xref: /reactos/dll/3rdparty/mbedtls/bignum.c (revision 9393fc32)
1 /*
2  *  Multi-precision integer library
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6  *
7  *  This file is provided under the Apache License 2.0, or the
8  *  GNU General Public License v2.0 or later.
9  *
10  *  **********
11  *  Apache License 2.0:
12  *
13  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
14  *  not use this file except in compliance with the License.
15  *  You may obtain a copy of the License at
16  *
17  *  http://www.apache.org/licenses/LICENSE-2.0
18  *
19  *  Unless required by applicable law or agreed to in writing, software
20  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
21  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22  *  See the License for the specific language governing permissions and
23  *  limitations under the License.
24  *
25  *  **********
26  *
27  *  **********
28  *  GNU General Public License v2.0 or later:
29  *
30  *  This program is free software; you can redistribute it and/or modify
31  *  it under the terms of the GNU General Public License as published by
32  *  the Free Software Foundation; either version 2 of the License, or
33  *  (at your option) any later version.
34  *
35  *  This program is distributed in the hope that it will be useful,
36  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
37  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
38  *  GNU General Public License for more details.
39  *
40  *  You should have received a copy of the GNU General Public License along
41  *  with this program; if not, write to the Free Software Foundation, Inc.,
42  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
43  *
44  *  **********
45  */
46 
47 /*
48  *  The following sources were referenced in the design of this Multi-precision
49  *  Integer library:
50  *
51  *  [1] Handbook of Applied Cryptography - 1997
52  *      Menezes, van Oorschot and Vanstone
53  *
54  *  [2] Multi-Precision Math
55  *      Tom St Denis
56  *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf
57  *
58  *  [3] GNU Multi-Precision Arithmetic Library
59  *      https://gmplib.org/manual/index.html
60  *
61  */
62 
63 #if !defined(MBEDTLS_CONFIG_FILE)
64 #include "mbedtls/config.h"
65 #else
66 #include MBEDTLS_CONFIG_FILE
67 #endif
68 
69 #if defined(MBEDTLS_BIGNUM_C)
70 
71 #include "mbedtls/bignum.h"
72 #include "mbedtls/bn_mul.h"
73 #include "mbedtls/platform_util.h"
74 
75 #include <string.h>
76 
77 #if defined(MBEDTLS_PLATFORM_C)
78 #include "mbedtls/platform.h"
79 #else
80 #include <stdio.h>
81 #include <stdlib.h>
82 #define mbedtls_printf     printf
83 #define mbedtls_calloc    calloc
84 #define mbedtls_free       free
85 #endif
86 
87 #define MPI_VALIDATE_RET( cond )                                       \
88     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
89 #define MPI_VALIDATE( cond )                                           \
90     MBEDTLS_INTERNAL_VALIDATE( cond )
91 
92 #define ciL    (sizeof(mbedtls_mpi_uint))         /* chars in limb  */
93 #define biL    (ciL << 3)               /* bits  in limb  */
94 #define biH    (ciL << 2)               /* half limb size */
95 
96 #define MPI_SIZE_T_MAX  ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
97 
98 /*
99  * Convert between bits/chars and number of limbs
100  * Divide first in order to avoid potential overflows
101  */
102 #define BITS_TO_LIMBS(i)  ( (i) / biL + ( (i) % biL != 0 ) )
103 #define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
104 
105 /* Implementation that should never be optimized out by the compiler */
106 static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
107 {
108     mbedtls_platform_zeroize( v, ciL * n );
109 }
110 
111 /*
112  * Initialize one MPI
113  */
114 void mbedtls_mpi_init( mbedtls_mpi *X )
115 {
116     MPI_VALIDATE( X != NULL );
117 
118     X->s = 1;
119     X->n = 0;
120     X->p = NULL;
121 }
122 
123 /*
124  * Unallocate one MPI
125  */
126 void mbedtls_mpi_free( mbedtls_mpi *X )
127 {
128     if( X == NULL )
129         return;
130 
131     if( X->p != NULL )
132     {
133         mbedtls_mpi_zeroize( X->p, X->n );
134         mbedtls_free( X->p );
135     }
136 
137     X->s = 1;
138     X->n = 0;
139     X->p = NULL;
140 }
141 
142 /*
143  * Enlarge to the specified number of limbs
144  */
145 int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
146 {
147     mbedtls_mpi_uint *p;
148     MPI_VALIDATE_RET( X != NULL );
149 
150     if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
151         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
152 
153     if( X->n < nblimbs )
154     {
155         if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
156             return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
157 
158         if( X->p != NULL )
159         {
160             memcpy( p, X->p, X->n * ciL );
161             mbedtls_mpi_zeroize( X->p, X->n );
162             mbedtls_free( X->p );
163         }
164 
165         X->n = nblimbs;
166         X->p = p;
167     }
168 
169     return( 0 );
170 }
171 
172 /*
173  * Resize down as much as possible,
174  * while keeping at least the specified number of limbs
175  */
176 int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
177 {
178     mbedtls_mpi_uint *p;
179     size_t i;
180     MPI_VALIDATE_RET( X != NULL );
181 
182     if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
183         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
184 
185     /* Actually resize up if there are currently fewer than nblimbs limbs. */
186     if( X->n <= nblimbs )
187         return( mbedtls_mpi_grow( X, nblimbs ) );
188     /* After this point, then X->n > nblimbs and in particular X->n > 0. */
189 
190     for( i = X->n - 1; i > 0; i-- )
191         if( X->p[i] != 0 )
192             break;
193     i++;
194 
195     if( i < nblimbs )
196         i = nblimbs;
197 
198     if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
199         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
200 
201     if( X->p != NULL )
202     {
203         memcpy( p, X->p, i * ciL );
204         mbedtls_mpi_zeroize( X->p, X->n );
205         mbedtls_free( X->p );
206     }
207 
208     X->n = i;
209     X->p = p;
210 
211     return( 0 );
212 }
213 
214 /*
215  * Copy the contents of Y into X
216  */
217 int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
218 {
219     int ret = 0;
220     size_t i;
221     MPI_VALIDATE_RET( X != NULL );
222     MPI_VALIDATE_RET( Y != NULL );
223 
224     if( X == Y )
225         return( 0 );
226 
227     if( Y->n == 0 )
228     {
229         mbedtls_mpi_free( X );
230         return( 0 );
231     }
232 
233     for( i = Y->n - 1; i > 0; i-- )
234         if( Y->p[i] != 0 )
235             break;
236     i++;
237 
238     X->s = Y->s;
239 
240     if( X->n < i )
241     {
242         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
243     }
244     else
245     {
246         memset( X->p + i, 0, ( X->n - i ) * ciL );
247     }
248 
249     memcpy( X->p, Y->p, i * ciL );
250 
251 cleanup:
252 
253     return( ret );
254 }
255 
256 /*
257  * Swap the contents of X and Y
258  */
259 void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
260 {
261     mbedtls_mpi T;
262     MPI_VALIDATE( X != NULL );
263     MPI_VALIDATE( Y != NULL );
264 
265     memcpy( &T,  X, sizeof( mbedtls_mpi ) );
266     memcpy(  X,  Y, sizeof( mbedtls_mpi ) );
267     memcpy(  Y, &T, sizeof( mbedtls_mpi ) );
268 }
269 
270 /**
271  * Select between two sign values in constant-time.
272  *
273  * This is functionally equivalent to second ? a : b but uses only bit
274  * operations in order to avoid branches.
275  *
276  * \param[in] a         The first sign; must be either +1 or -1.
277  * \param[in] b         The second sign; must be either +1 or -1.
278  * \param[in] second    Must be either 1 (return b) or 0 (return a).
279  *
280  * \return The selected sign value.
281  */
282 static int mpi_safe_cond_select_sign( int a, int b, unsigned char second )
283 {
284     /* In order to avoid questions about what we can reasonnably assume about
285      * the representations of signed integers, move everything to unsigned
286      * by taking advantage of the fact that a and b are either +1 or -1. */
287     unsigned ua = a + 1;
288     unsigned ub = b + 1;
289 
290     /* second was 0 or 1, mask is 0 or 2 as are ua and ub */
291     const unsigned mask = second << 1;
292 
293     /* select ua or ub */
294     unsigned ur = ( ua & ~mask ) | ( ub & mask );
295 
296     /* ur is now 0 or 2, convert back to -1 or +1 */
297     return( (int) ur - 1 );
298 }
299 
300 /*
301  * Conditionally assign dest = src, without leaking information
302  * about whether the assignment was made or not.
303  * dest and src must be arrays of limbs of size n.
304  * assign must be 0 or 1.
305  */
306 static void mpi_safe_cond_assign( size_t n,
307                                   mbedtls_mpi_uint *dest,
308                                   const mbedtls_mpi_uint *src,
309                                   unsigned char assign )
310 {
311     size_t i;
312 
313     /* MSVC has a warning about unary minus on unsigned integer types,
314      * but this is well-defined and precisely what we want to do here. */
315 #if defined(_MSC_VER)
316 #pragma warning( push )
317 #pragma warning( disable : 4146 )
318 #endif
319 
320     /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
321     const mbedtls_mpi_uint mask = -assign;
322 
323 #if defined(_MSC_VER)
324 #pragma warning( pop )
325 #endif
326 
327     for( i = 0; i < n; i++ )
328         dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
329 }
330 
331 /*
332  * Conditionally assign X = Y, without leaking information
333  * about whether the assignment was made or not.
334  * (Leaking information about the respective sizes of X and Y is ok however.)
335  */
336 int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X, const mbedtls_mpi *Y, unsigned char assign )
337 {
338     int ret = 0;
339     size_t i;
340     mbedtls_mpi_uint limb_mask;
341     MPI_VALIDATE_RET( X != NULL );
342     MPI_VALIDATE_RET( Y != NULL );
343 
344     /* MSVC has a warning about unary minus on unsigned integer types,
345      * but this is well-defined and precisely what we want to do here. */
346 #if defined(_MSC_VER)
347 #pragma warning( push )
348 #pragma warning( disable : 4146 )
349 #endif
350 
351     /* make sure assign is 0 or 1 in a time-constant manner */
352     assign = (assign | (unsigned char)-assign) >> (sizeof( assign ) * 8 - 1);
353     /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
354     limb_mask = -assign;
355 
356 #if defined(_MSC_VER)
357 #pragma warning( pop )
358 #endif
359 
360     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
361 
362     X->s = mpi_safe_cond_select_sign( X->s, Y->s, assign );
363 
364     mpi_safe_cond_assign( Y->n, X->p, Y->p, assign );
365 
366     for( i = Y->n; i < X->n; i++ )
367         X->p[i] &= ~limb_mask;
368 
369 cleanup:
370     return( ret );
371 }
372 
373 /*
374  * Conditionally swap X and Y, without leaking information
375  * about whether the swap was made or not.
