xref: /qemu/target/i386/tcg/sysemu/excp_helper.c (revision d4fdb05b)
1 /*
2  *  x86 exception helpers - sysemu code
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/cpu_ldst.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "tcg/helper-tcg.h"
26 
27 typedef struct TranslateParams {
28     target_ulong addr;
29     target_ulong cr3;
30     int pg_mode;
31     int mmu_idx;
32     int ptw_idx;
33     MMUAccessType access_type;
34 } TranslateParams;
35 
36 typedef struct TranslateResult {
37     hwaddr paddr;
38     int prot;
39     int page_size;
40 } TranslateResult;
41 
42 typedef enum TranslateFaultStage2 {
43     S2_NONE,
44     S2_GPA,
45     S2_GPT,
46 } TranslateFaultStage2;
47 
48 typedef struct TranslateFault {
49     int exception_index;
50     int error_code;
51     target_ulong cr2;
52     TranslateFaultStage2 stage2;
53 } TranslateFault;
54 
55 typedef struct PTETranslate {
56     CPUX86State *env;
57     TranslateFault *err;
58     int ptw_idx;
59     void *haddr;
60     hwaddr gaddr;
61 } PTETranslate;
62 
63 static bool ptw_translate(PTETranslate *inout, hwaddr addr, uint64_t ra)
64 {
65     CPUTLBEntryFull *full;
66     int flags;
67 
68     inout->gaddr = addr;
69     flags = probe_access_full(inout->env, addr, 0, MMU_DATA_STORE,
70                               inout->ptw_idx, true, &inout->haddr, &full, ra);
71 
72     if (unlikely(flags & TLB_INVALID_MASK)) {
73         TranslateFault *err = inout->err;
74 
75         assert(inout->ptw_idx == MMU_NESTED_IDX);
76         *err = (TranslateFault){
77             .error_code = inout->env->error_code,
78             .cr2 = addr,
79             .stage2 = S2_GPT,
80         };
81         return false;
82     }
83     return true;
84 }
85 
86 static inline uint32_t ptw_ldl(const PTETranslate *in, uint64_t ra)
87 {
88     if (likely(in->haddr)) {
89         return ldl_p(in->haddr);
90     }
91     return cpu_ldl_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, ra);
92 }
93 
94 static inline uint64_t ptw_ldq(const PTETranslate *in, uint64_t ra)
95 {
96     if (likely(in->haddr)) {
97         return ldq_p(in->haddr);
98     }
99     return cpu_ldq_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, ra);
100 }
101 
102 /*
103  * Note that we can use a 32-bit cmpxchg for all page table entries,
104  * even 64-bit ones, because PG_PRESENT_MASK, PG_ACCESSED_MASK and
105  * PG_DIRTY_MASK are all in the low 32 bits.
106  */
107 static bool ptw_setl_slow(const PTETranslate *in, uint32_t old, uint32_t new)
108 {
109     uint32_t cmp;
110 
111     /* Does x86 really perform a rmw cycle on mmio for ptw? */
112     start_exclusive();
113     cmp = cpu_ldl_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, 0);
114     if (cmp == old) {
115         cpu_stl_mmuidx_ra(in->env, in->gaddr, new, in->ptw_idx, 0);
116     }
117     end_exclusive();
118     return cmp == old;
119 }
120 
121 static inline bool ptw_setl(const PTETranslate *in, uint32_t old, uint32_t set)
122 {
123     if (set & ~old) {
124         uint32_t new = old | set;
125         if (likely(in->haddr)) {
126             old = cpu_to_le32(old);
127             new = cpu_to_le32(new);
128             return qatomic_cmpxchg((uint32_t *)in->haddr, old, new) == old;
129         }
130         return ptw_setl_slow(in, old, new);
131     }
132     return true;
133 }
134 
135 static bool mmu_translate(CPUX86State *env, const TranslateParams *in,
136                           TranslateResult *out, TranslateFault *err,
137                           uint64_t ra)
138 {
139     const target_ulong addr = in->addr;
140     const int pg_mode = in->pg_mode;
141     const bool is_user = is_mmu_index_user(in->mmu_idx);
142     const MMUAccessType access_type = in->access_type;
143     uint64_t ptep, pte, rsvd_mask;
144     PTETranslate pte_trans = {
145         .env = env,
146         .err = err,
147         .ptw_idx = in->ptw_idx,
148     };
149     hwaddr pte_addr, paddr;
150     uint32_t pkr;
151     int page_size;
152     int error_code;
153 
154  restart_all:
155     rsvd_mask = ~MAKE_64BIT_MASK(0, env_archcpu(env)->phys_bits);
156     rsvd_mask &= PG_ADDRESS_MASK;
157     if (!(pg_mode & PG_MODE_NXE)) {
158         rsvd_mask |= PG_NX_MASK;
159     }
160 
161     if (pg_mode & PG_MODE_PAE) {
162 #ifdef TARGET_X86_64
163         if (pg_mode & PG_MODE_LMA) {
