1360 * @ap: The 2-bit simple AP (AP[2:1])
1361 * @xn: XN (execute-never) bit
1362 * @pxn: PXN (privileged execute-never) bit
1363 * @in_pa: The original input pa space
1364 * @out_pa: The output pa space, modified by NSTable, NS, and NSE
1365 */
get_S1prot(CPUARMState * env,ARMMMUIdx mmu_idx,bool is_aa64,int ap,int xn,int pxn,ARMSecuritySpace in_pa,ARMSecuritySpace out_pa)1366 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1367 int ap, int xn, int pxn,
1368 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1369 {
1370 ARMCPU *cpu = env_archcpu(env);
1371 bool is_user = regime_is_user(env, mmu_idx);
1372 int prot_rw, user_rw;
1373 bool have_wxn;
1374 int wxn = 0;
1375
1376 assert(!regime_is_stage2(mmu_idx));
1377
1378 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
1379 if (is_user) {
1380 prot_rw = user_rw;
1381 } else {
1382 /*
1383 * PAN controls can forbid data accesses but don't affect insn fetch.
1384 * Plain PAN forbids data accesses if EL0 has data permissions;
1385 * PAN3 forbids data accesses if EL0 has either data or exec perms.
1386 * Note that for AArch64 the 'user can exec' case is exactly !xn.
1387 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1388 * do not affect EPAN.
1389 */
1390 if (user_rw && regime_is_pan(env, mmu_idx)) {
1391 prot_rw = 0;
1392 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1393 regime_is_pan(env, mmu_idx) &&
1394 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1395 prot_rw = 0;
1396 } else {
1397 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1398 }
1399 }
1400
1401 if (in_pa != out_pa) {
1402 switch (in_pa) {
1403 case ARMSS_Root:
1404 /*
1405 * R_ZWRVD: permission fault for insn fetched from non-Root,
1406 * I_WWBFB: SIF has no effect in EL3.
1407 */
1408 return prot_rw;
1409 case ARMSS_Realm:
1410 /*
1411 * R_PKTDS: permission fault for insn fetched from non-Realm,
1412 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0
1413 * happens during any stage2 translation.
1414 */
1415 switch (mmu_idx) {
1416 case ARMMMUIdx_E2:
1417 case ARMMMUIdx_E20_0:
1418 case ARMMMUIdx_E20_2:
1419 case ARMMMUIdx_E20_2_PAN:
1420 return prot_rw;
1421 default:
1422 break;
1423 }
1424 break;
1425 case ARMSS_Secure:
1426 if (env->cp15.scr_el3 & SCR_SIF) {
1427 return prot_rw;
1428 }
1429 break;
1430 default:
1431 /* Input NonSecure must have output NonSecure. */
1432 g_assert_not_reached();
1433 }
1434 }
1435
1436 /* TODO have_wxn should be replaced with
1437 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1438 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1439 * compatible processors have EL2, which is required for [U]WXN.
1440 */
1441 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1442
1443 if (have_wxn) {
1444 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1445 }
1446
1447 if (is_aa64) {
1448 if (regime_has_2_ranges(mmu_idx) && !is_user) {
1449 xn = pxn || (user_rw & PAGE_WRITE);
1450 }
1451 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1452 switch (regime_el(env, mmu_idx)) {
1453 case 1:
1454 case 3:
1455 if (is_user) {
1456 xn = xn || !(user_rw & PAGE_READ);
1457 } else {
1458 int uwxn = 0;
1459 if (have_wxn) {
1460 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1461 }
1462 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1463 (uwxn && (user_rw & PAGE_WRITE));
1464 }
1465 break;
1466 case 2:
1467 break;
1468 }
1469 } else {
1470 xn = wxn = 0;
1471 }
1472
1473 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1474 return prot_rw;
1475 }
1476 return prot_rw | PAGE_EXEC;
1477 }
1478
aa32_va_parameters(CPUARMState * env,uint32_t va,ARMMMUIdx mmu_idx)1479 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1480 ARMMMUIdx mmu_idx)
1481 {
1482 uint64_t tcr = regime_tcr(env, mmu_idx);
1483 uint32_t el = regime_el(env, mmu_idx);
1484 int select, tsz;
1485 bool epd, hpd;
1486
1487 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1488
1489 if (mmu_idx == ARMMMUIdx_Stage2) {
1490 /* VTCR */
1491 bool sext = extract32(tcr, 4, 1);
1492 bool sign = extract32(tcr, 3, 1);
1493
1494 /*
1495 * If the sign-extend bit is not the same as t0sz[3], the result
1496 * is unpredictable. Flag this as a guest error.
1497 */
1498 if (sign != sext) {
1499 qemu_log_mask(LOG_GUEST_ERROR,
1500 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1501 }
1502 tsz = sextract32(tcr, 0, 4) + 8;
1503 select = 0;
1504 hpd = false;
1505 epd = false;
1506 } else if (el == 2) {
1507 /* HTCR */
1508 tsz = extract32(tcr, 0, 3);
1509 select = 0;
1510 hpd = extract64(tcr, 24, 1);
1511 epd = false;
1512 } else {
1513 int t0sz = extract32(tcr, 0, 3);
1514 int t1sz = extract32(tcr, 16, 3);
1515
1516 if (t1sz == 0) {
1517 select = va > (0xffffffffu >> t0sz);
1518 } else {
1519 /* Note that we will detect errors later. */
1520 select = va >= ~(0xffffffffu >> t1sz);
1521 }
1522 if (!select) {
1523 tsz = t0sz;
1524 epd = extract32(tcr, 7, 1);
1525 hpd = extract64(tcr, 41, 1);
1526 } else {
1527 tsz = t1sz;
1528 epd = extract32(tcr, 23, 1);
1529 hpd = extract64(tcr, 42, 1);
1530 }
1531 /* For aarch32, hpd0 is not enabled without t2e as well. */
1532 hpd &= extract32(tcr, 6, 1);
1533 }
1534
1535 return (ARMVAParameters) {
1536 .tsz = tsz,
1537 .select = select,
1538 .epd = epd,
1539 .hpd = hpd,
1540 };
1541 }
1542
1543 /*
1544 * check_s2_mmu_setup
1545 * @cpu: ARMCPU
1546 * @is_aa64: True if the translation regime is in AArch64 state
1547 * @tcr: VTCR_EL2 or VSTCR_EL2
1548 * @ds: Effective value of TCR.DS.
1549 * @iasize: Bitsize of IPAs
1550 * @stride: Page-table stride (See the ARM ARM)
1551 *
1552 * Decode the starting level of the S2 lookup, returning INT_MIN if
1553 * the configuration is invalid.
1554 */
check_s2_mmu_setup(ARMCPU * cpu,bool is_aa64,uint64_t tcr,bool ds,int iasize,int stride)1555 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1556 bool ds, int iasize, int stride)
1557 {
1558 int sl0, sl2, startlevel, granulebits, levels;
1559 int s1_min_iasize, s1_max_iasize;
1560
1561 sl0 = extract32(tcr, 6, 2);
1562 if (is_aa64) {
1563 /*
1564 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1565 * so interleave AArch64.S2StartLevel.
1566 */
1567 switch (stride) {
1568 case 9: /* 4KB */
1569 /* SL2 is RES0 unless DS=1 & 4KB granule. */
1570 sl2 = extract64(tcr, 33, 1);
1571 if (ds && sl2) {
1572 if (sl0 != 0) {
1573 goto fail;
1574 }
1575 startlevel = -1;
1576 } else {
1577 startlevel = 2 - sl0;
1578 switch (sl0) {
1579 case 2:
1580 if (arm_pamax(cpu) < 44) {
1581 goto fail;
1582 }
1583 break;
1584 case 3:
1585 if (!cpu_isar_feature(aa64_st, cpu)) {
1586 goto fail;
1587 }
1588 startlevel = 3;
1589 break;
1590 }
1591 }
1592 break;
1593 case 11: /* 16KB */
1594 switch (sl0) {
1595 case 2:
1596 if (arm_pamax(cpu) < 42) {
1597 goto fail;
1598 }
1599 break;
1600 case 3:
1601 if (!ds) {
1602 goto fail;
1603 }
1604 break;
1605 }
1606 startlevel = 3 - sl0;
1607 break;
1608 case 13: /* 64KB */
1609 switch (sl0) {
1610 case 2:
1611 if (arm_pamax(cpu) < 44) {
1612 goto fail;
1613 }
1614 break;
1615 case 3:
1616 goto fail;
1617 }
1618 startlevel = 3 - sl0;
1619 break;
1620 default:
1621 g_assert_not_reached();
1622 }
1623 } else {
1624 /*
1625 * Things are simpler for AArch32 EL2, with only 4k pages.
1626 * There is no separate S2InvalidSL function, but AArch32.S2Walk
1627 * begins with walkparms.sl0 in {'1x'}.
1628 */
1629 assert(stride == 9);
1630 if (sl0 >= 2) {
1631 goto fail;
1632 }
1633 startlevel = 2 - sl0;
1634 }
1635
1636 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */
1637 levels = 3 - startlevel;
1638 granulebits = stride + 3;
1639
1640 s1_min_iasize = levels * stride + granulebits + 1;
1641 s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1642
1643 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1644 return startlevel;
1645 }
1646
1647 fail:
1648 return INT_MIN;
1649 }
1650
lpae_block_desc_valid(ARMCPU * cpu,bool ds,ARMGranuleSize gran,int level)1651 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1652 ARMGranuleSize gran, int level)
1653 {
1654 /*
1655 * See pseudocode AArch46.BlockDescSupported(): block descriptors
1656 * are not valid at all levels, depending on the page size.