376  * Here it is not ok to simply swap the pointers, which whould lead to
377  * different memory access patterns when X and Y are used afterwards.
378  */
379 int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X, mbedtls_mpi *Y, unsigned char swap )
380 {
381     int ret, s;
382     size_t i;
383     mbedtls_mpi_uint limb_mask;
384     mbedtls_mpi_uint tmp;
385     MPI_VALIDATE_RET( X != NULL );
386     MPI_VALIDATE_RET( Y != NULL );
387 
388     if( X == Y )
389         return( 0 );
390 
391     /* MSVC has a warning about unary minus on unsigned integer types,
392      * but this is well-defined and precisely what we want to do here. */
393 #if defined(_MSC_VER)
394 #pragma warning( push )
395 #pragma warning( disable : 4146 )
396 #endif
397 
398     /* make sure swap is 0 or 1 in a time-constant manner */
399     swap = (swap | (unsigned char)-swap) >> (sizeof( swap ) * 8 - 1);
400     /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
401     limb_mask = -swap;
402 
403 #if defined(_MSC_VER)
404 #pragma warning( pop )
405 #endif
406 
407     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
408     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
409 
410     s = X->s;
411     X->s = mpi_safe_cond_select_sign( X->s, Y->s, swap );
412     Y->s = mpi_safe_cond_select_sign( Y->s, s, swap );
413 
414 
415     for( i = 0; i < X->n; i++ )
416     {
417         tmp = X->p[i];
418         X->p[i] = ( X->p[i] & ~limb_mask ) | ( Y->p[i] & limb_mask );
419         Y->p[i] = ( Y->p[i] & ~limb_mask ) | (     tmp & limb_mask );
420     }
421 
422 cleanup:
423     return( ret );
424 }
425 
426 /*
427  * Set value from integer
428  */
429 int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
430 {
431     int ret;
432     MPI_VALIDATE_RET( X != NULL );
433 
434     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
435     memset( X->p, 0, X->n * ciL );
436 
437     X->p[0] = ( z < 0 ) ? -z : z;
438     X->s    = ( z < 0 ) ? -1 : 1;
439 
440 cleanup:
441 
442     return( ret );
443 }
444 
445 /*
446  * Get a specific bit
447  */
448 int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
449 {
450     MPI_VALIDATE_RET( X != NULL );
451 
452     if( X->n * biL <= pos )
453         return( 0 );
454 
455     return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
456 }
457 
458 /* Get a specific byte, without range checks. */
459 #define GET_BYTE( X, i )                                \
460     ( ( ( X )->p[( i ) / ciL] >> ( ( ( i ) % ciL ) * 8 ) ) & 0xff )
461 
462 /*
463  * Set a bit to a specific value of 0 or 1
464  */
465 int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
466 {
467     int ret = 0;
468     size_t off = pos / biL;
469     size_t idx = pos % biL;
470     MPI_VALIDATE_RET( X != NULL );
471 
472     if( val != 0 && val != 1 )
473         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
474 
475     if( X->n * biL <= pos )
476     {
477         if( val == 0 )
478             return( 0 );
479 
480         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
481     }
482 
483     X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
484     X->p[off] |= (mbedtls_mpi_uint) val << idx;
485 
486 cleanup:
487 
488     return( ret );
489 }
490 
491 /*
492  * Return the number of less significant zero-bits
493  */
494 size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
495 {
496     size_t i, j, count = 0;
497     MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
498 
499     for( i = 0; i < X->n; i++ )
500         for( j = 0; j < biL; j++, count++ )
501             if( ( ( X->p[i] >> j ) & 1 ) != 0 )
502                 return( count );
503 
504     return( 0 );
505 }
506 
507 /*
508  * Count leading zero bits in a given integer
509  */
510 static size_t mbedtls_clz( const mbedtls_mpi_uint x )
511 {
512     size_t j;
513     mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
514 
515     for( j = 0; j < biL; j++ )
516     {
517         if( x & mask ) break;
518 
519         mask >>= 1;
520     }
521 
522     return j;
523 }
524 
525 /*
526  * Return the number of bits
527  */
528 size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
529 {
530     size_t i, j;
531 
532     if( X->n == 0 )
533         return( 0 );
534 
535     for( i = X->n - 1; i > 0; i-- )
536         if( X->p[i] != 0 )
537             break;
538 
539     j = biL - mbedtls_clz( X->p[i] );
540 
541     return( ( i * biL ) + j );
542 }
543 
544 /*
545  * Return the total size in bytes
546  */
547 size_t mbedtls_mpi_size( const mbedtls_mpi *X )
548 {
549     return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
550 }
551 
552 /*
553  * Convert an ASCII character to digit value
554  */
555 static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
556 {
557     *d = 255;
558 
559     if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
560     if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
561     if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
562 
563     if( *d >= (mbedtls_mpi_uint) radix )
564         return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
565 
566     return( 0 );
567 }
568 
569 /*
570  * Import from an ASCII string
571  */
572 int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
573 {
574     int ret;
575     size_t i, j, slen, n;
576     int sign = 1;
577     mbedtls_mpi_uint d;
578     mbedtls_mpi T;
579     MPI_VALIDATE_RET( X != NULL );
580     MPI_VALIDATE_RET( s != NULL );
581 
582     if( radix < 2 || radix > 16 )
583         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
584 
585     mbedtls_mpi_init( &T );
586 
587     if( s[0] == '-' )
588     {
589         ++s;
590         sign = -1;
591     }
592 
593     slen = strlen( s );
594 
595     if( radix == 16 )
596     {
597         if( slen > MPI_SIZE_T_MAX >> 2 )
598             return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
599 
600         n = BITS_TO_LIMBS( slen << 2 );
601 
602         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
603         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
604 
605         for( i = slen, j = 0; i > 0; i--, j++ )
606         {
607             MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
608             X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
609         }
610     }
611     else
612     {
613         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
614 
615         for( i = 0; i < slen; i++ )
616         {
617             MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
618             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
619             MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
620         }
621     }
622 
623     if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
624         X->s = -1;
625 
626 cleanup:
627 
628     mbedtls_mpi_free( &T );
629 
630     return( ret );
631 }
632 
633 /*
634  * Helper to write the digits high-order first.
635  */
636 static int mpi_write_hlp( mbedtls_mpi *X, int radix,
637                           char **p, const size_t buflen )
638 {
639     int ret;
640     mbedtls_mpi_uint r;
641     size_t length = 0;
642     char *p_end = *p + buflen;
643 
644     do
645     {
646         if( length >= buflen )
647         {
648             return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
649         }
650 
651         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
652         MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
653         /*
654          * Write the residue in the current position, as an ASCII character.
655          */
656         if( r < 0xA )
657             *(--p_end) = (char)( '0' + r );
658         else
659             *(--p_end) = (char)( 'A' + ( r - 0xA ) );
660 
661         length++;
662     } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
663 
664     memmove( *p, p_end, length );
665     *p += length;
666 
667 cleanup:
668 
669     return( ret );
670 }
671 
672 /*
673  * Export into an ASCII string
674  */
675 int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
676                               char *buf, size_t buflen, size_t *olen )
677 {
678     int ret = 0;
679     size_t n;
680     char *p;
681     mbedtls_mpi T;
682     MPI_VALIDATE_RET( X    != NULL );
683     MPI_VALIDATE_RET( olen != NULL );
684     MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
685 
686     if( radix < 2 || radix > 16 )
687         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
688 
689     n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
690     if( radix >=  4 ) n >>= 1;   /* Number of 4-adic digits necessary to present
691                                   * `n`. If radix > 4, this might be a strict
692                                   * overapproximation of the number of
693                                   * radix-adic digits needed to present `n`. */
694     if( radix >= 16 ) n >>= 1;   /* Number of hexadecimal digits necessary to
695                                   * present `n`. */
696 
697     n += 1; /* Terminating null byte */
698     n += 1; /* Compensate for the divisions above, which round down `n`
699              * in case it's not even. */
700     n += 1; /* Potential '-'-sign. */
701     n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
702                      * which always uses an even number of hex-digits. */
703 
704     if( buflen < n )
705     {
706         *olen = n;
707         return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
708     }
709 
710     p = buf;
711     mbedtls_mpi_init( &T );
712 
713     if( X->s == -1 )
714     {
715         *p++ = '-';
716         buflen--;
717     }
718 
719     if( radix == 16 )
720     {
721         int c;
722         size_t i, j, k;
723 
724         for( i = X->n, k = 0; i > 0; i-- )
725         {
726             for( j = ciL; j > 0; j-- )
727             {
728                 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
729 
730                 if( c == 0 && k == 0 && ( i + j ) != 2 )
731                     continue;
732 
733                 *(p++) = "0123456789ABCDEF" [c / 16];
734                 *(p++) = "0123456789ABCDEF" [c % 16];
735                 k = 1;
736             }
737         }
738     }
739     else
740     {
741         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
742 
743         if( T.s == -1 )
744             T.s = 1;
745 
746         MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
747     }
748 
749     *p++ = '\0';
750     *olen = p - buf;
751 
752 cleanup:
753 
754     mbedtls_mpi_free( &T );
755 
756     return( ret );
757 }
758 
759 #if defined(MBEDTLS_FS_IO)
760 /*
761  * Read X from an opened file
762  */
763 int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
764 {
765     mbedtls_mpi_uint d;
766     size_t slen;
767     char *p;
768     /*
769      * Buffer should have space for (short) label and decimal formatted MPI,
770      * newline characters and '\0'
771      */
772     char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
773 
774     MPI_VALIDATE_RET( X   != NULL );
775     MPI_VALIDATE_RET( fin != NULL );
776 
777     if( radix < 2 || radix > 16 )
778         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
779 
780     memset( s, 0, sizeof( s ) );
781     if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
782         return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
