xref: /reactos/dll/3rdparty/libjpeg/jccolor.c (revision 94a413ae)
1 /*
2  * jccolor.c
3  *
4  * Copyright (C) 1991-1996, Thomas G. Lane.
5  * Modified 2011-2019 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains input colorspace conversion routines.
10  */
11 
12 #define JPEG_INTERNALS
13 #include "jinclude.h"
14 #include "jpeglib.h"
15 
16 
17 /* Private subobject */
18 
19 typedef struct {
20   struct jpeg_color_converter pub; /* public fields */
21 
22   /* Private state for RGB->YCC conversion */
23   INT32 * rgb_ycc_tab;		/* => table for RGB to YCbCr conversion */
24 } my_color_converter;
25 
26 typedef my_color_converter * my_cconvert_ptr;
27 
28 
29 /**************** RGB -> YCbCr conversion: most common case **************/
30 
31 /*
32  * YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011),
33  * previously known as Recommendation CCIR 601-1, except that Cb and Cr
34  * are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
35  * sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999.
36  * sYCC (standard luma-chroma-chroma color space with extended gamut)
37  * is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F.
38  * bg-sRGB and bg-sYCC (big gamut standard color spaces)
39  * are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G.
40  * Note that the derived conversion coefficients given in some of these
41  * documents are imprecise.  The general conversion equations are
42  *	Y  = Kr * R + (1 - Kr - Kb) * G + Kb * B
43  *	Cb = 0.5 * (B - Y) / (1 - Kb)
44  *	Cr = 0.5 * (R - Y) / (1 - Kr)
45  * With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993
46  * from the 1953 FCC NTSC primaries and CIE Illuminant C),
47  * the conversion equations to be implemented are therefore
48  *	Y  =  0.299 * R + 0.587 * G + 0.114 * B
49  *	Cb = -0.168735892 * R - 0.331264108 * G + 0.5 * B + CENTERJSAMPLE
50  *	Cr =  0.5 * R - 0.418687589 * G - 0.081312411 * B + CENTERJSAMPLE
51  * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
52  * rather than CENTERJSAMPLE, for Cb and Cr.  This gave equal positive and
53  * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
54  * were not represented exactly.  Now we sacrifice exact representation of
55  * maximum red and maximum blue in order to get exact grayscales.
56  *
57  * To avoid floating-point arithmetic, we represent the fractional constants
58  * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
59  * the products by 2^16, with appropriate rounding, to get the correct answer.
60  *
61  * For even more speed, we avoid doing any multiplications in the inner loop
62  * by precalculating the constants times R,G,B for all possible values.
63  * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
64  * for 9-bit to 12-bit samples it is still acceptable.  It's not very
65  * reasonable for 16-bit samples, but if you want lossless storage you
66  * shouldn't be changing colorspace anyway.
67  * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
68  * in the tables to save adding them separately in the inner loop.
69  */
70 
71 #define SCALEBITS	16	/* speediest right-shift on some machines */
72 #define CBCR_OFFSET	((INT32) CENTERJSAMPLE << SCALEBITS)
73 #define ONE_HALF	((INT32) 1 << (SCALEBITS-1))
74 #define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
75 
76 /* We allocate one big table and divide it up into eight parts, instead of
77  * doing eight alloc_small requests.  This lets us use a single table base
78  * address, which can be held in a register in the inner loops on many
79  * machines (more than can hold all eight addresses, anyway).
80  */
81 
82 #define R_Y_OFF		0			/* offset to R => Y section */
83 #define G_Y_OFF		(1*(MAXJSAMPLE+1))	/* offset to G => Y section */
84 #define B_Y_OFF		(2*(MAXJSAMPLE+1))	/* etc. */
85 #define R_CB_OFF	(3*(MAXJSAMPLE+1))
86 #define G_CB_OFF	(4*(MAXJSAMPLE+1))
87 #define B_CB_OFF	(5*(MAXJSAMPLE+1))
88 #define R_CR_OFF	B_CB_OFF		/* B=>Cb, R=>Cr are the same */
89 #define G_CR_OFF	(6*(MAXJSAMPLE+1))
90 #define B_CR_OFF	(7*(MAXJSAMPLE+1))
91 #define TABLE_SIZE	(8*(MAXJSAMPLE+1))
92 
93 
94 /*
95  * Initialize for RGB->YCC colorspace conversion.
