1 /* 2 * jmemmgr.c 3 * 4 * Copyright (C) 1991-1997, Thomas G. Lane. 5 * Modified 2011-2012 by Guido Vollbeding. 6 * This file is part of the Independent JPEG Group's software. 7 * For conditions of distribution and use, see the accompanying README file. 8 * 9 * This file contains the JPEG system-independent memory management 10 * routines. This code is usable across a wide variety of machines; most 11 * of the system dependencies have been isolated in a separate file. 12 * The major functions provided here are: 13 * * pool-based allocation and freeing of memory; 14 * * policy decisions about how to divide available memory among the 15 * virtual arrays; 16 * * control logic for swapping virtual arrays between main memory and 17 * backing storage. 18 * The separate system-dependent file provides the actual backing-storage 19 * access code, and it contains the policy decision about how much total 20 * main memory to use. 21 * This file is system-dependent in the sense that some of its functions 22 * are unnecessary in some systems. For example, if there is enough virtual 23 * memory so that backing storage will never be used, much of the virtual 24 * array control logic could be removed. (Of course, if you have that much 25 * memory then you shouldn't care about a little bit of unused code...) 26 */ 27 28 #define JPEG_INTERNALS 29 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ 30 #include "jinclude.h" 31 #include "jpeglib.h" 32 #include "jmemsys.h" /* import the system-dependent declarations */ 33 34 #ifndef NO_GETENV 35 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ 36 extern char * getenv JPP((const char * name)); 37 #endif 38 #endif 39 40 41 /* 42 * Some important notes: 43 * The allocation routines provided here must never return NULL. 44 * They should exit to error_exit if unsuccessful. 45 * 46 * It's not a good idea to try to merge the sarray and barray routines, 47 * even though they are textually almost the same, because samples are 48 * usually stored as bytes while coefficients are shorts or ints. Thus, 49 * in machines where byte pointers have a different representation from 50 * word pointers, the resulting machine code could not be the same. 51 */ 52 53 54 /* 55 * Many machines require storage alignment: longs must start on 4-byte 56 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() 57 * always returns pointers that are multiples of the worst-case alignment 58 * requirement, and we had better do so too. 59 * There isn't any really portable way to determine the worst-case alignment 60 * requirement. This module assumes that the alignment requirement is 61 * multiples of sizeof(ALIGN_TYPE). 62 * By default, we define ALIGN_TYPE as double. This is necessary on some 63 * workstations (where doubles really do need 8-byte alignment) and will work 64 * fine on nearly everything. If your machine has lesser alignment needs, 65 * you can save a few bytes by making ALIGN_TYPE smaller. 66 * The only place I know of where this will NOT work is certain Macintosh 67 * 680x0 compilers that define double as a 10-byte IEEE extended float. 68 * Doing 10-byte alignment is counterproductive because longwords won't be 69 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have 70 * such a compiler. 71 */ 72 73 #ifndef ALIGN_TYPE /* so can override from jconfig.h */ 74 #define ALIGN_TYPE double 75 #endif 76 77 78 /* 79 * We allocate objects from "pools", where each pool is gotten with a single 80 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object 81 * overhead within a pool, except for alignment padding. Each pool has a 82 * header with a link to the next pool of the same class. 83 * Small and large pool headers are identical except that the latter's 84 * link pointer must be FAR on 80x86 machines. 85 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE 86 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple 87 * of the alignment requirement of ALIGN_TYPE. 88 */ 89 90 typedef union small_pool_struct * small_pool_ptr; 91 92 typedef union small_pool_struct { 93 struct { 94 small_pool_ptr next; /* next in list of pools */ 95 size_t bytes_used; /* how many bytes already used within pool */ 96 size_t bytes_left; /* bytes still available in this pool */ 97 } hdr; 98 ALIGN_TYPE dummy; /* included in union to ensure alignment */ 99 } small_pool_hdr; 100 101 typedef union large_pool_struct FAR * large_pool_ptr; 102 103 typedef union large_pool_struct { 104 struct { 105 large_pool_ptr next; /* next in list of pools */ 106 size_t bytes_used; /* how many bytes already used within pool */ 107 size_t bytes_left; /* bytes still available in this pool */ 108 } hdr; 109 ALIGN_TYPE dummy; /* included in union to ensure alignment */ 110 } large_pool_hdr; 111 112 113 /* 114 * Here is the full definition of a memory manager object. 115 */ 116 117 typedef struct { 118 struct jpeg_memory_mgr pub; /* public fields */ 119 120 /* Each pool identifier (lifetime class) names a linked list of pools. */ 121 small_pool_ptr small_list[JPOOL_NUMPOOLS]; 122 large_pool_ptr large_list[JPOOL_NUMPOOLS]; 123 124 /* Since we only have one lifetime class of virtual arrays, only one 125 * linked list is necessary (for each datatype). Note that the virtual 126 * array control blocks being linked together are actually stored somewhere 127 * in the small-pool list. 128 */ 129 jvirt_sarray_ptr virt_sarray_list; 130 jvirt_barray_ptr virt_barray_list; 131 132 /* This counts total space obtained from jpeg_get_small/large */ 133 long total_space_allocated; 134 135 /* alloc_sarray and alloc_barray set this value for use by virtual 136 * array routines. 