xref: /qemu/target/avr/helper.c (revision 4abc8923)
1 /*
2  * QEMU AVR CPU helpers
3  *
4  * Copyright (c) 2016-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu/error-report.h"
24 #include "cpu.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "exec/exec-all.h"
27 #include "exec/page-protection.h"
28 #include "exec/cpu_ldst.h"
29 #include "exec/address-spaces.h"
30 #include "exec/helper-proto.h"
31 
32 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
33 {
34     CPUAVRState *env = cpu_env(cs);
35 
36     /*
37      * We cannot separate a skip from the next instruction,
38      * as the skip would not be preserved across the interrupt.
39      * Separating the two insn normally only happens at page boundaries.
40      */
41     if (env->skip) {
42         return false;
43     }
44 
45     if (interrupt_request & CPU_INTERRUPT_RESET) {
46         if (cpu_interrupts_enabled(env)) {
47             cs->exception_index = EXCP_RESET;
48             avr_cpu_do_interrupt(cs);
49 
50             cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
51             return true;
52         }
53     }
54     if (interrupt_request & CPU_INTERRUPT_HARD) {
55         if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
56             int index = ctz64(env->intsrc);
57             cs->exception_index = EXCP_INT(index);
58             avr_cpu_do_interrupt(cs);
59 
60             env->intsrc &= env->intsrc - 1; /* clear the interrupt */
61             if (!env->intsrc) {
62                 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
63             }
64             return true;
65         }
66     }
67     return false;
68 }
69 
70 void avr_cpu_do_interrupt(CPUState *cs)
71 {
72     CPUAVRState *env = cpu_env(cs);
73 
74     uint32_t ret = env->pc_w;
75     int vector = 0;
76     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
77     int base = 0;
78 
79     if (cs->exception_index == EXCP_RESET) {
80         vector = 0;
81     } else if (env->intsrc != 0) {
82         vector = ctz64(env->intsrc) + 1;
83     }
84 
85     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
86         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
87         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
88         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
89     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
90         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
91         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
92     } else {
93         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
94     }
95 
96     env->pc_w = base + vector * size;
97     env->sregI = 0; /* clear Global Interrupt Flag */
98 
99     cs->exception_index = -1;
100 }
101 
102 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
103 {
104     return addr; /* I assume 1:1 address correspondence */
105 }
106 
107 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
108                       MMUAccessType access_type, int mmu_idx,
109                       bool probe, uintptr_t retaddr)
110 {
111     int prot, page_size = TARGET_PAGE_SIZE;
112     uint32_t paddr;
113 
114     address &= TARGET_PAGE_MASK;
115 
116     if (mmu_idx == MMU_CODE_IDX) {
117         /* Access to code in flash. */
118         paddr = OFFSET_CODE + address;
119         prot = PAGE_READ | PAGE_EXEC;
120         if (paddr >= OFFSET_DATA) {
121             /*
122              * This should not be possible via any architectural operations.
123              * There is certainly not an exception that we can deliver.
124              * Accept probing that might come from generic code.
125              */
126             if (probe) {
127                 return false;
128             }
129             error_report("execution left flash memory");
130             abort();
131         }
132     } else {
133         /* Access to memory. */
134         paddr = OFFSET_DATA + address;
135         prot = PAGE_READ | PAGE_WRITE;
136         if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
137             /*
138              * Access to CPU registers, exit and rebuilt this TB to use
139              * full access in case it touches specially handled registers
140              * like SREG or SP.  For probing, set page_size = 1, in order
141              * to force tlb_fill to be called for the next access.
142              */
143             if (probe) {
144                 page_size = 1;
145             } else {
146                 cpu_env(cs)->fullacc = 1;
147                 cpu_loop_exit_restore(cs, retaddr);
148             }
149         }
150     }
151 
152     tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
153     return true;
154 }
155 
156 /*
157  *  helpers
158  */
159 
160 void helper_sleep(CPUAVRState *env)
161 {
162     CPUState *cs = env_cpu(env);
163 
164     cs->exception_index = EXCP_HLT;
165     cpu_loop_exit(cs);
166 }
167 
168 void helper_unsupported(CPUAVRState *env)
169 {
170     CPUState *cs = env_cpu(env);
171 
172     /*
173      *  I count not find what happens on the real platform, so
174      *  it's EXCP_DEBUG for meanwhile
175      */
176     cs->exception_index = EXCP_DEBUG;
177     if (qemu_loglevel_mask(LOG_UNIMP)) {
178         qemu_log("UNSUPPORTED\n");
179         cpu_dump_state(cs, stderr, 0);
180     }
181     cpu_loop_exit(cs);
182 }
183 
184 void helper_debug(CPUAVRState *env)
185 {
186     CPUState *cs = env_cpu(env);
187 
188     cs->exception_index = EXCP_DEBUG;
189     cpu_loop_exit(cs);
190 }
191 
192 void helper_break(CPUAVRState *env)
193 {
194     CPUState *cs = env_cpu(env);
195 
196     cs->exception_index = EXCP_DEBUG;
197     cpu_loop_exit(cs);
198 }
199 
200 void helper_wdr(CPUAVRState *env)
201 {
202     qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
203 }
204 
205 /*
206  * This function implements IN instruction
207  *
208  * It does the following
209  * a.  if an IO register belongs to CPU, its value is read and returned
210  * b.  otherwise io address is translated to mem address and physical memory
211  *     is read.