164             if (pg_mode & PG_MODE_LA57) {
165                 /*
166                  * Page table level 5
167                  */
168                 pte_addr = (in->cr3 & ~0xfff) + (((addr >> 48) & 0x1ff) << 3);
169                 if (!ptw_translate(&pte_trans, pte_addr, ra)) {
170                     return false;
171                 }
172             restart_5:
173                 pte = ptw_ldq(&pte_trans, ra);
174                 if (!(pte & PG_PRESENT_MASK)) {
175                     goto do_fault;
176                 }
177                 if (pte & (rsvd_mask | PG_PSE_MASK)) {
178                     goto do_fault_rsvd;
179                 }
180                 if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
181                     goto restart_5;
182                 }
183                 ptep = pte ^ PG_NX_MASK;
184             } else {
185                 pte = in->cr3;
186                 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
187             }
188 
189             /*
190              * Page table level 4
191              */
192             pte_addr = (pte & PG_ADDRESS_MASK) + (((addr >> 39) & 0x1ff) << 3);
193             if (!ptw_translate(&pte_trans, pte_addr, ra)) {
194                 return false;
195             }
196         restart_4:
197             pte = ptw_ldq(&pte_trans, ra);
198             if (!(pte & PG_PRESENT_MASK)) {
199                 goto do_fault;
200             }
201             if (pte & (rsvd_mask | PG_PSE_MASK)) {
202                 goto do_fault_rsvd;
203             }
204             if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
205                 goto restart_4;
206             }
207             ptep &= pte ^ PG_NX_MASK;
208 
209             /*
210              * Page table level 3
211              */
212             pte_addr = (pte & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3);
213             if (!ptw_translate(&pte_trans, pte_addr, ra)) {
214                 return false;
215             }
216         restart_3_lma:
217             pte = ptw_ldq(&pte_trans, ra);
218             if (!(pte & PG_PRESENT_MASK)) {
219                 goto do_fault;
220             }
221             if (pte & rsvd_mask) {
222                 goto do_fault_rsvd;
223             }
224             if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
225                 goto restart_3_lma;
226             }
227             ptep &= pte ^ PG_NX_MASK;
228             if (pte & PG_PSE_MASK) {
229                 /* 1 GB page */
230                 page_size = 1024 * 1024 * 1024;
231                 goto do_check_protect;
232             }
233         } else
234 #endif
235         {
236             /*
237              * Page table level 3
238              */
239             pte_addr = (in->cr3 & 0xffffffe0ULL) + ((addr >> 27) & 0x18);
240             if (!ptw_translate(&pte_trans, pte_addr, ra)) {
241                 return false;
242             }
243             rsvd_mask |= PG_HI_USER_MASK;
244         restart_3_nolma:
245             pte = ptw_ldq(&pte_trans, ra);
246             if (!(pte & PG_PRESENT_MASK)) {
247                 goto do_fault;
248             }
249             if (pte & (rsvd_mask | PG_NX_MASK)) {
250                 goto do_fault_rsvd;
251             }
252             if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
253                 goto restart_3_nolma;
254             }
255             ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
256         }
257 
258         /*
259          * Page table level 2
260          */
261         pte_addr = (pte & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3);
262         if (!ptw_translate(&pte_trans, pte_addr, ra)) {
263             return false;
264         }
265     restart_2_pae:
266         pte = ptw_ldq(&pte_trans, ra);
267         if (!(pte & PG_PRESENT_MASK)) {
268             goto do_fault;
269         }
270         if (pte & rsvd_mask) {
271             goto do_fault_rsvd;
272         }
273         if (pte & PG_PSE_MASK) {
274             /* 2 MB page */
275             page_size = 2048 * 1024;
276             ptep &= pte ^ PG_NX_MASK;
277             goto do_check_protect;
278         }
279         if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
280             goto restart_2_pae;
281         }