137 */ 138 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ 139 } my_memory_mgr; 140 141 typedef my_memory_mgr * my_mem_ptr; 142 143 144 /* 145 * The control blocks for virtual arrays. 146 * Note that these blocks are allocated in the "small" pool area. 147 * System-dependent info for the associated backing store (if any) is hidden 148 * inside the backing_store_info struct. 149 */ 150 151 struct jvirt_sarray_control { 152 JSAMPARRAY mem_buffer; /* => the in-memory buffer */ 153 JDIMENSION rows_in_array; /* total virtual array height */ 154 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ 155 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ 156 JDIMENSION rows_in_mem; /* height of memory buffer */ 157 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ 158 JDIMENSION cur_start_row; /* first logical row # in the buffer */ 159 JDIMENSION first_undef_row; /* row # of first uninitialized row */ 160 boolean pre_zero; /* pre-zero mode requested? */ 161 boolean dirty; /* do current buffer contents need written? */ 162 boolean b_s_open; /* is backing-store data valid? */ 163 jvirt_sarray_ptr next; /* link to next virtual sarray control block */ 164 backing_store_info b_s_info; /* System-dependent control info */ 165 }; 166 167 struct jvirt_barray_control { 168 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ 169 JDIMENSION rows_in_array; /* total virtual array height */ 170 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ 171 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ 172 JDIMENSION rows_in_mem; /* height of memory buffer */ 173 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ 174 JDIMENSION cur_start_row; /* first logical row # in the buffer */ 175 JDIMENSION first_undef_row; /* row # of first uninitialized row */ 176 boolean pre_zero; /* pre-zero mode requested? */ 177 boolean dirty; /* do current buffer contents need written? */ 178 boolean b_s_open; /* is backing-store data valid? */ 179 jvirt_barray_ptr next; /* link to next virtual barray control block */ 180 backing_store_info b_s_info; /* System-dependent control info */ 181 }; 182 183 184 #ifdef MEM_STATS /* optional extra stuff for statistics */ 185 186 LOCAL(void) 187 print_mem_stats (j_common_ptr cinfo, int pool_id) 188 { 189 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 190 small_pool_ptr shdr_ptr; 191 large_pool_ptr lhdr_ptr; 192 193 /* Since this is only a debugging stub, we can cheat a little by using 194 * fprintf directly rather than going through the trace message code. 195 * This is helpful because message parm array can't handle longs. 196 */ 197 fprintf(stderr, "Freeing pool %d, total space = %ld\n", 198 pool_id, mem->total_space_allocated); 199 200 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; 201 lhdr_ptr = lhdr_ptr->hdr.next) { 202 fprintf(stderr, " Large chunk used %ld\n", 203 (long) lhdr_ptr->hdr.bytes_used); 204 } 205 206 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; 207 shdr_ptr = shdr_ptr->hdr.next) { 208 fprintf(stderr, " Small chunk used %ld free %ld\n", 209 (long) shdr_ptr->hdr.bytes_used, 210 (long) shdr_ptr->hdr.bytes_left); 211 } 212 } 213 214 #endif /* MEM_STATS */ 215 216 217 LOCAL(noreturn_t) 218 out_of_memory (j_common_ptr cinfo, int which) 219 /* Report an out-of-memory error and stop execution */ 220 /* If we compiled MEM_STATS support, report alloc requests before dying */ 221 { 222 #ifdef MEM_STATS 223 cinfo->err->trace_level = 2; /* force self_destruct to report stats */ 224 #endif 225 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); 226 } 227 228 229 /* 230 * Allocation of "small" objects. 231 * 232 * For these, we use pooled storage. When a new pool must be created, 233 * we try to get enough space for the current request plus a "slop" factor, 234 * where the slop will be the amount of leftover space in the new pool. 235 * The speed vs. space tradeoff is largely determined by the slop values. 236 * A different slop value is provided for each pool class (lifetime), 237 * and we also distinguish the first pool of a class from later ones. 238 * NOTE: the values given work fairly well on both 16- and 32-bit-int 239 * machines, but may be too small if longs are 64 bits or more. 240 */ 241 242 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 243 { 244 1600, /* first PERMANENT pool */ 245 16000 /* first IMAGE pool */ 246 }; 247 248 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 249 { 250 0, /* additional PERMANENT pools */ 251 5000 /* additional IMAGE pools */ 252 }; 253 254 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ 255 256 257 METHODDEF(void *) 258 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) 259 /* Allocate a "small" object */ 260 { 261 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 262 small_pool_ptr hdr_ptr, prev_hdr_ptr; 263 char * data_ptr; 264 size_t odd_bytes, min_request, slop; 265 266 /* Check for