xref: /reactos/dll/3rdparty/libtiff/tif_pixarlog.c (revision 4019caae)
1 /* $Id: tif_pixarlog.c,v 1.15.2.4 2010-06-08 18:50:42 bfriesen Exp $ */
2 
3 /*
4  * Copyright (c) 1996-1997 Sam Leffler
5  * Copyright (c) 1996 Pixar
6  *
7  * Permission to use, copy, modify, distribute, and sell this software and
8  * its documentation for any purpose is hereby granted without fee, provided
9  * that (i) the above copyright notices and this permission notice appear in
10  * all copies of the software and related documentation, and (ii) the names of
11  * Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or
12  * publicity relating to the software without the specific, prior written
13  * permission of Pixar, Sam Leffler and Silicon Graphics.
14  *
15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18  *
19  * IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24  * OF THIS SOFTWARE.
25  */
26 
27 #include "tiffiop.h"
28 #ifdef PIXARLOG_SUPPORT
29 
30 /*
31  * TIFF Library.
32  * PixarLog Compression Support
33  *
34  * Contributed by Dan McCoy.
35  *
36  * PixarLog film support uses the TIFF library to store companded
37  * 11 bit values into a tiff file, which are compressed using the
38  * zip compressor.
39  *
40  * The codec can take as input and produce as output 32-bit IEEE float values
41  * as well as 16-bit or 8-bit unsigned integer values.
42  *
43  * On writing any of the above are converted into the internal
44  * 11-bit log format.   In the case of  8 and 16 bit values, the
45  * input is assumed to be unsigned linear color values that represent
46  * the range 0-1.  In the case of IEEE values, the 0-1 range is assumed to
47  * be the normal linear color range, in addition over 1 values are
48  * accepted up to a value of about 25.0 to encode "hot" hightlights and such.
49  * The encoding is lossless for 8-bit values, slightly lossy for the
50  * other bit depths.  The actual color precision should be better
51  * than the human eye can perceive with extra room to allow for
52  * error introduced by further image computation.  As with any quantized
53  * color format, it is possible to perform image calculations which
54  * expose the quantization error. This format should certainly be less
55  * susceptable to such errors than standard 8-bit encodings, but more
56  * susceptable than straight 16-bit or 32-bit encodings.
57  *
58  * On reading the internal format is converted to the desired output format.
59  * The program can request which format it desires by setting the internal
60  * pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values:
61  *  PIXARLOGDATAFMT_FLOAT     = provide IEEE float values.
62  *  PIXARLOGDATAFMT_16BIT     = provide unsigned 16-bit integer values
63  *  PIXARLOGDATAFMT_8BIT      = provide unsigned 8-bit integer values
64  *
65  * alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer
66  * values with the difference that if there are exactly three or four channels
67  * (rgb or rgba) it swaps the channel order (bgr or abgr).
68  *
69  * PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly
70  * packed in 16-bit values.   However no tools are supplied for interpreting
71  * these values.
72  *
73  * "hot" (over 1.0) areas written in floating point get clamped to
74  * 1.0 in the integer data types.
75  *
76  * When the file is closed after writing, the bit depth and sample format
77  * are set always to appear as if 8-bit data has been written into it.
78  * That way a naive program unaware of the particulars of the encoding
79  * gets the format it is most likely able to handle.
80  *
81  * The codec does it's own horizontal differencing step on the coded
82  * values so the libraries predictor stuff should be turned off.
83  * The codec also handle byte swapping the encoded values as necessary
84  * since the library does not have the information necessary
85  * to know the bit depth of the raw unencoded buffer.
86  *
87  */
88 
89 #include "tif_predict.h"
90 #include "zlib.h"
91 
92 #include <stdio.h>
93 #include <stdlib.h>
94 #include <math.h>
95 
96 /* Tables for converting to/from 11 bit coded values */
97 
98 #define  TSIZE	 2048		/* decode table size (11-bit tokens) */
99 #define  TSIZEP1 2049		/* Plus one for slop */
100 #define  ONE	 1250		/* token value of 1.0 exactly */
101 #define  RATIO	 1.004		/* nominal ratio for log part */
102 
103 #define CODE_MASK 0x7ff         /* 11 bits. */
104 
105 static float  Fltsize;
106 static float  LogK1, LogK2;
107 
108 #define REPEAT(n, op)   { int i; i=n; do { i--; op; } while (i>0); }
109 
110 static void
111 horizontalAccumulateF(uint16 *wp, int n, int stride, float *op,
112 	float *ToLinearF)
113 {
114     register unsigned int  cr, cg, cb, ca, mask;
115     register float  t0, t1, t2, t3;
116 
117     if (n >= stride) {
118 	mask = CODE_MASK;
119 	if (stride == 3) {
120 	    t0 = ToLinearF[cr = wp[0]];
