1 /* 2 * Registry processing routines. Routines, common for registry 3 * processing frontends. 4 * 5 * Copyright 1999 Sylvain St-Germain 6 * Copyright 2002 Andriy Palamarchuk 7 * Copyright 2008 Alexander N. Sørnes <alex@thehandofagony.com> 8 * 9 * This library is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU Lesser General Public 11 * License as published by the Free Software Foundation; either 12 * version 2.1 of the License, or (at your option) any later version. 13 * 14 * This library is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * Lesser General Public License for more details. 18 * 19 * You should have received a copy of the GNU Lesser General Public 20 * License along with this library; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA 22 */ 23 24 #include "regedit.h" 25 26 #include <assert.h> 27 #include <fcntl.h> 28 #include <io.h> 29 #include <wine/unicode.h> 30 31 #define REG_VAL_BUF_SIZE 4096 32 33 /* maximal number of characters in hexadecimal data line, 34 * including the indentation, but not including the '\' character 35 */ 36 #define REG_FILE_HEX_LINE_LEN (2 + 25 * 3) 37 38 const WCHAR* reg_class_namesW[] = 39 { 40 L"HKEY_LOCAL_MACHINE", L"HKEY_USERS", L"HKEY_CLASSES_ROOT", 41 L"HKEY_CURRENT_CONFIG", L"HKEY_CURRENT_USER", L"HKEY_DYN_DATA" 42 }; 43 44 static HKEY reg_class_keys[] = { 45 HKEY_LOCAL_MACHINE, HKEY_USERS, HKEY_CLASSES_ROOT, 46 HKEY_CURRENT_CONFIG, HKEY_CURRENT_USER, HKEY_DYN_DATA 47 }; 48 49 #define REG_CLASS_NUMBER (sizeof(reg_class_keys) / sizeof(reg_class_keys[0])) 50 51 /* return values */ 52 #define NOT_ENOUGH_MEMORY 1 53 #define IO_ERROR 2 54 55 /* processing macros */ 56 57 /* common check of memory allocation results */ 58 #define CHECK_ENOUGH_MEMORY(p) \ 59 if (!(p)) \ 60 { \ 61 fprintf(stderr,"%S: file %s, line %d: Not enough memory\n", \ 62 getAppName(), __FILE__, __LINE__); \ 63 exit(NOT_ENOUGH_MEMORY); \ 64 } 65 66 /****************************************************************************** 67 * Allocates memory and converts input from multibyte to wide chars 68 * Returned string must be freed by the caller 69 */ 70 WCHAR* GetWideString(const char* strA) 71 { 72 if(strA) 73 { 74 WCHAR* strW; 75 int len = MultiByteToWideChar(CP_ACP, 0, strA, -1, NULL, 0); 76 77 strW = HeapAlloc(GetProcessHeap(), 0, len * sizeof(WCHAR)); 78 CHECK_ENOUGH_MEMORY(strW); 79 MultiByteToWideChar(CP_ACP, 0, strA, -1, strW, len); 80 return strW; 81 } 82 return NULL; 83 } 84 85 /****************************************************************************** 86 * Allocates memory and converts input from multibyte to wide chars 87 * Returned string must be freed by the caller 88 */ 89 static WCHAR* GetWideStringN(const char* strA, int chars, DWORD *len) 90 { 91 if(strA) 92 { 93 WCHAR* strW; 94 *len = MultiByteToWideChar(CP_ACP, 0, strA, chars, NULL, 0); 95 96 strW = HeapAlloc(GetProcessHeap(), 0, *len * sizeof(WCHAR)); 97 CHECK_ENOUGH_MEMORY(strW); 98 MultiByteToWideChar(CP_ACP, 0, strA, chars, strW, *len); 99 return strW; 100 } 101 *len = 0; 102 return NULL; 103 } 104 105 /****************************************************************************** 106 * Allocates memory and converts input from wide chars to multibyte 107 * Returned string must be freed by the caller 108 */ 109 char* GetMultiByteString(const WCHAR* strW) 110 { 111 if(strW) 112 { 113 char* strA; 114 int len = WideCharToMultiByte(CP_ACP, 0, strW, -1, NULL, 0, NULL, NULL); 115 116 strA = HeapAlloc(GetProcessHeap(), 0, len); 117 CHECK_ENOUGH_MEMORY(strA); 118 WideCharToMultiByte(CP_ACP, 0, strW, -1, strA, len, NULL, NULL); 119 return strA; 120 } 121 return NULL; 122 } 123 124 /****************************************************************************** 125 * Allocates memory and converts input from wide chars to multibyte 126 * Returned string must be freed by the caller 127 */ 128 static char* GetMultiByteStringN(const WCHAR* strW, int chars, DWORD* len) 129 { 130 if(strW) 131 { 132 char* strA; 133 *len = WideCharToMultiByte(CP_ACP, 0, strW, chars, NULL, 0, NULL, NULL); 134 135 strA = HeapAlloc(GetProcessHeap(), 0, *len); 136 CHECK_ENOUGH_MEMORY(strA); 137 WideCharToMultiByte(CP_ACP, 0, strW, chars, strA, *len, NULL, NULL); 138 return strA; 139 } 140 *len = 0; 141 return NULL; 142 } 143 144 /****************************************************************************** 145 * Converts a hex representation of a DWORD into a DWORD. 146 */ 147 static BOOL convertHexToDWord(WCHAR* str, DWORD *dw) 148 { 149 char buf[9]; 150 char dummy; 151 152 WideCharToMultiByte(CP_ACP, 0, str, -1, buf, 9, NULL, NULL); 153 if (lstrlenW(str) > 8 || sscanf(buf, "%lx%c", dw, &dummy) != 1) { 154 fprintf(stderr,"%S: ERROR, invalid hex value\n", getAppName()); 155 return FALSE; 156 } 157 return TRUE; 158 } 159 160 /****************************************************************************** 161 * Converts a hex comma separated values list into a binary string. 162 */ 163 static BYTE* convertHexCSVToHex(WCHAR *str, DWORD *size) 164 { 165 WCHAR *s; 166 BYTE *d, *data; 167 168 /* The worst case is 1 digit + 1 comma per byte */ 169 *size=(lstrlenW(str)+1)/2; 170 data=HeapAlloc(GetProcessHeap(), 0, *size); 171 CHECK_ENOUGH_MEMORY(data); 172 173 s = str; 174 d = data; 175 *size=0; 176 while (*s != '\0') { 177 UINT wc; 178 WCHAR *end; 179 180 wc = strtoulW(s,&end,16); 181 if (end == s || wc > 0xff || (*end && *end != ',')) { 182 char* strA = GetMultiByteString(s); 183 fprintf(stderr,"%S: ERROR converting CSV hex stream. Invalid value at '%s'\n", 184 getAppName(), strA); 185 HeapFree(GetProcessHeap(), 0, data); 186 HeapFree(GetProcessHeap(), 0, strA); 187 return NULL; 188 } 189 *d++ =(BYTE)wc; 190 (*size)++; 191 if (*end) end++; 192 s = end; 193 } 194 195 return data; 196 } 197 198 /****************************************************************************** 199 * This function returns the HKEY associated with the data type encoded in the 200 * value. It modifies the input parameter (key value) in order to skip this 201 * "now useless" data type information. 