96  */
97 
98 METHODDEF(void)
99 rgb_ycc_start (j_compress_ptr cinfo)
100 {
101   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
102   INT32 * rgb_ycc_tab;
103   INT32 i;
104 
105   /* Allocate and fill in the conversion tables. */
106   cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
107     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
108 				TABLE_SIZE * SIZEOF(INT32));
109 
110   for (i = 0; i <= MAXJSAMPLE; i++) {
111     rgb_ycc_tab[i+R_Y_OFF] = FIX(0.299) * i;
112     rgb_ycc_tab[i+G_Y_OFF] = FIX(0.587) * i;
113     rgb_ycc_tab[i+B_Y_OFF] = FIX(0.114) * i   + ONE_HALF;
114     rgb_ycc_tab[i+R_CB_OFF] = (- FIX(0.168735892)) * i;
115     rgb_ycc_tab[i+G_CB_OFF] = (- FIX(0.331264108)) * i;
116     /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
117      * This ensures that the maximum output will round to MAXJSAMPLE
118      * not MAXJSAMPLE+1, and thus that we don't have to range-limit.
119      */
120     rgb_ycc_tab[i+B_CB_OFF] = FIX(0.5) * i    + CBCR_OFFSET + ONE_HALF-1;
121 /*  B=>Cb and R=>Cr tables are the same
122     rgb_ycc_tab[i+R_CR_OFF] = FIX(0.5) * i    + CBCR_OFFSET + ONE_HALF-1;
123 */
124     rgb_ycc_tab[i+G_CR_OFF] = (- FIX(0.418687589)) * i;
125     rgb_ycc_tab[i+B_CR_OFF] = (- FIX(0.081312411)) * i;
126   }
127 }
128 
129 
130 /*
131  * Convert some rows of samples to the JPEG colorspace.
132  *
133  * Note that we change from the application's interleaved-pixel format
134  * to our internal noninterleaved, one-plane-per-component format.  The
135  * input buffer is therefore three times as wide as the output buffer.
136  *
137  * A starting row offset is provided only for the output buffer.  The
138  * caller can easily adjust the passed input_buf value to accommodate
139  * any row offset required on that side.
140  */
141 
142 METHODDEF(void)
143 rgb_ycc_convert (j_compress_ptr cinfo,
144 		 JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
145 		 JDIMENSION output_row, int num_rows)
146 {
147   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
148   register int r, g, b;
149   register INT32 * ctab = cconvert->rgb_ycc_tab;
150   register JSAMPROW inptr;
151   register JSAMPROW outptr0, outptr1, outptr2;
152   register JDIMENSION col;
153   JDIMENSION num_cols = cinfo->image_width;
154 
155   while (--num_rows >= 0) {
156     inptr = *input_buf++;
157     outptr0 = output_buf[0][output_row];
158     outptr1 = output_buf[1][output_row];
159     outptr2 = output_buf[2][output_row];
160     output_row++;
161     for (col = 0; col < num_cols; col++) {
162       r = GETJSAMPLE(inptr[RGB_RED]);
163       g = GETJSAMPLE(inptr[RGB_GREEN]);
164       b = GETJSAMPLE(inptr[RGB_BLUE]);
165       inptr += RGB_PIXELSIZE;
166       /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
167        * must be too; we do not need an explicit range-limiting operation.
168        * Hence the value being shifted is never negative, and we don't
169        * need the general RIGHT_SHIFT macro.
170        */
171       /* Y */
172       outptr0[col] = (JSAMPLE)
173 		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
174 		 >> SCALEBITS);
175       /* Cb */
176       outptr1[col] = (JSAMPLE)
177 		((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
178 		 >> SCALEBITS);
179       /* Cr */
180       outptr2[col] = (JSAMPLE)
181 		((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
182 		 >> SCALEBITS);
183     }
184   }
185 }
186 
187 
188 /**************** Cases other than RGB -> YCbCr **************/
189 
190 
191 /*
192  * Convert some rows of samples to the JPEG colorspace.
193  * This version handles RGB->grayscale conversion, which is the same
194  * as the RGB->Y portion of RGB->YCbCr.
195  * We assume rgb_ycc_start has been called (we only use the Y tables).