121 	    t1 = ToLinearF[cg = wp[1]];
122 	    t2 = ToLinearF[cb = wp[2]];
123 	    op[0] = t0;
124 	    op[1] = t1;
125 	    op[2] = t2;
126 	    n -= 3;
127 	    while (n > 0) {
128 		wp += 3;
129 		op += 3;
130 		n -= 3;
131 		t0 = ToLinearF[(cr += wp[0]) & mask];
132 		t1 = ToLinearF[(cg += wp[1]) & mask];
133 		t2 = ToLinearF[(cb += wp[2]) & mask];
134 		op[0] = t0;
135 		op[1] = t1;
136 		op[2] = t2;
137 	    }
138 	} else if (stride == 4) {
139 	    t0 = ToLinearF[cr = wp[0]];
140 	    t1 = ToLinearF[cg = wp[1]];
141 	    t2 = ToLinearF[cb = wp[2]];
142 	    t3 = ToLinearF[ca = wp[3]];
143 	    op[0] = t0;
144 	    op[1] = t1;
145 	    op[2] = t2;
146 	    op[3] = t3;
147 	    n -= 4;
148 	    while (n > 0) {
149 		wp += 4;
150 		op += 4;
151 		n -= 4;
152 		t0 = ToLinearF[(cr += wp[0]) & mask];
153 		t1 = ToLinearF[(cg += wp[1]) & mask];
154 		t2 = ToLinearF[(cb += wp[2]) & mask];
155 		t3 = ToLinearF[(ca += wp[3]) & mask];
156 		op[0] = t0;
157 		op[1] = t1;
158 		op[2] = t2;
159 		op[3] = t3;
160 	    }
161 	} else {
162 	    REPEAT(stride, *op = ToLinearF[*wp&mask]; wp++; op++)
163 	    n -= stride;
164 	    while (n > 0) {
165 		REPEAT(stride,
166 		    wp[stride] += *wp; *op = ToLinearF[*wp&mask]; wp++; op++)
167 		n -= stride;
168 	    }
169 	}
170     }
171 }
172 
173 static void
174 horizontalAccumulate12(uint16 *wp, int n, int stride, int16 *op,
175 	float *ToLinearF)
176 {
177     register unsigned int  cr, cg, cb, ca, mask;
178     register float  t0, t1, t2, t3;
179 
180 #define SCALE12 2048.0F
181 #define CLAMP12(t) (((t) < 3071) ? (uint16) (t) : 3071)
182 
183     if (n >= stride) {
184 	mask = CODE_MASK;
185 	if (stride == 3) {
186 	    t0 = ToLinearF[cr = wp[0]] * SCALE12;
187 	    t1 = ToLinearF[cg = wp[1]] * SCALE12;
188 	    t2 = ToLinearF[cb = wp[2]] * SCALE12;
189 	    op[0] = CLAMP12(t0);
190 	    op[1] = CLAMP12(t1);
191 	    op[2] = CLAMP12(t2);
192 	    n -= 3;
193 	    while (n > 0) {
194 		wp += 3;
195 		op += 3;
196 		n -= 3;
197 		t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
198 		t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
199 		t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
200 		op[0] = CLAMP12(t0);
201 		op[1] = CLAMP12(t1);
202 		op[2] = CLAMP12(t2);
203 	    }
204 	} else if (stride == 4) {
205 	    t0 = ToLinearF[cr = wp[0]] * SCALE12;
206 	    t1 = ToLinearF[cg = wp[1]] * SCALE12;
207 	    t2 = ToLinearF[cb = wp[2]] * SCALE12;
208 	    t3 = ToLinearF[ca = wp[3]] * SCALE12;
209 	    op[0] = CLAMP12(t0);
210 	    op[1] = CLAMP12(t1);
211 	    op[2] = CLAMP12(t2);
212 	    op[3] = CLAMP12(t3);
213 	    n -= 4;
214 	    while (n > 0) {
215 		wp += 4;
216 		op += 4;
217 		n -= 4;
218 		t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
219 		t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
220 		t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
221 		t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12;
222 		op[0] = CLAMP12(t0);
223 		op[1] = CLAMP12(t1);
224 		op[2] = CLAMP12(t2);
225 		op[3] = CLAMP12(t3);
226 	    }
227 	} else {
228 	    REPEAT(stride, t0 = ToLinearF[*wp&mask] * SCALE12;
229                            *op = CLAMP12(t0); wp++; op++)
230 	    n -= stride;
231 	    while (n > 0) {
232 		REPEAT(stride,
233 		    wp[stride] += *wp; t0 = ToLinearF[wp[stride]&mask]*SCALE12;
234 		    *op = CLAMP12(t0);  wp++; op++)
235 		n -= stride;
236 	    }
237 	}
238     }
239 }
240 
241 static void
242 horizontalAccumulate16(uint16 *wp, int n, int stride, uint16 *op,
243 	uint16 *ToLinear16)
244 {
245     register unsigned int  cr, cg, cb, ca, mask;
246 
247     if (n >= stride) {
248 	mask = CODE_MASK;
249 	if (stride == 3) {
250 	    op[0] = ToLinear16[cr = wp[0]];
251 	    op[1] = ToLinear16[cg = wp[1]];
252 	    op[2] = ToLinear16[cb = wp[2]];
253 	    n -= 3;
254 	    while (n > 0) {
255 		wp += 3;
256 		op += 3;
257 		n -= 3;
258 		op[0] = ToLinear16[(cr += wp[0]) & mask];
259 		op[1] = ToLinear16[(cg += wp[1]) & mask];
260 		op[2] = ToLinear16[(cb += wp[2]) & mask];
261 	    }
262 	} else if (stride == 4) {
263 	    op[0] = ToLinear16[cr = wp[0]];
264 	    op[1] = ToLinear16[cg = wp[1]];
265 	    op[2] = ToLinear16[cb = wp[2]];
266 	    op[3] = ToLinear16[ca = wp[3]];
267 	    n -= 4;
268 	    while (n > 0) {
269 		wp += 4;
270 		op += 4;
271 		n -= 4;
272 		op[0] = ToLinear16[(cr += wp[0]) & mask];
273 		op[1] = ToLinear16[(cg += wp[1]) & mask];
274 		op[2] = ToLinear16[(cb += wp[2]) & mask];
275 		op[3] = ToLinear16[(ca += wp[3]) & mask];
276 	    }
277 	} else {
278 	    REPEAT(stride, *op = ToLinear16[*wp&mask]; wp++; op++)
279 	    n -= stride;
280 	    while (n > 0) {
281 		REPEAT(stride,
282 		    wp[stride] += *wp; *op = ToLinear16[*wp&mask]; wp++; op++)
283 		n -= stride;
284 	    }
285 	}
286     }
287 }
288 
289 /*
290  * Returns the log encoded 11-bit values with the horizontal
291  * differencing undone.