1657 */
1658 switch (gran) {
1659 case Gran4K:
1660 return (level == 0 && ds) || level == 1 || level == 2;
1661 case Gran16K:
1662 return (level == 1 && ds) || level == 2;
1663 case Gran64K:
1664 return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1665 default:
1666 g_assert_not_reached();
1667 }
1668 }
1669
nv_nv1_enabled(CPUARMState * env,S1Translate * ptw)1670 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1671 {
1672 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1673 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1674 }
1675
1676 /**
1677 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1678 *
1679 * Returns false if the translation was successful. Otherwise, phys_ptr,
1680 * attrs, prot and page_size may not be filled in, and the populated fsr
1681 * value provides information on why the translation aborted, in the format
1682 * of a long-format DFSR/IFSR fault register, with the following caveat:
1683 * the WnR bit is never set (the caller must do this).
1684 *
1685 * @env: CPUARMState
1686 * @ptw: Current and next stage parameters for the walk.
1687 * @address: virtual address to get physical address for
1688 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1689 * @memop: memory operation feeding this access, or 0 for none
1690 * @result: set on translation success,
1691 * @fi: set to fault info if the translation fails
1692 */
get_phys_addr_lpae(CPUARMState * env,S1Translate * ptw,uint64_t address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)1693 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1694 uint64_t address,
1695 MMUAccessType access_type, MemOp memop,
1696 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1697 {
1698 ARMCPU *cpu = env_archcpu(env);
1699 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1700 int32_t level;
1701 ARMVAParameters param;
1702 uint64_t ttbr;
1703 hwaddr descaddr, indexmask, indexmask_grainsize;
1704 uint32_t tableattrs;
1705 target_ulong page_size;
1706 uint64_t attrs;
1707 int32_t stride;
1708 int addrsize, inputsize, outputsize;
1709 uint64_t tcr = regime_tcr(env, mmu_idx);
1710 int ap, xn, pxn;
1711 uint32_t el = regime_el(env, mmu_idx);
1712 uint64_t descaddrmask;
1713 bool aarch64 = arm_el_is_aa64(env, el);
1714 uint64_t descriptor, new_descriptor;
1715 ARMSecuritySpace out_space;
1716 bool device;
1717
1718 /* TODO: This code does not support shareability levels. */
1719 if (aarch64) {
1720 int ps;
1721
1722 param = aa64_va_parameters(env, address, mmu_idx,
1723 access_type != MMU_INST_FETCH,
1724 !arm_el_is_aa64(env, 1));
1725 level = 0;
1726
1727 /*
1728 * If TxSZ is programmed to a value larger than the maximum,
1729 * or smaller than the effective minimum, it is IMPLEMENTATION
1730 * DEFINED whether we behave as if the field were programmed
1731 * within bounds, or if a level 0 Translation fault is generated.
1732 *
1733 * With FEAT_LVA, fault on less than minimum becomes required,
1734 * so our choice is to always raise the fault.
1735 */
1736 if (param.tsz_oob) {
1737 goto do_translation_fault;
1738 }
1739
1740 addrsize = 64 - 8 * param.tbi;
1741 inputsize = 64 - param.tsz;
1742
1743 /*
1744 * Bound PS by PARANGE to find the effective output address size.
1745 * ID_AA64MMFR0 is a read-only register so values outside of the
1746 * supported mappings can be considered an implementation error.
1747 */
1748 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1749 ps = MIN(ps, param.ps);
1750 assert(ps < ARRAY_SIZE(pamax_map));
1751 outputsize = pamax_map[ps];
1752
1753 /*
1754 * With LPA2, the effective output address (OA) size is at most 48 bits
1755 * unless TCR.DS == 1
1756 */
1757 if (!param.ds && param.gran != Gran64K) {
1758 outputsize = MIN(outputsize, 48);
1759 }
1760 } else {
1761 param = aa32_va_parameters(env, address, mmu_idx);
1762 level = 1;
1763 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1764 inputsize = addrsize - param.tsz;
1765 outputsize = 40;
1766 }
1767
1768 /*
1769 * We determined the region when collecting the parameters, but we
1770 * have not yet validated that the address is valid for the region.
1771 * Extract the top bits and verify that they all match select.
1772 *
1773 * For aa32, if inputsize == addrsize, then we have selected the
1774 * region by exclusion in aa32_va_parameters and there is no more
1775 * validation to do here.
1776 */
1777 if (inputsize < addrsize) {
1778 target_ulong top_bits = sextract64(address, inputsize,
1779 addrsize - inputsize);
1780 if (-top_bits != param.select) {
1781 /* The gap between the two regions is a Translation fault */
1782 goto do_translation_fault;
1783 }
1784 }
1785
1786 stride = arm_granule_bits(param.gran) - 3;
1787
1788 /*
1789 * Note that QEMU ignores shareability and cacheability attributes,
1790 * so we don't need to do anything with the SH, ORGN, IRGN fields
1791 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1792 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1793 * implement any ASID-like capability so we can ignore it (instead
1794 * we will always flush the TLB any time the ASID is changed).
1795 */
1796 ttbr = regime_ttbr(env, mmu_idx, param.select);
1797
1798 /*
1799 * Here we should have set up all the parameters for the translation:
1800 * inputsize, ttbr, epd, stride, tbi
1801 */
1802
1803 if (param.epd) {
1804 /*
1805 * Translation table walk disabled => Translation fault on TLB miss
1806 * Note: This is always 0 on 64-bit EL2 and EL3.
1807 */
1808 goto do_translation_fault;
1809 }
1810
1811 if (!regime_is_stage2(mmu_idx)) {
1812 /*
1813 * The starting level depends on the virtual address size (which can
1814 * be up to 48 bits) and the translation granule size. It indicates
1815 * the number of strides (stride bits at a time) needed to
1816 * consume the bits of the input address. In the pseudocode this is:
1817 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1818 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1819 * our 'stride + 3' and 'stride' is our 'stride'.
1820 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1821 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1822 * = 4 - (inputsize - 4) / stride;
1823 */
1824 level = 4 - (inputsize - 4) / stride;
1825 } else {
1826 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1827 inputsize, stride);
1828 if (startlevel == INT_MIN) {
1829 level = 0;
1830 goto do_translation_fault;
1831 }
1832 level = startlevel;
1833 }
1834
1835 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1836 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1837
1838 /* Now we can extract the actual base address from the TTBR */
1839 descaddr = extract64(ttbr, 0, 48);
1840
1841 /*
1842 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1843 *
1844 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1845 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1846 * but we've just cleared the bits above 47, so simplify the test.
1847 */
1848 if (outputsize > 48) {
1849 descaddr |= extract64(ttbr, 2, 4) << 48;
1850 } else if (descaddr >> outputsize) {
1851 level = 0;
1852 fi->type = ARMFault_AddressSize;
1853 goto do_fault;
1854 }
1855
1856 /*
1857 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1858 * and also to mask out CnP (bit 0) which could validly be non-zero.
1859 */
1860 descaddr &= ~indexmask;
1861
1862 /*
1863 * For AArch32, the address field in the descriptor goes up to bit 39
1864 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1865 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1866 * bits as part of the address, which will be checked via outputsize.
1867 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1868 * the highest bits of a 52-bit output are placed elsewhere.
1869 */
1870 if (param.ds) {
1871 descaddrmask = MAKE_64BIT_MASK(0, 50);
1872 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1873 descaddrmask = MAKE_64BIT_MASK(0, 48);
1874 } else {
1875 descaddrmask = MAKE_64BIT_MASK(0, 40);
1876 }
1877 descaddrmask &= ~indexmask_grainsize;
1878 tableattrs = 0;
1879
1880 next_level:
1881 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1882 descaddr &= ~7ULL;
1883
1884 /*
1885 * Process the NSTable bit from the previous level. This changes
1886 * the table address space and the output space from Secure to
1887 * NonSecure. With RME, the EL3 translation regime does not change
1888 * from Root to NonSecure.
1889 */
1890 if (ptw->in_space == ARMSS_Secure
1891 && !regime_is_stage2(mmu_idx)
1892 && extract32(tableattrs, 4, 1)) {
1893 /*
1894 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1895 * Assert the relative order of the secure/non-secure indexes.
1896 */
1897 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1898 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1899 ptw->in_ptw_idx += 1;
1900 ptw->in_space = ARMSS_NonSecure;
1901 }
1902
1903 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1904 goto do_fault;
1905 }
1906 descriptor = arm_ldq_ptw(env, ptw, fi);
1907 if (fi->type != ARMFault_None) {
1908 goto do_fault;
1909 }
1910 new_descriptor = descriptor;
1911
1912 restart_atomic_update:
1913 if (!(descriptor & 1) ||
1914 (!(descriptor & 2) &&
1915 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1916 /* Invalid, or a block descriptor at an invalid level */
1917 goto do_translation_fault;
1918 }
1919
1920 descaddr = descriptor & descaddrmask;
1921
1922 /*
1923 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1924 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1925 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1926 * raise AddressSizeFault.
1927 */
1928 if (outputsize > 48) {
1929 if (param.ds) {
1930 descaddr |= extract64(descriptor, 8, 2) << 50;
1931 } else {
1932 descaddr |= extract64(descriptor, 12, 4) << 48;
1933 }
1934 } else if (descaddr >> outputsize) {
1935 fi->type = ARMFault_AddressSize;
1936 goto do_fault;
1937 }
1938
1939 if ((descriptor & 2) && (level < 3)) {
1940 /*
1941 * Table entry. The top five bits are attributes which may
1942 * propagate down through lower levels of the table (and
1943 * which are all arranged so that 0 means "no effect", so
1944 * we can gather them up by ORing in the bits at each level).
1945 */
1946 tableattrs |= extract64(descriptor, 59, 5);
1947 level++;
1948 indexmask = indexmask_grainsize;
1949 goto next_level;
1950 }
1951
1952 /*
1953 * Block entry at level 1 or 2, or page entry at level 3.