196  */
197 
198 METHODDEF(void)
199 rgb_gray_convert (j_compress_ptr cinfo,
200 		  JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
201 		  JDIMENSION output_row, int num_rows)
202 {
203   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
204   register int r, g, b;
205   register INT32 * ctab = cconvert->rgb_ycc_tab;
206   register JSAMPROW inptr;
207   register JSAMPROW outptr;
208   register JDIMENSION col;
209   JDIMENSION num_cols = cinfo->image_width;
210 
211   while (--num_rows >= 0) {
212     inptr = *input_buf++;
213     outptr = output_buf[0][output_row++];
214     for (col = 0; col < num_cols; col++) {
215       r = GETJSAMPLE(inptr[RGB_RED]);
216       g = GETJSAMPLE(inptr[RGB_GREEN]);
217       b = GETJSAMPLE(inptr[RGB_BLUE]);
218       inptr += RGB_PIXELSIZE;
219       /* Y */
220       outptr[col] = (JSAMPLE)
221 		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
222 		 >> SCALEBITS);
223     }
224   }
225 }
226 
227 
228 /*
229  * Convert some rows of samples to the JPEG colorspace.
230  * This version handles Adobe-style CMYK->YCCK conversion,
231  * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the
232  * same conversion as above, while passing K (black) unchanged.
233  * We assume rgb_ycc_start has been called.
234  */
235 
236 METHODDEF(void)
237 cmyk_ycck_convert (j_compress_ptr cinfo,
238 		   JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
239 		   JDIMENSION output_row, int num_rows)
240 {
241   my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
242   register int r, g, b;
243   register INT32 * ctab = cconvert->rgb_ycc_tab;
244   register JSAMPROW inptr;
245   register JSAMPROW outptr0, outptr1, outptr2, outptr3;
246   register JDIMENSION col;
247   JDIMENSION num_cols = cinfo->image_width;
248 
249   while (--num_rows >= 0) {
250     inptr = *input_buf++;
251     outptr0 = output_buf[0][output_row];
252     outptr1 = output_buf[1][output_row];
253     outptr2 = output_buf[2][output_row];
254     outptr3 = output_buf[3][output_row];
255     output_row++;
256     for (col = 0; col < num_cols; col++) {
257       r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
258       g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
259       b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
260       /* K passes through as-is */
261       outptr3[col] = inptr[3];	/* don't need GETJSAMPLE here */
262       inptr += 4;
263       /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
264        * must be too; we do not need an explicit range-limiting operation.
265        * Hence the value being shifted is never negative, and we don't
266        * need the general RIGHT_SHIFT macro.
267        */
268       /* Y */
269       outptr0[col] = (JSAMPLE)
270 		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
271 		 >> SCALEBITS);
272       /* Cb */
273       outptr1[col] = (JSAMPLE)
274 		((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
275 		 >> SCALEBITS);
276       /* Cr */
277       outptr2[col] = (JSAMPLE)
278 		((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
279 		 >> SCALEBITS);
280     }
281   }
282 }
283 
284 
285 /*
286  * Convert some rows of samples to the JPEG colorspace.
287  * [R,G,B] to [R-G,G,B-G] conversion with modulo calculation
288  * (forward reversible color transform).
289  * This can be seen as an adaption of the general RGB->YCbCr
290  * conversion equation with Kr = Kb = 0, while replacing the
291  * normalization by modulo calculation.
292  */
293 
294 METHODDEF(void)
295 rgb_rgb1_convert (j_compress_ptr cinfo,
296 		  JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
297 		  JDIMENSION output_row, int num_rows)
298 {
299   register int r, g, b;
300   register JSAMPROW inptr;
301   register JSAMPROW outptr0, outptr1, outptr2;
302   register JDIMENSION col;
303   JDIMENSION num_cols = cinfo->image_width;
304 
305   while (--num_rows >= 0) {
306     inptr = *input_buf++;
307     outptr0 = output_buf[0][output_row];
308     outptr1 = output_buf[1][output_row];
309     outptr2 = output_buf[2][output_row];
310     output_row++;
311     for (col = 0; col < num_cols; col++) {
312       r = GETJSAMPLE(inptr[RGB_RED]);
313       g = GETJSAMPLE(inptr[RGB_GREEN]);
314       b = GETJSAMPLE(inptr[RGB_BLUE]);
315       inptr += RGB_PIXELSIZE;
316       /* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
317        * (modulo) operator is equivalent to the bitmask operator AND.
318        */
319       outptr0[col] = (JSAMPLE) ((r - g + CENTERJSAMPLE) & MAXJSAMPLE);
320       outptr1[col] = (JSAMPLE) g;
321       outptr2[col] = (JSAMPLE) ((b - g + CENTERJSAMPLE) & MAXJSAMPLE);
322     }
323   }
324 }
325 
326 
327 /*
328  * Convert some rows of samples to the JPEG colorspace.