292  */
293 static void
294 horizontalAccumulate11(uint16 *wp, int n, int stride, uint16 *op)
295 {
296     register unsigned int  cr, cg, cb, ca, mask;
297 
298     if (n >= stride) {
299 	mask = CODE_MASK;
300 	if (stride == 3) {
301 	    op[0] = cr = wp[0];  op[1] = cg = wp[1];  op[2] = cb = wp[2];
302 	    n -= 3;
303 	    while (n > 0) {
304 		wp += 3;
305 		op += 3;
306 		n -= 3;
307 		op[0] = (cr += wp[0]) & mask;
308 		op[1] = (cg += wp[1]) & mask;
309 		op[2] = (cb += wp[2]) & mask;
310 	    }
311 	} else if (stride == 4) {
312 	    op[0] = cr = wp[0];  op[1] = cg = wp[1];
313 	    op[2] = cb = wp[2];  op[3] = ca = wp[3];
314 	    n -= 4;
315 	    while (n > 0) {
316 		wp += 4;
317 		op += 4;
318 		n -= 4;
319 		op[0] = (cr += wp[0]) & mask;
320 		op[1] = (cg += wp[1]) & mask;
321 		op[2] = (cb += wp[2]) & mask;
322 		op[3] = (ca += wp[3]) & mask;
323 	    }
324 	} else {
325 	    REPEAT(stride, *op = *wp&mask; wp++; op++)
326 	    n -= stride;
327 	    while (n > 0) {
328 		REPEAT(stride,
329 		    wp[stride] += *wp; *op = *wp&mask; wp++; op++)
330 		n -= stride;
331 	    }
332 	}
333     }
334 }
335 
336 static void
337 horizontalAccumulate8(uint16 *wp, int n, int stride, unsigned char *op,
338 	unsigned char *ToLinear8)
339 {
340     register unsigned int  cr, cg, cb, ca, mask;
341 
342     if (n >= stride) {
343 	mask = CODE_MASK;
344 	if (stride == 3) {
345 	    op[0] = ToLinear8[cr = wp[0]];
346 	    op[1] = ToLinear8[cg = wp[1]];
347 	    op[2] = ToLinear8[cb = wp[2]];
348 	    n -= 3;
349 	    while (n > 0) {
350 		n -= 3;
351 		wp += 3;
352 		op += 3;
353 		op[0] = ToLinear8[(cr += wp[0]) & mask];
354 		op[1] = ToLinear8[(cg += wp[1]) & mask];
355 		op[2] = ToLinear8[(cb += wp[2]) & mask];
356 	    }
357 	} else if (stride == 4) {
358 	    op[0] = ToLinear8[cr = wp[0]];
359 	    op[1] = ToLinear8[cg = wp[1]];
360 	    op[2] = ToLinear8[cb = wp[2]];
361 	    op[3] = ToLinear8[ca = wp[3]];
362 	    n -= 4;
363 	    while (n > 0) {
364 		n -= 4;
365 		wp += 4;
366 		op += 4;
367 		op[0] = ToLinear8[(cr += wp[0]) & mask];
368 		op[1] = ToLinear8[(cg += wp[1]) & mask];
369 		op[2] = ToLinear8[(cb += wp[2]) & mask];
370 		op[3] = ToLinear8[(ca += wp[3]) & mask];
371 	    }
372 	} else {
373 	    REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
374 	    n -= stride;
375 	    while (n > 0) {
376 		REPEAT(stride,
377 		    wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
378 		n -= stride;
379 	    }
380 	}
381     }
382 }
383 
384 
385 static void
386 horizontalAccumulate8abgr(uint16 *wp, int n, int stride, unsigned char *op,
387 	unsigned char *ToLinear8)
388 {
389     register unsigned int  cr, cg, cb, ca, mask;
390     register unsigned char  t0, t1, t2, t3;
391 
392     if (n >= stride) {
393 	mask = CODE_MASK;
394 	if (stride == 3) {
395 	    op[0] = 0;
396 	    t1 = ToLinear8[cb = wp[2]];
397 	    t2 = ToLinear8[cg = wp[1]];
398 	    t3 = ToLinear8[cr = wp[0]];
399 	    op[1] = t1;
400 	    op[2] = t2;
401 	    op[3] = t3;
402 	    n -= 3;
403 	    while (n > 0) {
404 		n -= 3;
405 		wp += 3;
406 		op += 4;
407 		op[0] = 0;
408 		t1 = ToLinear8[(cb += wp[2]) & mask];
409 		t2 = ToLinear8[(cg += wp[1]) & mask];
410 		t3 = ToLinear8[(cr += wp[0]) & mask];
411 		op[1] = t1;
412 		op[2] = t2;
413 		op[3] = t3;
414 	    }
415 	} else if (stride == 4) {
416 	    t0 = ToLinear8[ca = wp[3]];
417 	    t1 = ToLinear8[cb = wp[2]];
418 	    t2 = ToLinear8[cg = wp[1]];
419 	    t3 = ToLinear8[cr = wp[0]];
420 	    op[0] = t0;
421 	    op[1] = t1;
422 	    op[2] = t2;
423 	    op[3] = t3;
424 	    n -= 4;
425 	    while (n > 0) {
426 		n -= 4;
427 		wp += 4;
428 		op += 4;
429 		t0 = ToLinear8[(ca += wp[3]) & mask];
430 		t1 = ToLinear8[(cb += wp[2]) & mask];
431 		t2 = ToLinear8[(cg += wp[1]) & mask];
432 		t3 = ToLinear8[(cr += wp[0]) & mask];
433 		op[0] = t0;
434 		op[1] = t1;
435 		op[2] = t2;
436 		op[3] = t3;
437 	    }
438 	} else {
439 	    REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
440 	    n -= stride;
441 	    while (n > 0) {
442 		REPEAT(stride,
443 		    wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
444 		n -= stride;
445 	    }
446 	}
447     }
448 }
449 
450 /*
451  * State block for each open TIFF
452  * file using PixarLog compression/decompression.
453  */
454 typedef	struct {
455 	TIFFPredictorState	predict;
456 	z_stream		stream;
457 	uint16			*tbuf;
458 	uint16			stride;
459 	int			state;
460 	int			user_datafmt;
461 	int			quality;
462 #define PLSTATE_INIT 1
463 
464 	TIFFVSetMethod		vgetparent;	/* super-class method */
465 	TIFFVSetMethod		vsetparent;	/* super-class method */
466 
467 	float *ToLinearF;
468 	uint16 *ToLinear16;
469 	unsigned char *ToLinear8;
470 	uint16  *FromLT2;
471 	uint16  *From14; /* Really for 16-bit data, but we shift down 2 */
472 	uint16  *From8;
473 
474 } PixarLogState;
475 
476 static int
477 PixarLogMakeTables(PixarLogState *sp)
478 {
479 
480 /*
481  *    We make several tables here to convert between various external
482  *    representations (float, 16-bit, and 8-bit) and the internal
483  *    11-bit companded representation.  The 11-bit representation has two
484  *    distinct regions.  A linear bottom end up through .018316 in steps
485  *    of about .000073, and a region of constant ratio up to about 25.
486  *    These floating point numbers are stored in the main table ToLinearF.
487  *    All other tables are derived from this one.  The tables (and the
488  *    ratios) are continuous at the internal seam.