1954 * These are basically the same thing, although the number
1955 * of bits we pull in from the vaddr varies. Note that although
1956 * descaddrmask masks enough of the low bits of the descriptor
1957 * to give a correct page or table address, the address field
1958 * in a block descriptor is smaller; so we need to explicitly
1959 * clear the lower bits here before ORing in the low vaddr bits.
1960 *
1961 * Afterward, descaddr is the final physical address.
1962 */
1963 page_size = (1ULL << ((stride * (4 - level)) + 3));
1964 descaddr &= ~(hwaddr)(page_size - 1);
1965 descaddr |= (address & (page_size - 1));
1966
1967 if (likely(!ptw->in_debug)) {
1968 /*
1969 * Access flag.
1970 * If HA is enabled, prepare to update the descriptor below.
1971 * Otherwise, pass the access fault on to software.
1972 */
1973 if (!(descriptor & (1 << 10))) {
1974 if (param.ha) {
1975 new_descriptor |= 1 << 10; /* AF */
1976 } else {
1977 fi->type = ARMFault_AccessFlag;
1978 goto do_fault;
1979 }
1980 }
1981
1982 /*
1983 * Dirty Bit.
1984 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1985 * bit for writeback. The actual write protection test may still be
1986 * overridden by tableattrs, to be merged below.
1987 */
1988 if (param.hd
1989 && extract64(descriptor, 51, 1) /* DBM */
1990 && access_type == MMU_DATA_STORE) {
1991 if (regime_is_stage2(mmu_idx)) {
1992 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1993 } else {
1994 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1995 }
1996 }
1997 }
1998
1999 /*
2000 * Extract attributes from the (modified) descriptor, and apply
2001 * table descriptors. Stage 2 table descriptors do not include
2002 * any attribute fields. HPD disables all the table attributes
2003 * except NSTable (which we have already handled).
2004 */
2005 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
2006 if (!regime_is_stage2(mmu_idx)) {
2007 if (!param.hpd) {
2008 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
2009 /*
2010 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2011 * means "force PL1 access only", which means forcing AP[1] to 0.
2012 */
2013 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
2014 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
2015 }
2016 }
2017
2018 ap = extract32(attrs, 6, 2);
2019 out_space = ptw->in_space;
2020 if (regime_is_stage2(mmu_idx)) {
2021 /*
2022 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
2023 * The bit remains ignored for other security states.
2024 * R_YMCSL: Executing an insn fetched from non-Realm causes
2025 * a stage2 permission fault.
2026 */
2027 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
2028 out_space = ARMSS_NonSecure;
2029 result->f.prot = get_S2prot_noexecute(ap);
2030 } else {
2031 xn = extract64(attrs, 53, 2);
2032 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
2033 }
2034
2035 result->cacheattrs.is_s2_format = true;
2036 result->cacheattrs.attrs = extract32(attrs, 2, 4);
2037 /*
2038 * Security state does not really affect HCR_EL2.FWB;
2039 * we only need to filter FWB for aa32 or other FEAT.
2040 */
2041 device = S2_attrs_are_device(arm_hcr_el2_eff(env),
2042 result->cacheattrs.attrs);
2043 } else {
2044 int nse, ns = extract32(attrs, 5, 1);
2045 uint8_t attrindx;
2046 uint64_t mair;
2047
2048 switch (out_space) {
2049 case ARMSS_Root:
2050 /*
2051 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
2052 * R_XTYPW: NSE and NS together select the output pa space.
2053 */
2054 nse = extract32(attrs, 11, 1);
2055 out_space = (nse << 1) | ns;
2056 if (out_space == ARMSS_Secure &&
2057 !cpu_isar_feature(aa64_sel2, cpu)) {
2058 out_space = ARMSS_NonSecure;
2059 }
2060 break;
2061 case ARMSS_Secure:
2062 if (ns) {
2063 out_space = ARMSS_NonSecure;
2064 }
2065 break;
2066 case ARMSS_Realm:
2067 switch (mmu_idx) {
2068 case ARMMMUIdx_Stage1_E0:
2069 case ARMMMUIdx_Stage1_E1:
2070 case ARMMMUIdx_Stage1_E1_PAN:
2071 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
2072 break;
2073 case ARMMMUIdx_E2:
2074 case ARMMMUIdx_E20_0:
2075 case ARMMMUIdx_E20_2:
2076 case ARMMMUIdx_E20_2_PAN:
2077 /*
2078 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
2079 * NS changes the output to non-secure space.
2080 */
2081 if (ns) {
2082 out_space = ARMSS_NonSecure;
2083 }
2084 break;
2085 default:
2086 g_assert_not_reached();
2087 }
2088 break;
2089 case ARMSS_NonSecure:
2090 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
2091 break;
2092 default:
2093 g_assert_not_reached();
2094 }
2095 xn = extract64(attrs, 54, 1);
2096 pxn = extract64(attrs, 53, 1);
2097
2098 if (el == 1 && nv_nv1_enabled(env, ptw)) {
2099 /*
2100 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2101 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2102 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2103 * (which we have already folded into bits 53 and 54 of attrs).
2104 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2105 * Similarly, APTable[0] from the table descriptor is treated as 0;
2106 * we already folded this into AP[1] and squashing that to 0 does
2107 * the right thing.
2108 */
2109 pxn = xn;
2110 xn = 0;
2111 ap &= ~1;
2112 }
2113 /*
2114 * Note that we modified ptw->in_space earlier for NSTable, but
2115 * result->f.attrs retains a copy of the original security space.
2116 */
2117 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
2118 result->f.attrs.space, out_space);
2119
2120 /* Index into MAIR registers for cache attributes */
2121 attrindx = extract32(attrs, 2, 3);
2122 mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2123 assert(attrindx <= 7);
2124 result->cacheattrs.is_s2_format = false;
2125 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2126
2127 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2128 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2129 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2130 }
2131 device = S1_attrs_are_device(result->cacheattrs.attrs);
2132 }
2133
2134 /*
2135 * Enable alignment checks on Device memory.
2136 *
2137 * Per R_XCHFJ, the correct ordering for alignment, permission,
2138 * and stage 2 faults is:
2139 * - Alignment fault caused by the memory type
2140 * - Permission fault
2141 * - A stage 2 fault on the memory access
2142 * Perform the alignment check now, so that we recognize it in
2143 * the correct order. Set TLB_CHECK_ALIGNED so that any subsequent
2144 * softmmu tlb hit will also check the alignment; clear along the
2145 * non-device path so that tlb_fill_flags is consistent in the
2146 * event of restart_atomic_update.
2147 *
2148 * In v7, for a CPU without the Virtualization Extensions this
2149 * access is UNPREDICTABLE; we choose to make it take the alignment
2150 * fault as is required for a v7VE CPU. (QEMU doesn't emulate any
2151 * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.)
2152 */
2153 if (device) {
2154 unsigned a_bits = memop_atomicity_bits(memop);
2155 if (address & ((1 << a_bits) - 1)) {
2156 fi->type = ARMFault_Alignment;
2157 goto do_fault;
2158 }
2159 result->f.tlb_fill_flags = TLB_CHECK_ALIGNED;
2160 } else {
2161 result->f.tlb_fill_flags = 0;
2162 }
2163
2164 if (!(result->f.prot & (1 << access_type))) {
2165 fi->type = ARMFault_Permission;
2166 goto do_fault;
2167 }
2168
2169 /* If FEAT_HAFDBS has made changes, update the PTE. */
2170 if (new_descriptor != descriptor) {
2171 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2172 if (fi->type != ARMFault_None) {
2173 goto do_fault;
2174 }
2175 /*
2176 * I_YZSVV says that if the in-memory descriptor has changed,
2177 * then we must use the information in that new value
2178 * (which might include a different output address, different
2179 * attributes, or generate a fault).
2180 * Restart the handling of the descriptor value from scratch.
2181 */
2182 if (new_descriptor != descriptor) {
2183 descriptor = new_descriptor;
2184 goto restart_atomic_update;
2185 }
2186 }
2187
2188 result->f.attrs.space = out_space;
2189 result->f.attrs.secure = arm_space_is_secure(out_space);
2190
2191 /*
2192 * For FEAT_LPA2 and effective DS, the SH field in the attributes
2193 * was re-purposed for output address bits. The SH attribute in
2194 * that case comes from TCR_ELx, which we extracted earlier.