202 * 203 * Note: Updated based on the algorithm used in 'server/registry.c' 204 */ 205 static DWORD getDataType(LPWSTR *lpValue, DWORD* parse_type) 206 { 207 struct data_type { const WCHAR *tag; int len; int type; int parse_type; }; 208 209 static const WCHAR quote[] = {'"'}; 210 static const WCHAR str[] = {'s','t','r',':','"'}; 211 static const WCHAR str2[] = {'s','t','r','(','2',')',':','"'}; 212 static const WCHAR hex[] = {'h','e','x',':'}; 213 static const WCHAR dword[] = {'d','w','o','r','d',':'}; 214 static const WCHAR hexp[] = {'h','e','x','('}; 215 216 static const struct data_type data_types[] = { /* actual type */ /* type to assume for parsing */ 217 { quote, 1, REG_SZ, REG_SZ }, 218 { str, 5, REG_SZ, REG_SZ }, 219 { str2, 8, REG_EXPAND_SZ, REG_SZ }, 220 { hex, 4, REG_BINARY, REG_BINARY }, 221 { dword, 6, REG_DWORD, REG_DWORD }, 222 { hexp, 4, -1, REG_BINARY }, 223 { NULL, 0, 0, 0 } 224 }; 225 226 const struct data_type *ptr; 227 int type; 228 229 for (ptr = data_types; ptr->tag; ptr++) { 230 if (strncmpW( ptr->tag, *lpValue, ptr->len )) 231 continue; 232 233 /* Found! */ 234 *parse_type = ptr->parse_type; 235 type=ptr->type; 236 *lpValue+=ptr->len; 237 if (type == -1) { 238 WCHAR* end; 239 240 /* "hex(xx):" is special */ 241 type = (int)strtoulW( *lpValue , &end, 16 ); 242 if (**lpValue=='\0' || *end!=')' || *(end+1)!=':') { 243 type=REG_NONE; 244 } else { 245 *lpValue = end + 2; 246 } 247 } 248 return type; 249 } 250 *parse_type=REG_NONE; 251 return REG_NONE; 252 } 253 254 /****************************************************************************** 255 * Replaces escape sequences with the characters. 256 */ 257 static void REGPROC_unescape_string(WCHAR* str) 258 { 259 int str_idx = 0; /* current character under analysis */ 260 int val_idx = 0; /* the last character of the unescaped string */ 261 int len = lstrlenW(str); 262 for (str_idx = 0; str_idx < len; str_idx++, val_idx++) { 263 if (str[str_idx] == '\\') { 264 str_idx++; 265 switch (str[str_idx]) { 266 case 'n': 267 str[val_idx] = '\n'; 268 break; 269 case '\\': 270 case '"': 271 str[val_idx] = str[str_idx]; 272 break; 273 default: 274 fprintf(stderr,"Warning! Unrecognized escape sequence: \\%c'\n", 275 str[str_idx]); 276 str[val_idx] = str[str_idx]; 277 break; 278 } 279 } else { 280 str[val_idx] = str[str_idx]; 281 } 282 } 283 str[val_idx] = '\0'; 284 } 285 286 static BOOL parseKeyName(LPWSTR lpKeyName, HKEY *hKey, LPWSTR *lpKeyPath) 287 { 288 WCHAR* lpSlash = NULL; 289 unsigned int i, len; 290 291 if (lpKeyName == NULL) 292 return FALSE; 293 294 for(i = 0; *(lpKeyName+i) != 0; i++) 295 { 296 if(*(lpKeyName+i) == '\\') 297 { 298 lpSlash = lpKeyName+i; 299 break; 300 } 301 } 302 303 if (lpSlash) 304 { 305 len = lpSlash-lpKeyName; 306 } 307 else 308 { 309 len = lstrlenW(lpKeyName); 310 lpSlash = lpKeyName+len; 311 } 312 *hKey = NULL; 313 314 for (i = 0; i < REG_CLASS_NUMBER; i++) { 315 if (CompareStringW(LOCALE_USER_DEFAULT, 0, lpKeyName, len, reg_class_namesW[i], len) == CSTR_EQUAL && 316 len == lstrlenW(reg_class_namesW[i])) { 317 *hKey = reg_class_keys[i]; 318 break; 319 } 320 } 321 322 if (*hKey == NULL) 323 return FALSE; 324 325 326 if (*lpSlash != '\0') 327 lpSlash++; 328 *lpKeyPath = lpSlash; 329 return TRUE; 330 } 331 332 /* Globals used by the setValue() & co */ 333 static LPSTR currentKeyName; 334 static HKEY currentKeyHandle = NULL; 335 336 /****************************************************************************** 337 * Sets the value with name val_name to the data in val_data for the currently 338 * opened key. 339 * 340 * Parameters: 341 * val_name - name of the registry value 342 * val_data - registry value data 343 */ 344 static LONG setValue(WCHAR* val_name, WCHAR* val_data, BOOL is_unicode) 345 { 346 LONG res; 347 DWORD dwDataType, dwParseType; 348 LPBYTE lpbData; 349 DWORD dwData, dwLen; 350 WCHAR del[] = {'-',0}; 351 352 if ( (val_name == NULL) || (val_data == NULL) ) 353 return ERROR_INVALID_PARAMETER; 354 355 if (lstrcmpW(val_data, del) == 0) 356 { 357 res=RegDeleteValueW(currentKeyHandle,val_name); 358 return (res == ERROR_FILE_NOT_FOUND ? ERROR_SUCCESS : res); 359 } 360 361 /* Get the data type stored into the value field */ 362 dwDataType = getDataType(&val_data, &dwParseType); 363 364 if (dwParseType == REG_SZ) /* no conversion for string */ 365 { 366 REGPROC_unescape_string(val_data); 367 /* Compute dwLen after REGPROC_unescape_string because it may 368 * have changed the string length and we don't want to store 369 * the extra garbage in the registry. 