unsatisfiable request (do now to ensure no overflow below) */ 267 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) 268 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ 269 270 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ 271 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); 272 if (odd_bytes > 0) 273 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; 274 275 /* See if space is available in any existing pool */ 276 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) 277 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 278 prev_hdr_ptr = NULL; 279 hdr_ptr = mem->small_list[pool_id]; 280 while (hdr_ptr != NULL) { 281 if (hdr_ptr->hdr.bytes_left >= sizeofobject) 282 break; /* found pool with enough space */ 283 prev_hdr_ptr = hdr_ptr; 284 hdr_ptr = hdr_ptr->hdr.next; 285 } 286 287 /* Time to make a new pool? */ 288 if (hdr_ptr == NULL) { 289 /* min_request is what we need now, slop is what will be leftover */ 290 min_request = sizeofobject + SIZEOF(small_pool_hdr); 291 if (prev_hdr_ptr == NULL) /* first pool in class? */ 292 slop = first_pool_slop[pool_id]; 293 else 294 slop = extra_pool_slop[pool_id]; 295 /* Don't ask for more than MAX_ALLOC_CHUNK */ 296 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) 297 slop = (size_t) (MAX_ALLOC_CHUNK-min_request); 298 /* Try to get space, if fail reduce slop and try again */ 299 for (;;) { 300 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); 301 if (hdr_ptr != NULL) 302 break; 303 slop /= 2; 304 if (slop < MIN_SLOP) /* give up when it gets real small */ 305 out_of_memory(cinfo, 2); /* jpeg_get_small failed */ 306 } 307 mem->total_space_allocated += min_request + slop; 308 /* Success, initialize the new pool header and add to end of list */ 309 hdr_ptr->hdr.next = NULL; 310 hdr_ptr->hdr.bytes_used = 0; 311 hdr_ptr->hdr.bytes_left = sizeofobject + slop; 312 if (prev_hdr_ptr == NULL) /* first pool in class? */ 313 mem->small_list[pool_id] = hdr_ptr; 314 else 315 prev_hdr_ptr->hdr.next = hdr_ptr; 316 } 317 318 /* OK, allocate the object from the current pool */ 319 data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ 320 data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ 321 hdr_ptr->hdr.bytes_used += sizeofobject; 322 hdr_ptr->hdr.bytes_left -= sizeofobject; 323 324 return (void *) data_ptr; 325 } 326 327 328 /* 329 * Allocation of "large" objects. 330 * 331 * The external semantics of these are the same as "small" objects, 332 * except that FAR pointers are used on 80x86. However the pool 333 * management heuristics are quite different. We assume that each 334 * request is large enough that it may as well be passed directly to 335 * jpeg_get_large; the pool management just links everything together 336 * so that we can free it all on demand. 337 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY 338 * structures. The routines that create these structures (see below) 339 * deliberately bunch rows together to ensure a large request size. 340 */ 341 342 METHODDEF(void FAR *) 343 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) 344 /* Allocate a "large" object */ 345 { 346 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 347 large_pool_ptr hdr_ptr; 348 size_t odd_bytes; 349 350 /* Check for unsatisfiable request (do now to ensure no overflow below) */ 351 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) 352 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ 353 354 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ 355 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); 356 if (odd_bytes > 0) 357 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; 358 359 /* Always make a new pool */ 360 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) 361 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 362 363 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + 364 SIZEOF(large_pool_hdr)); 365 if (hdr_ptr == NULL) 366 out_of_memory(cinfo, 4); /* jpeg_get_large failed */ 367 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); 368 369 /* Success, initialize the new pool header and add to list */ 370 hdr_ptr->hdr.next = mem->large_list[pool_id]; 371 /* We maintain space counts in each pool header for statistical purposes, 372 * even though they are not needed for allocation. 373 */ 374 hdr_ptr->hdr.bytes_used = sizeofobject; 375 hdr_ptr->hdr.bytes_left = 0; 376 mem->large_list[pool_id] = hdr_ptr; 377 378 return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ 379 } 380 381 382 /* 383 * Creation of 2-D sample arrays. 384 * The pointers are in near heap, the samples themselves in FAR heap. 385 * 386 * To minimize allocation overhead and to allow I/O of large contiguous 387 * blocks, we allocate the sample rows in groups of as many rows as possible 388 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. 389 * NB: the virtual array control routines, later in this file, know about 390 * this chunking of rows. The rowsperchunk value is left in the mem manager 391 * object so that it can be saved away if this sarray is the workspace for 392 * a virtual array. 