329  * This version handles grayscale output with no conversion.
330  * The source can be either plain grayscale or YCC (since Y == gray).
331  */
332 
333 METHODDEF(void)
334 grayscale_convert (j_compress_ptr cinfo,
335 		   JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
336 		   JDIMENSION output_row, int num_rows)
337 {
338   register JSAMPROW inptr;
339   register JSAMPROW outptr;
340   register JDIMENSION count;
341   register int instride = cinfo->input_components;
342   JDIMENSION num_cols = cinfo->image_width;
343 
344   while (--num_rows >= 0) {
345     inptr = *input_buf++;
346     outptr = output_buf[0][output_row++];
347     for (count = num_cols; count > 0; count--) {
348       *outptr++ = *inptr;	/* don't need GETJSAMPLE() here */
349       inptr += instride;
350     }
351   }
352 }
353 
354 
355 /*
356  * Convert some rows of samples to the JPEG colorspace.
357  * No colorspace conversion, but change from interleaved
358  * to separate-planes representation.
359  */
360 
361 METHODDEF(void)
362 rgb_convert (j_compress_ptr cinfo,
363 	     JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
364 	     JDIMENSION output_row, int num_rows)
365 {
366   register JSAMPROW inptr;
367   register JSAMPROW outptr0, outptr1, outptr2;
368   register JDIMENSION col;
369   JDIMENSION num_cols = cinfo->image_width;
370 
371   while (--num_rows >= 0) {
372     inptr = *input_buf++;
373     outptr0 = output_buf[0][output_row];
374     outptr1 = output_buf[1][output_row];
375     outptr2 = output_buf[2][output_row];
376     output_row++;
377     for (col = 0; col < num_cols; col++) {
378       /* We can dispense with GETJSAMPLE() here */
379       outptr0[col] = inptr[RGB_RED];
380       outptr1[col] = inptr[RGB_GREEN];
381       outptr2[col] = inptr[RGB_BLUE];
382       inptr += RGB_PIXELSIZE;
383     }
384   }
385 }
386 
387 
388 /*
389  * Convert some rows of samples to the JPEG colorspace.
390  * This version handles multi-component colorspaces without conversion.
391  * We assume input_components == num_components.
392  */
393 
394 METHODDEF(void)
395 null_convert (j_compress_ptr cinfo,
396 	      JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
397 	      JDIMENSION output_row, int num_rows)
398 {
399   register JSAMPROW inptr;
400   register JSAMPROW outptr;
401   register JDIMENSION count;
402   register int num_comps = cinfo->num_components;
403   JDIMENSION num_cols = cinfo->image_width;
404   int ci;
405 
406   while (--num_rows >= 0) {
407     /* It seems fastest to make a separate pass for each component. */
408     for (ci = 0; ci < num_comps; ci++) {
409       inptr = input_buf[0] + ci;
410       outptr = output_buf[ci][output_row];
411       for (count = num_cols; count > 0; count--) {
412 	*outptr++ = *inptr;	/* don't need GETJSAMPLE() here */
413 	inptr += num_comps;
414       }
415     }
416     input_buf++;
417     output_row++;
418   }
419 }
420 
421 
422 /*
423  * Empty method for start_pass.
424  */
425 
426 METHODDEF(void)
427 null_method (j_compress_ptr cinfo)
428 {
429   /* no work needed */
430 }
431 
432 
433 /*
434  * Module initialization routine for input colorspace conversion.