489  */
490 
491     int  nlin, lt2size;
492     int  i, j;
493     double  b, c, linstep, v;
494     float *ToLinearF;
495     uint16 *ToLinear16;
496     unsigned char *ToLinear8;
497     uint16  *FromLT2;
498     uint16  *From14; /* Really for 16-bit data, but we shift down 2 */
499     uint16  *From8;
500 
501     c = log(RATIO);
502     nlin = (int)(1./c);	/* nlin must be an integer */
503     c = 1./nlin;
504     b = exp(-c*ONE);	/* multiplicative scale factor [b*exp(c*ONE) = 1] */
505     linstep = b*c*exp(1.);
506 
507     LogK1 = (float)(1./c);	/* if (v >= 2)  token = k1*log(v*k2) */
508     LogK2 = (float)(1./b);
509     lt2size = (int)(2./linstep) + 1;
510     FromLT2 = (uint16 *)_TIFFmalloc(lt2size*sizeof(uint16));
511     From14 = (uint16 *)_TIFFmalloc(16384*sizeof(uint16));
512     From8 = (uint16 *)_TIFFmalloc(256*sizeof(uint16));
513     ToLinearF = (float *)_TIFFmalloc(TSIZEP1 * sizeof(float));
514     ToLinear16 = (uint16 *)_TIFFmalloc(TSIZEP1 * sizeof(uint16));
515     ToLinear8 = (unsigned char *)_TIFFmalloc(TSIZEP1 * sizeof(unsigned char));
516     if (FromLT2 == NULL || From14  == NULL || From8   == NULL ||
517 	 ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL) {
518 	if (FromLT2) _TIFFfree(FromLT2);
519 	if (From14) _TIFFfree(From14);
520 	if (From8) _TIFFfree(From8);
521 	if (ToLinearF) _TIFFfree(ToLinearF);
522 	if (ToLinear16) _TIFFfree(ToLinear16);
523 	if (ToLinear8) _TIFFfree(ToLinear8);
524 	sp->FromLT2 = NULL;
525 	sp->From14 = NULL;
526 	sp->From8 = NULL;
527 	sp->ToLinearF = NULL;
528 	sp->ToLinear16 = NULL;
529 	sp->ToLinear8 = NULL;
530 	return 0;
531     }
532 
533     j = 0;
534 
535     for (i = 0; i < nlin; i++)  {
536 	v = i * linstep;
537 	ToLinearF[j++] = (float)v;
538     }
539 
540     for (i = nlin; i < TSIZE; i++)
541 	ToLinearF[j++] = (float)(b*exp(c*i));
542 
543     ToLinearF[2048] = ToLinearF[2047];
544 
545     for (i = 0; i < TSIZEP1; i++)  {
546 	v = ToLinearF[i]*65535.0 + 0.5;
547 	ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16)v;
548 	v = ToLinearF[i]*255.0  + 0.5;
549 	ToLinear8[i]  = (v > 255.0) ? 255 : (unsigned char)v;
550     }
551 
552     j = 0;
553     for (i = 0; i < lt2size; i++)  {
554 	if ((i*linstep)*(i*linstep) > ToLinearF[j]*ToLinearF[j+1])
555 	    j++;
556 	FromLT2[i] = j;
557     }
558 
559     /*
560      * Since we lose info anyway on 16-bit data, we set up a 14-bit
561      * table and shift 16-bit values down two bits on input.
562      * saves a little table space.
563      */
564     j = 0;
565     for (i = 0; i < 16384; i++)  {
566 	while ((i/16383.)*(i/16383.) > ToLinearF[j]*ToLinearF[j+1])
567 	    j++;
568 	From14[i] = j;
569     }
570 
571     j = 0;
572     for (i = 0; i < 256; i++)  {
573 	while ((i/255.)*(i/255.) > ToLinearF[j]*ToLinearF[j+1])
574 	    j++;
575 	From8[i] = j;
576     }
577 
578     Fltsize = (float)(lt2size/2);
579 
580     sp->ToLinearF = ToLinearF;
581     sp->ToLinear16 = ToLinear16;
582     sp->ToLinear8 = ToLinear8;
583     sp->FromLT2 = FromLT2;
584     sp->From14 = From14;
585     sp->From8 = From8;
586 
587     return 1;
588 }
589 
590 #define	DecoderState(tif)	((PixarLogState*) (tif)->tif_data)
591 #define	EncoderState(tif)	((PixarLogState*) (tif)->tif_data)
592 
593 static	int PixarLogEncode(TIFF*, tidata_t, tsize_t, tsample_t);
594 static	int PixarLogDecode(TIFF*, tidata_t, tsize_t, tsample_t);
595 
596 #define PIXARLOGDATAFMT_UNKNOWN	-1
597 
598 static int
599 PixarLogGuessDataFmt(TIFFDirectory *td)
600 {
601 	int guess = PIXARLOGDATAFMT_UNKNOWN;
602 	int format = td->td_sampleformat;
603 
604 	/* If the user didn't tell us his datafmt,
605 	 * take our best guess from the bitspersample.
606 	 */
607 	switch (td->td_bitspersample) {
608 	 case 32:
609 		if (format == SAMPLEFORMAT_IEEEFP)
610 			guess = PIXARLOGDATAFMT_FLOAT;
611 		break;
612 	 case 16:
613 		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
614 			guess = PIXARLOGDATAFMT_16BIT;
615 		break;
616 	 case 12:
617 		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT)
618 			guess = PIXARLOGDATAFMT_12BITPICIO;
619 		break;
620 	 case 11:
621 		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
622 			guess = PIXARLOGDATAFMT_11BITLOG;
623 		break;
624 	 case 8:
625 		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
626 			guess = PIXARLOGDATAFMT_8BIT;
627 		break;
628 	}
629 
630 	return guess;
631 }
632 
633 static uint32
634 multiply(size_t m1, size_t m2)
635 {
636 	uint32	bytes = m1 * m2;
637 
638 	if (m1 && bytes / m1 != m2)
639 		bytes = 0;
640 
641 	return bytes;
642 }
643 
644 static int
645 PixarLogSetupDecode(TIFF* tif)
646 {
647 	TIFFDirectory *td = &tif->tif_dir;
648 	PixarLogState* sp = DecoderState(tif);
649 	tsize_t tbuf_size;
650 	static const char module[] = "PixarLogSetupDecode";
651 
652 	assert(sp != NULL);
653 
654 	/* Make sure no byte swapping happens on the data
655 	 * after decompression. */
656 	tif->tif_postdecode = _TIFFNoPostDecode;
657 
658 	/* for some reason, we can't do this in TIFFInitPixarLog */
659 
660 	sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
661 	    td->td_samplesperpixel : 1);
662 	tbuf_size = multiply(multiply(multiply(sp->stride, td->td_imagewidth),
663 				      td->td_rowsperstrip), sizeof(uint16));
664 	if (tbuf_size == 0)
665 		return (0);
666 	sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
667 	if (sp->tbuf == NULL)
668 		return (0);
669 	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
670 		sp->user_datafmt = PixarLogGuessDataFmt(td);
671 	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
672 		TIFFErrorExt(tif->tif_clientdata, module,
673 			"PixarLog compression can't handle bits depth/data format combination (depth: %d)",
674 			td->td_bitspersample);
675 		return (0);
676 	}
677 
678 	if (inflateInit(&sp->stream) != Z_OK) {
679 		TIFFErrorExt(tif->tif_clientdata, module, "%s: %s", tif->tif_name, sp->stream.msg);
680 		return (0);
681 	} else {
682 		sp->state |= PLSTATE_INIT;
683 		return (1);
684 	}
685 }
686 
687 /*
688  * Setup state for decoding a strip.