393 */ 394 395 METHODDEF(JSAMPARRAY) 396 alloc_sarray (j_common_ptr cinfo, int pool_id, 397 JDIMENSION samplesperrow, JDIMENSION numrows) 398 /* Allocate a 2-D sample array */ 399 { 400 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 401 JSAMPARRAY result; 402 JSAMPROW workspace; 403 JDIMENSION rowsperchunk, currow, i; 404 long ltemp; 405 406 /* Calculate max # of rows allowed in one allocation chunk */ 407 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / 408 ((long) samplesperrow * SIZEOF(JSAMPLE)); 409 if (ltemp <= 0) 410 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); 411 if (ltemp < (long) numrows) 412 rowsperchunk = (JDIMENSION) ltemp; 413 else 414 rowsperchunk = numrows; 415 mem->last_rowsperchunk = rowsperchunk; 416 417 /* Get space for row pointers (small object) */ 418 result = (JSAMPARRAY) alloc_small(cinfo, pool_id, 419 (size_t) (numrows * SIZEOF(JSAMPROW))); 420 421 /* Get the rows themselves (large objects) */ 422 currow = 0; 423 while (currow < numrows) { 424 rowsperchunk = MIN(rowsperchunk, numrows - currow); 425 workspace = (JSAMPROW) alloc_large(cinfo, pool_id, 426 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow 427 * SIZEOF(JSAMPLE))); 428 for (i = rowsperchunk; i > 0; i--) { 429 result[currow++] = workspace; 430 workspace += samplesperrow; 431 } 432 } 433 434 return result; 435 } 436 437 438 /* 439 * Creation of 2-D coefficient-block arrays. 440 * This is essentially the same as the code for sample arrays, above. 441 */ 442 443 METHODDEF(JBLOCKARRAY) 444 alloc_barray (j_common_ptr cinfo, int pool_id, 445 JDIMENSION blocksperrow, JDIMENSION numrows) 446 /* Allocate a 2-D coefficient-block array */ 447 { 448 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 449 JBLOCKARRAY result; 450 JBLOCKROW workspace; 451 JDIMENSION rowsperchunk, currow, i; 452 long ltemp; 453 454 /* Calculate max # of rows allowed in one allocation chunk */ 455 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / 456 ((long) blocksperrow * SIZEOF(JBLOCK)); 457 if (ltemp <= 0) 458 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); 459 if (ltemp < (long) numrows) 460 rowsperchunk = (JDIMENSION) ltemp; 461 else 462 rowsperchunk = numrows; 463 mem->last_rowsperchunk = rowsperchunk; 464 465 /* Get space for row pointers (small object) */ 466 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, 467 (size_t) (numrows * SIZEOF(JBLOCKROW))); 468 469 /* Get the rows themselves (large objects) */ 470 currow = 0; 471 while (currow < numrows) { 472 rowsperchunk = MIN(rowsperchunk, numrows - currow); 473 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, 474 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow 475 * SIZEOF(JBLOCK))); 476 for (i = rowsperchunk; i > 0; i--) { 477 result[currow++] = workspace; 478 workspace += blocksperrow; 479 } 480 } 481 482 return result; 483 } 484 485 486 /* 487 * About virtual array management: 488 * 489 * The above "normal" array routines are only used to allocate strip buffers 490 * (as wide as the image, but just a few rows high). Full-image-sized buffers 491 * are handled as "virtual" arrays. The array is still accessed a strip at a 492 * time, but the memory manager must save the whole array for repeated 493 * accesses. The intended implementation is that there is a strip buffer in 494 * memory (as high as is possible given the desired memory limit), plus a 495 * backing file that holds the rest of the array. 496 * 497 * The request_virt_array routines are told the total size of the image and 498 * the maximum number of rows that will be accessed at once. The in-memory 499 * buffer must be at least as large as the maxaccess value. 500 * 501 * The request routines create control blocks but not the in-memory buffers. 502 * That is postponed until realize_virt_arrays is called. At that time the 503 * total amount of space needed is known (approximately, anyway), so free 504 * memory can be divided up fairly. 505 * 506 * The access_virt_array routines are responsible for making a specific strip 507 * area accessible (after reading or writing the backing file, if necessary). 508 * Note that the access routines are told whether the caller intends to modify 509 * the accessed strip; during a read-only pass this saves having to rewrite 510 * data to disk. The access routines are also responsible for pre-zeroing 511 * any newly accessed rows, if pre-zeroing was requested. 512 * 513 * In current usage, the access requests are usually for nonoverlapping 514 * strips; that is, successive access start_row numbers differ by exactly 515 * num_rows = maxaccess. This means we can get good performance with simple 516 * buffer dump/reload logic, by making the in-memory buffer be a multiple 517 * of the access height; then there will never be accesses across bufferload 518 * boundaries. The code will still work with overlapping access requests, 519 * but it doesn't handle bufferload overlaps very efficiently. 