435  */
436 
437 GLOBAL(void)
438 jinit_color_converter (j_compress_ptr cinfo)
439 {
440   my_cconvert_ptr cconvert;
441 
442   cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small)
443     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_converter));
444   cinfo->cconvert = &cconvert->pub;
445   /* set start_pass to null method until we find out differently */
446   cconvert->pub.start_pass = null_method;
447 
448   /* Make sure input_components agrees with in_color_space */
449   switch (cinfo->in_color_space) {
450   case JCS_GRAYSCALE:
451     if (cinfo->input_components != 1)
452       ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
453     break;
454 
455   case JCS_RGB:
456   case JCS_BG_RGB:
457 #if RGB_PIXELSIZE != 3
458     if (cinfo->input_components != RGB_PIXELSIZE)
459       ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
460     break;
461 #endif /* else share code with YCbCr */
462 
463   case JCS_YCbCr:
464   case JCS_BG_YCC:
465     if (cinfo->input_components != 3)
466       ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
467     break;
468 
469   case JCS_CMYK:
470   case JCS_YCCK:
471     if (cinfo->input_components != 4)
472       ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
473     break;
474 
475   default:			/* JCS_UNKNOWN can be anything */
476     if (cinfo->input_components < 1)
477       ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
478   }
479 
480   /* Support color transform only for RGB colorspaces */
481   if (cinfo->color_transform &&
482       cinfo->jpeg_color_space != JCS_RGB &&
483       cinfo->jpeg_color_space != JCS_BG_RGB)
484     ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
485 
486   /* Check num_components, set conversion method based on requested space */
487   switch (cinfo->jpeg_color_space) {
488   case JCS_GRAYSCALE:
489     if (cinfo->num_components != 1)
490       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
491     switch (cinfo->in_color_space) {
492     case JCS_GRAYSCALE:
493     case JCS_YCbCr:
494     case JCS_BG_YCC:
495       cconvert->pub.color_convert = grayscale_convert;
496       break;
497     case JCS_RGB:
498       cconvert->pub.start_pass = rgb_ycc_start;
499       cconvert->pub.color_convert = rgb_gray_convert;
500       break;
501     default:
502       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
503     }
504     break;
505 
506   case JCS_RGB:
507   case JCS_BG_RGB:
508     if (cinfo->num_components != 3)
509       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
510     if (cinfo->in_color_space != cinfo->jpeg_color_space)
511       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
512     switch (cinfo->color_transform) {
513     case JCT_NONE:
514       cconvert->pub.color_convert = rgb_convert;
515       break;
516     case JCT_SUBTRACT_GREEN:
517       cconvert->pub.color_convert = rgb_rgb1_convert;
518       break;
519     default:
520       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
521     }
522     break;
523 
524   case JCS_YCbCr:
525     if (cinfo->num_components != 3)
526       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
527     switch (cinfo->in_color_space) {
528     case JCS_RGB:
529       cconvert->pub.start_pass = rgb_ycc_start;
530       cconvert->pub.color_convert = rgb_ycc_convert;
531       break;
532     case JCS_YCbCr:
533       cconvert->pub.color_convert = null_convert;
534       break;
535     default:
536       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
537     }
538     break;
539 
540   case JCS_BG_YCC:
541     if (cinfo->num_components != 3)
542       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
543     switch (cinfo->in_color_space) {
544     case JCS_RGB:
545       /* For conversion from normal RGB input to BG_YCC representation,
546        * the Cb/Cr values are first computed as usual, and then
547        * quantized further after DCT processing by a factor of
548        * 2 in reference to the nominal quantization factor.
549        */
550       /* need quantization scale by factor of 2 after DCT */
551       cinfo->comp_info[1].component_needed = TRUE;
552       cinfo->comp_info[2].component_needed = TRUE;
553       /* compute normal YCC first */
554       cconvert->pub.start_pass = rgb_ycc_start;
555       cconvert->pub.color_convert = rgb_ycc_convert;
556       break;
557     case JCS_YCbCr:
558       /* need quantization scale by factor of 2 after DCT */
559       cinfo->comp_info[1].component_needed = TRUE;
560       cinfo->comp_info[2].component_needed = TRUE;
561       /*FALLTHROUGH*/
562     case JCS_BG_YCC:
563       /* Pass through for BG_YCC input */
564       cconvert->pub.color_convert = null_convert;
565       break;
566     default:
567       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
568     }
569     break;
570 
571   case JCS_CMYK:
572     if (cinfo->num_components != 4)
573       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
574     if (cinfo->in_color_space != JCS_CMYK)
575       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
576     cconvert->pub.color_convert = null_convert;
577     break;
578 
579   case JCS_YCCK:
580     if (cinfo->num_components != 4)
581       ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
582     switch (cinfo->in_color_space) {
583     case JCS_CMYK:
584       cconvert->pub.start_pass = rgb_ycc_start;
585       cconvert->pub.color_convert = cmyk_ycck_convert;
586       break;
587     case JCS_YCCK:
588       cconvert->pub.color_convert = null_convert;
589       break;
590     default:
591       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
592     }
593     break;
594 
595   default:			/* allow null conversion of JCS_UNKNOWN */
596     if (cinfo->jpeg_color_space != cinfo->in_color_space ||
597 	cinfo->num_components != cinfo->input_components)
598       ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
599     cconvert->pub.color_convert = null_convert;
600   }
601 }
602