1 /* 2 * jdarith.c 3 * 4 * Developed 1997-2019 by Guido Vollbeding. 5 * This file is part of the Independent JPEG Group's software. 6 * For conditions of distribution and use, see the accompanying README file. 7 * 8 * This file contains portable arithmetic entropy decoding routines for JPEG 9 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). 10 * 11 * Both sequential and progressive modes are supported in this single module. 12 * 13 * Suspension is not currently supported in this module. 14 */ 15 16 #define JPEG_INTERNALS 17 #include "jinclude.h" 18 #include "jpeglib.h" 19 20 21 /* Expanded entropy decoder object for arithmetic decoding. */ 22 23 typedef struct { 24 struct jpeg_entropy_decoder pub; /* public fields */ 25 26 INT32 c; /* C register, base of coding interval + input bit buffer */ 27 INT32 a; /* A register, normalized size of coding interval */ 28 int ct; /* bit shift counter, # of bits left in bit buffer part of C */ 29 /* init: ct = -16 */ 30 /* run: ct = 0..7 */ 31 /* error: ct = -1 */ 32 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ 33 int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ 34 35 unsigned int restarts_to_go; /* MCUs left in this restart interval */ 36 37 /* Pointers to statistics areas (these workspaces have image lifespan) */ 38 unsigned char * dc_stats[NUM_ARITH_TBLS]; 39 unsigned char * ac_stats[NUM_ARITH_TBLS]; 40 41 /* Statistics bin for coding with fixed probability 0.5 */ 42 unsigned char fixed_bin[4]; 43 } arith_entropy_decoder; 44 45 typedef arith_entropy_decoder * arith_entropy_ptr; 46 47 /* The following two definitions specify the allocation chunk size 48 * for the statistics area. 49 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least 50 * 49 statistics bins for DC, and 245 statistics bins for AC coding. 51 * 52 * We use a compact representation with 1 byte per statistics bin, 53 * thus the numbers directly represent byte sizes. 54 * This 1 byte per statistics bin contains the meaning of the MPS 55 * (more probable symbol) in the highest bit (mask 0x80), and the 56 * index into the probability estimation state machine table 57 * in the lower bits (mask 0x7F). 58 */ 59 60 #define DC_STAT_BINS 64 61 #define AC_STAT_BINS 256 62 63 64 LOCAL(int) 65 get_byte (j_decompress_ptr cinfo) 66 /* Read next input byte; we do not support suspension in this module. */ 67 { 68 struct jpeg_source_mgr * src = cinfo->src; 69 70 if (src->bytes_in_buffer == 0) 71 if (! (*src->fill_input_buffer) (cinfo)) 72 ERREXIT(cinfo, JERR_CANT_SUSPEND); 73 src->bytes_in_buffer--; 74 return GETJOCTET(*src->next_input_byte++); 75 } 76 77 78 /* 79 * The core arithmetic decoding routine (common in JPEG and JBIG). 80 * This needs to go as fast as possible. 81 * Machine-dependent optimization facilities 82 * are not utilized in this portable implementation. 83 * However, this code should be fairly efficient and 84 * may be a good base for further optimizations anyway. 85 * 86 * Return value is 0 or 1 (binary decision). 87 * 88 * Note: I've changed the handling of the code base & bit 89 * buffer register C compared to other implementations 90 * based on the standards layout & procedures. 91 * While it also contains both the actual base of the 92 * coding interval (16 bits) and the next-bits buffer, 93 * the cut-point between these two parts is floating 94 * (instead of fixed) with the bit shift counter CT. 95 * Thus, we also need only one (variable instead of 96 * fixed size) shift for the LPS/MPS decision, and 97 * we can do away with any renormalization update 98 * of C (except for new data insertion, of course). 99 * 100 * I've also introduced a new scheme for accessing 101 * the probability estimation state machine table, 102 * derived from Markus Kuhn's JBIG implementation. 