520 */ 521 522 523 METHODDEF(jvirt_sarray_ptr) 524 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, 525 JDIMENSION samplesperrow, JDIMENSION numrows, 526 JDIMENSION maxaccess) 527 /* Request a virtual 2-D sample array */ 528 { 529 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 530 jvirt_sarray_ptr result; 531 532 /* Only IMAGE-lifetime virtual arrays are currently supported */ 533 if (pool_id != JPOOL_IMAGE) 534 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 535 536 /* get control block */ 537 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, 538 SIZEOF(struct jvirt_sarray_control)); 539 540 result->mem_buffer = NULL; /* marks array not yet realized */ 541 result->rows_in_array = numrows; 542 result->samplesperrow = samplesperrow; 543 result->maxaccess = maxaccess; 544 result->pre_zero = pre_zero; 545 result->b_s_open = FALSE; /* no associated backing-store object */ 546 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ 547 mem->virt_sarray_list = result; 548 549 return result; 550 } 551 552 553 METHODDEF(jvirt_barray_ptr) 554 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, 555 JDIMENSION blocksperrow, JDIMENSION numrows, 556 JDIMENSION maxaccess) 557 /* Request a virtual 2-D coefficient-block array */ 558 { 559 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 560 jvirt_barray_ptr result; 561 562 /* Only IMAGE-lifetime virtual arrays are currently supported */ 563 if (pool_id != JPOOL_IMAGE) 564 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 565 566 /* get control block */ 567 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, 568 SIZEOF(struct jvirt_barray_control)); 569 570 result->mem_buffer = NULL; /* marks array not yet realized */ 571 result->rows_in_array = numrows; 572 result->blocksperrow = blocksperrow; 573 result->maxaccess = maxaccess; 574 result->pre_zero = pre_zero; 575 result->b_s_open = FALSE; /* no associated backing-store object */ 576 result->next = mem->virt_barray_list; /* add to list of virtual arrays */ 577 mem->virt_barray_list = result; 578 579 return result; 580 } 581 582 583 METHODDEF(void) 584 realize_virt_arrays (j_common_ptr cinfo) 585 /* Allocate the in-memory buffers for any unrealized virtual arrays */ 586 { 587 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 588 long space_per_minheight, maximum_space, avail_mem; 589 long minheights, max_minheights; 590 jvirt_sarray_ptr sptr; 591 jvirt_barray_ptr bptr; 592 593 /* Compute the minimum space needed (maxaccess rows in each buffer) 594 * and the maximum space needed (full image height in each buffer). 595 * These may be of use to the system-dependent jpeg_mem_available routine. 596 */ 597 space_per_minheight = 0; 598 maximum_space = 0; 599 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { 600 if (sptr->mem_buffer == NULL) { /* if not realized yet */ 601 space_per_minheight += (long) sptr->maxaccess * 602 (long) sptr->samplesperrow * SIZEOF(JSAMPLE); 603 maximum_space += (long) sptr->rows_in_array * 604 (long) sptr->samplesperrow * SIZEOF(JSAMPLE); 605 } 606 } 607 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { 608 if (bptr->mem_buffer == NULL) { /* if not realized yet */ 609 space_per_minheight += (long) bptr->maxaccess * 610 (long) bptr->blocksperrow * SIZEOF(JBLOCK); 611 maximum_space += (long) bptr->rows_in_array * 612 (long) bptr->blocksperrow * SIZEOF(JBLOCK); 613 } 614 } 615 616 if (space_per_minheight <= 0) 617 return; /* no unrealized arrays, no work */ 618 619 /* Determine amount of memory to actually use; this is system-dependent. */ 620 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, 621 mem->total_space_allocated); 622 623 /* If the maximum space needed is available, make all the buffers full 624 * height; otherwise parcel it out with the same number of minheights 625 * in each buffer. 626 */ 627 if (avail_mem >= maximum_space) 628 max_minheights = 1000000000L; 629 else { 630 max_minheights = avail_mem / space_per_minheight; 631 /* If there doesn't seem to be enough space, try to get the minimum 632 * anyway. This allows a "stub" implementation of jpeg_mem_available(). 633 */ 634 if (max_minheights <= 0) 635 max_minheights = 1; 636 } 637 638 /* Allocate the in-memory buffers and initialize backing store as needed. */ 639 640 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { 641 if (sptr->mem_buffer == NULL) { /* if not realized yet */ 642 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; 643 if (minheights <= max_minheights) { 644 /* This buffer fits in memory */ 645 sptr->rows_in_mem = sptr->rows_in_array; 646 } else { 647 /* It doesn't fit in memory, create backing store. */ 648 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); 649 jpeg_open_backing_store(cinfo, & sptr->b_s_info, 650 (long) sptr->rows_in_array * 651 (long) sptr->samplesperrow * 652 (long) SIZEOF(JSAMPLE)); 653 sptr->b_s_open = TRUE; 654 } 655 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, 656 sptr->samplesperrow, sptr->rows_in_mem); 657 sptr->rowsperchunk = mem->last_rowsperchunk; 658 sptr->cur_start_row = 0; 659 sptr->first_undef_row = 0; 660 sptr->dirty = FALSE; 661 } 662 } 663 664 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { 665 if (bptr->mem_buffer == NULL) { /* if not realized yet */ 666 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; 667 if (minheights <= max_minheights) { 668 /* This buffer fits in memory */ 669 bptr->rows_in_mem = bptr->rows_in_array; 670 } else { 671 /* It doesn't fit in memory, create backing store. */ 672 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); 673 jpeg_open_backing_store(cinfo, & bptr->b_s_info, 674 (long) bptr->rows_in_array * 675 (long) bptr->blocksperrow * 676 (long) SIZEOF(JBLOCK)); 677 bptr->b_s_open = TRUE; 678 } 679 