689  */
690 static int
691 PixarLogPreDecode(TIFF* tif, tsample_t s)
692 {
693 	PixarLogState* sp = DecoderState(tif);
694 
695 	(void) s;
696 	assert(sp != NULL);
697 	sp->stream.next_in = tif->tif_rawdata;
698 	sp->stream.avail_in = tif->tif_rawcc;
699 	return (inflateReset(&sp->stream) == Z_OK);
700 }
701 
702 static int
703 PixarLogDecode(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
704 {
705 	TIFFDirectory *td = &tif->tif_dir;
706 	PixarLogState* sp = DecoderState(tif);
707 	static const char module[] = "PixarLogDecode";
708 	int i, nsamples, llen;
709 	uint16 *up;
710 
711 	switch (sp->user_datafmt) {
712 	case PIXARLOGDATAFMT_FLOAT:
713 		nsamples = occ / sizeof(float);	/* XXX float == 32 bits */
714 		break;
715 	case PIXARLOGDATAFMT_16BIT:
716 	case PIXARLOGDATAFMT_12BITPICIO:
717 	case PIXARLOGDATAFMT_11BITLOG:
718 		nsamples = occ / sizeof(uint16); /* XXX uint16 == 16 bits */
719 		break;
720 	case PIXARLOGDATAFMT_8BIT:
721 	case PIXARLOGDATAFMT_8BITABGR:
722 		nsamples = occ;
723 		break;
724 	default:
725 		TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
726 			"%d bit input not supported in PixarLog",
727 			td->td_bitspersample);
728 		return 0;
729 	}
730 
731 	llen = sp->stride * td->td_imagewidth;
732 
733 	(void) s;
734 	assert(sp != NULL);
735 	sp->stream.next_out = (unsigned char *) sp->tbuf;
736 	sp->stream.avail_out = nsamples * sizeof(uint16);
737 	do {
738 		int state = inflate(&sp->stream, Z_PARTIAL_FLUSH);
739 		if (state == Z_STREAM_END) {
740 			break;			/* XXX */
741 		}
742 		if (state == Z_DATA_ERROR) {
743 			TIFFErrorExt(tif->tif_clientdata, module,
744 			    "%s: Decoding error at scanline %d, %s",
745 			    tif->tif_name, tif->tif_row, sp->stream.msg);
746 			if (inflateSync(&sp->stream) != Z_OK)
747 				return (0);
748 			continue;
749 		}
750 		if (state != Z_OK) {
751 			TIFFErrorExt(tif->tif_clientdata, module, "%s: zlib error: %s",
752 			    tif->tif_name, sp->stream.msg);
753 			return (0);
754 		}
755 	} while (sp->stream.avail_out > 0);
756 
757 	/* hopefully, we got all the bytes we needed */
758 	if (sp->stream.avail_out != 0) {
759 		TIFFErrorExt(tif->tif_clientdata, module,
760 		    "%s: Not enough data at scanline %d (short %d bytes)",
761 		    tif->tif_name, tif->tif_row, sp->stream.avail_out);
762 		return (0);
763 	}
764 
765 	up = sp->tbuf;
766 	/* Swap bytes in the data if from a different endian machine. */
767 	if (tif->tif_flags & TIFF_SWAB)
768 		TIFFSwabArrayOfShort(up, nsamples);
769 
770 	/*
771 	 * if llen is not an exact multiple of nsamples, the decode operation
772 	 * may overflow the output buffer, so truncate it enough to prevent
773 	 * that but still salvage as much data as possible.
774 	 */
775 	if (nsamples % llen) {
776 		TIFFWarningExt(tif->tif_clientdata, module,
777 			"%s: stride %d is not a multiple of sample count, "
778 			"%d, data truncated.", tif->tif_name, llen, nsamples);
779 		nsamples -= nsamples % llen;
780 	}
781 
782 	for (i = 0; i < nsamples; i += llen, up += llen) {
783 		switch (sp->user_datafmt)  {
784 		case PIXARLOGDATAFMT_FLOAT:
785 			horizontalAccumulateF(up, llen, sp->stride,
786 					(float *)op, sp->ToLinearF);
787 			op += llen * sizeof(float);
788 			break;
789 		case PIXARLOGDATAFMT_16BIT:
790 			horizontalAccumulate16(up, llen, sp->stride,
791 					(uint16 *)op, sp->ToLinear16);
792 			op += llen * sizeof(uint16);
793 			break;
794 		case PIXARLOGDATAFMT_12BITPICIO:
795 			horizontalAccumulate12(up, llen, sp->stride,
796 					(int16 *)op, sp->ToLinearF);
797 			op += llen * sizeof(int16);
798 			break;
799 		case PIXARLOGDATAFMT_11BITLOG:
800 			horizontalAccumulate11(up, llen, sp->stride,
801 					(uint16 *)op);
802 			op += llen * sizeof(uint16);
803 			break;
804 		case PIXARLOGDATAFMT_8BIT:
805 			horizontalAccumulate8(up, llen, sp->stride,
806 					(unsigned char *)op, sp->ToLinear8);
807 			op += llen * sizeof(unsigned char);
808 			break;
809 		case PIXARLOGDATAFMT_8BITABGR:
810 			horizontalAccumulate8abgr(up, llen, sp->stride,
811 					(unsigned char *)op, sp->ToLinear8);
812 			op += llen * sizeof(unsigned char);
813 			break;
814 		default:
815 			TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
816 				  "PixarLogDecode: unsupported bits/sample: %d",
817 				  td->td_bitspersample);
818 			return (0);
819 		}
820 	}
821 
822 	return (1);
823 }
824 
825 static int
826 PixarLogSetupEncode(TIFF* tif)
827 {
828 	TIFFDirectory *td = &tif->tif_dir;
829 	PixarLogState* sp = EncoderState(tif);
830 	tsize_t tbuf_size;
831 	static const char module[] = "PixarLogSetupEncode";
832 
833 	assert(sp != NULL);
834 
835 	/* for some reason, we can't do this in TIFFInitPixarLog */
836 
837 	sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
838 	    td->td_samplesperpixel : 1);
839 	tbuf_size = multiply(multiply(multiply(sp->stride, td->td_imagewidth),
840 				      td->td_rowsperstrip), sizeof(uint16));
841 	if (tbuf_size == 0)
842 		return (0);
843 	sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
844 	if (sp->tbuf == NULL)
845 		return (0);
846 	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
847 		sp->user_datafmt = PixarLogGuessDataFmt(td);
848 	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
849 		TIFFErrorExt(tif->tif_clientdata, module, "PixarLog compression can't handle %d bit linear encodings", td->td_bitspersample);
850 		return (0);
851 	}
852 
853 	if (deflateInit(&sp->stream, sp->quality) != Z_OK) {
854 		TIFFErrorExt(tif->tif_clientdata, module, "%s: %s", tif->tif_name, sp->stream.msg);
855 		return (0);
856 	} else {
857 		sp->state |= PLSTATE_INIT;
858 		return (1);
859 	}
860 }
861 
862 /*
863  * Reset encoding state at the start of a strip.