2195 */
2196 if (param.ds) {
2197 result->cacheattrs.shareability = param.sh;
2198 } else {
2199 result->cacheattrs.shareability = extract32(attrs, 8, 2);
2200 }
2201
2202 result->f.phys_addr = descaddr;
2203 result->f.lg_page_size = ctz64(page_size);
2204 return false;
2205
2206 do_translation_fault:
2207 fi->type = ARMFault_Translation;
2208 do_fault:
2209 if (fi->s1ptw) {
2210 /* Retain the existing stage 2 fi->level */
2211 assert(fi->stage2);
2212 } else {
2213 fi->level = level;
2214 fi->stage2 = regime_is_stage2(mmu_idx);
2215 }
2216 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2217 return true;
2218 }
2219
get_phys_addr_pmsav5(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2220 static bool get_phys_addr_pmsav5(CPUARMState *env,
2221 S1Translate *ptw,
2222 uint32_t address,
2223 MMUAccessType access_type,
2224 GetPhysAddrResult *result,
2225 ARMMMUFaultInfo *fi)
2226 {
2227 int n;
2228 uint32_t mask;
2229 uint32_t base;
2230 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2231 bool is_user = regime_is_user(env, mmu_idx);
2232
2233 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2234 /* MPU disabled. */
2235 result->f.phys_addr = address;
2236 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2237 return false;
2238 }
2239
2240 result->f.phys_addr = address;
2241 for (n = 7; n >= 0; n--) {
2242 base = env->cp15.c6_region[n];
2243 if ((base & 1) == 0) {
2244 continue;
2245 }
2246 mask = 1 << ((base >> 1) & 0x1f);
2247 /* Keep this shift separate from the above to avoid an
2248 (undefined) << 32. */
2249 mask = (mask << 1) - 1;
2250 if (((base ^ address) & ~mask) == 0) {
2251 break;
2252 }
2253 }
2254 if (n < 0) {
2255 fi->type = ARMFault_Background;
2256 return true;
2257 }
2258
2259 if (access_type == MMU_INST_FETCH) {
2260 mask = env->cp15.pmsav5_insn_ap;
2261 } else {
2262 mask = env->cp15.pmsav5_data_ap;
2263 }
2264 mask = (mask >> (n * 4)) & 0xf;
2265 switch (mask) {
2266 case 0:
2267 fi->type = ARMFault_Permission;
2268 fi->level = 1;
2269 return true;
2270 case 1:
2271 if (is_user) {
2272 fi->type = ARMFault_Permission;
2273 fi->level = 1;
2274 return true;
2275 }
2276 result->f.prot = PAGE_READ | PAGE_WRITE;
2277 break;
2278 case 2:
2279 result->f.prot = PAGE_READ;
2280 if (!is_user) {
2281 result->f.prot |= PAGE_WRITE;
2282 }
2283 break;
2284 case 3:
2285 result->f.prot = PAGE_READ | PAGE_WRITE;
2286 break;
2287 case 5:
2288 if (is_user) {
2289 fi->type = ARMFault_Permission;
2290 fi->level = 1;
2291 return true;
2292 }
2293 result->f.prot = PAGE_READ;
2294 break;
2295 case 6:
2296 result->f.prot = PAGE_READ;
2297 break;
2298 default:
2299 /* Bad permission. */
2300 fi->type = ARMFault_Permission;
2301 fi->level = 1;
2302 return true;
2303 }
2304 result->f.prot |= PAGE_EXEC;
2305 return false;
2306 }
2307
get_phys_addr_pmsav7_default(CPUARMState * env,ARMMMUIdx mmu_idx,int32_t address,uint8_t * prot)2308 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2309 int32_t address, uint8_t *prot)
2310 {
2311 if (!arm_feature(env, ARM_FEATURE_M)) {
2312 *prot = PAGE_READ | PAGE_WRITE;
2313 switch (address) {
2314 case 0xF0000000 ... 0xFFFFFFFF:
2315 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2316 /* hivecs execing is ok */
2317 *prot |= PAGE_EXEC;
2318 }
2319 break;
2320 case 0x00000000 ... 0x7FFFFFFF:
2321 *prot |= PAGE_EXEC;
2322 break;
2323 }
2324 } else {
2325 /* Default system address map for M profile cores.
2326 * The architecture specifies which regions are execute-never;
2327 * at the MPU level no other checks are defined.
2328 */
2329 switch (address) {
2330 case 0x00000000 ... 0x1fffffff: /* ROM */
2331 case 0x20000000 ... 0x3fffffff: /* SRAM */
2332 case 0x60000000 ... 0x7fffffff: /* RAM */
2333 case 0x80000000 ... 0x9fffffff: /* RAM */
2334 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2335 break;
2336 case 0x40000000 ... 0x5fffffff: /* Peripheral */
2337 case 0xa0000000 ... 0xbfffffff: /* Device */
2338 case 0xc0000000 ... 0xdfffffff: /* Device */
2339 case 0xe0000000 ... 0xffffffff: /* System */
2340 *prot = PAGE_READ | PAGE_WRITE;
2341 break;
2342 default:
2343 g_assert_not_reached();
2344 }
2345 }
2346 }
2347
m_is_ppb_region(CPUARMState * env,uint32_t address)2348 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2349 {
2350 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2351 return arm_feature(env, ARM_FEATURE_M) &&
2352 extract32(address, 20, 12) == 0xe00;
2353 }
2354
m_is_system_region(CPUARMState * env,uint32_t address)2355 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2356 {
2357 /*
2358 * True if address is in the M profile system region
2359 * 0xe0000000 - 0xffffffff
2360 */
2361 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2362 }
2363
pmsav7_use_background_region(ARMCPU * cpu,ARMMMUIdx mmu_idx,bool is_secure,bool is_user)2364 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2365 bool is_secure, bool is_user)
2366 {
2367 /*
2368 * Return true if we should use the default memory map as a
2369 * "background" region if there are no hits against any MPU regions.
2370 */
2371 CPUARMState *env = &cpu->env;
2372
2373 if (is_user) {
2374 return false;
2375 }
2376
2377 if (arm_feature(env, ARM_FEATURE_M)) {
2378 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2379 }
2380
2381 if (mmu_idx == ARMMMUIdx_Stage2) {
2382 return false;
2383 }
2384
2385 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2386 }
2387
get_phys_addr_pmsav7(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2388 static bool get_phys_addr_pmsav7(CPUARMState *env,
2389 S1Translate *ptw,
2390 uint32_t address,
2391 MMUAccessType access_type,
2392 GetPhysAddrResult *result,
2393 ARMMMUFaultInfo *fi)
2394 {
2395 ARMCPU *cpu = env_archcpu(env);
2396 int n;
2397 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2398 bool is_user = regime_is_user(env, mmu_idx);
2399 bool secure = arm_space_is_secure(ptw->in_space);
2400
2401 result->f.phys_addr = address;
2402 result->f.lg_page_size = TARGET_PAGE_BITS;
2403 result->f.prot = 0;
2404
2405 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2406 m_is_ppb_region(env, address)) {
2407 /*
2408 * MPU disabled or M profile PPB access: use default memory map.
2409 * The other case which uses the default memory map in the
2410 * v7M ARM ARM pseudocode is exception vector reads from the vector
2411 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2412 * which always does a direct read using address_space_ldl(), rather
2413 * than going via this function, so we don't need to check that here.
2414 */
2415 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2416 } else { /* MPU enabled */
2417 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2418 /* region search */
2419 uint32_t base = env->pmsav7.drbar[n];
2420 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2421 uint32_t rmask;
2422 bool srdis = false;
2423
2424 if (!(env->pmsav7.drsr[n] & 0x1)) {
2425 continue;
2426 }
2427
2428 if (!rsize) {
2429 qemu_log_mask(LOG_GUEST_ERROR,
2430 "DRSR[%d]: Rsize field cannot be 0\n", n);
2431 continue;
2432 }
2433 rsize++;
2434 rmask = (1ull << rsize) - 1;
2435
2436 if (base & rmask) {
2437 qemu_log_mask(LOG_GUEST_ERROR,
2438 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2439 "to DRSR region size, mask = 0x%" PRIx32 "\n",
2440 n, base, rmask);
2441 continue;
2442 }
2443
2444 if (address < base || address > base + rmask) {
2445 /*
2446 * Address not in this region. We must check whether the
2447 * region covers addresses in the same page as our address.
2448 * In that case we must not report a size that covers the
2449 * whole page for a subsequent hit against a different MPU
2450 * region or the background region, because it would result in
2451 * incorrect TLB hits for subsequent accesses to addresses that
2452 * are in this MPU region.
2453 */
2454 if (ranges_overlap(base, rmask,
2455 address & TARGET_PAGE_MASK,
2456 TARGET_PAGE_SIZE)) {
2457 result->f.lg_page_size = 0;
2458 }
2459 continue;
2460 }
2461
2462 /* Region matched */
2463
2464 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2465 int i, snd;
2466 uint32_t srdis_mask;
2467
2468 rsize -= 3; /* sub region size (power of 2) */
2469 snd = ((address - base) >> rsize) & 0x7;
2470 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2471
2472 srdis_mask = srdis ? 0x3 : 0x0;
2473 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2474 /*
2475 * This will check in groups of 2, 4 and then 8, whether
2476 * the subregion bits are consistent. rsize is incremented
2477 * back up to give the region size, considering consistent
2478 * adjacent subregions as one region. Stop testing if rsize
2479 * is already big enough for an entire QEMU page.