783 
784     slen = strlen( s );
785     if( slen == sizeof( s ) - 2 )
786         return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
787 
788     if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
789     if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
790 
791     p = s + slen;
792     while( p-- > s )
793         if( mpi_get_digit( &d, radix, *p ) != 0 )
794             break;
795 
796     return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
797 }
798 
799 /*
800  * Write X into an opened file (or stdout if fout == NULL)
801  */
802 int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
803 {
804     int ret;
805     size_t n, slen, plen;
806     /*
807      * Buffer should have space for (short) label and decimal formatted MPI,
808      * newline characters and '\0'
809      */
810     char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
811     MPI_VALIDATE_RET( X != NULL );
812 
813     if( radix < 2 || radix > 16 )
814         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
815 
816     memset( s, 0, sizeof( s ) );
817 
818     MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
819 
820     if( p == NULL ) p = "";
821 
822     plen = strlen( p );
823     slen = strlen( s );
824     s[slen++] = '\r';
825     s[slen++] = '\n';
826 
827     if( fout != NULL )
828     {
829         if( fwrite( p, 1, plen, fout ) != plen ||
830             fwrite( s, 1, slen, fout ) != slen )
831             return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
832     }
833     else
834         mbedtls_printf( "%s%s", p, s );
835 
836 cleanup:
837 
838     return( ret );
839 }
840 #endif /* MBEDTLS_FS_IO */
841 
842 
843 /* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
844  * into the storage form used by mbedtls_mpi. */
845 
846 static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c( mbedtls_mpi_uint x )
847 {
848     uint8_t i;
849     unsigned char *x_ptr;
850     mbedtls_mpi_uint tmp = 0;
851 
852     for( i = 0, x_ptr = (unsigned char*) &x; i < ciL; i++, x_ptr++ )
853     {
854         tmp <<= CHAR_BIT;
855         tmp |= (mbedtls_mpi_uint) *x_ptr;
856     }
857 
858     return( tmp );
859 }
860 
861 static mbedtls_mpi_uint mpi_uint_bigendian_to_host( mbedtls_mpi_uint x )
862 {
863 #if defined(__BYTE_ORDER__)
864 
865 /* Nothing to do on bigendian systems. */
866 #if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ )
867     return( x );
868 #endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
869 
870 #if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ )
871 
872 /* For GCC and Clang, have builtins for byte swapping. */
873 #if defined(__GNUC__) && defined(__GNUC_PREREQ)
874 #if __GNUC_PREREQ(4,3)
875 #define have_bswap
876 #endif
877 #endif
878 
879 #if defined(__clang__) && defined(__has_builtin)
880 #if __has_builtin(__builtin_bswap32)  &&                 \
881     __has_builtin(__builtin_bswap64)
882 #define have_bswap
883 #endif
884 #endif
885 
886 #if defined(have_bswap)
887     /* The compiler is hopefully able to statically evaluate this! */
888     switch( sizeof(mbedtls_mpi_uint) )
889     {
890         case 4:
891             return( __builtin_bswap32(x) );
892         case 8:
893             return( __builtin_bswap64(x) );
894     }
895 #endif
896 #endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
897 #endif /* __BYTE_ORDER__ */
898 
899     /* Fall back to C-based reordering if we don't know the byte order
900      * or we couldn't use a compiler-specific builtin. */
901     return( mpi_uint_bigendian_to_host_c( x ) );
902 }
903 
904 static void mpi_bigendian_to_host( mbedtls_mpi_uint * const p, size_t limbs )
905 {
906     mbedtls_mpi_uint *cur_limb_left;
907     mbedtls_mpi_uint *cur_limb_right;
908     if( limbs == 0 )
909         return;
910 
911     /*
912      * Traverse limbs and
913      * - adapt byte-order in each limb
914      * - swap the limbs themselves.
915      * For that, simultaneously traverse the limbs from left to right
916      * and from right to left, as long as the left index is not bigger
917      * than the right index (it's not a problem if limbs is odd and the
918      * indices coincide in the last iteration).
919      */
920     for( cur_limb_left = p, cur_limb_right = p + ( limbs - 1 );
921          cur_limb_left <= cur_limb_right;
922          cur_limb_left++, cur_limb_right-- )
923     {
924         mbedtls_mpi_uint tmp;
925         /* Note that if cur_limb_left == cur_limb_right,
926          * this code effectively swaps the bytes only once. */
927         tmp             = mpi_uint_bigendian_to_host( *cur_limb_left  );
928         *cur_limb_left  = mpi_uint_bigendian_to_host( *cur_limb_right );
929         *cur_limb_right = tmp;
930     }
931 }
932 
933 /*
934  * Import X from unsigned binary data, big endian
935  */
936 int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
937 {
938     int ret;
939     size_t const limbs    = CHARS_TO_LIMBS( buflen );
940     size_t const overhead = ( limbs * ciL ) - buflen;
941     unsigned char *Xp;
942 
943     MPI_VALIDATE_RET( X != NULL );
944     MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
945 
946     /* Ensure that target MPI has exactly the necessary number of limbs */
947     if( X->n != limbs )
948     {
949         mbedtls_mpi_free( X );
950         mbedtls_mpi_init( X );
951         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, limbs ) );
952     }
953     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
954 
955     /* Avoid calling `memcpy` with NULL source argument,
956      * even if buflen is 0. */
957     if( buf != NULL )
958     {
959         Xp = (unsigned char*) X->p;
960         memcpy( Xp + overhead, buf, buflen );
961 
962         mpi_bigendian_to_host( X->p, limbs );
963     }
964 
965 cleanup:
966 
967     return( ret );
968 }
969 
970 /*
971  * Export X into unsigned binary data, big endian
972  */
973 int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
974                               unsigned char *buf, size_t buflen )
975 {
976     size_t stored_bytes;
977     size_t bytes_to_copy;
978     unsigned char *p;
979     size_t i;
980 
981     MPI_VALIDATE_RET( X != NULL );
982     MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
983 
984     stored_bytes = X->n * ciL;
985 
986     if( stored_bytes < buflen )
987     {
988         /* There is enough space in the output buffer. Write initial
989          * null bytes and record the position at which to start
990          * writing the significant bytes. In this case, the execution
991          * trace of this function does not depend on the value of the
992          * number. */
993         bytes_to_copy = stored_bytes;
994         p = buf + buflen - stored_bytes;
995         memset( buf, 0, buflen - stored_bytes );
996     }
997     else
998     {
999         /* The output buffer is smaller than the allocated size of X.
1000          * However X may fit if its leading bytes are zero. */
1001         bytes_to_copy = buflen;
1002         p = buf;
1003         for( i = bytes_to_copy; i < stored_bytes; i++ )
1004         {
1005             if( GET_BYTE( X, i ) != 0 )
1006                 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
1007         }
1008     }
1009 
1010     for( i = 0; i < bytes_to_copy; i++ )
1011         p[bytes_to_copy - i - 1] = GET_BYTE( X, i );
1012 
1013     return( 0 );
1014 }
1015 
1016 /*
1017  * Left-shift: X <<= count
1018  */
1019 int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
1020 {
1021     int ret;
1022     size_t i, v0, t1;
1023     mbedtls_mpi_uint r0 = 0, r1;
1024     MPI_VALIDATE_RET( X != NULL );
1025 
1026     v0 = count / (biL    );
1027     t1 = count & (biL - 1);
1028 
1029     i = mbedtls_mpi_bitlen( X ) + count;
1030 
1031     if( X->n * biL < i )
1032         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
1033 
1034     ret = 0;
1035 
1036     /*
1037      * shift by count / limb_size
1038      */
1039     if( v0 > 0 )
1040     {
1041         for( i = X->n; i > v0; i-- )
1042             X->p[i - 1] = X->p[i - v0 - 1];
1043 
1044         for( ; i > 0; i-- )
1045             X->p[i - 1] = 0;
1046     }
1047 
1048     /*
1049      * shift by count % limb_size
1050      */
1051     if( t1 > 0 )
1052     {
1053         for( i = v0; i < X->n; i++ )
1054         {
1055             r1 = X->p[i] >> (biL - t1);
1056             X->p[i] <<= t1;
1057             X->p[i] |= r0;
1058             r0 = r1;
1059         }
1060     }
1061 
1062 cleanup:
1063 
1064     return( ret );
1065 }
1066 
1067 /*
1068  * Right-shift: X >>= count
1069  */
1070 int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
1071 {
1072     size_t i, v0, v1;
1073     mbedtls_mpi_uint r0 = 0, r1;
1074     MPI_VALIDATE_RET( X != NULL );
1075 
1076     v0 = count /  biL;
1077     v1 = count & (biL - 1);
1078 
1079     if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
1080         return mbedtls_mpi_lset( X, 0 );
1081 
1082     /*
1083      * shift by count / limb_size
1084      */
1085     if( v0 > 0 )
1086     {
1087         for( i = 0; i < X->n - v0; i++ )
1088             X->p[i] = X->p[i + v0];
1089 
1090         for( ; i < X->n; i++ )
1091             X->p[i] = 0;
1092     }
1093 
1094     /*
1095      * shift by count % limb_size
1096      */
1097     if( v1 > 0 )
1098     {
1099         for( i = X->n; i > 0; i-- )
1100         {
1101             r1 = X->p[i - 1] << (biL - v1);
1102             X->p[i - 1] >>= v1;
1103             X->p[i - 1] |= r0;
1104             r0 = r1;
1105         }
1106     }
1107 
1108     return( 0 );
1109 }
1110 
1111 /*
1112  * Compare unsigned values
1113  */
1114 int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
1115 {
1116     size_t i, j;
1117     MPI_VALIDATE_RET( X != NULL );
1118     MPI_VALIDATE_RET( Y != NULL );
1119 
1120     for( i = X->n; i > 0; i-- )
1121         if( X->p[i - 1] != 0 )
1122             break;
1123 
1124     for( j = Y->n; j > 0; j-- )
1125         if( Y->p[j - 1] != 0 )
1126             break;
1127 
1128     if( i == 0 && j == 0 )
1129         return( 0 );
1130 
1131     if( i > j ) return(  1 );
1132     if( j > i ) return( -1 );
1133 
1134     for( ; i > 0; i-- )
1135     {
1136         if( X->p[i - 1] > Y->p[i - 1] ) return(  1 );
1137         if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
1138     }
1139 
1140     return( 0 );
1141 }
1142 
1143 /*
1144  * Compare signed values
1145  */
1146 int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
1147 {
1148     size_t i, j;
1149     MPI_VALIDATE_RET( X != NULL );
1150     MPI_VALIDATE_RET( Y != NULL );
1151 
1152     for( i = X->n; i > 0; i-- )
1153         if( X->p[i - 1] != 0 )
1154             break;
1155 
1156     for( j = Y->n; j > 0; j-- )
1157         if( Y->p[j - 1] != 0 )
1158             break;
1159 
1160     if( i == 0 && j == 0 )
1161         return( 0 );
1162 
1163     if( i > j ) return(  X->s );
1164     if( j > i ) return( -Y->s );
1165 
1166     if( X->s > 0 && Y->s < 0 ) return(  1 );
1167     if( Y->s > 0 && X->s < 0 ) return( -1 );
1168 
1169     for( ; i > 0; i-- )
1170     {
1171         if( X->p[i - 1] > Y->p[i - 1] ) return(  X->s );
1172         if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
1173     }
1174 
1175     return( 0 );
1176 }
1177 
1178 /** Decide if an integer is less than the other, without branches.