103 */ 104 105 LOCAL(int) 106 arith_decode (j_decompress_ptr cinfo, unsigned char *st) 107 { 108 register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; 109 register unsigned char nl, nm; 110 register INT32 qe, temp; 111 register int sv, data; 112 113 /* Renormalization & data input per section D.2.6 */ 114 while (e->a < 0x8000L) { 115 if (--e->ct < 0) { 116 /* Need to fetch next data byte */ 117 if (cinfo->unread_marker) 118 data = 0; /* stuff zero data */ 119 else { 120 data = get_byte(cinfo); /* read next input byte */ 121 if (data == 0xFF) { /* zero stuff or marker code */ 122 do data = get_byte(cinfo); 123 while (data == 0xFF); /* swallow extra 0xFF bytes */ 124 if (data == 0) 125 data = 0xFF; /* discard stuffed zero byte */ 126 else { 127 /* Note: Different from the Huffman decoder, hitting 128 * a marker while processing the compressed data 129 * segment is legal in arithmetic coding. 130 * The convention is to supply zero data 131 * then until decoding is complete. 132 */ 133 cinfo->unread_marker = data; 134 data = 0; 135 } 136 } 137 } 138 e->c = (e->c << 8) | data; /* insert data into C register */ 139 if ((e->ct += 8) < 0) /* update bit shift counter */ 140 /* Need more initial bytes */ 141 if (++e->ct == 0) 142 /* Got 2 initial bytes -> re-init A and exit loop */ 143 e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ 144 } 145 e->a <<= 1; 146 } 147 148 /* Fetch values from our compact representation of Table D.3(D.2): 149 * Qe values and probability estimation state machine 150 */ 151 sv = *st; 152 qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ 153 nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ 154 nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ 155 156 /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ 157 temp = e->a - qe; 158 e->a = temp; 159 temp <<= e->ct; 160 if (e->c >= temp) { 161 e->c -= temp; 162 /* Conditional LPS (less probable symbol) exchange */ 163 if (e->a < qe) { 164 e->a = qe; 165 *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ 166 } else { 167 e->a = qe; 168 *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ 169 sv ^= 0x80; /* Exchange LPS/MPS */ 170 } 171 } else if (e->a < 0x8000L) { 172 /* Conditional MPS (more probable symbol) exchange */ 173 if (e->a < qe) { 174 *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ 175 sv ^= 0x80; /* Exchange LPS/MPS */ 176 } else { 177 *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ 178 } 179 } 180 181 return sv >> 7; 182 } 183 184 185 /* 186 * Check for a restart marker & resynchronize decoder. 187 */ 188 189 LOCAL(void) 190 process_restart (j_decompress_ptr cinfo) 191 { 192 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 193 int ci; 194 jpeg_component_info * compptr; 195 196 /* Advance past the RSTn marker */ 197 if (! (*cinfo->marker->read_restart_marker) (cinfo)) 198 ERREXIT(cinfo, JERR_CANT_SUSPEND); 199 200 /* Re-initialize statistics areas */ 201 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 202 compptr = cinfo->cur_comp_info[ci]; 203 if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { 204 MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); 205 /* Reset DC predictions to 0 */ 206 entropy->last_dc_val[ci] = 0; 207 entropy->dc_context[ci] = 0; 208 } 209 if ((! cinfo->progressive_mode && cinfo->lim_Se) || 210 (cinfo->progressive_mode && cinfo->Ss)) { 211 MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); 212 } 213 } 214 215 /* Reset arithmetic decoding variables */ 216 entropy->c = 0; 217 entropy->a = 0; 218 entropy->ct = -16; /* force reading 2 initial bytes to fill C */ 219 220 /* Reset restart counter */ 221 entropy->restarts_to_go = cinfo->restart_interval; 222 } 223 224 225 /* 226 * Arithmetic MCU decoding. 227 * Each of these routines decodes and returns one MCU's worth of 228 * arithmetic-compressed coefficients. 229 * The coefficients are reordered from zigzag order into natural array order, 230 * but are not dequantized. 231 * 232 * The i'th block of the MCU is stored into the block pointed to by 233 * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. 234 */ 235 236 /* 237 * MCU decoding for DC initial scan (either spectral selection, 238 * or first pass of successive approximation). 