864  */
865 static int
866 PixarLogPreEncode(TIFF* tif, tsample_t s)
867 {
868 	PixarLogState *sp = EncoderState(tif);
869 
870 	(void) s;
871 	assert(sp != NULL);
872 	sp->stream.next_out = tif->tif_rawdata;
873 	sp->stream.avail_out = tif->tif_rawdatasize;
874 	return (deflateReset(&sp->stream) == Z_OK);
875 }
876 
877 static void
878 horizontalDifferenceF(float *ip, int n, int stride, uint16 *wp, uint16 *FromLT2)
879 {
880 
881     int32 r1, g1, b1, a1, r2, g2, b2, a2, mask;
882     float fltsize = Fltsize;
883 
884 #define  CLAMP(v) ( (v<(float)0.)   ? 0				\
885 		  : (v<(float)2.)   ? FromLT2[(int)(v*fltsize)]	\
886 		  : (v>(float)24.2) ? 2047			\
887 		  : LogK1*log(v*LogK2) + 0.5 )
888 
889     mask = CODE_MASK;
890     if (n >= stride) {
891 	if (stride == 3) {
892 	    r2 = wp[0] = (uint16) CLAMP(ip[0]);
893 	    g2 = wp[1] = (uint16) CLAMP(ip[1]);
894 	    b2 = wp[2] = (uint16) CLAMP(ip[2]);
895 	    n -= 3;
896 	    while (n > 0) {
897 		n -= 3;
898 		wp += 3;
899 		ip += 3;
900 		r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
901 		g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
902 		b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
903 	    }
904 	} else if (stride == 4) {
905 	    r2 = wp[0] = (uint16) CLAMP(ip[0]);
906 	    g2 = wp[1] = (uint16) CLAMP(ip[1]);
907 	    b2 = wp[2] = (uint16) CLAMP(ip[2]);
908 	    a2 = wp[3] = (uint16) CLAMP(ip[3]);
909 	    n -= 4;
910 	    while (n > 0) {
911 		n -= 4;
912 		wp += 4;
913 		ip += 4;
914 		r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
915 		g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
916 		b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
917 		a1 = (int32) CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
918 	    }
919 	} else {
920 	    ip += n - 1;	/* point to last one */
921 	    wp += n - 1;	/* point to last one */
922 	    n -= stride;
923 	    while (n > 0) {
924 		REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]);
925 				wp[stride] -= wp[0];
926 				wp[stride] &= mask;
927 				wp--; ip--)
928 		n -= stride;
929 	    }
930 	    REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]); wp--; ip--)
931 	}
932     }
933 }
934 
935 static void
936 horizontalDifference16(unsigned short *ip, int n, int stride,
937 	unsigned short *wp, uint16 *From14)
938 {
939     register int  r1, g1, b1, a1, r2, g2, b2, a2, mask;
940 
941 /* assumption is unsigned pixel values */
942 #undef   CLAMP
943 #define  CLAMP(v) From14[(v) >> 2]
944 
945     mask = CODE_MASK;
946     if (n >= stride) {
947 	if (stride == 3) {
948 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
949 	    b2 = wp[2] = CLAMP(ip[2]);
950 	    n -= 3;
951 	    while (n > 0) {
952 		n -= 3;
953 		wp += 3;
954 		ip += 3;
955 		r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
956 		g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
957 		b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
958 	    }
959 	} else if (stride == 4) {
960 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
961 	    b2 = wp[2] = CLAMP(ip[2]);  a2 = wp[3] = CLAMP(ip[3]);
962 	    n -= 4;
963 	    while (n > 0) {
964 		n -= 4;
965 		wp += 4;
966 		ip += 4;
967 		r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
968 		g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
969 		b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
970 		a1 = CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
971 	    }
972 	} else {
973 	    ip += n - 1;	/* point to last one */
974 	    wp += n - 1;	/* point to last one */
975 	    n -= stride;
976 	    while (n > 0) {
977 		REPEAT(stride, wp[0] = CLAMP(ip[0]);
978 				wp[stride] -= wp[0];
979 				wp[stride] &= mask;
980 				wp--; ip--)
981 		n -= stride;
982 	    }
983 	    REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
984 	}
985     }
986 }
987 
988 
989 static void
990 horizontalDifference8(unsigned char *ip, int n, int stride,
991 	unsigned short *wp, uint16 *From8)
992 {
993     register int  r1, g1, b1, a1, r2, g2, b2, a2, mask;
994 
995 #undef	 CLAMP
996 #define  CLAMP(v) (From8[(v)])
997 
998     mask = CODE_MASK;
999     if (n >= stride) {
1000 	if (stride == 3) {
1001 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
1002 	    b2 = wp[2] = CLAMP(ip[2]);
1003 	    n -= 3;
1004 	    while (n > 0) {
1005 		n -= 3;
1006 		r1 = CLAMP(ip[3]); wp[3] = (r1-r2) & mask; r2 = r1;
1007 		g1 = CLAMP(ip[4]); wp[4] = (g1-g2) & mask; g2 = g1;
1008 		b1 = CLAMP(ip[5]); wp[5] = (b1-b2) & mask; b2 = b1;
1009 		wp += 3;
1010 		ip += 3;
1011 	    }
1012 	} else if (stride == 4) {
1013 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
1014 	    b2 = wp[2] = CLAMP(ip[2]);  a2 = wp[3] = CLAMP(ip[3]);
1015 	    n -= 4;
1016 	    while (n > 0) {
1017 		n -= 4;
1018 		r1 = CLAMP(ip[4]); wp[4] = (r1-r2) & mask; r2 = r1;
1019 		g1 = CLAMP(ip[5]); wp[5] = (g1-g2) & mask; g2 = g1;
1020 		b1 = CLAMP(ip[6]); wp[6] = (b1-b2) & mask; b2 = b1;
1021 		a1 = CLAMP(ip[7]); wp[7] = (a1-a2) & mask; a2 = a1;
1022 		wp += 4;
1023 		ip += 4;
1024 	    }
1025 	} else {
1026 	    wp += n + stride - 1;	/* point to last one */
1027 	    ip += n + stride - 1;	/* point to last one */
1028 	    n -= stride;
1029 	    while (n > 0) {
1030 		REPEAT(stride, wp[0] = CLAMP(ip[0]);
1031 				wp[stride] -= wp[0];
1032 				wp[stride] &= mask;
1033 				wp--; ip--)
1034 		n -= stride;
1035 	    }
1036 	    REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
1037 	}
1038     }
1039 }
1040 
1041 /*
1042  * Encode a chunk of pixels.