1179  *
1180  * \param x         First integer.
1181  * \param y         Second integer.
1182  *
1183  * \return          1 if \p x is less than \p y, 0 otherwise
1184  */
1185 static unsigned ct_lt_mpi_uint( const mbedtls_mpi_uint x,
1186         const mbedtls_mpi_uint y )
1187 {
1188     mbedtls_mpi_uint ret;
1189     mbedtls_mpi_uint cond;
1190 
1191     /*
1192      * Check if the most significant bits (MSB) of the operands are different.
1193      */
1194     cond = ( x ^ y );
1195     /*
1196      * If the MSB are the same then the difference x-y will be negative (and
1197      * have its MSB set to 1 during conversion to unsigned) if and only if x<y.
1198      */
1199     ret = ( x - y ) & ~cond;
1200     /*
1201      * If the MSB are different, then the operand with the MSB of 1 is the
1202      * bigger. (That is if y has MSB of 1, then x<y is true and it is false if
1203      * the MSB of y is 0.)
1204      */
1205     ret |= y & cond;
1206 
1207 
1208     ret = ret >> ( biL - 1 );
1209 
1210     return (unsigned) ret;
1211 }
1212 
1213 /*
1214  * Compare signed values in constant time
1215  */
1216 int mbedtls_mpi_lt_mpi_ct( const mbedtls_mpi *X, const mbedtls_mpi *Y,
1217         unsigned *ret )
1218 {
1219     size_t i;
1220     /* The value of any of these variables is either 0 or 1 at all times. */
1221     unsigned cond, done, X_is_negative, Y_is_negative;
1222 
1223     MPI_VALIDATE_RET( X != NULL );
1224     MPI_VALIDATE_RET( Y != NULL );
1225     MPI_VALIDATE_RET( ret != NULL );
1226 
1227     if( X->n != Y->n )
1228         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1229 
1230     /*
1231      * Set sign_N to 1 if N >= 0, 0 if N < 0.
1232      * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
1233      */
1234     X_is_negative = ( X->s & 2 ) >> 1;
1235     Y_is_negative = ( Y->s & 2 ) >> 1;
1236 
1237     /*
1238      * If the signs are different, then the positive operand is the bigger.
1239      * That is if X is negative (X_is_negative == 1), then X < Y is true and it
1240      * is false if X is positive (X_is_negative == 0).
1241      */
1242     cond = ( X_is_negative ^ Y_is_negative );
1243     *ret = cond & X_is_negative;
1244 
1245     /*
1246      * This is a constant-time function. We might have the result, but we still
1247      * need to go through the loop. Record if we have the result already.
1248      */
1249     done = cond;
1250 
1251     for( i = X->n; i > 0; i-- )
1252     {
1253         /*
1254          * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
1255          * X and Y are negative.
1256          *
1257          * Again even if we can make a decision, we just mark the result and
1258          * the fact that we are done and continue looping.
1259          */
1260         cond = ct_lt_mpi_uint( Y->p[i - 1], X->p[i - 1] );
1261         *ret |= cond & ( 1 - done ) & X_is_negative;
1262         done |= cond;
1263 
1264         /*
1265          * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
1266          * X and Y are positive.
1267          *
1268          * Again even if we can make a decision, we just mark the result and
1269          * the fact that we are done and continue looping.
1270          */
1271         cond = ct_lt_mpi_uint( X->p[i - 1], Y->p[i - 1] );
1272         *ret |= cond & ( 1 - done ) & ( 1 - X_is_negative );
1273         done |= cond;
1274     }
1275 
1276     return( 0 );
1277 }
1278 
1279 /*
1280  * Compare signed values
1281  */
1282 int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
1283 {
1284     mbedtls_mpi Y;
1285     mbedtls_mpi_uint p[1];
1286     MPI_VALIDATE_RET( X != NULL );
1287 
1288     *p  = ( z < 0 ) ? -z : z;
1289     Y.s = ( z < 0 ) ? -1 : 1;
1290     Y.n = 1;
1291     Y.p = p;
1292 
1293     return( mbedtls_mpi_cmp_mpi( X, &Y ) );
1294 }
1295 
1296 /*
1297  * Unsigned addition: X = |A| + |B|  (HAC 14.7)
1298  */
1299 int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
1300 {
1301     int ret;
1302     size_t i, j;
1303     mbedtls_mpi_uint *o, *p, c, tmp;
1304     MPI_VALIDATE_RET( X != NULL );
1305     MPI_VALIDATE_RET( A != NULL );
1306     MPI_VALIDATE_RET( B != NULL );
1307 
1308     if( X == B )
1309     {
1310         const mbedtls_mpi *T = A; A = X; B = T;
1311     }
1312 
1313     if( X != A )
1314         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
1315 
1316     /*
1317      * X should always be positive as a result of unsigned additions.
1318      */
1319     X->s = 1;
1320 
1321     for( j = B->n; j > 0; j-- )
1322         if( B->p[j - 1] != 0 )
1323             break;
1324 
1325     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
1326 
1327     o = B->p; p = X->p; c = 0;
1328 
1329     /*
1330      * tmp is used because it might happen that p == o
1331      */
1332     for( i = 0; i < j; i++, o++, p++ )
1333     {
1334         tmp= *o;
1335         *p +=  c; c  = ( *p <  c );
1336         *p += tmp; c += ( *p < tmp );
1337     }
1338 
1339     while( c != 0 )
1340     {
1341         if( i >= X->n )
1342         {
1343             MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
1344             p = X->p + i;
1345         }
1346 
1347         *p += c; c = ( *p < c ); i++; p++;
1348     }
1349 
1350 cleanup:
1351 
1352     return( ret );
1353 }
1354 
1355 /**
1356  * Helper for mbedtls_mpi subtraction.
1357  *
1358  * Calculate d - s where d and s have the same size.
1359  * This function operates modulo (2^ciL)^n and returns the carry
1360  * (1 if there was a wraparound, i.e. if `d < s`, and 0 otherwise).
1361  *
1362  * \param n             Number of limbs of \p d and \p s.
1363  * \param[in,out] d     On input, the left operand.
1364  *                      On output, the result of the subtraction:
1365  * \param[in] s         The right operand.
1366  *
1367  * \return              1 if `d < s`.
1368  *                      0 if `d >= s`.
1369  */
1370 static mbedtls_mpi_uint mpi_sub_hlp( size_t n,
1371                                      mbedtls_mpi_uint *d,
1372                                      const mbedtls_mpi_uint *s )
1373 {
1374     size_t i;
1375     mbedtls_mpi_uint c, z;
1376 
1377     for( i = c = 0; i < n; i++, s++, d++ )
1378     {
1379         z = ( *d <  c );     *d -=  c;
1380         c = ( *d < *s ) + z; *d -= *s;
1381     }
1382 
1383     return( c );
1384 }
1385 
1386 /*
1387  * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10)
1388  */
1389 int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
1390 {
1391     mbedtls_mpi TB;
1392     int ret;
1393     size_t n;
1394     mbedtls_mpi_uint carry;
1395     MPI_VALIDATE_RET( X != NULL );
1396     MPI_VALIDATE_RET( A != NULL );
1397     MPI_VALIDATE_RET( B != NULL );
1398 
1399     mbedtls_mpi_init( &TB );
1400 
1401     if( X == B )
1402     {
1403         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
1404         B = &TB;
1405     }
1406 
1407     if( X != A )
1408         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
1409 
1410     /*
1411      * X should always be positive as a result of unsigned subtractions.