370 */ 371 dwLen = lstrlenW(val_data); 372 if(val_data[dwLen-1] != '"') 373 return ERROR_INVALID_DATA; 374 if (dwLen>0 && val_data[dwLen-1]=='"') 375 { 376 dwLen--; 377 val_data[dwLen]='\0'; 378 } 379 lpbData = (BYTE*) val_data; 380 dwLen++; /* include terminating null */ 381 dwLen = dwLen * sizeof(WCHAR); /* size is in bytes */ 382 } 383 else if (dwParseType == REG_DWORD) /* Convert the dword types */ 384 { 385 if (!convertHexToDWord(val_data, &dwData)) 386 return ERROR_INVALID_DATA; 387 lpbData = (BYTE*)&dwData; 388 dwLen = sizeof(dwData); 389 } 390 else if (dwParseType == REG_BINARY) /* Convert the binary data */ 391 { 392 lpbData = convertHexCSVToHex(val_data, &dwLen); 393 if (!lpbData) 394 return ERROR_INVALID_DATA; 395 396 if((dwDataType == REG_MULTI_SZ || dwDataType == REG_EXPAND_SZ) && !is_unicode) 397 { 398 LPBYTE tmp = lpbData; 399 lpbData = (LPBYTE)GetWideStringN((char*)lpbData, dwLen, &dwLen); 400 dwLen *= sizeof(WCHAR); 401 HeapFree(GetProcessHeap(), 0, tmp); 402 } 403 } 404 else /* unknown format */ 405 { 406 fprintf(stderr,"%S: ERROR, unknown data format\n", getAppName()); 407 return ERROR_INVALID_DATA; 408 } 409 410 res = RegSetValueExW( 411 currentKeyHandle, 412 val_name, 413 0, /* Reserved */ 414 dwDataType, 415 lpbData, 416 dwLen); 417 if (dwParseType == REG_BINARY) 418 HeapFree(GetProcessHeap(), 0, lpbData); 419 return res; 420 } 421 422 /****************************************************************************** 423 * A helper function for processRegEntry() that opens the current key. 424 * That key must be closed by calling closeKey(). 425 */ 426 static LONG openKeyW(WCHAR* stdInput) 427 { 428 HKEY keyClass; 429 WCHAR* keyPath; 430 DWORD dwDisp; 431 LONG res; 432 433 /* Sanity checks */ 434 if (stdInput == NULL) 435 return ERROR_INVALID_PARAMETER; 436 437 /* Get the registry class */ 438 if (!parseKeyName(stdInput, &keyClass, &keyPath)) 439 return ERROR_INVALID_PARAMETER; 440 441 res = RegCreateKeyExW( 442 keyClass, /* Class */ 443 keyPath, /* Sub Key */ 444 0, /* MUST BE 0 */ 445 NULL, /* object type */ 446 REG_OPTION_NON_VOLATILE, /* option, REG_OPTION_NON_VOLATILE ... */ 447 KEY_ALL_ACCESS, /* access mask, KEY_ALL_ACCESS */ 448 NULL, /* security attribute */ 449 ¤tKeyHandle, /* result */ 450 &dwDisp); /* disposition, REG_CREATED_NEW_KEY or 451 REG_OPENED_EXISTING_KEY */ 452 453 if (res == ERROR_SUCCESS) 454 currentKeyName = GetMultiByteString(stdInput); 455 else 456 currentKeyHandle = NULL; 457 458 return res; 459 460 } 461 462 /****************************************************************************** 463 * Close the currently opened key. 464 */ 465 static void closeKey(void) 466 { 467 if (currentKeyHandle) 468 { 469 HeapFree(GetProcessHeap(), 0, currentKeyName); 470 RegCloseKey(currentKeyHandle); 471 currentKeyHandle = NULL; 472 } 473 } 474 475 /****************************************************************************** 476 * This function is a wrapper for the setValue function. It prepares the 477 * land and cleans the area once completed. 478 * Note: this function modifies the line parameter. 479 * 480 * line - registry file unwrapped line. Should have the registry value name and 481 * complete registry value data. 482 */ 483 static void processSetValue(WCHAR* line, BOOL is_unicode) 484 { 485 WCHAR* val_name; /* registry value name */ 486 WCHAR* val_data; /* registry value data */ 487 int line_idx = 0; /* current character under analysis */ 488 LONG res; 489 490 /* get value name */ 491 while ( isspaceW(line[line_idx]) ) line_idx++; 492 if (line[line_idx] == '@' && line[line_idx + 1] == '=') { 493 line[line_idx] = '\0'; 494 val_name = line; 495 line_idx++; 496 } else if (line[line_idx] == '\"') { 497 line_idx++; 498 val_name = line + line_idx; 499 while (line[line_idx]) { 500 if (line[line_idx] == '\\') /* skip escaped character */ 501 { 502 line_idx += 2; 503 } else { 504 if (line[line_idx] == '\"') { 505 line[line_idx] = '\0'; 506 line_idx++; 507 break; 508 } else { 509 line_idx++; 510 } 511 } 512 } 513 while ( isspaceW(line[line_idx]) ) line_idx++; 514 if (!line[line_idx]) { 515 fprintf(stderr, "%S: warning: unexpected EOL\n", getAppName()); 516 return; 517 } 518 if (line[line_idx] != '=') { 519 char* lineA; 520 line[line_idx] = '\"'; 521 lineA = GetMultiByteString(line); 522 fprintf(stderr,"%S: warning: unrecognized line: '%s'\n", getAppName(), lineA); 523 HeapFree(GetProcessHeap(), 0, lineA); 524 return; 525 } 526 527 } else { 528 char* lineA = GetMultiByteString(line); 529 fprintf(stderr,"%S: warning: unrecognized line: '%s'\n", getAppName(), lineA); 530 HeapFree(GetProcessHeap(), 0, lineA); 531 return; 532 } 533 line_idx++; /* skip the '=' character */ 534 535 while ( isspaceW(line[line_idx]) ) line_idx++; 536 val_data = line + line_idx; 537 /* trim trailing blanks */ 538 line_idx = strlenW(val_data); 539 while (line_idx > 0 && isspaceW(val_data[line_idx-1])) line_idx--; 540 val_data[line_idx] = '\0'; 541 542 REGPROC_unescape_string(val_name); 543 res = setValue(val_name, val_data, is_unicode); 544 if ( res != ERROR_SUCCESS ) 545 { 546 char* val_nameA = GetMultiByteString(val_name); 547 char* val_dataA = GetMultiByteString(val_data); 548 fprintf(stderr,"%S: ERROR Key %s not created. Value: %s, Data: %s\n", 549 getAppName(), 550 currentKeyName, 551 val_nameA, 552 val_dataA); 553 HeapFree(GetProcessHeap(), 0, val_nameA); 554 HeapFree(GetProcessHeap(), 0, val_dataA); 555 } 556 } 557 558 /****************************************************************************** 559 * This function receives the currently read entry and performs the 560 * corresponding action. 