2480 */
2481 int snd_rounded = snd & ~(i - 1);
2482 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2483 snd_rounded + 8, i);
2484 if (srdis_mask ^ srdis_multi) {
2485 break;
2486 }
2487 srdis_mask = (srdis_mask << i) | srdis_mask;
2488 rsize++;
2489 }
2490 }
2491 if (srdis) {
2492 continue;
2493 }
2494 if (rsize < TARGET_PAGE_BITS) {
2495 result->f.lg_page_size = rsize;
2496 }
2497 break;
2498 }
2499
2500 if (n == -1) { /* no hits */
2501 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2502 /* background fault */
2503 fi->type = ARMFault_Background;
2504 return true;
2505 }
2506 get_phys_addr_pmsav7_default(env, mmu_idx, address,
2507 &result->f.prot);
2508 } else { /* a MPU hit! */
2509 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2510 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2511
2512 if (m_is_system_region(env, address)) {
2513 /* System space is always execute never */
2514 xn = 1;
2515 }
2516
2517 if (is_user) { /* User mode AP bit decoding */
2518 switch (ap) {
2519 case 0:
2520 case 1:
2521 case 5:
2522 break; /* no access */
2523 case 3:
2524 result->f.prot |= PAGE_WRITE;
2525 /* fall through */
2526 case 2:
2527 case 6:
2528 result->f.prot |= PAGE_READ | PAGE_EXEC;
2529 break;
2530 case 7:
2531 /* for v7M, same as 6; for R profile a reserved value */
2532 if (arm_feature(env, ARM_FEATURE_M)) {
2533 result->f.prot |= PAGE_READ | PAGE_EXEC;
2534 break;
2535 }
2536 /* fall through */
2537 default:
2538 qemu_log_mask(LOG_GUEST_ERROR,
2539 "DRACR[%d]: Bad value for AP bits: 0x%"
2540 PRIx32 "\n", n, ap);
2541 }
2542 } else { /* Priv. mode AP bits decoding */
2543 switch (ap) {
2544 case 0:
2545 break; /* no access */
2546 case 1:
2547 case 2:
2548 case 3:
2549 result->f.prot |= PAGE_WRITE;
2550 /* fall through */
2551 case 5:
2552 case 6:
2553 result->f.prot |= PAGE_READ | PAGE_EXEC;
2554 break;
2555 case 7:
2556 /* for v7M, same as 6; for R profile a reserved value */
2557 if (arm_feature(env, ARM_FEATURE_M)) {
2558 result->f.prot |= PAGE_READ | PAGE_EXEC;
2559 break;
2560 }
2561 /* fall through */
2562 default:
2563 qemu_log_mask(LOG_GUEST_ERROR,
2564 "DRACR[%d]: Bad value for AP bits: 0x%"
2565 PRIx32 "\n", n, ap);
2566 }
2567 }
2568
2569 /* execute never */
2570 if (xn) {
2571 result->f.prot &= ~PAGE_EXEC;
2572 }
2573 }
2574 }
2575
2576 fi->type = ARMFault_Permission;
2577 fi->level = 1;
2578 return !(result->f.prot & (1 << access_type));
2579 }
2580
regime_rbar(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t secure)2581 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2582 uint32_t secure)
2583 {
2584 if (regime_el(env, mmu_idx) == 2) {
2585 return env->pmsav8.hprbar;
2586 } else {
2587 return env->pmsav8.rbar[secure];
2588 }
2589 }
2590
regime_rlar(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t secure)2591 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2592 uint32_t secure)
2593 {
2594 if (regime_el(env, mmu_idx) == 2) {
2595 return env->pmsav8.hprlar;
2596 } else {
2597 return env->pmsav8.rlar[secure];
2598 }
2599 }
2600
pmsav8_mpu_lookup(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,bool secure,GetPhysAddrResult * result,ARMMMUFaultInfo * fi,uint32_t * mregion)2601 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2602 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2603 bool secure, GetPhysAddrResult *result,
2604 ARMMMUFaultInfo *fi, uint32_t *mregion)
2605 {
2606 /*
2607 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2608 * that a full phys-to-virt translation does).
2609 * mregion is (if not NULL) set to the region number which matched,
2610 * or -1 if no region number is returned (MPU off, address did not
2611 * hit a region, address hit in multiple regions).
2612 * If the region hit doesn't cover the entire TARGET_PAGE the address
2613 * is within, then we set the result page_size to 1 to force the
2614 * memory system to use a subpage.
2615 */
2616 ARMCPU *cpu = env_archcpu(env);
2617 bool is_user = regime_is_user(env, mmu_idx);
2618 int n;
2619 int matchregion = -1;
2620 bool hit = false;
2621 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2622 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2623 int region_counter;
2624
2625 if (regime_el(env, mmu_idx) == 2) {
2626 region_counter = cpu->pmsav8r_hdregion;
2627 } else {
2628 region_counter = cpu->pmsav7_dregion;
2629 }
2630
2631 result->f.lg_page_size = TARGET_PAGE_BITS;
2632 result->f.phys_addr = address;
2633 result->f.prot = 0;
2634 if (mregion) {
2635 *mregion = -1;
2636 }
2637
2638 if (mmu_idx == ARMMMUIdx_Stage2) {
2639 fi->stage2 = true;
2640 }
2641
2642 /*
2643 * Unlike the ARM ARM pseudocode, we don't need to check whether this
2644 * was an exception vector read from the vector table (which is always
2645 * done using the default system address map), because those accesses
2646 * are done in arm_v7m_load_vector(), which always does a direct
2647 * read using address_space_ldl(), rather than going via this function.
2648 */
2649 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2650 /* MPU disabled */
2651 hit = true;
2652 } else if (m_is_ppb_region(env, address)) {
2653 hit = true;
2654 } else {
2655 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2656 hit = true;
2657 }
2658
2659 uint32_t bitmask;
2660 if (arm_feature(env, ARM_FEATURE_M)) {
2661 bitmask = 0x1f;
2662 } else {
2663 bitmask = 0x3f;
2664 fi->level = 0;
2665 }
2666
2667 for (n = region_counter - 1; n >= 0; n--) {
2668 /* region search */
2669 /*
2670 * Note that the base address is bits [31:x] from the register
2671 * with bits [x-1:0] all zeroes, but the limit address is bits
2672 * [31:x] from the register with bits [x:0] all ones. Where x is
2673 * 5 for Cortex-M and 6 for Cortex-R
2674 */
2675 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2676 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2677
2678 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2679 /* Region disabled */
2680 continue;
2681 }
2682
2683 if (address < base || address > limit) {
2684 /*
2685 * Address not in this region. We must check whether the
2686 * region covers addresses in the same page as our address.
2687 * In that case we must not report a size that covers the
2688 * whole page for a subsequent hit against a different MPU
2689 * region or the background region, because it would result in
2690 * incorrect TLB hits for subsequent accesses to addresses that
2691 * are in this MPU region.
2692 */
2693 if (limit >= base &&
2694 ranges_overlap(base, limit - base + 1,
2695 addr_page_base,
2696 TARGET_PAGE_SIZE)) {
2697 result->f.lg_page_size = 0;
2698 }
2699 continue;
2700 }
2701
2702 if (base > addr_page_base || limit < addr_page_limit) {
2703 result->f.lg_page_size = 0;
2704 }
2705
2706 if (matchregion != -1) {
2707 /*
2708 * Multiple regions match -- always a failure (unlike
2709 * PMSAv7 where highest-numbered-region wins)
2710 */
2711 fi->type = ARMFault_Permission;
2712 if (arm_feature(env, ARM_FEATURE_M)) {
2713 fi->level = 1;
2714 }
2715 return true;
2716 }
2717
2718 matchregion = n;
2719 hit = true;
2720 }
2721 }
2722
2723 if (!hit) {
2724 if (arm_feature(env, ARM_FEATURE_M)) {
2725 fi->type = ARMFault_Background;
2726 } else {
2727 fi->type = ARMFault_Permission;
2728 }
2729 return true;
2730 }
2731
2732 if (matchregion == -1) {
2733 /* hit using the background region */
2734 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2735 } else {
2736 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2737 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2738 uint32_t ap = extract32(matched_rbar, 1, 2);
2739 uint32_t xn = extract32(matched_rbar, 0, 1);
2740 bool pxn = false;
2741
2742 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2743 pxn = extract32(matched_rlar, 4, 1);
2744 }
2745
2746 if (m_is_system_region(env, address)) {
2747 /* System space is always execute never */
2748 xn = 1;
2749 }
2750
2751 if (regime_el(env, mmu_idx) == 2) {
2752 result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2753 mmu_idx != ARMMMUIdx_E2);
2754 } else {
2755 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2756 }
2757
2758 if (!arm_feature(env, ARM_FEATURE_M)) {
2759 uint8_t attrindx = extract32(matched_rlar, 1, 3);
2760 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2761 uint8_t sh = extract32(matched_rlar, 3, 2);
2762
2763 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2764 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2765 xn = 0x1;
2766 }
2767
2768 if ((regime_el(env, mmu_idx) == 1) &&
2769 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2770 pxn = 0x1;
2771 }
2772
2773 result->cacheattrs.is_s2_format = false;
2774 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2775 result->cacheattrs.shareability = sh;
2776 }
2777
2778 if (result->f.prot && !xn && !(pxn && !is_user)) {
2779 result->f.prot |= PAGE_EXEC;
2780 }
2781
2782 if (mregion) {
2783 *mregion = matchregion;
2784 }
2785 }
2786
2787 fi->type = ARMFault_Permission;
2788 if (arm_feature(env, ARM_FEATURE_M)) {
2789 fi->level = 1;
2790 }
2791 return !(result->f.prot & (1 << access_type));
2792 }
2793
v8m_is_sau_exempt(CPUARMState * env,uint32_t address,MMUAccessType access_type)2794 static bool v8m_is_sau_exempt(CPUARMState *env,
2795 uint32_t address, MMUAccessType access_type)
2796 {
2797 /*
2798 * The architecture specifies that certain address ranges are
2799 * exempt from v8M SAU/IDAU checks.
2800 */
2801 return
2802 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2803 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2804 (address >= 0xe000e000 && address <= 0xe000efff) ||
2805 (address >= 0xe002e000 && address <= 0xe002efff) ||
2806 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2807 (address >= 0xe00ff000 && address <= 0xe00fffff);
2808 }
2809
v8m_security_lookup(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,bool is_secure,V8M_SAttributes * sattrs)2810 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2811 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2812 bool is_secure, V8M_SAttributes *sattrs)
2813 {
2814 /*
2815 * Look up the security attributes for this address. Compare the
2816 * pseudocode SecurityCheck() function.
2817 * We assume the caller has zero-initialized *sattrs.