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, 680 bptr->blocksperrow, bptr->rows_in_mem); 681 bptr->rowsperchunk = mem->last_rowsperchunk; 682 bptr->cur_start_row = 0; 683 bptr->first_undef_row = 0; 684 bptr->dirty = FALSE; 685 } 686 } 687 } 688 689 690 LOCAL(void) 691 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) 692 /* Do backing store read or write of a virtual sample array */ 693 { 694 long bytesperrow, file_offset, byte_count, rows, thisrow, i; 695 696 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); 697 file_offset = ptr->cur_start_row * bytesperrow; 698 /* Loop to read or write each allocation chunk in mem_buffer */ 699 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { 700 /* One chunk, but check for short chunk at end of buffer */ 701 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); 702 /* Transfer no more than is currently defined */ 703 thisrow = (long) ptr->cur_start_row + i; 704 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); 705 /* Transfer no more than fits in file */ 706 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); 707 if (rows <= 0) /* this chunk might be past end of file! */ 708 break; 709 byte_count = rows * bytesperrow; 710 if (writing) 711 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, 712 (void FAR *) ptr->mem_buffer[i], 713 file_offset, byte_count); 714 else 715 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, 716 (void FAR *) ptr->mem_buffer[i], 717 file_offset, byte_count); 718 file_offset += byte_count; 719 } 720 } 721 722 723 LOCAL(void) 724 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) 725 /* Do backing store read or write of a virtual coefficient-block array */ 726 { 727 long bytesperrow, file_offset, byte_count, rows, thisrow, i; 728 729 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); 730 file_offset = ptr->cur_start_row * bytesperrow; 731 /* Loop to read or write each allocation chunk in mem_buffer */ 732 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { 733 /* One chunk, but check for short chunk at end of buffer */ 734 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); 735 /* Transfer no more than is currently defined */ 736 thisrow = (long) ptr->cur_start_row + i; 737 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); 738 /* Transfer no more than fits in file */ 739 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); 740 if (rows <= 0) /* this chunk might be past end of file! */ 741 break; 742 byte_count = rows * bytesperrow; 743 if (writing) 744 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, 745 (void FAR *) ptr->mem_buffer[i], 746 file_offset, byte_count); 747 else 748 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, 749 (void FAR *) ptr->mem_buffer[i], 750 file_offset, byte_count); 751 file_offset += byte_count; 752 } 753 } 754 755 756 METHODDEF(JSAMPARRAY) 757 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, 758 JDIMENSION start_row, JDIMENSION num_rows, 759 boolean writable) 760 /* Access the part of a virtual sample array starting at start_row */ 761 /* and extending for num_rows rows. writable is true if */ 762 /* caller intends to modify the accessed area. */ 763 { 764 JDIMENSION end_row = start_row + num_rows; 765 JDIMENSION undef_row; 766 767 /* debugging check */ 768 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || 769 ptr->mem_buffer == NULL) 770 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 771 772 /* Make the desired part of the virtual array accessible */ 773 if (start_row < ptr->cur_start_row || 774 end_row > ptr->cur_start_row+ptr->rows_in_mem) { 775 if (! ptr->b_s_open) 776 ERREXIT(cinfo, JERR_VIRTUAL_BUG); 777 /* Flush old buffer contents if necessary */ 778 if (ptr->dirty) { 779 do_sarray_io(cinfo, ptr, TRUE); 780 ptr->dirty = FALSE; 781 } 782 /* Decide what part of virtual array to access. 783 * Algorithm: if target address > current window, assume forward scan, 784 * load starting at target address. If target address < current window, 785 * assume backward scan, load so that target area is top of window. 786 * Note that when switching from forward write to forward read, will have 787 * start_row = 0, so the limiting case applies and we load from 0 anyway. 788 */ 789 if (start_row > ptr->cur_start_row) { 790 ptr->cur_start_row = start_row; 791 } else { 792 /* use long arithmetic here to avoid overflow & unsigned problems */ 793 long ltemp; 794 795 ltemp = (long) end_row - (long) ptr->rows_in_mem; 796 if (ltemp < 0) 797 ltemp = 0; /* don't fall off front end of file */ 798 ptr->cur_start_row = (JDIMENSION) ltemp; 799 } 800 /* Read in the selected part of the array. 801 * During the initial write pass, we will do no actual read 802 * because the selected part is all undefined. 803 */ 804 do_sarray_io(cinfo, ptr, FALSE); 805 } 806 /* Ensure the accessed part of the array is defined; prezero if needed. 807 * To improve locality of access, we only prezero the part of the array 808 * that the caller is about to access, not the entire in-memory array. 