561 * isUnicode affects parsing of REG_MULTI_SZ values 562 */ 563 static void processRegEntry(WCHAR* stdInput, BOOL isUnicode) 564 { 565 /* 566 * We encountered the end of the file, make sure we 567 * close the opened key and exit 568 */ 569 if (stdInput == NULL) { 570 closeKey(); 571 return; 572 } 573 574 if ( stdInput[0] == '[') /* We are reading a new key */ 575 { 576 WCHAR* keyEnd; 577 closeKey(); /* Close the previous key */ 578 579 /* Get rid of the square brackets */ 580 stdInput++; 581 keyEnd = strrchrW(stdInput, ']'); 582 if (keyEnd) 583 *keyEnd='\0'; 584 585 /* delete the key if we encounter '-' at the start of reg key */ 586 if ( stdInput[0] == '-') 587 { 588 delete_registry_key(stdInput + 1); 589 } else if ( openKeyW(stdInput) != ERROR_SUCCESS ) 590 { 591 char* stdInputA = GetMultiByteString(stdInput); 592 fprintf(stderr,"%S: setValue failed to open key %s\n", 593 getAppName(), stdInputA); 594 HeapFree(GetProcessHeap(), 0, stdInputA); 595 } 596 } else if( currentKeyHandle && 597 (( stdInput[0] == '@') || /* reading a default @=data pair */ 598 ( stdInput[0] == '\"'))) /* reading a new value=data pair */ 599 { 600 processSetValue(stdInput, isUnicode); 601 } else 602 { 603 /* Since we are assuming that the file format is valid we must be 604 * reading a blank line which indicates the end of this key processing 605 */ 606 closeKey(); 607 } 608 } 609 610 /****************************************************************************** 611 * Processes a registry file. 612 * Correctly processes comments (in # and ; form), line continuation. 613 * 614 * Parameters: 615 * in - input stream to read from 616 * first_chars - beginning of stream, read due to Unicode check 617 */ 618 static void processRegLinesA(FILE *in, char* first_chars) 619 { 620 LPSTR line = NULL; /* line read from input stream */ 621 ULONG lineSize = REG_VAL_BUF_SIZE; 622 623 line = HeapAlloc(GetProcessHeap(), 0, lineSize); 624 CHECK_ENOUGH_MEMORY(line); 625 memcpy(line, first_chars, 2); 626 627 while (!feof(in)) { 628 LPSTR s; /* The pointer into line for where the current fgets should read */ 629 WCHAR* lineW; 630 s = line; 631 632 if(first_chars) 633 { 634 s += 2; 635 first_chars = NULL; 636 } 637 638 for (;;) { 639 size_t size_remaining; 640 int size_to_get, i; 641 char *s_eol; /* various local uses */ 642 643 /* Do we need to expand the buffer ? */ 644 assert (s >= line && s <= line + lineSize); 645 size_remaining = lineSize - (s-line); 646 if (size_remaining < 2) /* room for 1 character and the \0 */ 647 { 648 char *new_buffer; 649 size_t new_size = lineSize + REG_VAL_BUF_SIZE; 650 if (new_size > lineSize) /* no arithmetic overflow */ 651 new_buffer = HeapReAlloc (GetProcessHeap(), 0, line, new_size); 652 else 653 new_buffer = NULL; 654 CHECK_ENOUGH_MEMORY(new_buffer); 655 line = new_buffer; 656 s = line + lineSize - size_remaining; 657 lineSize = new_size; 658 size_remaining = lineSize - (s-line); 659 } 660 661 /* Get as much as possible into the buffer, terminated either by 662 * eof, error, eol or getting the maximum amount. Abort on error. 663 */ 664 size_to_get = (size_remaining > INT_MAX ? INT_MAX : size_remaining); 665 666 /* get a single line. note that `i' must be one past the last 667 * meaningful character in `s' when this loop exits */ 668 for(i = 0; i < size_to_get-1; ++i){ 669 int xchar; 670 671 xchar = fgetc(in); 672 s[i] = xchar; 673 if(xchar == EOF){ 674 if(ferror(in)){ 675 perror("While reading input"); 676 exit(IO_ERROR); 677 }else 678 assert(feof(in)); 679 break; 680 } 681 if(s[i] == '\r'){ 682 /* read the next character iff it's \n */ 683 if(i+2 >= size_to_get){ 684 /* buffer too short, so put back the EOL char to 685 * read next cycle */ 686 ungetc('\r', in); 687 break; 688 } 689 s[i+1] = fgetc(in); 690 if(s[i+1] != '\n'){ 691 ungetc(s[i+1], in); 692 i = i+1; 693 }else 694 i = i+2; 695 break; 696 } 697 if(s[i] == '\n'){ 698 i = i+1; 699 break; 700 } 701 } 702 s[i] = '\0'; 703 704 /* If we didn't read the eol nor the eof go around for the rest */ 705 s_eol = strpbrk (s, "\r\n"); 706 if (!feof (in) && !s_eol) { 707 s = strchr (s, '\0'); 708 continue; 709 } 710 711 /* If it is a comment line then discard it and go around again */ 712 if (line [0] == '#' || line [0] == ';') { 713 s = line; 714 continue; 715 } 716 717 /* Remove any line feed. Leave s_eol on the first \0 */ 718 if (s_eol) { 719 if (*s_eol == '\r' && *(s_eol+1) == '\n') 720 *(s_eol+1) = '\0'; 721 *s_eol = '\0'; 722 } else 723 s_eol = strchr (s, '\0'); 724 725 /* If there is a concatenating \\ then go around again */ 726 if (s_eol > line && *(s_eol-1) == '\\') { 727 int c; 728 s = s_eol-1; 729 730 do 731 { 732 c = fgetc(in); 733 } while(c == ' ' || c == '\t'); 734 735 if(c == EOF) 736 { 737 fprintf(stderr,"%S: ERROR - invalid continuation.\n", 738 getAppName()); 739 } 740 else 741 { 742 *s = c; 743 s++; 744 } 745 continue; 746 } 747 748 lineW = GetWideString(line); 749 750 break; /* That is the full virtual line */ 751 } 752 753 processRegEntry(lineW, FALSE); 754 HeapFree(GetProcessHeap(), 0, lineW); 755 } 756 processRegEntry(NULL, FALSE); 757 758 HeapFree(GetProcessHeap(), 0, line); 759 } 760 761 static void processRegLinesW(FILE *in) 762 { 763 WCHAR* buf = NULL; /* line read from input stream */ 764 ULONG lineSize = REG_VAL_BUF_SIZE; 765 size_t CharsInBuf = -1; 766 767 WCHAR* s; /* The pointer into buf for where the current fgets should read */ 768 WCHAR* line; /* The start of the current line */ 769 770 buf = HeapAlloc(GetProcessHeap(), 0, lineSize * sizeof(WCHAR)); 771 CHECK_ENOUGH_MEMORY(buf); 772 773 s = buf; 774 line = buf; 775 776 while(!feof(in)) { 777 size_t size_remaining; 778 int size_to_get; 779 WCHAR *s_eol = NULL; /* various local uses */ 780 781 /* Do we need to expand the buffer ? */ 782 assert (s >= buf && s <= buf + lineSize); 783 size_remaining = lineSize - (s-buf); 784 if (size_remaining < 2) /* room for 1 character and the \0 */ 785 { 786 WCHAR *new_buffer; 787 size_t new_size = lineSize + (REG_VAL_BUF_SIZE / sizeof(WCHAR)); 788 if (new_size > lineSize) /* no arithmetic overflow */ 789 new_buffer = HeapReAlloc (GetProcessHeap(), 0, buf, new_size * sizeof(WCHAR)); 790 else 791 new_buffer = NULL; 792 CHECK_ENOUGH_MEMORY(new_buffer); 793 buf = new_buffer; 794 line = buf; 795 s = buf + lineSize - size_remaining; 796 lineSize = new_size; 797 size_remaining = lineSize - (s-buf); 798 } 799 800 /* Get as much as possible into the buffer, terminated either by 801 * eof, error or getting the maximum amount. Abort on error. 