282         ptep &= pte ^ PG_NX_MASK;
283 
284         /*
285          * Page table level 1
286          */
287         pte_addr = (pte & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3);
288         if (!ptw_translate(&pte_trans, pte_addr, ra)) {
289             return false;
290         }
291         pte = ptw_ldq(&pte_trans, ra);
292         if (!(pte & PG_PRESENT_MASK)) {
293             goto do_fault;
294         }
295         if (pte & rsvd_mask) {
296             goto do_fault_rsvd;
297         }
298         /* combine pde and pte nx, user and rw protections */
299         ptep &= pte ^ PG_NX_MASK;
300         page_size = 4096;
301     } else {
302         /*
303          * Page table level 2
304          */
305         pte_addr = (in->cr3 & 0xfffff000ULL) + ((addr >> 20) & 0xffc);
306         if (!ptw_translate(&pte_trans, pte_addr, ra)) {
307             return false;
308         }
309     restart_2_nopae:
310         pte = ptw_ldl(&pte_trans, ra);
311         if (!(pte & PG_PRESENT_MASK)) {
312             goto do_fault;
313         }
314         ptep = pte | PG_NX_MASK;
315 
316         /* if PSE bit is set, then we use a 4MB page */
317         if ((pte & PG_PSE_MASK) && (pg_mode & PG_MODE_PSE)) {
318             page_size = 4096 * 1024;
319             /*
320              * Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
321              * Leave bits 20-13 in place for setting accessed/dirty bits below.
322              */
323             pte = (uint32_t)pte | ((pte & 0x1fe000LL) << (32 - 13));
324             rsvd_mask = 0x200000;
325             goto do_check_protect_pse36;
326         }
327         if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
328             goto restart_2_nopae;
329         }
330 
331         /*
332          * Page table level 1
333          */
334         pte_addr = (pte & ~0xfffu) + ((addr >> 10) & 0xffc);
335         if (!ptw_translate(&pte_trans, pte_addr, ra)) {
336             return false;
337         }
338         pte = ptw_ldl(&pte_trans, ra);
339         if (!(pte & PG_PRESENT_MASK)) {
340             goto do_fault;
341         }
342         /* combine pde and pte user and rw protections */
343         ptep &= pte | PG_NX_MASK;
344         page_size = 4096;
345         rsvd_mask = 0;
346     }
347 
348 do_check_protect:
349     rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK;
350 do_check_protect_pse36:
351     if (pte & rsvd_mask) {
352         goto do_fault_rsvd;
353     }
354     ptep ^= PG_NX_MASK;
355 
356     /* can the page can be put in the TLB?  prot will tell us */
357     if (is_user && !(ptep & PG_USER_MASK)) {
358         goto do_fault_protect;
359     }
360 
361     int prot = 0;
362     if (!is_mmu_index_smap(in->mmu_idx) || !(ptep & PG_USER_MASK)) {
363         prot |= PAGE_READ;
364         if ((ptep & PG_RW_MASK) || !(is_user || (pg_mode & PG_MODE_WP))) {
365             prot |= PAGE_WRITE;
366         }
367     }
368     if (!(ptep & PG_NX_MASK) &&
369         (is_user ||
370          !((pg_mode & PG_MODE_SMEP) && (ptep & PG_USER_MASK)))) {
371         prot |= PAGE_EXEC;
372     }
373 
374     if (ptep & PG_USER_MASK) {
375         pkr = pg_mode & PG_MODE_PKE ? env->pkru : 0;
376     } else {
377         pkr = pg_mode & PG_MODE_PKS ? env->pkrs : 0;
378     }
379     if (pkr) {
380         uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT;
381         uint32_t pkr_ad = (pkr >> pk * 2) & 1;
382         uint32_t pkr_wd = (pkr >> pk * 2) & 2;
383         uint32_t pkr_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
384 
385         if (pkr_ad) {
386             pkr_prot &= ~(PAGE_READ | PAGE_WRITE);
387         } else if (pkr_wd && (is_user || (pg_mode & PG_MODE_WP))) {
388             pkr_prot &= ~PAGE_WRITE;
389         }
390         if ((pkr_prot & (1 << access_type)) == 0) {
391             goto do_fault_pk_protect;
392         }
393         prot &= pkr_prot;
394     }
395 
396     if ((prot & (1 << access_type)) == 0) {
397         goto do_fault_protect;
398     }
399 
400     /* yes, it can! */
401     {
402         uint32_t set = PG_ACCESSED_MASK;
403         if (access_type == MMU_DATA_STORE) {
404             set |= PG_DIRTY_MASK;
405         } else if (!(pte & PG_DIRTY_MASK)) {
406             /*
407              * Only set write access if already dirty...