2818 */
2819 ARMCPU *cpu = env_archcpu(env);
2820 int r;
2821 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2822 int idau_region = IREGION_NOTVALID;
2823 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2824 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2825
2826 if (cpu->idau) {
2827 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2828 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2829
2830 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2831 &idau_nsc);
2832 }
2833
2834 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2835 /* 0xf0000000..0xffffffff is always S for insn fetches */
2836 return;
2837 }
2838
2839 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2840 sattrs->ns = !is_secure;
2841 return;
2842 }
2843
2844 if (idau_region != IREGION_NOTVALID) {
2845 sattrs->irvalid = true;
2846 sattrs->iregion = idau_region;
2847 }
2848
2849 switch (env->sau.ctrl & 3) {
2850 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2851 break;
2852 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2853 sattrs->ns = true;
2854 break;
2855 default: /* SAU.ENABLE == 1 */
2856 for (r = 0; r < cpu->sau_sregion; r++) {
2857 if (env->sau.rlar[r] & 1) {
2858 uint32_t base = env->sau.rbar[r] & ~0x1f;
2859 uint32_t limit = env->sau.rlar[r] | 0x1f;
2860
2861 if (base <= address && limit >= address) {
2862 if (base > addr_page_base || limit < addr_page_limit) {
2863 sattrs->subpage = true;
2864 }
2865 if (sattrs->srvalid) {
2866 /*
2867 * If we hit in more than one region then we must report
2868 * as Secure, not NS-Callable, with no valid region
2869 * number info.
2870 */
2871 sattrs->ns = false;
2872 sattrs->nsc = false;
2873 sattrs->sregion = 0;
2874 sattrs->srvalid = false;
2875 break;
2876 } else {
2877 if (env->sau.rlar[r] & 2) {
2878 sattrs->nsc = true;
2879 } else {
2880 sattrs->ns = true;
2881 }
2882 sattrs->srvalid = true;
2883 sattrs->sregion = r;
2884 }
2885 } else {
2886 /*
2887 * Address not in this region. We must check whether the
2888 * region covers addresses in the same page as our address.
2889 * In that case we must not report a size that covers the
2890 * whole page for a subsequent hit against a different MPU
2891 * region or the background region, because it would result
2892 * in incorrect TLB hits for subsequent accesses to
2893 * addresses that are in this MPU region.
2894 */
2895 if (limit >= base &&
2896 ranges_overlap(base, limit - base + 1,
2897 addr_page_base,
2898 TARGET_PAGE_SIZE)) {
2899 sattrs->subpage = true;
2900 }
2901 }
2902 }
2903 }
2904 break;
2905 }
2906
2907 /*
2908 * The IDAU will override the SAU lookup results if it specifies
2909 * higher security than the SAU does.
2910 */
2911 if (!idau_ns) {
2912 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2913 sattrs->ns = false;
2914 sattrs->nsc = idau_nsc;
2915 }
2916 }
2917 }
2918
get_phys_addr_pmsav8(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2919 static bool get_phys_addr_pmsav8(CPUARMState *env,
2920 S1Translate *ptw,
2921 uint32_t address,
2922 MMUAccessType access_type,
2923 GetPhysAddrResult *result,
2924 ARMMMUFaultInfo *fi)
2925 {
2926 V8M_SAttributes sattrs = {};
2927 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2928 bool secure = arm_space_is_secure(ptw->in_space);
2929 bool ret;
2930
2931 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2932 v8m_security_lookup(env, address, access_type, mmu_idx,
2933 secure, &sattrs);
2934 if (access_type == MMU_INST_FETCH) {
2935 /*
2936 * Instruction fetches always use the MMU bank and the
2937 * transaction attribute determined by the fetch address,
2938 * regardless of CPU state. This is painful for QEMU
2939 * to handle, because it would mean we need to encode
2940 * into the mmu_idx not just the (user, negpri) information
2941 * for the current security state but also that for the
2942 * other security state, which would balloon the number
2943 * of mmu_idx values needed alarmingly.
2944 * Fortunately we can avoid this because it's not actually
2945 * possible to arbitrarily execute code from memory with
2946 * the wrong security attribute: it will always generate
2947 * an exception of some kind or another, apart from the
2948 * special case of an NS CPU executing an SG instruction
2949 * in S&NSC memory. So we always just fail the translation
2950 * here and sort things out in the exception handler
2951 * (including possibly emulating an SG instruction).
2952 */
2953 if (sattrs.ns != !secure) {
2954 if (sattrs.nsc) {
2955 fi->type = ARMFault_QEMU_NSCExec;
2956 } else {
2957 fi->type = ARMFault_QEMU_SFault;
2958 }
2959 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2960 result->f.phys_addr = address;
2961 result->f.prot = 0;
2962 return true;
2963 }
2964 } else {
2965 /*
2966 * For data accesses we always use the MMU bank indicated
2967 * by the current CPU state, but the security attributes
2968 * might downgrade a secure access to nonsecure.
2969 */
2970 if (sattrs.ns) {
2971 result->f.attrs.secure = false;
2972 result->f.attrs.space = ARMSS_NonSecure;
2973 } else if (!secure) {
2974 /*
2975 * NS access to S memory must fault.
2976 * Architecturally we should first check whether the
2977 * MPU information for this address indicates that we
2978 * are doing an unaligned access to Device memory, which
2979 * should generate a UsageFault instead. QEMU does not
2980 * currently check for that kind of unaligned access though.
2981 * If we added it we would need to do so as a special case
2982 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2983 */
2984 fi->type = ARMFault_QEMU_SFault;
2985 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2986 result->f.phys_addr = address;
2987 result->f.prot = 0;
2988 return true;
2989 }
2990 }
2991 }
2992
2993 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2994 result, fi, NULL);
2995 if (sattrs.subpage) {
2996 result->f.lg_page_size = 0;
2997 }
2998 return ret;
2999 }
3000
3001 /*
3002 * Translate from the 4-bit stage 2 representation of
3003 * memory attributes (without cache-allocation hints) to
3004 * the 8-bit representation of the stage 1 MAIR registers
3005 * (which includes allocation hints).
3006 *
3007 * ref: shared/translation/attrs/S2AttrDecode()
3008 * .../S2ConvertAttrsHints()
3009 */
convert_stage2_attrs(uint64_t hcr,uint8_t s2attrs)3010 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
3011 {
3012 uint8_t hiattr = extract32(s2attrs, 2, 2);
3013 uint8_t loattr = extract32(s2attrs, 0, 2);
3014 uint8_t hihint = 0, lohint = 0;
3015
3016 if (hiattr != 0) { /* normal memory */
3017 if (hcr & HCR_CD) { /* cache disabled */
3018 hiattr = loattr = 1; /* non-cacheable */
3019 } else {
3020 if (hiattr != 1) { /* Write-through or write-back */
3021 hihint = 3; /* RW allocate */
3022 }
3023 if (loattr != 1) { /* Write-through or write-back */
3024 lohint = 3; /* RW allocate */
3025 }
3026 }
3027 }
3028
3029 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
3030 }
3031
3032 /*
3033 * Combine either inner or outer cacheability attributes for normal
3034 * memory, according to table D4-42 and pseudocode procedure
3035 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
3036 *
3037 * NB: only stage 1 includes allocation hints (RW bits), leading to
3038 * some asymmetry.
3039 */
combine_cacheattr_nibble(uint8_t s1,uint8_t s2)3040 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
3041 {
3042 if (s1 == 4 || s2 == 4) {
3043 /* non-cacheable has precedence */
3044 return 4;
3045 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
3046 /* stage 1 write-through takes precedence */
3047 return s1;
3048 } else if (extract32(s2, 2, 2) == 2) {
3049 /* stage 2 write-through takes precedence, but the allocation hint
3050 * is still taken from stage 1
3051 */
3052 return (2 << 2) | extract32(s1, 0, 2);
3053 } else { /* write-back */
3054 return s1;
3055 }
3056 }
3057
3058 /*
3059 * Combine the memory type and cacheability attributes of
3060 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
3061 * combined attributes in MAIR_EL1 format.
3062 */
combined_attrs_nofwb(uint64_t hcr,ARMCacheAttrs s1,ARMCacheAttrs s2)3063 static uint8_t combined_attrs_nofwb(uint64_t hcr,
3064 ARMCacheAttrs s1, ARMCacheAttrs s2)
3065 {
3066 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
3067
3068 if (s2.is_s2_format) {
3069 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
3070 } else {
3071 s2_mair_attrs = s2.attrs;
3072 }
3073
3074 s1lo = extract32(s1.attrs, 0, 4);
3075 s2lo = extract32(s2_mair_attrs, 0, 4);
3076 s1hi = extract32(s1.attrs, 4, 4);
3077 s2hi = extract32(s2_mair_attrs, 4, 4);
3078
3079 /* Combine memory type and cacheability attributes */
3080 if (s1hi == 0 || s2hi == 0) {
3081 /* Device has precedence over normal */
3082 if (s1lo == 0 || s2lo == 0) {
3083 /* nGnRnE has precedence over anything */
3084 ret_attrs = 0;
3085 } else if (s1lo == 4 || s2lo == 4) {
3086 /* non-Reordering has precedence over Reordering */
3087 ret_attrs = 4; /* nGnRE */
3088 } else if (s1lo == 8 || s2lo == 8) {
3089 /* non-Gathering has precedence over Gathering */
3090 ret_attrs = 8; /* nGRE */
3091 } else {
3092 ret_attrs = 0xc; /* GRE */
3093 }
3094 } else { /* Normal memory */
3095 /* Outer/inner cacheability combine independently */
3096 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
3097 | combine_cacheattr_nibble(s1lo, s2lo);
3098 }
3099 return ret_attrs;
3100 }
3101
force_cacheattr_nibble_wb(uint8_t attr)3102 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
3103 {
3104 /*
3105 * Given the 4 bits specifying the outer or inner cacheability
3106 * in MAIR format, return a value specifying Normal Write-Back,
3107 * with the allocation and transient hints taken from the input
3108 * if the input specified some kind of cacheable attribute.
3109 */
3110 if (attr == 0 || attr == 4) {
3111 /*
3112 * 0 == an UNPREDICTABLE encoding
3113 * 4 == Non-cacheable
3114 * Either way, force Write-Back RW allocate non-transient
3115 */
3116 return 0xf;
3117 }
3118 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
3119 return attr | 4;
3120 }
3121
3122 /*
3123 * Combine the memory type and cacheability attributes of
3124 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
3125 * combined attributes in MAIR_EL1 format.