1043  */
1044 static int
1045 PixarLogEncode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
1046 {
1047 	TIFFDirectory *td = &tif->tif_dir;
1048 	PixarLogState *sp = EncoderState(tif);
1049 	static const char module[] = "PixarLogEncode";
1050 	int	i, n, llen;
1051 	unsigned short * up;
1052 
1053 	(void) s;
1054 
1055 	switch (sp->user_datafmt) {
1056 	case PIXARLOGDATAFMT_FLOAT:
1057 		n = cc / sizeof(float);		/* XXX float == 32 bits */
1058 		break;
1059 	case PIXARLOGDATAFMT_16BIT:
1060 	case PIXARLOGDATAFMT_12BITPICIO:
1061 	case PIXARLOGDATAFMT_11BITLOG:
1062 		n = cc / sizeof(uint16);	/* XXX uint16 == 16 bits */
1063 		break;
1064 	case PIXARLOGDATAFMT_8BIT:
1065 	case PIXARLOGDATAFMT_8BITABGR:
1066 		n = cc;
1067 		break;
1068 	default:
1069 		TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
1070 			"%d bit input not supported in PixarLog",
1071 			td->td_bitspersample);
1072 		return 0;
1073 	}
1074 
1075 	llen = sp->stride * td->td_imagewidth;
1076 
1077 	for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen) {
1078 		switch (sp->user_datafmt)  {
1079 		case PIXARLOGDATAFMT_FLOAT:
1080 			horizontalDifferenceF((float *)bp, llen,
1081 				sp->stride, up, sp->FromLT2);
1082 			bp += llen * sizeof(float);
1083 			break;
1084 		case PIXARLOGDATAFMT_16BIT:
1085 			horizontalDifference16((uint16 *)bp, llen,
1086 				sp->stride, up, sp->From14);
1087 			bp += llen * sizeof(uint16);
1088 			break;
1089 		case PIXARLOGDATAFMT_8BIT:
1090 			horizontalDifference8((unsigned char *)bp, llen,
1091 				sp->stride, up, sp->From8);
1092 			bp += llen * sizeof(unsigned char);
1093 			break;
1094 		default:
1095 			TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
1096 				"%d bit input not supported in PixarLog",
1097 				td->td_bitspersample);
1098 			return 0;
1099 		}
1100 	}
1101 
1102 	sp->stream.next_in = (unsigned char *) sp->tbuf;
1103 	sp->stream.avail_in = n * sizeof(uint16);
1104 
1105 	do {
1106 		if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK) {
1107 			TIFFErrorExt(tif->tif_clientdata, module, "%s: Encoder error: %s",
1108 			    tif->tif_name, sp->stream.msg);
1109 			return (0);
1110 		}
1111 		if (sp->stream.avail_out == 0) {
1112 			tif->tif_rawcc = tif->tif_rawdatasize;
1113 			TIFFFlushData1(tif);
1114 			sp->stream.next_out = tif->tif_rawdata;
1115 			sp->stream.avail_out = tif->tif_rawdatasize;
1116 		}
1117 	} while (sp->stream.avail_in > 0);
1118 	return (1);
1119 }
1120 
1121 /*
1122  * Finish off an encoded strip by flushing the last
1123  * string and tacking on an End Of Information code.
1124  */
1125 
1126 static int
1127 PixarLogPostEncode(TIFF* tif)
1128 {
1129 	PixarLogState *sp = EncoderState(tif);
1130 	static const char module[] = "PixarLogPostEncode";
1131 	int state;
1132 
1133 	sp->stream.avail_in = 0;
1134 
1135 	do {
1136 		state = deflate(&sp->stream, Z_FINISH);
1137 		switch (state) {
1138 		case Z_STREAM_END:
1139 		case Z_OK:
1140 		    if (sp->stream.avail_out != (uint32)tif->tif_rawdatasize) {
1141 			    tif->tif_rawcc =
1142 				tif->tif_rawdatasize - sp->stream.avail_out;
1143 			    TIFFFlushData1(tif);
1144 			    sp->stream.next_out = tif->tif_rawdata;
1145 			    sp->stream.avail_out = tif->tif_rawdatasize;
1146 		    }
1147 		    break;
1148 		default:
1149 			TIFFErrorExt(tif->tif_clientdata, module, "%s: zlib error: %s",
1150 			tif->tif_name, sp->stream.msg);
1151 		    return (0);
1152 		}
1153 	} while (state != Z_STREAM_END);
1154 	return (1);
1155 }
1156 
1157 static void
1158 PixarLogClose(TIFF* tif)
1159 {
1160 	TIFFDirectory *td = &tif->tif_dir;
1161 
1162 	/* In a really sneaky maneuver, on close, we covertly modify both
1163 	 * bitspersample and sampleformat in the directory to indicate
1164 	 * 8-bit linear.  This way, the decode "just works" even for
1165 	 * readers that don't know about PixarLog, or how to set
1166 	 * the PIXARLOGDATFMT pseudo-tag.
1167 	 */
1168 	td->td_bitspersample = 8;
1169 	td->td_sampleformat = SAMPLEFORMAT_UINT;
1170 }
1171 
1172 static void
1173 PixarLogCleanup(TIFF* tif)
1174 {
1175 	PixarLogState* sp = (PixarLogState*) tif->tif_data;
1176 
1177 	assert(sp != 0);
1178 
1179 	(void)TIFFPredictorCleanup(tif);
1180 
1181 	tif->tif_tagmethods.vgetfield = sp->vgetparent;
1182 	tif->tif_tagmethods.vsetfield = sp->vsetparent;
1183 
1184 	if (sp->FromLT2) _TIFFfree(sp->FromLT2);
1185 	if (sp->From14) _TIFFfree(sp->From14);
1186 	if (sp->From8) _TIFFfree(sp->From8);
1187 	if (sp->ToLinearF) _TIFFfree(sp->ToLinearF);
1188 	if (sp->ToLinear16) _TIFFfree(sp->ToLinear16);
1189 	if (sp->ToLinear8) _TIFFfree(sp->ToLinear8);
1190 	if (sp->state&PLSTATE_INIT) {
1191 		if (tif->tif_mode == O_RDONLY)
1192 			inflateEnd(&sp->stream);
1193 		else
1194 			deflateEnd(&sp->stream);
1195 	}
1196 	if (sp->tbuf)
1197 		_TIFFfree(sp->tbuf);
1198 	_TIFFfree(sp);
1199 	tif->tif_data = NULL;
1200 
1201 	_TIFFSetDefaultCompressionState(tif);
1202 }
1203 
1204 static int
1205 PixarLogVSetField(TIFF* tif, ttag_t tag, va_list ap)
1206 {
1207     PixarLogState *sp = (PixarLogState *)tif->tif_data;
1208     int result;
1209     static const char module[] = "PixarLogVSetField";
1210 
1211     switch (tag) {
1212      case TIFFTAG_PIXARLOGQUALITY:
1213 		sp->quality = va_arg(ap, int);
1214 		if (tif->tif_mode != O_RDONLY && (sp->state&PLSTATE_INIT)) {
1215 			if (deflateParams(&sp->stream,
1216 			    sp->quality, Z_DEFAULT_STRATEGY) != Z_OK) {
1217 				TIFFErrorExt(tif->tif_clientdata, module, "%s: zlib error: %s",
1218 					tif->tif_name, sp->stream.msg);
1219 				return (0);
1220 			}
1221 		}
1222 		return (1);
1223      case TIFFTAG_PIXARLOGDATAFMT:
1224 	sp->user_datafmt = va_arg(ap, int);
1225 	/* Tweak the TIFF header so that the rest of libtiff knows what
1226 	 * size of data will be passed between app and library, and
1227 	 * assume that the app knows what it is doing and is not
1228 	 * confused by these header manipulations...