809 */ 810 if (ptr->first_undef_row < end_row) { 811 if (ptr->first_undef_row < start_row) { 812 if (writable) /* writer skipped over a section of array */ 813 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 814 undef_row = start_row; /* but reader is allowed to read ahead */ 815 } else { 816 undef_row = ptr->first_undef_row; 817 } 818 if (writable) 819 ptr->first_undef_row = end_row; 820 if (ptr->pre_zero) { 821 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); 822 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ 823 end_row -= ptr->cur_start_row; 824 while (undef_row < end_row) { 825 FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); 826 undef_row++; 827 } 828 } else { 829 if (! writable) /* reader looking at undefined data */ 830 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 831 } 832 } 833 /* Flag the buffer dirty if caller will write in it */ 834 if (writable) 835 ptr->dirty = TRUE; 836 /* Return address of proper part of the buffer */ 837 return ptr->mem_buffer + (start_row - ptr->cur_start_row); 838 } 839 840 841 METHODDEF(JBLOCKARRAY) 842 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, 843 JDIMENSION start_row, JDIMENSION num_rows, 844 boolean writable) 845 /* Access the part of a virtual block array starting at start_row */ 846 /* and extending for num_rows rows. writable is true if */ 847 /* caller intends to modify the accessed area. */ 848 { 849 JDIMENSION end_row = start_row + num_rows; 850 JDIMENSION undef_row; 851 852 /* debugging check */ 853 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || 854 ptr->mem_buffer == NULL) 855 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 856 857 /* Make the desired part of the virtual array accessible */ 858 if (start_row < ptr->cur_start_row || 859 end_row > ptr->cur_start_row+ptr->rows_in_mem) { 860 if (! ptr->b_s_open) 861 ERREXIT(cinfo, JERR_VIRTUAL_BUG); 862 /* Flush old buffer contents if necessary */ 863 if (ptr->dirty) { 864 do_barray_io(cinfo, ptr, TRUE); 865 ptr->dirty = FALSE; 866 } 867 /* Decide what part of virtual array to access. 868 * Algorithm: if target address > current window, assume forward scan, 869 * load starting at target address. If target address < current window, 870 * assume backward scan, load so that target area is top of window. 871 * Note that when switching from forward write to forward read, will have 872 * start_row = 0, so the limiting case applies and we load from 0 anyway. 873 */ 874 if (start_row > ptr->cur_start_row) { 875 ptr->cur_start_row = start_row; 876 } else { 877 /* use long arithmetic here to avoid overflow & unsigned problems */ 878 long ltemp; 879 880 ltemp = (long) end_row - (long) ptr->rows_in_mem; 881 if (ltemp < 0) 882 ltemp = 0; /* don't fall off front end of file */ 883 ptr->cur_start_row = (JDIMENSION) ltemp; 884 } 885 /* Read in the selected part of the array. 886 * During the initial write pass, we will do no actual read 887 * because the selected part is all undefined. 888 */ 889 do_barray_io(cinfo, ptr, FALSE); 890 } 891 /* Ensure the accessed part of the array is defined; prezero if needed. 892 * To improve locality of access, we only prezero the part of the array 893 * that the caller is about to access, not the entire in-memory array. 894 */ 895 if (ptr->first_undef_row < end_row) { 896 if (ptr->first_undef_row < start_row) { 897 if (writable) /* writer skipped over a section of array */ 898 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 899 undef_row = start_row; /* but reader is allowed to read ahead */ 900 } else { 901 undef_row = ptr->first_undef_row; 902 } 903 if (writable) 904 ptr->first_undef_row = end_row; 905 if (ptr->pre_zero) { 906 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); 907 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ 908 end_row -= ptr->cur_start_row; 909 while (undef_row < end_row) { 910 FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); 911 undef_row++; 912 } 913 } else { 914 if (! writable) /* reader looking at undefined data */ 915 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 916 } 917 } 918 /* Flag the buffer dirty if caller will write in it */ 919 if (writable) 920 ptr->dirty = TRUE; 921 /* Return address of proper part of the buffer */ 922 return ptr->mem_buffer + (start_row - ptr->cur_start_row); 923 } 924 925 926 /* 927 * Release all objects belonging to a specified pool. 928 */ 929 930 METHODDEF(void) 931 free_pool (j_common_ptr cinfo, int pool_id) 932 { 933 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 934 small_pool_ptr shdr_ptr; 935 large_pool_ptr lhdr_ptr; 936 size_t space_freed; 937 938 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) 939 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 940 941 #ifdef MEM_STATS 942 if (cinfo->err->trace_level > 1) 943 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ 944 #endif 945 946 /* If freeing IMAGE pool, close any virtual arrays first */ 947 if (pool_id == JPOOL_IMAGE) { 948 jvirt_sarray_ptr sptr; 949 jvirt_barray_ptr bptr; 950 951 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { 952 if (sptr->b_s_open) { /* there may be no backing store */ 953 sptr->b_s_open = FALSE; /* prevent recursive close if error */ 954 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); 955 } 956 } 957 mem->virt_sarray_list = NULL; 958 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { 959 if (bptr->b_s_open) { /* there may be no backing store */ 960 bptr->b_s_open = FALSE; /* prevent recursive close if error */ 961 