408              * otherwise wait for dirty access.
409              */
410             prot &= ~PAGE_WRITE;
411         }
412         if (!ptw_setl(&pte_trans, pte, set)) {
413             /*
414              * We can arrive here from any of 3 levels and 2 formats.
415              * The only safe thing is to restart the entire lookup.
416              */
417             goto restart_all;
418         }
419     }
420 
421     /* merge offset within page */
422     paddr = (pte & PG_ADDRESS_MASK & ~(page_size - 1)) | (addr & (page_size - 1));
423 
424     /*
425      * Note that NPT is walked (for both paging structures and final guest
426      * addresses) using the address with the A20 bit set.
427      */
428     if (in->ptw_idx == MMU_NESTED_IDX) {
429         CPUTLBEntryFull *full;
430         int flags, nested_page_size;
431 
432         flags = probe_access_full(env, paddr, 0, access_type,
433                                   MMU_NESTED_IDX, true,
434                                   &pte_trans.haddr, &full, 0);
435         if (unlikely(flags & TLB_INVALID_MASK)) {
436             *err = (TranslateFault){
437                 .error_code = env->error_code,
438                 .cr2 = paddr,
439                 .stage2 = S2_GPA,
440             };
441             return false;
442         }
443 
444         /* Merge stage1 & stage2 protection bits. */
445         prot &= full->prot;
446 
447         /* Re-verify resulting protection. */
448         if ((prot & (1 << access_type)) == 0) {
449             goto do_fault_protect;
450         }
451 
452         /* Merge stage1 & stage2 addresses to final physical address. */
453         nested_page_size = 1 << full->lg_page_size;
454         paddr = (full->phys_addr & ~(nested_page_size - 1))
455               | (paddr & (nested_page_size - 1));
456 
457         /*
458          * Use the larger of stage1 & stage2 page sizes, so that
459          * invalidation works.
460          */
461         if (nested_page_size > page_size) {
462             page_size = nested_page_size;
463         }
464     }
465 
466     out->paddr = paddr & x86_get_a20_mask(env);
467     out->prot = prot;
468     out->page_size = page_size;
469     return true;
470 
471  do_fault_rsvd:
472     error_code = PG_ERROR_RSVD_MASK;
473     goto do_fault_cont;
474  do_fault_protect:
475     error_code = PG_ERROR_P_MASK;
476     goto do_fault_cont;
477  do_fault_pk_protect:
478     assert(access_type != MMU_INST_FETCH);
479     error_code = PG_ERROR_PK_MASK | PG_ERROR_P_MASK;
480     goto do_fault_cont;
481  do_fault:
482     error_code = 0;
483  do_fault_cont:
484     if (is_user) {
485         error_code |= PG_ERROR_U_MASK;
486     }
487     switch (access_type) {
488     case MMU_DATA_LOAD:
489         break;
490     case MMU_DATA_STORE:
491         error_code |= PG_ERROR_W_MASK;
492         break;
493     case MMU_INST_FETCH:
494         if (pg_mode & (PG_MODE_NXE | PG_MODE_SMEP)) {
495             error_code |= PG_ERROR_I_D_MASK;
496         }
497         break;
498     }
499     *err = (TranslateFault){
500         .exception_index = EXCP0E_PAGE,
501         .error_code = error_code,
502         .cr2 = addr,
503     };
504     return false;
505 }
506 
507 static G_NORETURN void raise_stage2(CPUX86State *env, TranslateFault *err,
508                                     uintptr_t retaddr)
509 {
510     uint64_t exit_info_1 = err->error_code;
511 
512     switch (err->stage2) {
513     case S2_GPT:
514         exit_info_1 |= SVM_NPTEXIT_GPT;
515         break;
516     case S2_GPA:
517         exit_info_1 |= SVM_NPTEXIT_GPA;
518         break;
519     default:
520         g_assert_not_reached();
521     }
522 
523     x86_stq_phys(env_cpu(env),
524                  env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
525                  err->cr2);
526     cpu_vmexit(env, SVM_EXIT_NPF, exit_info_1, retaddr);
527 }
528 
529 static bool get_physical_address(CPUX86State *env, vaddr addr,
530                                  MMUAccessType access_type, int mmu_idx,
531                                  TranslateResult *out, TranslateFault *err,