1412      */
1413     X->s = 1;
1414 
1415     ret = 0;
1416 
1417     for( n = B->n; n > 0; n-- )
1418         if( B->p[n - 1] != 0 )
1419             break;
1420     if( n > A->n )
1421     {
1422         /* B >= (2^ciL)^n > A */
1423         ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1424         goto cleanup;
1425     }
1426 
1427     carry = mpi_sub_hlp( n, X->p, B->p );
1428     if( carry != 0 )
1429     {
1430         /* Propagate the carry to the first nonzero limb of X. */
1431         for( ; n < X->n && X->p[n] == 0; n++ )
1432             --X->p[n];
1433         /* If we ran out of space for the carry, it means that the result
1434          * is negative. */
1435         if( n == X->n )
1436         {
1437             ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1438             goto cleanup;
1439         }
1440         --X->p[n];
1441     }
1442 
1443 cleanup:
1444 
1445     mbedtls_mpi_free( &TB );
1446 
1447     return( ret );
1448 }
1449 
1450 /*
1451  * Signed addition: X = A + B
1452  */
1453 int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
1454 {
1455     int ret, s;
1456     MPI_VALIDATE_RET( X != NULL );
1457     MPI_VALIDATE_RET( A != NULL );
1458     MPI_VALIDATE_RET( B != NULL );
1459 
1460     s = A->s;
1461     if( A->s * B->s < 0 )
1462     {
1463         if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
1464         {
1465             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
1466             X->s =  s;
1467         }
1468         else
1469         {
1470             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
1471             X->s = -s;
1472         }
1473     }
1474     else
1475     {
1476         MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
1477         X->s = s;
1478     }
1479 
1480 cleanup:
1481 
1482     return( ret );
1483 }
1484 
1485 /*
1486  * Signed subtraction: X = A - B
1487  */
1488 int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
1489 {
1490     int ret, s;
1491     MPI_VALIDATE_RET( X != NULL );
1492     MPI_VALIDATE_RET( A != NULL );
1493     MPI_VALIDATE_RET( B != NULL );
1494 
1495     s = A->s;
1496     if( A->s * B->s > 0 )
1497     {
1498         if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
1499         {
1500             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
1501             X->s =  s;
1502         }
1503         else
1504         {
1505             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
1506             X->s = -s;
1507         }
1508     }
1509     else
1510     {
1511         MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
1512         X->s = s;
1513     }
1514 
1515 cleanup:
1516 
1517     return( ret );
1518 }
1519 
1520 /*
1521  * Signed addition: X = A + b
1522  */
1523 int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
1524 {
1525     mbedtls_mpi _B;
1526     mbedtls_mpi_uint p[1];
1527     MPI_VALIDATE_RET( X != NULL );
1528     MPI_VALIDATE_RET( A != NULL );
1529 
1530     p[0] = ( b < 0 ) ? -b : b;
1531     _B.s = ( b < 0 ) ? -1 : 1;
1532     _B.n = 1;
1533     _B.p = p;
1534 
1535     return( mbedtls_mpi_add_mpi( X, A, &_B ) );
1536 }
1537 
1538 /*
1539  * Signed subtraction: X = A - b
1540  */
1541 int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
1542 {
1543     mbedtls_mpi _B;
1544     mbedtls_mpi_uint p[1];
1545     MPI_VALIDATE_RET( X != NULL );
1546     MPI_VALIDATE_RET( A != NULL );
1547 
1548     p[0] = ( b < 0 ) ? -b : b;
1549     _B.s = ( b < 0 ) ? -1 : 1;
1550     _B.n = 1;
1551     _B.p = p;
1552 
1553     return( mbedtls_mpi_sub_mpi( X, A, &_B ) );
1554 }
1555 
1556 /*
1557  * Helper for mbedtls_mpi multiplication
1558  */
1559 static
1560 #if defined(__APPLE__) && defined(__arm__)
1561 /*
1562  * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
1563  * appears to need this to prevent bad ARM code generation at -O3.
1564  */
1565 __attribute__ ((noinline))
1566 #endif
1567 void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mpi_uint b )
1568 {
1569     mbedtls_mpi_uint c = 0, t = 0;
1570 
1571 #if defined(MULADDC_HUIT)
1572     for( ; i >= 8; i -= 8 )
1573     {
1574         MULADDC_INIT
1575         MULADDC_HUIT
1576         MULADDC_STOP
1577     }
1578 
1579     for( ; i > 0; i-- )
1580     {
1581         MULADDC_INIT
1582         MULADDC_CORE
1583         MULADDC_STOP
1584     }
1585 #else /* MULADDC_HUIT */
1586     for( ; i >= 16; i -= 16 )
1587     {
1588         MULADDC_INIT
1589         MULADDC_CORE   MULADDC_CORE
1590         MULADDC_CORE   MULADDC_CORE
1591         MULADDC_CORE   MULADDC_CORE
1592         MULADDC_CORE   MULADDC_CORE
1593 
1594         MULADDC_CORE   MULADDC_CORE
1595         MULADDC_CORE   MULADDC_CORE
1596         MULADDC_CORE   MULADDC_CORE
1597         MULADDC_CORE   MULADDC_CORE
1598         MULADDC_STOP
1599     }
1600 
1601     for( ; i >= 8; i -= 8 )
1602     {
1603         MULADDC_INIT
1604         MULADDC_CORE   MULADDC_CORE
1605         MULADDC_CORE   MULADDC_CORE
1606 
1607         MULADDC_CORE   MULADDC_CORE
1608         MULADDC_CORE   MULADDC_CORE
1609         MULADDC_STOP
1610     }
1611 
1612     for( ; i > 0; i-- )
1613     {
1614         MULADDC_INIT
1615         MULADDC_CORE
1616         MULADDC_STOP
1617     }
1618 #endif /* MULADDC_HUIT */
1619 
1620     t++;
1621 
1622     do {
1623         *d += c; c = ( *d < c ); d++;
1624     }
1625     while( c != 0 );
1626 }
1627 
1628 /*
1629  * Baseline multiplication: X = A * B  (HAC 14.12)
1630  */
1631 int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
1632 {
1633     int ret;
1634     size_t i, j;
1635     mbedtls_mpi TA, TB;
1636     int result_is_zero = 0;
1637     MPI_VALIDATE_RET( X != NULL );
1638     MPI_VALIDATE_RET( A != NULL );
1639     MPI_VALIDATE_RET( B != NULL );
1640 
1641     mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
1642 
1643     if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
1644     if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
1645 
1646     for( i = A->n; i > 0; i-- )
1647         if( A->p[i - 1] != 0 )
1648             break;
1649     if( i == 0 )
1650         result_is_zero = 1;
1651 
1652     for( j = B->n; j > 0; j-- )
1653         if( B->p[j - 1] != 0 )
1654             break;
1655     if( j == 0 )
1656         result_is_zero = 1;
1657 
1658     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
1659     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
1660 
1661     for( ; j > 0; j-- )
1662         mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] );
1663 
1664     /* If the result is 0, we don't shortcut the operation, which reduces
1665      * but does not eliminate side channels leaking the zero-ness. We do
1666      * need to take care to set the sign bit properly since the library does
1667      * not fully support an MPI object with a value of 0 and s == -1. */
1668     if( result_is_zero )
1669         X->s = 1;
1670     else
1671         X->s = A->s * B->s;
1672 
1673 cleanup:
1674 
1675     mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
1676 
1677     return( ret );
1678 }
1679 
1680 /*
1681  * Baseline multiplication: X = A * b
1682  */
1683 int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
1684 {
1685     mbedtls_mpi _B;
1686     mbedtls_mpi_uint p[1];
1687     MPI_VALIDATE_RET( X != NULL );
1688     MPI_VALIDATE_RET( A != NULL );
1689 
1690     _B.s = 1;
1691     _B.n = 1;
1692     _B.p = p;
1693     p[0] = b;
1694 
1695     return( mbedtls_mpi_mul_mpi( X, A, &_B ) );
1696 }
1697 
1698 /*
1699  * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1700  * mbedtls_mpi_uint divisor, d
1701  */
1702 static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
1703             mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
1704 {
1705 #if defined(MBEDTLS_HAVE_UDBL)
1706     mbedtls_t_udbl dividend, quotient;
1707 #else
1708     const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1709     const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
1710     mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1711     mbedtls_mpi_uint u0_msw, u0_lsw;
1712     size_t s;
1713 #endif
1714 
1715     /*
1716      * Check for overflow
1717      */
1718     if( 0 == d || u1 >= d )
1719     {
1720         if (r != NULL) *r = ~0;
1721 
1722         return ( ~0 );
1723     }
1724 
1725 #if defined(MBEDTLS_HAVE_UDBL)
1726     dividend  = (mbedtls_t_udbl) u1 << biL;
1727     dividend |= (mbedtls_t_udbl) u0;
1728     quotient = dividend / d;
1729     if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
1730         quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
1731 
1732     if( r != NULL )
1733         *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
1734 
1735     return (mbedtls_mpi_uint) quotient;
1736 #else
1737 
1738     /*
1739      * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1740      *   Vol. 2 - Seminumerical Algorithms, Knuth
1741      */
1742 
1743     /*
1744      * Normalize the divisor, d, and dividend, u0, u1
1745      */
1746     s = mbedtls_clz( d );
1747     d = d << s;
1748 
1749     u1 = u1 << s;
1750     u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
1751     u0 =  u0 << s;
1752 
1753     d1 = d >> biH;
1754     d0 = d & uint_halfword_mask;
1755 
1756     u0_msw = u0 >> biH;
1757     u0_lsw = u0 & uint_halfword_mask;
1758 
1759     /*
1760      * Find the first quotient and remainder
1761      */
1762     q1 = u1 / d1;
1763     r0 = u1 - d1 * q1;
1764 
1765     while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
1766     {
1767         q1 -= 1;
1768         r0 += d1;
1769 
1770         if ( r0 >= radix ) break;
1771     }
1772 
1773     rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
1774     q0 = rAX / d1;
1775     r0 = rAX - q0 * d1;
1776 
1777     while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
1778     {
1779         q0 -= 1;
1780         r0 += d1;
1781 
1782         if ( r0 >= radix ) break;
1783     }
1784 
1785     if (r != NULL)
1786         *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
1787 
1788     quotient = q1 * radix + q0;
1789 
1790     return quotient;
1791 #endif
1792 }
1793 
1794 /*
1795  * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20)
1796  */
1797 int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1798                          const mbedtls_mpi *B )
1799 {
1800     int ret;
1801     size_t i, n, t, k;
1802     mbedtls_mpi X, Y, Z, T1, T2;
1803     MPI_VALIDATE_RET( A != NULL );
1804     MPI_VALIDATE_RET( B != NULL );
1805 
1806     if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
1807         return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
1808 
1809     mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
1810     mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 );
1811 
1812     if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
1813     {
1814         if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
1815         if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
1816         return( 0 );
1817     }
1818 
1819     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
1820     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
1821     X.s = Y.s = 1;
1822 
1823     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
1824     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z,  0 ) );
1825     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, 2 ) );
1826     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T2, 3 ) );
1827 
1828     k = mbedtls_mpi_bitlen( &Y ) % biL;