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); 962 } 963 } 964 mem->virt_barray_list = NULL; 965 } 966 967 /* Release large objects */ 968 lhdr_ptr = mem->large_list[pool_id]; 969 mem->large_list[pool_id] = NULL; 970 971 while (lhdr_ptr != NULL) { 972 large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; 973 space_freed = lhdr_ptr->hdr.bytes_used + 974 lhdr_ptr->hdr.bytes_left + 975 SIZEOF(large_pool_hdr); 976 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); 977 mem->total_space_allocated -= space_freed; 978 lhdr_ptr = next_lhdr_ptr; 979 } 980 981 /* Release small objects */ 982 shdr_ptr = mem->small_list[pool_id]; 983 mem->small_list[pool_id] = NULL; 984 985 while (shdr_ptr != NULL) { 986 small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; 987 space_freed = shdr_ptr->hdr.bytes_used + 988 shdr_ptr->hdr.bytes_left + 989 SIZEOF(small_pool_hdr); 990 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); 991 mem->total_space_allocated -= space_freed; 992 shdr_ptr = next_shdr_ptr; 993 } 994 } 995 996 997 /* 998 * Close up shop entirely. 999 * Note that this cannot be called unless cinfo->mem is non-NULL. 1000 */ 1001 1002 METHODDEF(void) 1003 self_destruct (j_common_ptr cinfo) 1004 { 1005 int pool; 1006 1007 /* Close all backing store, release all memory. 1008 * Releasing pools in reverse order might help avoid fragmentation 1009 * with some (brain-damaged) malloc libraries. 1010 */ 1011 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { 1012 free_pool(cinfo, pool); 1013 } 1014 1015 /* Release the memory manager control block too. */ 1016 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); 1017 cinfo->mem = NULL; /* ensures I will be called only once */ 1018 1019 jpeg_mem_term(cinfo); /* system-dependent cleanup */ 1020 } 1021 1022 1023 /* 1024 * Memory manager initialization. 1025 * When this is called, only the error manager pointer is valid in cinfo! 1026 */ 1027 1028 GLOBAL(void) 1029 jinit_memory_mgr (j_common_ptr cinfo) 1030 { 1031 my_mem_ptr mem; 1032 long max_to_use; 1033 int pool; 1034 size_t test_mac; 1035 1036 cinfo->mem = NULL; /* for safety if init fails */ 1037 1038 /* Check for configuration errors. 1039 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably 1040 * doesn't reflect any real hardware alignment requirement. 1041 * The test is a little tricky: for X>0, X and X-1 have no one-bits 1042 * in common if and only if X is a power of 2, ie has only one one-bit. 1043 * Some compilers may give an "unreachable code" warning here; ignore it. 1044 */ 1045 if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) 1046 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); 1047 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be 1048 * a multiple of SIZEOF(ALIGN_TYPE). 1049 * Again, an "unreachable code" warning may be ignored here. 1050 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. 1051 */ 1052 test_mac = (size_t) MAX_ALLOC_CHUNK; 1053 if ((long) test_mac != MAX_ALLOC_CHUNK || 1054 (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) 1055 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); 1056 1057 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ 1058 1059 /* Attempt to allocate memory manager's control block */ 1060 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); 1061 1062 if (mem == NULL) { 1063 jpeg_mem_term(cinfo); /* system-dependent cleanup */ 1064 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); 1065 } 1066 1067 /* OK, fill in the method pointers */ 1068 mem->pub.alloc_small = alloc_small; 1069 mem->pub.alloc_large = alloc_large; 1070 mem->pub.alloc_sarray = alloc_sarray; 1071 mem->pub.alloc_barray = alloc_barray; 1072 mem->pub.request_virt_sarray = request_virt_sarray; 1073 mem->pub.request_virt_barray = request_virt_barray; 1074 mem->pub.realize_virt_arrays = realize_virt_arrays; 1075 mem->pub.access_virt_sarray = access_virt_sarray; 1076 mem->pub.access_virt_barray = access_virt_barray; 1077 mem->pub.free_pool = free_pool; 1078 mem->pub.self_destruct = self_destruct; 1079 1080 /* Make MAX_ALLOC_CHUNK accessible to other modules */ 1081 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; 1082 1083 /* Initialize working state */ 1084 mem->pub.max_memory_to_use = max_to_use; 1085 1086 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { 1087 mem->small_list[pool] = NULL; 1088 mem->large_list[pool] = NULL; 1089 } 1090 mem->virt_sarray_list = NULL; 1091 mem->virt_barray_list = NULL; 1092 1093 mem->total_space_allocated = SIZEOF(my_memory_mgr); 1094 1095 /* Declare ourselves open for business */ 1096 cinfo->mem = & mem->pub; 1097 1098 /* Check for an environment variable JPEGMEM; if found, override the 1099 * default max_memory setting from jpeg_mem_init. Note that the 1100 * surrounding application may again override this value. 1101 * If your system doesn't support getenv(), define NO_GETENV to disable 1102 * this feature. 1103 */ 1104 #ifndef NO_GETENV 1105 { char * memenv; 1106 1107 if ((memenv = getenv("JPEGMEM")) != NULL) { 1108 char ch = 'x'; 1109 1110 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { 1111 if (ch == 'm' || ch == 'M') 1112 max_to_use *= 1000L; 1113 mem->pub.max_memory_to_use = max_to_use * 1000L; 1114 } 1115 } 1116 } 1117 #endif 1118 1119 } 1120