3126 */
combined_attrs_fwb(ARMCacheAttrs s1,ARMCacheAttrs s2)3127 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3128 {
3129 assert(s2.is_s2_format && !s1.is_s2_format);
3130
3131 switch (s2.attrs) {
3132 case 7:
3133 /* Use stage 1 attributes */
3134 return s1.attrs;
3135 case 6:
3136 /*
3137 * Force Normal Write-Back. Note that if S1 is Normal cacheable
3138 * then we take the allocation hints from it; otherwise it is
3139 * RW allocate, non-transient.
3140 */
3141 if ((s1.attrs & 0xf0) == 0) {
3142 /* S1 is Device */
3143 return 0xff;
3144 }
3145 /* Need to check the Inner and Outer nibbles separately */
3146 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3147 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3148 case 5:
3149 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3150 if ((s1.attrs & 0xf0) == 0) {
3151 return s1.attrs;
3152 }
3153 return 0x44;
3154 case 0 ... 3:
3155 /* Force Device, of subtype specified by S2 */
3156 return s2.attrs << 2;
3157 default:
3158 /*
3159 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3160 * arbitrarily force Device.
3161 */
3162 return 0;
3163 }
3164 }
3165
3166 /*
3167 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3168 * and CombineS1S2Desc()
3169 *
3170 * @env: CPUARMState
3171 * @s1: Attributes from stage 1 walk
3172 * @s2: Attributes from stage 2 walk
3173 */
combine_cacheattrs(uint64_t hcr,ARMCacheAttrs s1,ARMCacheAttrs s2)3174 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3175 ARMCacheAttrs s1, ARMCacheAttrs s2)
3176 {
3177 ARMCacheAttrs ret;
3178 bool tagged = false;
3179
3180 assert(!s1.is_s2_format);
3181 ret.is_s2_format = false;
3182
3183 if (s1.attrs == 0xf0) {
3184 tagged = true;
3185 s1.attrs = 0xff;
3186 }
3187
3188 /* Combine shareability attributes (table D4-43) */
3189 if (s1.shareability == 2 || s2.shareability == 2) {
3190 /* if either are outer-shareable, the result is outer-shareable */
3191 ret.shareability = 2;
3192 } else if (s1.shareability == 3 || s2.shareability == 3) {
3193 /* if either are inner-shareable, the result is inner-shareable */
3194 ret.shareability = 3;
3195 } else {
3196 /* both non-shareable */
3197 ret.shareability = 0;
3198 }
3199
3200 /* Combine memory type and cacheability attributes */
3201 if (hcr & HCR_FWB) {
3202 ret.attrs = combined_attrs_fwb(s1, s2);
3203 } else {
3204 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3205 }
3206
3207 /*
3208 * Any location for which the resultant memory type is any
3209 * type of Device memory is always treated as Outer Shareable.
3210 * Any location for which the resultant memory type is Normal
3211 * Inner Non-cacheable, Outer Non-cacheable is always treated
3212 * as Outer Shareable.
3213 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3214 */
3215 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3216 ret.shareability = 2;
3217 }
3218
3219 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3220 if (tagged && ret.attrs == 0xff) {
3221 ret.attrs = 0xf0;
3222 }
3223
3224 return ret;
3225 }
3226
3227 /*
3228 * MMU disabled. S1 addresses within aa64 translation regimes are
3229 * still checked for bounds -- see AArch64.S1DisabledOutput().
3230 */
get_phys_addr_disabled(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3231 static bool get_phys_addr_disabled(CPUARMState *env,
3232 S1Translate *ptw,
3233 vaddr address,
3234 MMUAccessType access_type,
3235 GetPhysAddrResult *result,
3236 ARMMMUFaultInfo *fi)
3237 {
3238 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3239 uint8_t memattr = 0x00; /* Device nGnRnE */
3240 uint8_t shareability = 0; /* non-shareable */
3241 int r_el;
3242
3243 switch (mmu_idx) {
3244 case ARMMMUIdx_Stage2:
3245 case ARMMMUIdx_Stage2_S:
3246 case ARMMMUIdx_Phys_S:
3247 case ARMMMUIdx_Phys_NS:
3248 case ARMMMUIdx_Phys_Root:
3249 case ARMMMUIdx_Phys_Realm:
3250 break;
3251
3252 default:
3253 r_el = regime_el(env, mmu_idx);
3254 if (arm_el_is_aa64(env, r_el)) {
3255 int pamax = arm_pamax(env_archcpu(env));
3256 uint64_t tcr = env->cp15.tcr_el[r_el];
3257 int addrtop, tbi;
3258
3259 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3260 if (access_type == MMU_INST_FETCH) {
3261 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3262 }
3263 tbi = (tbi >> extract64(address, 55, 1)) & 1;
3264 addrtop = (tbi ? 55 : 63);
3265
3266 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3267 fi->type = ARMFault_AddressSize;
3268 fi->level = 0;
3269 fi->stage2 = false;
3270 return 1;
3271 }
3272
3273 /*
3274 * When TBI is disabled, we've just validated that all of the
3275 * bits above PAMax are zero, so logically we only need to
3276 * clear the top byte for TBI. But it's clearer to follow
3277 * the pseudocode set of addrdesc.paddress.
3278 */
3279 address = extract64(address, 0, 52);
3280 }
3281
3282 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3283 if (r_el == 1) {
3284 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3285 if (hcr & HCR_DC) {
3286 if (hcr & HCR_DCT) {
3287 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
3288 } else {
3289 memattr = 0xff; /* Normal, WB, RWA */
3290 }
3291 }
3292 }
3293 if (memattr == 0) {
3294 if (access_type == MMU_INST_FETCH) {
3295 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3296 memattr = 0xee; /* Normal, WT, RA, NT */
3297 } else {
3298 memattr = 0x44; /* Normal, NC, No */
3299 }
3300 }
3301 shareability = 2; /* outer shareable */
3302 }
3303 result->cacheattrs.is_s2_format = false;
3304 break;
3305 }
3306
3307 result->f.phys_addr = address;
3308 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3309 result->f.lg_page_size = TARGET_PAGE_BITS;
3310 result->cacheattrs.shareability = shareability;
3311 result->cacheattrs.attrs = memattr;
3312 return false;
3313 }
3314
get_phys_addr_twostage(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3315 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3316 vaddr address,
3317 MMUAccessType access_type, MemOp memop,
3318 GetPhysAddrResult *result,
3319 ARMMMUFaultInfo *fi)
3320 {
3321 hwaddr ipa;
3322 int s1_prot, s1_lgpgsz;
3323 ARMSecuritySpace in_space = ptw->in_space;
3324 bool ret, ipa_secure, s1_guarded;
3325 ARMCacheAttrs cacheattrs1;
3326 ARMSecuritySpace ipa_space;
3327 uint64_t hcr;
3328
3329 ret = get_phys_addr_nogpc(env, ptw, address, access_type,
3330 memop, result, fi);
3331
3332 /* If S1 fails, return early. */
3333 if (ret) {
3334 return ret;
3335 }
3336
3337 ipa = result->f.phys_addr;
3338 ipa_secure = result->f.attrs.secure;
3339 ipa_space = result->f.attrs.space;
3340
3341 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3342 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3343 ptw->in_space = ipa_space;
3344 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3345
3346 /*
3347 * S1 is done, now do S2 translation.
3348 * Save the stage1 results so that we may merge prot and cacheattrs later.
3349 */
3350 s1_prot = result->f.prot;
3351 s1_lgpgsz = result->f.lg_page_size;
3352 s1_guarded = result->f.extra.arm.guarded;
3353 cacheattrs1 = result->cacheattrs;
3354 memset(result, 0, sizeof(*result));
3355
3356 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type,
3357 memop, result, fi);
3358 fi->s2addr = ipa;
3359
3360 /* Combine the S1 and S2 perms. */
3361 result->f.prot &= s1_prot;
3362
3363 /* If S2 fails, return early. */
3364 if (ret) {
3365 return ret;
3366 }
3367
3368 /*
3369 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3370 * this means "don't put this in the TLB"; in this case, return a
3371 * result with lg_page_size == 0 to achieve that. Otherwise,
3372 * use the maximum of the S1 & S2 page size, so that invalidation
3373 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3374 * we know the combined result permissions etc only cover the minimum
3375 * of the S1 and S2 page size, because we know that the common TLB code
3376 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3377 * and passing a larger page size value only affects invalidations.)
3378 */
3379 if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3380 s1_lgpgsz < TARGET_PAGE_BITS) {
3381 result->f.lg_page_size = 0;
3382 } else if (result->f.lg_page_size < s1_lgpgsz) {
3383 result->f.lg_page_size = s1_lgpgsz;
3384 }
3385
3386 /* Combine the S1 and S2 cache attributes. */
3387 hcr = arm_hcr_el2_eff_secstate(env, in_space);
3388 if (hcr & HCR_DC) {
3389 /*
3390 * HCR.DC forces the first stage attributes to
3391 * Normal Non-Shareable,
3392 * Inner Write-Back Read-Allocate Write-Allocate,
3393 * Outer Write-Back Read-Allocate Write-Allocate.
3394 * Do not overwrite Tagged within attrs.
3395 */
3396 if (cacheattrs1.attrs != 0xf0) {
3397 cacheattrs1.attrs = 0xff;
3398 }
3399 cacheattrs1.shareability = 0;
3400 }
3401 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3402 result->cacheattrs);
3403
3404 /* No BTI GP information in stage 2, we just use the S1 value */
3405 result->f.extra.arm.guarded = s1_guarded;
3406
3407 /*
3408 * Check if IPA translates to secure or non-secure PA space.