802 */ 803 size_to_get = (size_remaining > INT_MAX ? INT_MAX : size_remaining); 804 805 CharsInBuf = fread(s, sizeof(WCHAR), size_to_get - 1, in); 806 s[CharsInBuf] = 0; 807 808 if (CharsInBuf == 0) { 809 if (ferror(in)) { 810 perror ("While reading input"); 811 exit (IO_ERROR); 812 } else { 813 assert (feof(in)); 814 *s = '\0'; 815 /* It is not clear to me from the definition that the 816 * contents of the buffer are well defined on detecting 817 * an eof without managing to read anything. 818 */ 819 } 820 } 821 822 /* If we didn't read the eol nor the eof go around for the rest */ 823 while(1) 824 { 825 const WCHAR line_endings[] = {'\r','\n',0}; 826 s_eol = strpbrkW(line, line_endings); 827 828 if(!s_eol) { 829 /* Move the stub of the line to the start of the buffer so 830 * we get the maximum space to read into, and so we don't 831 * have to recalculate 'line' if the buffer expands */ 832 MoveMemory(buf, line, (strlenW(line)+1) * sizeof(WCHAR)); 833 line = buf; 834 s = strchrW(line, '\0'); 835 break; 836 } 837 838 /* If it is a comment line then discard it and go around again */ 839 if (*line == '#' || *line == ';') { 840 if (*s_eol == '\r' && *(s_eol+1) == '\n') 841 line = s_eol + 2; 842 else 843 line = s_eol + 1; 844 continue; 845 } 846 847 /* If there is a concatenating \\ then go around again */ 848 if (*(s_eol-1) == '\\') { 849 WCHAR* NextLine = s_eol + 1; 850 851 if(*s_eol == '\r' && *(s_eol+1) == '\n') 852 NextLine++; 853 854 while(isspaceW(*NextLine)) 855 NextLine++; 856 857 if (!*NextLine) 858 { 859 s = NextLine; 860 break; 861 } 862 863 MoveMemory(s_eol - 1, NextLine, (CharsInBuf - (NextLine - s) + 1)*sizeof(WCHAR)); 864 CharsInBuf -= NextLine - s_eol + 1; 865 s_eol = 0; 866 continue; 867 } 868 869 /* Remove any line feed. Leave s_eol on the last \0 */ 870 if (*s_eol == '\r' && *(s_eol + 1) == '\n') 871 *s_eol++ = '\0'; 872 *s_eol = '\0'; 873 874 processRegEntry(line, TRUE); 875 line = s_eol + 1; 876 s_eol = 0; 877 continue; /* That is the full virtual line */ 878 } 879 } 880 881 processRegEntry(NULL, TRUE); 882 883 HeapFree(GetProcessHeap(), 0, buf); 884 } 885 886 /**************************************************************************** 887 * REGPROC_print_error 888 * 889 * Print the message for GetLastError 890 */ 891 892 static void REGPROC_print_error(void) 893 { 894 LPVOID lpMsgBuf; 895 DWORD error_code; 896 int status; 897 898 error_code = GetLastError (); 899 status = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, 900 NULL, error_code, 0, (LPSTR) &lpMsgBuf, 0, NULL); 901 if (!status) { 902 fprintf(stderr,"%S: Cannot display message for error %lu, status %lu\n", 903 getAppName(), error_code, GetLastError()); 904 exit(1); 905 } 906 puts(lpMsgBuf); 907 LocalFree(lpMsgBuf); 908 exit(1); 909 } 910 911 /****************************************************************************** 912 * Checks whether the buffer has enough room for the string or required size. 913 * Resizes the buffer if necessary. 914 * 915 * Parameters: 916 * buffer - pointer to a buffer for string 917 * len - current length of the buffer in characters. 918 * required_len - length of the string to place to the buffer in characters. 919 * The length does not include the terminating null character. 920 */ 921 static void REGPROC_resize_char_buffer(WCHAR **buffer, DWORD *len, DWORD required_len) 922 { 923 required_len++; 924 if (required_len > *len) { 925 *len = required_len; 926 if (!*buffer) 927 *buffer = HeapAlloc(GetProcessHeap(), 0, *len * sizeof(**buffer)); 928 else 929 *buffer = HeapReAlloc(GetProcessHeap(), 0, *buffer, *len * sizeof(**buffer)); 930 CHECK_ENOUGH_MEMORY(*buffer); 931 } 932 } 933 934 /****************************************************************************** 935 * Same as REGPROC_resize_char_buffer() but on a regular buffer. 936 * 937 * Parameters: 938 * buffer - pointer to a buffer 939 * len - current size of the buffer in bytes 940 * required_size - size of the data to place in the buffer in bytes 941 */ 942 static void REGPROC_resize_binary_buffer(BYTE **buffer, DWORD *size, DWORD required_size) 943 { 944 if (required_size > *size) { 945 *size = required_size; 946 if (!