212  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
213  *
214  */
215 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
216 {
217     target_ulong data = 0;
218 
219     switch (port) {
220     case 0x38: /* RAMPD */
221         data = 0xff & (env->rampD >> 16);
222         break;
223     case 0x39: /* RAMPX */
224         data = 0xff & (env->rampX >> 16);
225         break;
226     case 0x3a: /* RAMPY */
227         data = 0xff & (env->rampY >> 16);
228         break;
229     case 0x3b: /* RAMPZ */
230         data = 0xff & (env->rampZ >> 16);
231         break;
232     case 0x3c: /* EIND */
233         data = 0xff & (env->eind >> 16);
234         break;
235     case 0x3d: /* SPL */
236         data = env->sp & 0x00ff;
237         break;
238     case 0x3e: /* SPH */
239         data = env->sp >> 8;
240         break;
241     case 0x3f: /* SREG */
242         data = cpu_get_sreg(env);
243         break;
244     default:
245         /* not a special register, pass to normal memory access */
246         data = address_space_ldub(&address_space_memory,
247                                   OFFSET_IO_REGISTERS + port,
248                                   MEMTXATTRS_UNSPECIFIED, NULL);
249     }
250 
251     return data;
252 }
253 
254 /*
255  *  This function implements OUT instruction
256  *
257  *  It does the following
258  *  a.  if an IO register belongs to CPU, its value is written into the register
259  *  b.  otherwise io address is translated to mem address and physical memory
260  *      is written.
261  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
262  *
263  */
264 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
265 {
266     data &= 0x000000ff;
267 
268     switch (port) {
269     case 0x38: /* RAMPD */
270         if (avr_feature(env, AVR_FEATURE_RAMPD)) {
271             env->rampD = (data & 0xff) << 16;
272         }
273         break;
274     case 0x39: /* RAMPX */
275         if (avr_feature(env, AVR_FEATURE_RAMPX)) {
276             env->rampX = (data & 0xff) << 16;
277         }
278         break;
279     case 0x3a: /* RAMPY */
280         if (avr_feature(env, AVR_FEATURE_RAMPY)) {
281             env->rampY = (data & 0xff) << 16;
282         }
283         break;
284     case 0x3b: /* RAMPZ */
285         if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
286             env->rampZ = (data & 0xff) << 16;
287         }
288         break;
289     case 0x3c: /* EIDN */
290         env->eind = (data & 0xff) << 16;
291         break;
292     case 0x3d: /* SPL */
293         env->sp = (env->sp & 0xff00) | (data);
294         break;
295     case 0x3e: /* SPH */
296         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
297             env->sp = (env->sp & 0x00ff) | (data << 8);
298         }
299         break;
300     case 0x3f: /* SREG */
301         cpu_set_sreg(env, data);
302         break;
303     default:
304         /* not a special register, pass to normal memory access */
305         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
306                           data, MEMTXATTRS_UNSPECIFIED, NULL);
307     }
308 }
309 
310 /*
311  *  this function implements LD instruction when there is a possibility to read
312  *  from a CPU register
313  */
314 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
315 {
316     uint8_t data;
317 
318     env->fullacc = false;
319 
320     if (addr < NUMBER_OF_CPU_REGISTERS) {
321         /* CPU registers */
322         data = env->r[addr];
323     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
324         /* IO registers */
325         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
326     } else {
327         /* memory */
328         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
329                                   MEMTXATTRS_UNSPECIFIED, NULL);
330     }
331     return data;
332 }
333 
334 /*
335  *  this function implements ST instruction when there is a possibility to write
336  *  into a CPU register
337  */
338 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
339 {
340     env->fullacc = false;
341 
342     /* Following logic assumes this: */
343     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
344     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
345                                   NUMBER_OF_CPU_REGISTERS);
346 
347     if (addr < NUMBER_OF_CPU_REGISTERS) {
348         /* CPU registers */
349         env->r[addr] = data;
350     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
351         /* IO registers */
352         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
353     } else {
354         /* memory */
355         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
356                           MEMTXATTRS_UNSPECIFIED, NULL);
357     }
358 }
359