3409 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3410 */
3411 if (in_space == ARMSS_Secure) {
3412 result->f.attrs.secure =
3413 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3414 && (ipa_secure
3415 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3416 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3417 }
3418
3419 return false;
3420 }
3421
get_phys_addr_nogpc(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3422 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3423 vaddr address,
3424 MMUAccessType access_type, MemOp memop,
3425 GetPhysAddrResult *result,
3426 ARMMMUFaultInfo *fi)
3427 {
3428 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3429 ARMMMUIdx s1_mmu_idx;
3430
3431 /*
3432 * The page table entries may downgrade Secure to NonSecure, but
3433 * cannot upgrade a NonSecure translation regime's attributes
3434 * to Secure or Realm.
3435 */
3436 result->f.attrs.space = ptw->in_space;
3437 result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3438
3439 switch (mmu_idx) {
3440 case ARMMMUIdx_Phys_S:
3441 case ARMMMUIdx_Phys_NS:
3442 case ARMMMUIdx_Phys_Root:
3443 case ARMMMUIdx_Phys_Realm:
3444 /* Checking Phys early avoids special casing later vs regime_el. */
3445 return get_phys_addr_disabled(env, ptw, address, access_type,
3446 result, fi);
3447
3448 case ARMMMUIdx_Stage1_E0:
3449 case ARMMMUIdx_Stage1_E1:
3450 case ARMMMUIdx_Stage1_E1_PAN:
3451 /*
3452 * First stage lookup uses second stage for ptw; only
3453 * Secure has both S and NS IPA and starts with Stage2_S.
3454 */
3455 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3456 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3457 break;
3458
3459 case ARMMMUIdx_Stage2:
3460 case ARMMMUIdx_Stage2_S:
3461 /*
3462 * Second stage lookup uses physical for ptw; whether this is S or
3463 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3464 * the Secure EL2&0 regime.
3465 */
3466 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3467 break;
3468
3469 case ARMMMUIdx_E10_0:
3470 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3471 goto do_twostage;
3472 case ARMMMUIdx_E10_1:
3473 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3474 goto do_twostage;
3475 case ARMMMUIdx_E10_1_PAN:
3476 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3477 do_twostage:
3478 /*
3479 * Call ourselves recursively to do the stage 1 and then stage 2
3480 * translations if mmu_idx is a two-stage regime, and EL2 present.
3481 * Otherwise, a stage1+stage2 translation is just stage 1.
3482 */
3483 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3484 if (arm_feature(env, ARM_FEATURE_EL2) &&
3485 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3486 return get_phys_addr_twostage(env, ptw, address, access_type,
3487 memop, result, fi);
3488 }
3489 /* fall through */
3490
3491 default:
3492 /* Single stage uses physical for ptw. */
3493 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3494 break;
3495 }
3496
3497 result->f.attrs.user = regime_is_user(env, mmu_idx);
3498
3499 /*
3500 * Fast Context Switch Extension. This doesn't exist at all in v8.
3501 * In v7 and earlier it affects all stage 1 translations.
3502 */
3503 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3504 && !arm_feature(env, ARM_FEATURE_V8)) {
3505 if (regime_el(env, mmu_idx) == 3) {
3506 address += env->cp15.fcseidr_s;
3507 } else {
3508 address += env->cp15.fcseidr_ns;
3509 }
3510 }
3511
3512 if (arm_feature(env, ARM_FEATURE_PMSA)) {
3513 bool ret;
3514 result->f.lg_page_size = TARGET_PAGE_BITS;
3515
3516 if (arm_feature(env, ARM_FEATURE_V8)) {
3517 /* PMSAv8 */
3518 ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3519 result, fi);
3520 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3521 /* PMSAv7 */
3522 ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3523 result, fi);
3524 } else {
3525 /* Pre-v7 MPU */
3526 ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3527 result, fi);
3528 }
3529 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3530 " mmu_idx %u -> %s (prot %c%c%c)\n",
3531 access_type == MMU_DATA_LOAD ? "reading" :
3532 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3533 (uint32_t)address, mmu_idx,
3534 ret ? "Miss" : "Hit",
3535 result->f.prot & PAGE_READ ? 'r' : '-',
3536 result->f.prot & PAGE_WRITE ? 'w' : '-',
3537 result->f.prot & PAGE_EXEC ? 'x' : '-');
3538
3539 return ret;
3540 }
3541
3542 /* Definitely a real MMU, not an MPU */
3543
3544 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3545 return get_phys_addr_disabled(env, ptw, address, access_type,
3546 result, fi);
3547 }
3548
3549 if (regime_using_lpae_format(env, mmu_idx)) {
3550 return get_phys_addr_lpae(env, ptw, address, access_type,
3551 memop, result, fi);
3552 } else if (arm_feature(env, ARM_FEATURE_V7) ||
3553 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3554 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3555 } else {
3556 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3557 }
3558 }
3559
get_phys_addr_gpc(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3560 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3561 vaddr address,
3562 MMUAccessType access_type, MemOp memop,
3563 GetPhysAddrResult *result,
3564 ARMMMUFaultInfo *fi)
3565 {
3566 if (get_phys_addr_nogpc(env, ptw, address, access_type,
3567 memop, result, fi)) {
3568 return true;
3569 }
3570 if (!granule_protection_check(env, result->f.phys_addr,
3571 result->f.attrs.space, fi)) {
3572 fi->type = ARMFault_GPCFOnOutput;
3573 return true;
3574 }
3575 return false;
3576 }
3577
get_phys_addr_with_space_nogpc(CPUARMState * env,vaddr address,MMUAccessType access_type,MemOp memop,ARMMMUIdx mmu_idx,ARMSecuritySpace space,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3578 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
3579 MMUAccessType access_type, MemOp memop,
3580 ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3581 GetPhysAddrResult *result,
3582 ARMMMUFaultInfo *fi)
3583 {
3584 S1Translate ptw = {
3585 .in_mmu_idx = mmu_idx,
3586 .in_space = space,
3587 };
3588 return get_phys_addr_nogpc(env, &ptw, address, access_type,
3589 memop, result, fi);
3590 }
3591
get_phys_addr(CPUARMState * env,vaddr address,MMUAccessType access_type,MemOp memop,ARMMMUIdx mmu_idx,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3592 bool get_phys_addr(CPUARMState *env, vaddr address,
3593 MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx,
3594 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3595 {
3596 S1Translate ptw = {
3597 .in_mmu_idx = mmu_idx,
3598 };
3599 ARMSecuritySpace ss;
3600
3601 switch (mmu_idx) {
3602 case ARMMMUIdx_E10_0:
3603 case ARMMMUIdx_E10_1:
3604 case ARMMMUIdx_E10_1_PAN:
3605 case ARMMMUIdx_E20_0:
3606 case ARMMMUIdx_E20_2:
3607 case ARMMMUIdx_E20_2_PAN:
3608 case ARMMMUIdx_Stage1_E0:
3609 case ARMMMUIdx_Stage1_E1:
3610 case ARMMMUIdx_Stage1_E1_PAN:
3611 case ARMMMUIdx_E2:
3612 ss = arm_security_space_below_el3(env);
3613 break;
3614 case ARMMMUIdx_Stage2:
3615 /*
3616 * For Secure EL2, we need this index to be NonSecure;
3617 * otherwise this will already be NonSecure or Realm.
3618 */
3619 ss = arm_security_space_below_el3(env);
3620 if (ss == ARMSS_Secure) {
3621 ss = ARMSS_NonSecure;
3622 }
3623 break;
3624 case ARMMMUIdx_Phys_NS:
3625 case ARMMMUIdx_MPrivNegPri:
3626 case ARMMMUIdx_MUserNegPri:
3627 case ARMMMUIdx_MPriv:
3628 case ARMMMUIdx_MUser:
3629 ss = ARMSS_NonSecure;
3630 break;
3631 case ARMMMUIdx_Stage2_S:
3632 case ARMMMUIdx_Phys_S:
3633 case ARMMMUIdx_MSPrivNegPri:
3634 case ARMMMUIdx_MSUserNegPri:
3635 case ARMMMUIdx_MSPriv:
3636 case ARMMMUIdx_MSUser:
3637 ss = ARMSS_Secure;
3638 break;
3639 case ARMMMUIdx_E3:
3640 case ARMMMUIdx_E30_0:
3641 case ARMMMUIdx_E30_3_PAN:
3642 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3643 cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3644 ss = ARMSS_Root;
3645 } else {
3646 ss = ARMSS_Secure;
3647 }
3648 break;
3649 case ARMMMUIdx_Phys_Root:
3650 ss = ARMSS_Root;
3651 break;
3652 case ARMMMUIdx_Phys_Realm:
3653 ss = ARMSS_Realm;
3654 break;
3655 default:
3656 g_assert_not_reached();
3657 }
3658
3659 ptw.in_space = ss;
3660 return get_phys_addr_gpc(env, &ptw, address, access_type,
3661 memop, result, fi);
3662 }
3663
arm_cpu_get_phys_page_attrs_debug(CPUState * cs,vaddr addr,MemTxAttrs * attrs)3664 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3665 MemTxAttrs *attrs)
3666 {
3667 ARMCPU *cpu = ARM_CPU(cs);
3668 CPUARMState *env = &cpu->env;
3669 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3670 ARMSecuritySpace ss = arm_security_space(env);
3671 S1Translate ptw = {
3672 .in_mmu_idx = mmu_idx,
3673 .in_space = ss,
3674 .in_debug = true,
3675 };
3676 GetPhysAddrResult res = {};
3677 ARMMMUFaultInfo fi = {};
3678 bool ret;
3679
3680 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, 0, &res, &fi);
3681 *attrs = res.f.attrs;
3682
3683 if (ret) {
3684 return -1;
3685 }
3686 return res.f.phys_addr;
3687 }
3688