239 */ 240 241 METHODDEF(boolean) 242 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 243 { 244 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 245 JBLOCKROW block; 246 unsigned char *st; 247 int blkn, ci, tbl, sign; 248 int v, m; 249 250 /* Process restart marker if needed */ 251 if (cinfo->restart_interval) { 252 if (entropy->restarts_to_go == 0) 253 process_restart(cinfo); 254 entropy->restarts_to_go--; 255 } 256 257 if (entropy->ct == -1) return TRUE; /* if error do nothing */ 258 259 /* Outer loop handles each block in the MCU */ 260 261 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 262 block = MCU_data[blkn]; 263 ci = cinfo->MCU_membership[blkn]; 264 tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; 265 266 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ 267 268 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ 269 st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; 270 271 /* Figure F.19: Decode_DC_DIFF */ 272 if (arith_decode(cinfo, st) == 0) 273 entropy->dc_context[ci] = 0; 274 else { 275 /* Figure F.21: Decoding nonzero value v */ 276 /* Figure F.22: Decoding the sign of v */ 277 sign = arith_decode(cinfo, st + 1); 278 st += 2; st += sign; 279 /* Figure F.23: Decoding the magnitude category of v */ 280 if ((m = arith_decode(cinfo, st)) != 0) { 281 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ 282 while (arith_decode(cinfo, st)) { 283 if ((m <<= 1) == (int) 0x8000U) { 284 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 285 entropy->ct = -1; /* magnitude overflow */ 286 return TRUE; 287 } 288 st += 1; 289 } 290 } 291 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ 292 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) 293 entropy->dc_context[ci] = 0; /* zero diff category */ 294 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) 295 entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ 296 else 297 entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ 298 v = m; 299 /* Figure F.24: Decoding the magnitude bit pattern of v */ 300 st += 14; 301 while (m >>= 1) 302 if (arith_decode(cinfo, st)) v |= m; 303 v += 1; if (sign) v = -v; 304 entropy->last_dc_val[ci] += v; 305 } 306 307 /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ 308 (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); 309 } 310 311 return TRUE; 312 } 313 314 315 /* 316 * MCU decoding for AC initial scan (either spectral selection, 317 * or first pass of successive approximation). 318 */ 319 320 METHODDEF(boolean) 321 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 322 { 323 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 324 JBLOCKROW block; 325 unsigned char *st; 326 int tbl, sign, k; 327 int v, m; 328 const int * natural_order; 329 330 /* Process restart marker if needed */ 331 if (cinfo->restart_interval) { 332 if (entropy->restarts_to_go == 0) 333 process_restart(cinfo); 334 entropy->restarts_to_go--; 335 } 336 337 if (entropy->ct == -1) return TRUE; /* if error do nothing */ 338 339 natural_order = cinfo->natural_order; 340 341 /* There is always only one block per MCU */ 342 block = MCU_data[0]; 343 tbl = cinfo->cur_comp_info[0]->ac_tbl_no; 344 345 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ 346 347 /* Figure F.20: Decode_AC_coefficients */ 348 k = cinfo->Ss - 1; 349 do { 350 st = entropy->ac_stats[tbl] + 3 * k; 351 if (arith_decode(cinfo, st)) break; /* EOB flag */ 352 for (;;) { 353 k++; 354 if (arith_decode(cinfo, st + 1)) break; 355 st += 3; 356 if (k >= cinfo->Se) { 357 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 358 entropy->ct = -1; /* spectral overflow */ 359 return TRUE; 360 } 361 } 362 /* Figure F.21: Decoding nonzero value v */ 363 /* Figure F.22: Decoding the sign of v */ 364 sign = arith_decode(cinfo, entropy->fixed_bin); 365 st += 2; 366 /* Figure F.23: Decoding the magnitude category of v */ 367 if ((m = arith_decode(cinfo, st)) != 0) { 368 if (arith_decode(cinfo, st)) { 369 m <<= 1; 370 st = entropy->ac_stats[tbl] + 371 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); 372 while (arith_decode(cinfo, st)) { 373 if ((m <<= 1) == (int) 0x8000U) { 374 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 375 entropy->ct = -1; /* magnitude overflow */ 376 return TRUE; 377 } 378 st += 1; 379 } 380 } 381 } 382 v = m; 383 /* Figure F.24: Decoding the magnitude bit pattern of v */ 384 st += 14; 385 while (m >>= 1) 386 if (arith_decode(cinfo, st)) v |= m; 387 v += 1; if (sign) v = -v; 388 /* Scale and output coefficient in natural (dezigzagged) order */ 389 (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al); 390 } while (k < cinfo->Se); 391 392 return TRUE; 393 } 394 395 396 /* 397 * MCU decoding for DC successive approximation refinement scan. 398 * Note: we assume such scans can be multi-component, 399 * although the spec is not very clear on the point. 