1229 	 */
1230 	switch (sp->user_datafmt) {
1231 	 case PIXARLOGDATAFMT_8BIT:
1232 	 case PIXARLOGDATAFMT_8BITABGR:
1233 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
1234 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1235 	    break;
1236 	 case PIXARLOGDATAFMT_11BITLOG:
1237 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1238 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1239 	    break;
1240 	 case PIXARLOGDATAFMT_12BITPICIO:
1241 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1242 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
1243 	    break;
1244 	 case PIXARLOGDATAFMT_16BIT:
1245 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1246 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1247 	    break;
1248 	 case PIXARLOGDATAFMT_FLOAT:
1249 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
1250 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
1251 	    break;
1252 	}
1253 	/*
1254 	 * Must recalculate sizes should bits/sample change.
1255 	 */
1256 	tif->tif_tilesize = isTiled(tif) ? TIFFTileSize(tif) : (tsize_t) -1;
1257 	tif->tif_scanlinesize = TIFFScanlineSize(tif);
1258 	result = 1;		/* NB: pseudo tag */
1259 	break;
1260      default:
1261 	result = (*sp->vsetparent)(tif, tag, ap);
1262     }
1263     return (result);
1264 }
1265 
1266 static int
1267 PixarLogVGetField(TIFF* tif, ttag_t tag, va_list ap)
1268 {
1269     PixarLogState *sp = (PixarLogState *)tif->tif_data;
1270 
1271     switch (tag) {
1272      case TIFFTAG_PIXARLOGQUALITY:
1273 	*va_arg(ap, int*) = sp->quality;
1274 	break;
1275      case TIFFTAG_PIXARLOGDATAFMT:
1276 	*va_arg(ap, int*) = sp->user_datafmt;
1277 	break;
1278      default:
1279 	return (*sp->vgetparent)(tif, tag, ap);
1280     }
1281     return (1);
1282 }
1283 
1284 static const TIFFFieldInfo pixarlogFieldInfo[] = {
1285     {TIFFTAG_PIXARLOGDATAFMT,0,0,TIFF_ANY,  FIELD_PSEUDO,FALSE,FALSE,""},
1286     {TIFFTAG_PIXARLOGQUALITY,0,0,TIFF_ANY,  FIELD_PSEUDO,FALSE,FALSE,""}
1287 };
1288 
1289 int
1290 TIFFInitPixarLog(TIFF* tif, int scheme)
1291 {
1292 	static const char module[] = "TIFFInitPixarLog";
1293 
1294 	PixarLogState* sp;
1295 
1296 	assert(scheme == COMPRESSION_PIXARLOG);
1297 
1298 	/*
1299 	 * Merge codec-specific tag information.
1300 	 */
1301 	if (!_TIFFMergeFieldInfo(tif, pixarlogFieldInfo,
1302 				 TIFFArrayCount(pixarlogFieldInfo))) {
1303 		TIFFErrorExt(tif->tif_clientdata, module,
1304 			     "Merging PixarLog codec-specific tags failed");
1305 		return 0;
1306 	}
1307 
1308 	/*
1309 	 * Allocate state block so tag methods have storage to record values.
1310 	 */
1311 	tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (PixarLogState));
1312 	if (tif->tif_data == NULL)
1313 		goto bad;
1314 	sp = (PixarLogState*) tif->tif_data;
1315 	_TIFFmemset(sp, 0, sizeof (*sp));
1316 	sp->stream.data_type = Z_BINARY;
1317 	sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN;
1318 
1319 	/*
1320 	 * Install codec methods.
1321 	 */
1322 	tif->tif_setupdecode = PixarLogSetupDecode;
1323 	tif->tif_predecode = PixarLogPreDecode;
1324 	tif->tif_decoderow = PixarLogDecode;
1325 	tif->tif_decodestrip = PixarLogDecode;
1326 	tif->tif_decodetile = PixarLogDecode;
1327 	tif->tif_setupencode = PixarLogSetupEncode;
1328 	tif->tif_preencode = PixarLogPreEncode;
1329 	tif->tif_postencode = PixarLogPostEncode;
1330 	tif->tif_encoderow = PixarLogEncode;
1331 	tif->tif_encodestrip = PixarLogEncode;
1332 	tif->tif_encodetile = PixarLogEncode;
1333 	tif->tif_close = PixarLogClose;
1334 	tif->tif_cleanup = PixarLogCleanup;
1335 
1336 	/* Override SetField so we can handle our private pseudo-tag */
1337 	sp->vgetparent = tif->tif_tagmethods.vgetfield;
1338 	tif->tif_tagmethods.vgetfield = PixarLogVGetField;   /* hook for codec tags */
1339 	sp->vsetparent = tif->tif_tagmethods.vsetfield;
1340 	tif->tif_tagmethods.vsetfield = PixarLogVSetField;   /* hook for codec tags */
1341 
1342 	/* Default values for codec-specific fields */
1343 	sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */
1344 	sp->state = 0;
1345 
1346 	/* we don't wish to use the predictor,
1347 	 * the default is none, which predictor value 1
1348 	 */
1349 	(void) TIFFPredictorInit(tif);
1350 
1351 	/*
1352 	 * build the companding tables
1353 	 */
1354 	PixarLogMakeTables(sp);
1355 
1356 	return (1);
1357 bad:
1358 	TIFFErrorExt(tif->tif_clientdata, module,
1359 		     "No space for PixarLog state block");
1360 	return (0);
1361 }
1362 #endif /* PIXARLOG_SUPPORT */
1363 
1364 /* vim: set ts=8 sts=8 sw=8 noet: */
1365 /*
1366  * Local Variables:
1367  * mode: c
1368  * c-basic-offset: 8
1369  * fill-column: 78
1370  * End:
1371  */
1372