532                                  uint64_t ra)
533 {
534     TranslateParams in;
535     bool use_stage2 = env->hflags2 & HF2_NPT_MASK;
536 
537     in.addr = addr;
538     in.access_type = access_type;
539 
540     switch (mmu_idx) {
541     case MMU_PHYS_IDX:
542         break;
543 
544     case MMU_NESTED_IDX:
545         if (likely(use_stage2)) {
546             in.cr3 = env->nested_cr3;
547             in.pg_mode = env->nested_pg_mode;
548             in.mmu_idx =
549                 env->nested_pg_mode & PG_MODE_LMA ? MMU_USER64_IDX : MMU_USER32_IDX;
550             in.ptw_idx = MMU_PHYS_IDX;
551 
552             if (!mmu_translate(env, &in, out, err, ra)) {
553                 err->stage2 = S2_GPA;
554                 return false;
555             }
556             return true;
557         }
558         break;
559 
560     default:
561         if (is_mmu_index_32(mmu_idx)) {
562             addr = (uint32_t)addr;
563         }
564 
565         if (likely(env->cr[0] & CR0_PG_MASK)) {
566             in.cr3 = env->cr[3];
567             in.mmu_idx = mmu_idx;
568             in.ptw_idx = use_stage2 ? MMU_NESTED_IDX : MMU_PHYS_IDX;
569             in.pg_mode = get_pg_mode(env);
570 
571             if (in.pg_mode & PG_MODE_LMA) {
572                 /* test virtual address sign extension */
573                 int shift = in.pg_mode & PG_MODE_LA57 ? 56 : 47;
574                 int64_t sext = (int64_t)addr >> shift;
575                 if (sext != 0 && sext != -1) {
576                     *err = (TranslateFault){
577                         .exception_index = EXCP0D_GPF,
578                         .cr2 = addr,
579                     };
580                     return false;
581                 }
582             }
583             return mmu_translate(env, &in, out, err, ra);
584         }
585         break;
586     }
587 
588     /* No translation needed. */
589     out->paddr = addr & x86_get_a20_mask(env);
590     out->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
591     out->page_size = TARGET_PAGE_SIZE;
592     return true;
593 }
594 
595 bool x86_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
596                       MMUAccessType access_type, int mmu_idx,
597                       bool probe, uintptr_t retaddr)
598 {
599     CPUX86State *env = cpu_env(cs);
600     TranslateResult out;
601     TranslateFault err;
602 
603     if (get_physical_address(env, addr, access_type, mmu_idx, &out, &err,
604                              retaddr)) {
605         /*
606          * Even if 4MB pages, we map only one 4KB page in the cache to
607          * avoid filling it too fast.
608          */
609         assert(out.prot & (1 << access_type));
610         tlb_set_page_with_attrs(cs, addr & TARGET_PAGE_MASK,
611                                 out.paddr & TARGET_PAGE_MASK,
612                                 cpu_get_mem_attrs(env),
613                                 out.prot, mmu_idx, out.page_size);
614         return true;
615     }
616 
617     if (probe) {
618         /* This will be used if recursing for stage2 translation. */
619         env->error_code = err.error_code;
620         return false;
621     }
622 
623     if (err.stage2 != S2_NONE) {
624         raise_stage2(env, &err, retaddr);
625     }
626 
627     if (env->intercept_exceptions & (1 << err.exception_index)) {
628         /* cr2 is not modified in case of exceptions */
629         x86_stq_phys(cs, env->vm_vmcb +
630                      offsetof(struct vmcb, control.exit_info_2),
631                      err.cr2);
632     } else {
633         env->cr[2] = err.cr2;
634     }
635     raise_exception_err_ra(env, err.exception_index, err.error_code, retaddr);
636 }
637 
638 G_NORETURN void x86_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
639                                             MMUAccessType access_type,
640                                             int mmu_idx, uintptr_t retaddr)
641 {
642     X86CPU *cpu = X86_CPU(cs);
643     handle_unaligned_access(&cpu->env, vaddr, access_type, retaddr);
644 }
645