*buffer) 947 *buffer = HeapAlloc(GetProcessHeap(), 0, *size); 948 else 949 *buffer = HeapReAlloc(GetProcessHeap(), 0, *buffer, *size); 950 CHECK_ENOUGH_MEMORY(*buffer); 951 } 952 } 953 954 /****************************************************************************** 955 * Prints string str to file 956 */ 957 static void REGPROC_export_string(WCHAR **line_buf, DWORD *line_buf_size, DWORD *line_len, WCHAR *str, DWORD str_len) 958 { 959 DWORD i, pos; 960 DWORD extra = 0; 961 962 REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len + str_len + 10); 963 964 /* escaping characters */ 965 pos = *line_len; 966 for (i = 0; i < str_len; i++) { 967 WCHAR c = str[i]; 968 switch (c) { 969 case '\n': 970 extra++; 971 REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len + str_len + extra); 972 (*line_buf)[pos++] = '\\'; 973 (*line_buf)[pos++] = 'n'; 974 break; 975 976 case '\\': 977 case '"': 978 extra++; 979 REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len + str_len + extra); 980 (*line_buf)[pos++] = '\\'; 981 /* Fall through */ 982 983 default: 984 (*line_buf)[pos++] = c; 985 break; 986 } 987 } 988 (*line_buf)[pos] = '\0'; 989 *line_len = pos; 990 } 991 992 static void REGPROC_export_binary(WCHAR **line_buf, DWORD *line_buf_size, DWORD *line_len, DWORD type, BYTE *value, DWORD value_size, BOOL unicode) 993 { 994 DWORD hex_pos, data_pos; 995 const WCHAR *hex_prefix; 996 const WCHAR hex[] = {'h','e','x',':',0}; 997 WCHAR hex_buf[17]; 998 const WCHAR concat[] = {'\\','\r','\n',' ',' ',0}; 999 DWORD concat_prefix, concat_len; 1000 const WCHAR newline[] = {'\r','\n',0}; 1001 CHAR* value_multibyte = NULL; 1002 1003 if (type == REG_BINARY) { 1004 hex_prefix = hex; 1005 } else { 1006 const WCHAR hex_format[] = {'h','e','x','(','%','x',')',':',0}; 1007 hex_prefix = hex_buf; 1008 sprintfW(hex_buf, hex_format, type); 1009 if ((type == REG_SZ || type == REG_EXPAND_SZ || type == REG_MULTI_SZ) && !unicode) 1010 { 1011 value_multibyte = GetMultiByteStringN((WCHAR*)value, value_size / sizeof(WCHAR), &value_size); 1012 value = (BYTE*)value_multibyte; 1013 } 1014 } 1015 1016 concat_len = lstrlenW(concat); 1017 concat_prefix = 2; 1018 1019 hex_pos = *line_len; 1020 *line_len += lstrlenW(hex_prefix); 1021 data_pos = *line_len; 1022 *line_len += value_size * 3; 1023 /* - The 2 spaces that concat places at the start of the 1024 * line effectively reduce the space available for data. 1025 * - If the value name and hex prefix are very long 1026 * ( > REG_FILE_HEX_LINE_LEN) or *line_len divides 1027 * without a remainder then we may overestimate 1028 * the needed number of lines by one. But that's ok. 1029 * - The trailing '\r' takes the place of a comma so 1030 * we only need to add 1 for the trailing '\n' 1031 */ 1032 *line_len += *line_len / (REG_FILE_HEX_LINE_LEN - concat_prefix) * concat_len + 1; 1033 REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len); 1034 lstrcpyW(*line_buf + hex_pos, hex_prefix); 1035 if (value_size) 1036 { 1037 const WCHAR format[] = {'%','0','2','x',0}; 1038 DWORD i, column; 1039 1040 column = data_pos; /* no line wrap yet */ 1041 i = 0; 1042 while (1) 1043 { 1044 sprintfW(*line_buf + data_pos, format, (unsigned int)value[i]); 1045 data_pos += 2; 1046 if (++i == value_size) 1047 break; 1048 1049 (*line_buf)[data_pos++] = ','; 1050 column += 3; 1051 1052 /* wrap the line */ 1053 if (column >= REG_FILE_HEX_LINE_LEN) { 1054 lstrcpyW(*line_buf + data_pos, concat); 1055 data_pos += concat_len; 1056 column = concat_prefix; 1057 } 1058 } 1059 } 1060 lstrcpyW(*line_buf + data_pos, newline); 1061 HeapFree(GetProcessHeap(), 0, value_multibyte); 1062 } 1063 1064 /****************************************************************************** 1065 * Writes the given line to a file, in multi-byte or wide characters 1066 */ 1067 static void REGPROC_write_line(FILE *file, const WCHAR* str, BOOL unicode) 1068 { 1069 if(unicode) 1070 { 1071 fwrite(str, sizeof(WCHAR), lstrlenW(str), file); 1072 } else 1073 { 1074 char* strA = GetMultiByteString(str); 1075 fputs(strA, file); 1076 HeapFree(GetProcessHeap(), 0, strA); 1077 } 1078 } 1079 1080 /****************************************************************************** 1081 * Writes contents of the registry key to the specified file stream. 1082 * 1083 * Parameters: 1084 * file - writable file stream to export registry branch to. 1085 * key - registry branch to export. 1086 * reg_key_name_buf - name of the key with registry class. 1087 * Is resized if necessary. 1088 * reg_key_name_size - length of the buffer for the registry class in characters. 1089 * val_name_buf - buffer for storing value name. 1090 * Is resized if necessary. 1091 * val_name_size - length of the buffer for storing value names in characters. 1092 * val_buf - buffer for storing values while extracting. 1093 * Is resized if necessary. 1094 * val_size - size of the buffer for storing values in bytes. 1095 */ 1096 static void export_hkey(FILE *file, HKEY key, 1097 WCHAR **reg_key_name_buf, DWORD *reg_key_name_size, 1098 WCHAR **val_name_buf, DWORD *val_name_size, 1099 BYTE **val_buf, DWORD *val_size, 1100 WCHAR **line_buf, DWORD *line_buf_size, 1101 BOOL unicode) 1102 { 1103 DWORD max_sub_key_len; 1104 DWORD max_val_name_len; 1105 DWORD max_val_size; 1106 DWORD curr_len; 1107 DWORD i; 1108 BOOL more_data; 1109 LONG ret; 1110 WCHAR key_format[] = {'\r','\n','[','%','s',']','\r','\n',0}; 1111 1112 /* get size information and resize the buffers if necessary */ 1113 if (RegQueryInfoKeyW(key, NULL, NULL, NULL, NULL, 1114 &max_sub_key_len, NULL, 1115 NULL, &max_val_name_len, &max_val_size, NULL, NULL 1116 ) != ERROR_SUCCESS) { 1117 REGPROC_print_error(); 1118 } 1119 curr_len = strlenW(*reg_key_name_buf); 1120 REGPROC_resize_char_buffer(reg_key_name_buf, reg_key_name_size, 1121 max_sub_key_len + curr_len + 1); 1122 REGPROC_resize_char_buffer(val_name_buf, val_name_size, 1123 max_val_name_len); 1124 REGPROC_resize_binary_buffer(val_buf, val_size, max_val_size); 1125 REGPROC_resize_char_buffer(line_buf, line_buf_size, lstrlenW(*reg_key_name_buf) + 4); 1126 /* output data for the current key */ 1127 sprintfW(*line_buf, key_format, *reg_key_name_buf); 1128 REGPROC_write_line(file, *line_buf, unicode); 1129 1130 /* print all the values */ 1131 i = 