400 */ 401 402 METHODDEF(boolean) 403 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 404 { 405 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 406 unsigned char *st; 407 JCOEF p1; 408 int blkn; 409 410 /* Process restart marker if needed */ 411 if (cinfo->restart_interval) { 412 if (entropy->restarts_to_go == 0) 413 process_restart(cinfo); 414 entropy->restarts_to_go--; 415 } 416 417 st = entropy->fixed_bin; /* use fixed probability estimation */ 418 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ 419 420 /* Outer loop handles each block in the MCU */ 421 422 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 423 /* Encoded data is simply the next bit of the two's-complement DC value */ 424 if (arith_decode(cinfo, st)) 425 MCU_data[blkn][0][0] |= p1; 426 } 427 428 return TRUE; 429 } 430 431 432 /* 433 * MCU decoding for AC successive approximation refinement scan. 434 */ 435 436 METHODDEF(boolean) 437 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 438 { 439 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 440 JBLOCKROW block; 441 JCOEFPTR thiscoef; 442 unsigned char *st; 443 int tbl, k, kex; 444 JCOEF p1, m1; 445 const int * natural_order; 446 447 /* Process restart marker if needed */ 448 if (cinfo->restart_interval) { 449 if (entropy->restarts_to_go == 0) 450 process_restart(cinfo); 451 entropy->restarts_to_go--; 452 } 453 454 if (entropy->ct == -1) return TRUE; /* if error do nothing */ 455 456 natural_order = cinfo->natural_order; 457 458 /* There is always only one block per MCU */ 459 block = MCU_data[0]; 460 tbl = cinfo->cur_comp_info[0]->ac_tbl_no; 461 462 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ 463 m1 = -p1; /* -1 in the bit position being coded */ 464 465 /* Establish EOBx (previous stage end-of-block) index */ 466 kex = cinfo->Se; 467 do { 468 if ((*block)[natural_order[kex]]) break; 469 } while (--kex); 470 471 k = cinfo->Ss - 1; 472 do { 473 st = entropy->ac_stats[tbl] + 3 * k; 474 if (k >= kex) 475 if (arith_decode(cinfo, st)) break; /* EOB flag */ 476 for (;;) { 477 thiscoef = *block + natural_order[++k]; 478 if (*thiscoef) { /* previously nonzero coef */ 479 if (arith_decode(cinfo, st + 2)) { 480 if (*thiscoef < 0) 481 *thiscoef += m1; 482 else 483 *thiscoef += p1; 484 } 485 break; 486 } 487 if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ 488 if (arith_decode(cinfo, entropy->fixed_bin)) 489 *thiscoef = m1; 490 else 491 *thiscoef = p1; 492 break; 493 } 494 st += 3; 495 if (k >= cinfo->Se) { 496 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 497 entropy->ct = -1; /* spectral overflow */ 498 return TRUE; 499 } 500 } 501 } while (k < cinfo->Se); 502 503 return TRUE; 504 } 505 506 507 /* 508 * Decode one MCU's worth of arithmetic-compressed coefficients. 509 */ 510 511 METHODDEF(boolean) 512 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 513 { 514 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 515 jpeg_component_info * compptr; 516 JBLOCKROW block; 517 unsigned char *st; 518 int blkn, ci, tbl, sign, k; 519 int v, m; 520 const int * natural_order; 521 522 /* Process restart marker if needed */ 523 if (cinfo->restart_interval) { 524 if (entropy->restarts_to_go == 0) 525 process_restart(cinfo); 526 entropy->restarts_to_go--; 527 } 528 529 if (entropy->ct == -1) return TRUE; /* if error do nothing */ 530 531 natural_order = cinfo->natural_order; 532 533 /* Outer loop handles each block in the MCU */ 534 535 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 536 block = MCU_data[blkn]; 537 ci = cinfo->MCU_membership[blkn]; 538 compptr = cinfo->cur_comp_info[ci]; 539 540 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ 541 542 tbl = compptr->dc_tbl_no; 543 544 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ 545 st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; 546 547 /* Figure F.19: Decode_DC_DIFF */ 548 if (arith_decode(cinfo, st) == 0) 549 entropy->dc_context[ci] = 0; 550 else { 551 /* Figure F.21: Decoding nonzero value v */ 552 /* Figure F.22: Decoding the sign of v */ 553 sign = arith_decode(cinfo, st + 1); 554 st += 2; st += sign; 555 /* Figure F.23: Decoding the magnitude category of v */ 556 if ((m = arith_decode(cinfo, st)) != 0) { 557 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ 558 while (arith_decode(cinfo, st)) { 559 if ((m <<= 1) == (int) 0x8000U) { 560 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 561 entropy->ct = -1; /* magnitude overflow */ 562 return TRUE; 563 } 564 st += 1; 565 } 566 } 567 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ 568 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) 569 entropy->dc_context[ci] = 0; /* zero diff category */ 570 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) 571 entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ 572 else 573 entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ 574 v = m; 575 /* Figure F.24: Decoding the magnitude bit pattern of v */ 576 st += 14; 577 while (m >>= 1) 578 if (arith_decode(cinfo, st)) v |= m; 579 v += 1; if (sign) v = -v; 580 entropy->last_dc_val[ci] += v; 581 } 582 583 (*block)[0] = (JCOEF) entropy->last_dc_val[ci]; 584 585 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ 586 587 if (cinfo->lim_Se == 0) continue; 588 tbl = compptr->ac_tbl_no; 589 k = 0; 590 591 /* Figure F.20: Decode_AC_coefficients */ 592 do { 593 st = entropy->ac_stats[tbl] + 3 * k; 594 if (arith_decode(cinfo, st)) break; /* EOB flag */ 595 for (;;) { 596 k++; 597 if (arith_decode(cinfo, st + 1)) break; 598 st += 3; 599 if (k >= cinfo->lim_Se) { 600 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 601 entropy->ct = -1; /* spectral overflow */ 602 return TRUE; 603 } 604 } 605 /* Figure F.21: Decoding nonzero value v */ 606 /* Figure F.22: Decoding the sign of v */ 607 sign = arith_decode(cinfo, entropy->fixed_bin); 608 st += 2; 609 /* Figure F.23: Decoding the magnitude category of v */ 610 if ((m = arith_decode(cinfo, st)) != 0) { 611 if (arith_decode(cinfo, st)) { 612 m <<= 1; 613 st = entropy->ac_stats[tbl] + 614 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); 615 while (arith_decode(cinfo, st)) { 616 if ((m <<= 1) == (int) 0x8000U) { 617 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); 618 entropy->ct = -1; /* magnitude overflow */ 619 return TRUE; 620 } 621 st += 1; 622 } 623 } 624 } 625 v = m; 626 /* Figure F.24: Decoding the magnitude bit pattern of v */ 627 st += 14; 628 while (m >>= 1) 629 if (arith_decode(cinfo, st)) v |= m; 630 v += 1; if (sign) v = -v; 631 (*block)[natural_order[k]] = (JCOEF) v; 632 } while (k < cinfo->lim_Se); 633 } 634 635 return TRUE; 636 } 637 638 639 /* 640 * Initialize for an arithmetic-compressed scan. 641 */ 642 643 METHODDEF(void) 644 start_pass (j_decompress_ptr cinfo) 645 { 646 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; 647 int ci, tbl; 648 jpeg_component_info * compptr; 649 650 if (cinfo->progressive_mode) { 651 /* Validate progressive scan parameters */ 652 if (cinfo->Ss == 0) { 653 if (cinfo->Se != 0) 654 goto bad; 655 } else { 656 /* need not check Ss/Se < 0 since they came from unsigned bytes */ 657 if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) 658 goto bad; 659 /* AC scans may have only one component */ 660 if (cinfo->comps_in_scan != 1) 661 goto bad; 662 } 663 if (cinfo->Ah != 0) { 664 /* Successive approximation refinement scan: must have Al = Ah-1. */ 665 if (cinfo->Ah-1 != cinfo->Al) 666 goto bad; 667 } 668 if (cinfo->Al > 13) { /* need not check for < 0 */ 669 bad: 670 ERREXIT4(cinfo, JERR_BAD_PROGRESSION, 671 cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); 672 } 673 /* Update progression status, and verify that scan order is legal. 674 * Note that inter-scan inconsistencies are treated as warnings 675 * not fatal errors ... not clear if this is right way to behave. 