1829     if( k < biL - 1 )
1830     {
1831         k = biL - 1 - k;
1832         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
1833         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
1834     }
1835     else k = 0;
1836 
1837     n = X.n - 1;
1838     t = Y.n - 1;
1839     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
1840 
1841     while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
1842     {
1843         Z.p[n - t]++;
1844         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
1845     }
1846     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
1847 
1848     for( i = n; i > t ; i-- )
1849     {
1850         if( X.p[i] >= Y.p[t] )
1851             Z.p[i - t - 1] = ~0;
1852         else
1853         {
1854             Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
1855                                                             Y.p[t], NULL);
1856         }
1857 
1858         Z.p[i - t - 1]++;
1859         do
1860         {
1861             Z.p[i - t - 1]--;
1862 
1863             MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
1864             T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
1865             T1.p[1] = Y.p[t];
1866             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
1867 
1868             MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T2, 0 ) );
1869             T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
1870             T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
1871             T2.p[2] = X.p[i];
1872         }
1873         while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
1874 
1875         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
1876         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1,  biL * ( i - t - 1 ) ) );
1877         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
1878 
1879         if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
1880         {
1881             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
1882             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1883             MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
1884             Z.p[i - t - 1]--;
1885         }
1886     }
1887 
1888     if( Q != NULL )
1889     {
1890         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
1891         Q->s = A->s * B->s;
1892     }
1893 
1894     if( R != NULL )
1895     {
1896         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
1897         X.s = A->s;
1898         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
1899 
1900         if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
1901             R->s = 1;
1902     }
1903 
1904 cleanup:
1905 
1906     mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
1907     mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 );
1908 
1909     return( ret );
1910 }
1911 
1912 /*
1913  * Division by int: A = Q * b + R
1914  */
1915 int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
1916                          const mbedtls_mpi *A,
1917                          mbedtls_mpi_sint b )
1918 {
1919     mbedtls_mpi _B;
1920     mbedtls_mpi_uint p[1];
1921     MPI_VALIDATE_RET( A != NULL );
1922 
1923     p[0] = ( b < 0 ) ? -b : b;
1924     _B.s = ( b < 0 ) ? -1 : 1;
1925     _B.n = 1;
1926     _B.p = p;
1927 
1928     return( mbedtls_mpi_div_mpi( Q, R, A, &_B ) );
1929 }
1930 
1931 /*
1932  * Modulo: R = A mod B
1933  */
1934 int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
1935 {
1936     int ret;
1937     MPI_VALIDATE_RET( R != NULL );
1938     MPI_VALIDATE_RET( A != NULL );
1939     MPI_VALIDATE_RET( B != NULL );
1940 
1941     if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
1942         return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
1943 
1944     MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
1945 
1946     while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
1947       MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
1948 
1949     while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
1950       MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
1951 
1952 cleanup:
1953 
1954     return( ret );
1955 }
1956 
1957 /*
1958  * Modulo: r = A mod b
1959  */
1960 int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
1961 {
1962     size_t i;
1963     mbedtls_mpi_uint x, y, z;
1964     MPI_VALIDATE_RET( r != NULL );
1965     MPI_VALIDATE_RET( A != NULL );
1966 
1967     if( b == 0 )
1968         return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
1969 
1970     if( b < 0 )
1971         return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
1972 
1973     /*
1974      * handle trivial cases
1975      */
1976     if( b == 1 )
1977     {
1978         *r = 0;
1979         return( 0 );
1980     }
1981 
1982     if( b == 2 )
1983     {
1984         *r = A->p[0] & 1;
1985         return( 0 );
1986     }
1987 
1988     /*
1989      * general case
1990      */
1991     for( i = A->n, y = 0; i > 0; i-- )
1992     {
1993         x  = A->p[i - 1];
1994         y  = ( y << biH ) | ( x >> biH );
1995         z  = y / b;
1996         y -= z * b;
1997 
1998         x <<= biH;
1999         y  = ( y << biH ) | ( x >> biH );
2000         z  = y / b;
2001         y -= z * b;
2002     }
2003 
2004     /*
2005      * If A is negative, then the current y represents a negative value.
2006      * Flipping it to the positive side.
2007      */
2008     if( A->s < 0 && y != 0 )
2009         y = b - y;
2010 
2011     *r = y;
2012 
2013     return( 0 );
2014 }
2015 
2016 /*
2017  * Fast Montgomery initialization (thanks to Tom St Denis)
2018  */
2019 static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
2020 {
2021     mbedtls_mpi_uint x, m0 = N->p[0];
2022     unsigned int i;
2023 
2024     x  = m0;
2025     x += ( ( m0 + 2 ) & 4 ) << 1;
2026 
2027     for( i = biL; i >= 8; i /= 2 )
2028         x *= ( 2 - ( m0 * x ) );
2029 
2030     *mm = ~x + 1;
2031 }
2032 
2033 /** Montgomery multiplication: A = A * B * R^-1 mod N  (HAC 14.36)
2034  *
2035  * \param[in,out]   A   One of the numbers to multiply.
2036  *                      It must have at least as many limbs as N
2037  *                      (A->n >= N->n), and any limbs beyond n are ignored.
2038  *                      On successful completion, A contains the result of
2039  *                      the multiplication A * B * R^-1 mod N where
2040  *                      R = (2^ciL)^n.
2041  * \param[in]       B   One of the numbers to multiply.
2042  *                      It must be nonzero and must not have more limbs than N
2043  *                      (B->n <= N->n).
2044  * \param[in]       N   The modulo. N must be odd.
2045  * \param           mm  The value calculated by `mpi_montg_init(&mm, N)`.
2046  *                      This is -N^-1 mod 2^ciL.
2047  * \param[in,out]   T   A bignum for temporary storage.
2048  *                      It must be at least twice the limb size of N plus 2
2049  *                      (T->n >= 2 * (N->n + 1)).
2050  *                      Its initial content is unused and
2051  *                      its final content is indeterminate.
2052  *                      Note that unlike the usual convention in the library
2053  *                      for `const mbedtls_mpi*`, the content of T can change.
2054  */
2055 static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
2056                          const mbedtls_mpi *T )
2057 {
2058     size_t i, n, m;
2059     mbedtls_mpi_uint u0, u1, *d;
2060 
2061     memset( T->p, 0, T->n * ciL );
2062 
2063     d = T->p;
2064     n = N->n;
2065     m = ( B->n < n ) ? B->n : n;
2066 
2067     for( i = 0; i < n; i++ )
2068     {
2069         /*
2070          * T = (T + u0*B + u1*N) / 2^biL
2071          */
2072         u0 = A->p[i];
2073         u1 = ( d[0] + u0 * B->p[0] ) * mm;
2074 
2075         mpi_mul_hlp( m, B->p, d, u0 );
2076         mpi_mul_hlp( n, N->p, d, u1 );
2077 
2078         *d++ = u0; d[n + 1] = 0;
2079     }
2080 
2081     /* At this point, d is either the desired result or the desired result
2082      * plus N. We now potentially subtract N, avoiding leaking whether the
2083      * subtraction is performed through side channels. */
2084 
2085     /* Copy the n least significant limbs of d to A, so that
2086      * A = d if d < N (recall that N has n limbs). */
2087     memcpy( A->p, d, n * ciL );
2088     /* If d >= N then we want to set A to d - N. To prevent timing attacks,
2089      * do the calculation without using conditional tests. */
2090     /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
2091     d[n] += 1;
2092     d[n] -= mpi_sub_hlp( n, d, N->p );
2093     /* If d0 < N then d < (2^biL)^n
2094      * so d[n] == 0 and we want to keep A as it is.
2095      * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
2096      * so d[n] == 1 and we want to set A to the result of the subtraction
2097      * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
2098      * This exactly corresponds to a conditional assignment. */
2099     mpi_safe_cond_assign( n, A->p, d, (unsigned char) d[n] );
2100 }
2101 
2102 /*
2103  * Montgomery reduction: A = A * R^-1 mod N
2104  *
2105  * See mpi_montmul() regarding constraints and guarantees on the parameters.
2106  */
2107 static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
2108                          mbedtls_mpi_uint mm, const mbedtls_mpi *T )
2109 {
2110     mbedtls_mpi_uint z = 1;
2111     mbedtls_mpi U;
2112 
2113     U.n = U.s = (int) z;
2114     U.p = &z;
2115 
2116     mpi_montmul( A, &U, N, mm, T );
2117 }
2118 
2119 /*
2120  * Constant-flow boolean "equal" comparison:
2121  * return x == y
2122  *
2123  * This function can be used to write constant-time code by replacing branches
2124  * with bit operations - it can be used in conjunction with
2125  * mbedtls_ssl_cf_mask_from_bit().
2126  *
2127  * This function is implemented without using comparison operators, as those
2128  * might be translated to branches by some compilers on some platforms.
2129  */
2130 static size_t mbedtls_mpi_cf_bool_eq( size_t x, size_t y )
2131 {
2132     /* diff = 0 if x == y, non-zero otherwise */
2133     const size_t diff = x ^ y;
2134 
2135     /* MSVC has a warning about unary minus on unsigned integer types,
2136      * but this is well-defined and precisely what we want to do here. */
2137 #if defined(_MSC_VER)
2138 #pragma warning( push )
2139 #pragma warning( disable : 4146 )
2140 #endif
2141 
2142     /* diff_msb's most significant bit is equal to x != y */
2143     const size_t diff_msb = ( diff | (size_t) -diff );
2144 
2145 #if defined(_MSC_VER)
2146 #pragma warning( pop )
2147 #endif
2148 
2149     /* diff1 = (x != y) ? 1 : 0 */
2150     const size_t diff1 = diff_msb >> ( sizeof( diff_msb ) * 8 - 1 );
2151 
2152     return( 1 ^ diff1 );
2153 }
2154 
2155 /**
2156  * Select an MPI from a table without leaking the index.
2157  *
2158  * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
2159  * reads the entire table in order to avoid leaking the value of idx to an
2160  * attacker able to observe memory access patterns.
2161  *
2162  * \param[out] R        Where to write the selected MPI.
2163  * \param[in] T         The table to read from.
2164  * \param[in] T_size    The number of elements in the table.
2165  * \param[in] idx       The index of the element to select;
2166  *                      this must satisfy 0 <= idx < T_size.
2167  *
2168  * \return \c 0 on success, or a negative error code.