0; 1132 more_data = TRUE; 1133 while(more_data) { 1134 DWORD value_type; 1135 DWORD val_name_size1 = *val_name_size; 1136 DWORD val_size1 = *val_size; 1137 ret = RegEnumValueW(key, i, *val_name_buf, &val_name_size1, NULL, 1138 &value_type, *val_buf, &val_size1); 1139 if (ret == ERROR_MORE_DATA) { 1140 /* Increase the size of the buffers and retry */ 1141 REGPROC_resize_char_buffer(val_name_buf, val_name_size, val_name_size1); 1142 REGPROC_resize_binary_buffer(val_buf, val_size, val_size1); 1143 } else if (ret != ERROR_SUCCESS) { 1144 more_data = FALSE; 1145 if (ret != ERROR_NO_MORE_ITEMS) { 1146 REGPROC_print_error(); 1147 } 1148 } else { 1149 DWORD line_len; 1150 i++; 1151 1152 if ((*val_name_buf)[0]) { 1153 const WCHAR val_start[] = {'"','%','s','"','=',0}; 1154 1155 line_len = 0; 1156 REGPROC_export_string(line_buf, line_buf_size, &line_len, *val_name_buf, lstrlenW(*val_name_buf)); 1157 REGPROC_resize_char_buffer(val_name_buf, val_name_size, lstrlenW(*line_buf) + 1); 1158 lstrcpyW(*val_name_buf, *line_buf); 1159 1160 line_len = 3 + lstrlenW(*val_name_buf); 1161 REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len); 1162 sprintfW(*line_buf, val_start, *val_name_buf); 1163 } else { 1164 const WCHAR std_val[] = {'@','=',0}; 1165 line_len = 2; 1166 REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len); 1167 lstrcpyW(*line_buf, std_val); 1168 } 1169 1170 switch (value_type) { 1171 case REG_SZ: 1172 { 1173 WCHAR* wstr = (WCHAR*)*val_buf; 1174 1175 if (val_size1 < sizeof(WCHAR) || val_size1 % sizeof(WCHAR) || 1176 wstr[val_size1 / sizeof(WCHAR) - 1]) { 1177 REGPROC_export_binary(line_buf, line_buf_size, &line_len, value_type, *val_buf, val_size1, unicode); 1178 } else { 1179 const WCHAR start[] = {'"',0}; 1180 const WCHAR end[] = {'"','\r','\n',0}; 1181 DWORD len; 1182 1183 len = lstrlenW(start); 1184 REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len + len); 1185 lstrcpyW(*line_buf + line_len, start); 1186 line_len += len; 1187 1188 /* At this point we know wstr is '\0'-terminated 1189 * so we can subtract 1 from the size 1190 */ 1191 REGPROC_export_string(line_buf, line_buf_size, &line_len, wstr, val_size1 / sizeof(WCHAR) - 1); 1192 1193 REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len + lstrlenW(end)); 1194 lstrcpyW(*line_buf + line_len, end); 1195 } 1196 break; 1197 } 1198 1199 case REG_DWORD: 1200 { 1201 WCHAR format[] = {'d','w','o','r','d',':','%','0','8','x','\r','\n',0}; 1202 1203 REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len + 15); 1204 sprintfW(*line_buf + line_len, format, *((DWORD *)*val_buf)); 1205 break; 1206 } 1207 1208 default: 1209 { 1210 char* key_nameA = GetMultiByteString(*reg_key_name_buf); 1211 char* value_nameA = GetMultiByteString(*val_name_buf); 1212 fprintf(stderr,"%S: warning - unsupported registry format '%ld', " 1213 "treat as binary\n", 1214 getAppName(), value_type); 1215 fprintf(stderr,"key name: \"%s\"\n", key_nameA); 1216 fprintf(stderr,"value name:\"%s\"\n\n", value_nameA); 1217 HeapFree(GetProcessHeap(), 0, key_nameA); 1218 HeapFree(GetProcessHeap(), 0, value_nameA); 1219 } 1220 /* falls through */ 1221 case REG_EXPAND_SZ: 1222 case REG_MULTI_SZ: 1223 /* falls through */ 1224 case REG_BINARY: 1225 REGPROC_export_binary(line_buf, line_buf_size, &line_len, value_type, *val_buf, val_size1, unicode); 1226 } 1227 REGPROC_write_line(file, *line_buf, unicode); 1228 } 1229 } 1230 1231 i = 0; 1232 more_data = TRUE; 1233 (*reg_key_name_buf)[curr_len] = '\\'; 1234 while(more_data) { 1235 DWORD buf_size = *reg_key_name_size - curr_len - 1; 1236 1237 ret = RegEnumKeyExW(key, i, *reg_key_name_buf + curr_len + 1, &buf_size, 1238 NULL, NULL, NULL, NULL); 1239 if (ret == ERROR_MORE_DATA) { 1240 /* Increase the size of the buffer and retry */ 1241 REGPROC_resize_char_buffer(reg_key_name_buf, reg_key_name_size, curr_len + 1 + buf_size); 1242 } else if (ret != ERROR_SUCCESS) { 1243 more_data = FALSE; 1244 if (ret != ERROR_NO_MORE_ITEMS) { 1245 REGPROC_print_error(); 1246 } 1247 } else { 1248 HKEY subkey; 1249 1250 i++; 1251 if (RegOpenKeyW(key, *reg_key_name_buf + curr_len + 1, 1252 &subkey) == ERROR_SUCCESS) { 1253 export_hkey(file, subkey, reg_key_name_buf, reg_key_name_size, 1254 val_name_buf, val_name_size, val_buf, val_size, 1255 line_buf, line_buf_size, unicode); 1256 RegCloseKey(subkey); 1257 } else { 1258 REGPROC_print_error(); 1259 } 1260 } 1261 } 1262 (*reg_key_name_buf)[curr_len] = '\0'; 1263 } 1264 1265 /****************************************************************************** 1266 * Open file in binary mode for export. 1267 */ 1268 static FILE *REGPROC_open_export_file(WCHAR *file_name, BOOL unicode) 1269 { 1270 FILE *file; 1271 WCHAR dash = '-'; 1272 1273 if (strncmpW(file_name,&dash,1)==0) { 1274 file=stdout; 1275 _setmode(_fileno(file), _O_BINARY); 1276 } else 1277 { 1278 CHAR* file_nameA = GetMultiByteString(file_name); 1279 file = fopen(file_nameA, "wb"); 1280 if (!file) { 1281 perror(""); 1282 fprintf(stderr,"%S: Can't open file \"%s\"\n", getAppName(), file_nameA); 1283 HeapFree(GetProcessHeap(), 0, file_nameA); 1284 exit(1); 1285 } 1286 HeapFree(GetProcessHeap(), 0, file_nameA); 1287 } 1288 if(unicode) 1289 { 1290 const BYTE unicode_seq[] = {0xff,0xfe}; 1291 const WCHAR header[] = {'W','i','n','d','o','w','s',' ','R','e','g','i','s','t','r','y',' ','E','d','i','t','o','r',' ','V','e','r','s','i','o','n',' ','5','.','0','0','\r','\n'}; 1292 fwrite(unicode_seq, sizeof(BYTE), sizeof(unicode_seq)/sizeof(unicode_seq[0]), file); 1293 fwrite(header, sizeof(WCHAR), sizeof(header)/sizeof(header[0]), file); 1294 } else 1295 { 1296 fputs("REGEDIT4\r\n", file); 1297 } 1298 1299 return file; 1300 } 1301 1302 /****************************************************************************** 1303 * Writes contents of the registry key to the specified file stream. 