676 */ 677 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 678 int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; 679 int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; 680 if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ 681 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); 682 for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { 683 int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; 684 if (cinfo->Ah != expected) 685 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); 686 coef_bit_ptr[coefi] = cinfo->Al; 687 } 688 } 689 /* Select MCU decoding routine */ 690 if (cinfo->Ah == 0) { 691 if (cinfo->Ss == 0) 692 entropy->pub.decode_mcu = decode_mcu_DC_first; 693 else 694 entropy->pub.decode_mcu = decode_mcu_AC_first; 695 } else { 696 if (cinfo->Ss == 0) 697 entropy->pub.decode_mcu = decode_mcu_DC_refine; 698 else 699 entropy->pub.decode_mcu = decode_mcu_AC_refine; 700 } 701 } else { 702 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. 703 * This ought to be an error condition, but we make it a warning. 704 */ 705 if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || 706 (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se)) 707 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); 708 /* Select MCU decoding routine */ 709 entropy->pub.decode_mcu = decode_mcu; 710 } 711 712 /* Allocate & initialize requested statistics areas */ 713 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 714 compptr = cinfo->cur_comp_info[ci]; 715 if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { 716 tbl = compptr->dc_tbl_no; 717 if (tbl < 0 || tbl >= NUM_ARITH_TBLS) 718 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); 719 if (entropy->dc_stats[tbl] == NULL) 720 entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) 721 ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); 722 MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); 723 /* Initialize DC predictions to 0 */ 724 entropy->last_dc_val[ci] = 0; 725 entropy->dc_context[ci] = 0; 726 } 727 if ((! cinfo->progressive_mode && cinfo->lim_Se) || 728 (cinfo->progressive_mode && cinfo->Ss)) { 729 tbl = compptr->ac_tbl_no; 730 if (tbl < 0 || tbl >= NUM_ARITH_TBLS) 731 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); 732 if (entropy->ac_stats[tbl] == NULL) 733 entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) 734 ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); 735 MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); 736 } 737 } 738 739 /* Initialize arithmetic decoding variables */ 740 entropy->c = 0; 741 entropy->a = 0; 742 entropy->ct = -16; /* force reading 2 initial bytes to fill C */ 743 744 /* Initialize restart counter */ 745 entropy->restarts_to_go = cinfo->restart_interval; 746 } 747 748 749 /* 750 * Finish up at the end of an arithmetic-compressed scan. 751 */ 752 753 METHODDEF(void) 754 finish_pass (j_decompress_ptr cinfo) 755 { 756 /* no work necessary here */ 757 } 758 759 760 /* 761 * Module initialization routine for arithmetic entropy decoding. 762 */ 763 764 GLOBAL(void) 765 jinit_arith_decoder (j_decompress_ptr cinfo) 766 { 767 arith_entropy_ptr entropy; 768 int i; 769 770 entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) 771 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_decoder)); 772 cinfo->entropy = &entropy->pub; 773 entropy->pub.start_pass = start_pass; 774 entropy->pub.finish_pass = finish_pass; 775 776 /* Mark tables unallocated */ 777 for (i = 0; i < NUM_ARITH_TBLS; i++) { 778 entropy->dc_stats[i] = NULL; 779 entropy->ac_stats[i] = NULL; 780 } 781 782 /* Initialize index for fixed probability estimation */ 783 entropy->fixed_bin[0] = 113; 784 785 if (cinfo->progressive_mode) { 786 /* Create progression status table */ 787 int *coef_bit_ptr, ci; 788 cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) 789 ((j_common_ptr) cinfo, JPOOL_IMAGE, 790 cinfo->num_components * DCTSIZE2 * SIZEOF(int)); 791 coef_bit_ptr = & cinfo->coef_bits[0][0]; 792 for (ci = 0; ci < cinfo->num_components; ci++) 793 for (i = 0; i < DCTSIZE2; i++) 794 *coef_bit_ptr++ = -1; 795 } 796 } 797