2169  */
2170 static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
2171 {
2172     int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2173     size_t i;
2174 
2175     for( i = 0; i < T_size; i++ )
2176     {
2177         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
2178                         (unsigned char) mbedtls_mpi_cf_bool_eq( i, idx ) ) );
2179     }
2180 
2181 cleanup:
2182     return( ret );
2183 }
2184 
2185 /*
2186  * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85)
2187  */
2188 int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
2189                          const mbedtls_mpi *E, const mbedtls_mpi *N,
2190                          mbedtls_mpi *_RR )
2191 {
2192     int ret;
2193     size_t wbits, wsize, one = 1;
2194     size_t i, j, nblimbs;
2195     size_t bufsize, nbits;
2196     mbedtls_mpi_uint ei, mm, state;
2197     mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
2198     int neg;
2199 
2200     MPI_VALIDATE_RET( X != NULL );
2201     MPI_VALIDATE_RET( A != NULL );
2202     MPI_VALIDATE_RET( E != NULL );
2203     MPI_VALIDATE_RET( N != NULL );
2204 
2205     if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
2206         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2207 
2208     if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
2209         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2210 
2211     if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
2212         mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
2213         return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2214 
2215     /*
2216      * Init temps and window size
2217      */
2218     mpi_montg_init( &mm, N );
2219     mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
2220     mbedtls_mpi_init( &Apos );
2221     mbedtls_mpi_init( &WW );
2222     memset( W, 0, sizeof( W ) );
2223 
2224     i = mbedtls_mpi_bitlen( E );
2225 
2226     wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
2227             ( i >  79 ) ? 4 : ( i >  23 ) ? 3 : 1;
2228 
2229 #if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
2230     if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
2231         wsize = MBEDTLS_MPI_WINDOW_SIZE;
2232 #endif
2233 
2234     j = N->n + 1;
2235     /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
2236      * and mpi_montred() calls later. Here we ensure that W[1] and X are
2237      * large enough, and later we'll grow other W[i] to the same length.
2238      * They must not be shrunk midway through this function!
2239      */
2240     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
2241     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1],  j ) );
2242     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
2243 
2244     /*
2245      * Compensate for negative A (and correct at the end)
2246      */
2247     neg = ( A->s == -1 );
2248     if( neg )
2249     {
2250         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
2251         Apos.s = 1;
2252         A = &Apos;
2253     }
2254 
2255     /*
2256      * If 1st call, pre-compute R^2 mod N
2257      */
2258     if( _RR == NULL || _RR->p == NULL )
2259     {
2260         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
2261         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
2262         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
2263 
2264         if( _RR != NULL )
2265             memcpy( _RR, &RR, sizeof( mbedtls_mpi ) );
2266     }
2267     else
2268         memcpy( &RR, _RR, sizeof( mbedtls_mpi ) );
2269 
2270     /*
2271      * W[1] = A * R^2 * R^-1 mod N = A * R mod N
2272      */
2273     if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
2274         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
2275     else
2276         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
2277     /* Re-grow W[1] if necessary. This should be only necessary in one corner
2278      * case: when A == 0 represented with A.n == 0, mbedtls_mpi_copy shrinks
2279      * W[1] to 0 limbs. */
2280     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n +1 ) );
2281 
2282     mpi_montmul( &W[1], &RR, N, mm, &T );
2283 
2284     /*
2285      * X = R^2 * R^-1 mod N = R mod N
2286      */
2287     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
2288     mpi_montred( X, N, mm, &T );
2289 
2290     if( wsize > 1 )
2291     {
2292         /*
2293          * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
2294          */
2295         j =  one << ( wsize - 1 );
2296 
2297         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
2298         MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1]    ) );
2299 
2300         for( i = 0; i < wsize - 1; i++ )
2301             mpi_montmul( &W[j], &W[j], N, mm, &T );
2302 
2303         /*
2304          * W[i] = W[i - 1] * W[1]
2305          */
2306         for( i = j + 1; i < ( one << wsize ); i++ )
2307         {
2308             MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
2309             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
2310 
2311             mpi_montmul( &W[i], &W[1], N, mm, &T );
2312         }
2313     }
2314 
2315     nblimbs = E->n;
2316     bufsize = 0;
2317     nbits   = 0;
2318     wbits   = 0;
2319     state   = 0;
2320 
2321     while( 1 )
2322     {
2323         if( bufsize == 0 )
2324         {
2325             if( nblimbs == 0 )
2326                 break;
2327 
2328             nblimbs--;
2329 
2330             bufsize = sizeof( mbedtls_mpi_uint ) << 3;
2331         }
2332 
2333         bufsize--;
2334 
2335         ei = (E->p[nblimbs] >> bufsize) & 1;
2336 
2337         /*
2338          * skip leading 0s
2339          */
2340         if( ei == 0 && state == 0 )
2341             continue;
2342 
2343         if( ei == 0 && state == 1 )
2344         {
2345             /*
2346              * out of window, square X
2347              */
2348             mpi_montmul( X, X, N, mm, &T );
2349             continue;
2350         }
2351 
2352         /*
2353          * add ei to current window
2354          */
2355         state = 2;
2356 
2357         nbits++;
2358         wbits |= ( ei << ( wsize - nbits ) );
2359 
2360         if( nbits == wsize )
2361         {
2362             /*
2363              * X = X^wsize R^-1 mod N
2364              */
2365             for( i = 0; i < wsize; i++ )
2366                 mpi_montmul( X, X, N, mm, &T );
2367 
2368             /*
2369              * X = X * W[wbits] R^-1 mod N
2370              */
2371             MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
2372             mpi_montmul( X, &WW, N, mm, &T );
2373 
2374             state--;
2375             nbits = 0;
2376             wbits = 0;
2377         }
2378     }
2379 
2380     /*
2381      * process the remaining bits
2382      */
2383     for( i = 0; i < nbits; i++ )
2384     {
2385         mpi_montmul( X, X, N, mm, &T );
2386 
2387         wbits <<= 1;
2388 
2389         if( ( wbits & ( one << wsize ) ) != 0 )
2390             mpi_montmul( X, &W[1], N, mm, &T );
2391     }
2392 
2393     /*
2394      * X = A^E * R * R^-1 mod N = A^E mod N
2395      */
2396     mpi_montred( X, N, mm, &T );
2397 
2398     if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
2399     {
2400         X->s = -1;
2401         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
2402     }
2403 
2404 cleanup:
2405 
2406     for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
2407         mbedtls_mpi_free( &W[i] );
2408 
2409     mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
2410     mbedtls_mpi_free( &WW );
2411 
2412     if( _RR == NULL || _RR->p == NULL )
2413         mbedtls_mpi_free( &RR );
2414 
2415     return( ret );
2416 }
2417 
2418 /*
2419  * Greatest common divisor: G = gcd(A, B)  (HAC 14.54)
2420  */
2421 int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
2422 {
2423     int ret;
2424     size_t lz, lzt;
2425     mbedtls_mpi TG, TA, TB;
2426 
2427     MPI_VALIDATE_RET( G != NULL );
2428     MPI_VALIDATE_RET( A != NULL );
2429     MPI_VALIDATE_RET( B != NULL );
2430 
2431     mbedtls_mpi_init( &TG ); mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
2432 
2433     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
2434     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
2435 
2436     lz = mbedtls_mpi_lsb( &TA );
2437     lzt = mbedtls_mpi_lsb( &TB );
2438 
2439     /* The loop below gives the correct result when A==0 but not when B==0.
2440      * So have a special case for B==0. Leverage the fact that we just
2441      * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
2442      * slightly more efficient than cmp_int(). */
2443     if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
2444     {
2445         ret = mbedtls_mpi_copy( G, A );
2446         goto cleanup;
2447     }
2448 
2449     if( lzt < lz )
2450         lz = lzt;
2451 
2452     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, lz ) );
2453     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, lz ) );
2454 
2455     TA.s = TB.s = 1;
2456 
2457     /* We mostly follow the procedure described in HAC 14.54, but with some
2458      * minor differences:
2459      * - Sequences of multiplications or divisions by 2 are grouped into a
2460      *   single shift operation.
2461      * - The procedure in HAC assumes that 0 < TB <= TA.
2462      *     - The condition TB <= TA is not actually necessary for correctness.
2463      *       TA and TB have symmetric roles except for the loop termination
2464      *       condition, and the shifts at the beginning of the loop body
2465      *       remove any significance from the ordering of TA vs TB before
2466      *       the shifts.
2467      *     - If TA = 0, the loop goes through 0 iterations and the result is
2468      *       correctly TB.
2469      *     - The case TB = 0 was short-circuited above.
2470      *
2471      * For the correctness proof below, decompose the original values of
2472      * A and B as
2473      *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
2474      *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
2475      * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
2476      * and gcd(A',B') is odd or 0.
2477      *
2478      * At the beginning, we have TA = |A|/2^a and TB = |B|/2^b.
2479      * The code maintains the following invariant:
2480      *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I)
2481      */
2482 
2483     /* Proof that the loop terminates:
2484      * At each iteration, either the right-shift by 1 is made on a nonzero
2485      * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
2486      * by at least 1, or the right-shift by 1 is made on zero and then
2487      * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2488      * since in that case TB is calculated from TB-TA with the condition TB>TA).
2489      */
2490     while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
2491     {
2492         /* Divisions by 2 preserve the invariant (I). */
2493         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
2494         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
2495 
2496         /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2497          * TA-TB is even so the division by 2 has an integer result.
2498          * Invariant (I) is preserved since any odd divisor of both TA and TB
2499          * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
2500          * also divides TB, and any odd divisior of both TB and |TA-TB|/2 also
2501          * divides TA.
2502          */
2503         if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
2504         {
2505             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
2506             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
2507         }
2508         else
2509         {
2510             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
2511             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
2512         }
2513         /* Note that one of TA or TB is still odd. */
2514     }
2515 
2516     /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2517      * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2518      * - If there was at least one loop iteration, then one of TA or TB is odd,
2519      *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2520      *   lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2521      * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
2522      *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
2523      */
2524 
2525     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
2526     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
2527 
2528 cleanup:
2529 
2530     mbedtls_mpi_free( &TG ); mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
2531 
2532     return( ret );
2533 }
2534 
2535 /*
2536  * Fill X with size bytes of random.
2537  *
2538  * Use a temporary bytes representation to make sure the result is the same
2539  * regardless of the platform endianness (useful when f_rng is actually
2540  * deterministic, eg for tests).