1304 * 1305 * Parameters: 1306 * file_name - name of a file to export registry branch to. 1307 * reg_key_name - registry branch to export. The whole registry is exported if 1308 * reg_key_name is NULL or contains an empty string. 1309 */ 1310 BOOL export_registry_key(WCHAR *file_name, WCHAR *reg_key_name, DWORD format) 1311 { 1312 WCHAR *reg_key_name_buf; 1313 WCHAR *val_name_buf; 1314 BYTE *val_buf; 1315 WCHAR *line_buf; 1316 DWORD reg_key_name_size = KEY_MAX_LEN; 1317 DWORD val_name_size = KEY_MAX_LEN; 1318 DWORD val_size = REG_VAL_BUF_SIZE; 1319 DWORD line_buf_size = KEY_MAX_LEN + REG_VAL_BUF_SIZE; 1320 FILE *file = NULL; 1321 BOOL unicode = (format == REG_FORMAT_5); 1322 1323 reg_key_name_buf = HeapAlloc(GetProcessHeap(), 0, 1324 reg_key_name_size * sizeof(*reg_key_name_buf)); 1325 val_name_buf = HeapAlloc(GetProcessHeap(), 0, 1326 val_name_size * sizeof(*val_name_buf)); 1327 val_buf = HeapAlloc(GetProcessHeap(), 0, val_size); 1328 line_buf = HeapAlloc(GetProcessHeap(), 0, line_buf_size * sizeof(*line_buf)); 1329 CHECK_ENOUGH_MEMORY(reg_key_name_buf && val_name_buf && val_buf && line_buf); 1330 1331 if (reg_key_name && reg_key_name[0]) { 1332 HKEY reg_key_class; 1333 WCHAR *branch_name = NULL; 1334 HKEY key; 1335 1336 REGPROC_resize_char_buffer(®_key_name_buf, ®_key_name_size, 1337 lstrlenW(reg_key_name)); 1338 lstrcpyW(reg_key_name_buf, reg_key_name); 1339 1340 /* open the specified key */ 1341 if (!parseKeyName(reg_key_name, ®_key_class, &branch_name)) { 1342 CHAR* key_nameA = GetMultiByteString(reg_key_name); 1343 fprintf(stderr,"%S: Incorrect registry class specification in '%s'\n", 1344 getAppName(), key_nameA); 1345 HeapFree(GetProcessHeap(), 0, key_nameA); 1346 exit(1); 1347 } 1348 if (!branch_name[0]) { 1349 /* no branch - registry class is specified */ 1350 file = REGPROC_open_export_file(file_name, unicode); 1351 export_hkey(file, reg_key_class, 1352 ®_key_name_buf, ®_key_name_size, 1353 &val_name_buf, &val_name_size, 1354 &val_buf, &val_size, &line_buf, 1355 &line_buf_size, unicode); 1356 } else if (RegOpenKeyW(reg_key_class, branch_name, &key) == ERROR_SUCCESS) { 1357 file = REGPROC_open_export_file(file_name, unicode); 1358 export_hkey(file, key, 1359 ®_key_name_buf, ®_key_name_size, 1360 &val_name_buf, &val_name_size, 1361 &val_buf, &val_size, &line_buf, 1362 &line_buf_size, unicode); 1363 RegCloseKey(key); 1364 } else { 1365 CHAR* key_nameA = GetMultiByteString(reg_key_name); 1366 fprintf(stderr,"%S: Can't export. Registry key '%s' does not exist!\n", 1367 getAppName(), key_nameA); 1368 HeapFree(GetProcessHeap(), 0, key_nameA); 1369 REGPROC_print_error(); 1370 } 1371 } else { 1372 unsigned int i; 1373 1374 /* export all registry classes */ 1375 file = REGPROC_open_export_file(file_name, unicode); 1376 for (i = 0; i < REG_CLASS_NUMBER; i++) { 1377 /* do not export HKEY_CLASSES_ROOT */ 1378 if (reg_class_keys[i] != HKEY_CLASSES_ROOT && 1379 reg_class_keys[i] != HKEY_CURRENT_USER && 1380 reg_class_keys[i] != HKEY_CURRENT_CONFIG && 1381 reg_class_keys[i] != HKEY_DYN_DATA) { 1382 lstrcpyW(reg_key_name_buf, reg_class_namesW[i]); 1383 export_hkey(file, reg_class_keys[i], 1384 ®_key_name_buf, ®_key_name_size, 1385 &val_name_buf, &val_name_size, 1386 &val_buf, &val_size, &line_buf, 1387 &line_buf_size, unicode); 1388 } 1389 } 1390 } 1391 1392 if (file) { 1393 fclose(file); 1394 } 1395 HeapFree(GetProcessHeap(), 0, reg_key_name_buf); 1396 HeapFree(GetProcessHeap(), 0, val_name_buf); 1397 HeapFree(GetProcessHeap(), 0, val_buf); 1398 HeapFree(GetProcessHeap(), 0, line_buf); 1399 return TRUE; 1400 } 1401 1402 /****************************************************************************** 1403 * Reads contents of the specified file into the registry. 1404 */ 1405 BOOL import_registry_file(FILE* reg_file) 1406 { 1407 if (reg_file) 1408 { 1409 BYTE s[2]; 1410 if (fread( s, 2, 1, reg_file) == 1) 1411 { 1412 if (s[0] == 0xff && s[1] == 0xfe) 1413 { 1414 processRegLinesW(reg_file); 1415 } else 1416 { 1417 processRegLinesA(reg_file, (char*)s); 1418 } 1419 } 1420 return TRUE; 1421 } 1422 return FALSE; 1423 } 1424 1425 /****************************************************************************** 1426 * Removes the registry key with all subkeys. Parses full key name. 1427 * 1428 * Parameters: 1429 * reg_key_name - full name of registry branch to delete. Ignored if is NULL, 1430 * empty, points to register key class, does not exist. 1431 */ 1432 void delete_registry_key(WCHAR *reg_key_name) 1433 { 1434 WCHAR *key_name = NULL; 1435 HKEY key_class; 1436 1437 if (!reg_key_name || !reg_key_name[0]) 1438 return; 1439 1440 if (!parseKeyName(reg_key_name, &key_class, &key_name)) { 1441 char* reg_key_nameA = GetMultiByteString(reg_key_name); 1442 fprintf(stderr,"%S: Incorrect registry class specification in '%s'\n", 1443 getAppName(), reg_key_nameA); 1444 HeapFree(GetProcessHeap(), 0, reg_key_nameA); 1445 exit(1); 1446 } 1447 if (!*key_name) { 1448 char* reg_key_nameA = GetMultiByteString(reg_key_name); 1449 fprintf(stderr,"%S: Can't delete registry class '%s'\n", 1450 getAppName(), reg_key_nameA); 1451 HeapFree(GetProcessHeap(), 0, reg_key_nameA); 1452 exit(1); 1453 } 1454 1455 SHDeleteKey(key_class, key_name); 1456 } 1457