2541  */
2542 int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
2543                      int (*f_rng)(void *, unsigned char *, size_t),
2544                      void *p_rng )
2545 {
2546     int ret;
2547     size_t const limbs = CHARS_TO_LIMBS( size );
2548     size_t const overhead = ( limbs * ciL ) - size;
2549     unsigned char *Xp;
2550 
2551     MPI_VALIDATE_RET( X     != NULL );
2552     MPI_VALIDATE_RET( f_rng != NULL );
2553 
2554     /* Ensure that target MPI has exactly the necessary number of limbs */
2555     if( X->n != limbs )
2556     {
2557         mbedtls_mpi_free( X );
2558         mbedtls_mpi_init( X );
2559         MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, limbs ) );
2560     }
2561     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
2562 
2563     Xp = (unsigned char*) X->p;
2564     MBEDTLS_MPI_CHK( f_rng( p_rng, Xp + overhead, size ) );
2565 
2566     mpi_bigendian_to_host( X->p, limbs );
2567 
2568 cleanup:
2569     return( ret );
2570 }
2571 
2572 /*
2573  * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64)
2574  */
2575 int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
2576 {
2577     int ret;
2578     mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
2579     MPI_VALIDATE_RET( X != NULL );
2580     MPI_VALIDATE_RET( A != NULL );
2581     MPI_VALIDATE_RET( N != NULL );
2582 
2583     if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
2584         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2585 
2586     mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
2587     mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
2588     mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
2589 
2590     MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
2591 
2592     if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
2593     {
2594         ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2595         goto cleanup;
2596     }
2597 
2598     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
2599     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
2600     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
2601     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
2602 
2603     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
2604     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
2605     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
2606     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
2607 
2608     do
2609     {
2610         while( ( TU.p[0] & 1 ) == 0 )
2611         {
2612             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
2613 
2614             if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
2615             {
2616                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
2617                 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
2618             }
2619 
2620             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
2621             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
2622         }
2623 
2624         while( ( TV.p[0] & 1 ) == 0 )
2625         {
2626             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
2627 
2628             if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
2629             {
2630                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
2631                 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
2632             }
2633 
2634             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
2635             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
2636         }
2637 
2638         if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
2639         {
2640             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
2641             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
2642             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
2643         }
2644         else
2645         {
2646             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
2647             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
2648             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
2649         }
2650     }
2651     while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
2652 
2653     while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
2654         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
2655 
2656     while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
2657         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
2658 
2659     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
2660 
2661 cleanup:
2662 
2663     mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
2664     mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
2665     mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
2666 
2667     return( ret );
2668 }
2669 
2670 #if defined(MBEDTLS_GENPRIME)
2671 
2672 static const int small_prime[] =
2673 {
2674         3,    5,    7,   11,   13,   17,   19,   23,
2675        29,   31,   37,   41,   43,   47,   53,   59,
2676        61,   67,   71,   73,   79,   83,   89,   97,
2677       101,  103,  107,  109,  113,  127,  131,  137,
2678       139,  149,  151,  157,  163,  167,  173,  179,
2679       181,  191,  193,  197,  199,  211,  223,  227,
2680       229,  233,  239,  241,  251,  257,  263,  269,
2681       271,  277,  281,  283,  293,  307,  311,  313,
2682       317,  331,  337,  347,  349,  353,  359,  367,
2683       373,  379,  383,  389,  397,  401,  409,  419,
2684       421,  431,  433,  439,  443,  449,  457,  461,
2685       463,  467,  479,  487,  491,  499,  503,  509,
2686       521,  523,  541,  547,  557,  563,  569,  571,
2687       577,  587,  593,  599,  601,  607,  613,  617,
2688       619,  631,  641,  643,  647,  653,  659,  661,
2689       673,  677,  683,  691,  701,  709,  719,  727,
2690       733,  739,  743,  751,  757,  761,  769,  773,
2691       787,  797,  809,  811,  821,  823,  827,  829,
2692       839,  853,  857,  859,  863,  877,  881,  883,
2693       887,  907,  911,  919,  929,  937,  941,  947,
2694       953,  967,  971,  977,  983,  991,  997, -103
2695 };
2696 
2697 /*
2698  * Small divisors test (X must be positive)
2699  *
2700  * Return values:
2701  * 0: no small factor (possible prime, more tests needed)
2702  * 1: certain prime
2703  * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
2704  * other negative: error
2705  */
2706 static int mpi_check_small_factors( const mbedtls_mpi *X )
2707 {
2708     int ret = 0;
2709     size_t i;
2710     mbedtls_mpi_uint r;
2711 
2712     if( ( X->p[0] & 1 ) == 0 )
2713         return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
2714 
2715     for( i = 0; small_prime[i] > 0; i++ )
2716     {
2717         if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
2718             return( 1 );
2719 
2720         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
2721 
2722         if( r == 0 )
2723             return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
2724     }
2725 
2726 cleanup:
2727     return( ret );
2728 }
2729 
2730 /*
2731  * Miller-Rabin pseudo-primality test  (HAC 4.24)
2732  */
2733 static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
2734                              int (*f_rng)(void *, unsigned char *, size_t),
2735                              void *p_rng )
2736 {
2737     int ret, count;
2738     size_t i, j, k, s;
2739     mbedtls_mpi W, R, T, A, RR;
2740 
2741     MPI_VALIDATE_RET( X     != NULL );
2742     MPI_VALIDATE_RET( f_rng != NULL );
2743 
2744     mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
2745     mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
2746     mbedtls_mpi_init( &RR );
2747 
2748     /*
2749      * W = |X| - 1
2750      * R = W >> lsb( W )
2751      */
2752     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
2753     s = mbedtls_mpi_lsb( &W );
2754     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
2755     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
2756 
2757     for( i = 0; i < rounds; i++ )
2758     {
2759         /*
2760          * pick a random A, 1 < A < |X| - 1
2761          */
2762         count = 0;
2763         do {
2764             MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
2765 
2766             j = mbedtls_mpi_bitlen( &A );
2767             k = mbedtls_mpi_bitlen( &W );
2768             if (j > k) {
2769                 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
2770             }
2771 
2772             if (count++ > 30) {
2773                 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2774                 goto cleanup;
2775             }
2776 
2777         } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
2778                   mbedtls_mpi_cmp_int( &A, 1 )  <= 0    );
2779 
2780         /*
2781          * A = A^R mod |X|
2782          */
2783         MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
2784 
2785         if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
2786             mbedtls_mpi_cmp_int( &A,  1 ) == 0 )
2787             continue;
2788 
2789         j = 1;
2790         while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
2791         {
2792             /*
2793              * A = A * A mod |X|
2794              */
2795             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
2796             MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X  ) );
2797 
2798             if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
2799                 break;
2800 
2801             j++;
2802         }
2803 
2804         /*
2805          * not prime if A != |X| - 1 or A == 1
2806          */
2807         if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
2808             mbedtls_mpi_cmp_int( &A,  1 ) == 0 )
2809         {
2810             ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2811             break;
2812         }
2813     }
2814 
2815 cleanup:
2816     mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
2817     mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
2818     mbedtls_mpi_free( &RR );
2819 
2820     return( ret );
2821 }
2822 
2823 /*
2824  * Pseudo-primality test: small factors, then Miller-Rabin
2825  */
2826 int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
2827                               int (*f_rng)(void *, unsigned char *, size_t),
2828                               void *p_rng )
2829 {
2830     int ret;
2831     mbedtls_mpi XX;
2832     MPI_VALIDATE_RET( X     != NULL );
2833     MPI_VALIDATE_RET( f_rng != NULL );
2834 
2835     XX.s = 1;
2836     XX.n = X->n;
2837     XX.p = X->p;
2838 
2839     if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
2840         mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
2841         return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
2842 
2843     if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
2844         return( 0 );
2845 
2846     if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
2847     {
2848         if( ret == 1 )
2849             return( 0 );
2850 
2851         return( ret );
2852     }
2853 
2854     return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
2855 }
2856 
2857 #if !defined(MBEDTLS_DEPRECATED_REMOVED)
2858 /*
2859  * Pseudo-primality test, error probability 2^-80
2860  */
2861 int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
2862                   int (*f_rng)(void *, unsigned char *, size_t),
2863                   void *p_rng )
2864 {
2865     MPI_VALIDATE_RET( X     != NULL );
2866     MPI_VALIDATE_RET( f_rng != NULL );
2867 
2868     /*
2869      * In the past our key generation aimed for an error rate of at most
2870      * 2^-80. Since this function is deprecated, aim for the same certainty
2871      * here as well.
2872      */
2873     return( mbedtls_mpi_is_prime_ext( X, 40, f_rng, p_rng ) );
2874 }
2875 #endif
2876 
2877 /*
2878  * Prime number generation
2879  *
2880  * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2881  * be either 1024 bits or 1536 bits long, and flags must contain
2882  * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
2883  */
2884 int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
2885                    int (*f_rng)(void *, unsigned char *, size_t),
2886                    void *p_rng )
2887 {
2888 #ifdef MBEDTLS_HAVE_INT64
2889 // ceil(2^63.5)
2890 #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2891 #else
2892 // ceil(2^31.5)
2893 #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2894 #endif
2895     int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2896     size_t k, n;
2897     int rounds;
2898     mbedtls_mpi_uint r;
2899     mbedtls_mpi Y;
2900 
2901     MPI_VALIDATE_RET( X     != NULL );
2902     MPI_VALIDATE_RET( f_rng != NULL );
2903 
2904     if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
2905         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2906 
2907     mbedtls_mpi_init( &Y );
2908 
2909     n = BITS_TO_LIMBS( nbits );
2910 
2911     if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
2912     {
2913         /*
2914          * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2915          */
2916         rounds = ( ( nbits >= 1300 ) ?  2 : ( nbits >=  850 ) ?  3 :
2917                    ( nbits >=  650 ) ?  4 : ( nbits >=  350 ) ?  8 :
2918                    ( nbits >=  250 ) ? 12 : ( nbits >=  150 ) ? 18 : 27 );
2919     }
2920     else
2921     {
2922         /*
2923          * 2^-100 error probability, number of rounds computed based on HAC,
2924          * fact 4.48
2925          */
2926         rounds = ( ( nbits >= 1450 ) ?  4 : ( nbits >=  1150 ) ?  5 :
2927                    ( nbits >= 1000 ) ?  6 : ( nbits >=   850 ) ?  7 :
2928                    ( nbits >=  750 ) ?  8 : ( nbits >=   500 ) ? 13 :
2929                    ( nbits >=  250 ) ? 28 : ( nbits >=   150 ) ? 40 : 51 );
2930     }
2931 
2932     while( 1 )
2933     {
2934         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
2935         /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2936         if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
2937 
2938         k = n * biL;
2939         if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
2940         X->p[0] |= 1;
2941 
2942         if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
2943         {
2944             ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
2945 
2946             if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2947                 goto cleanup;
2948         }
2949         else
2950         {
2951             /*
2952              * An necessary condition for Y and X = 2Y + 1 to be prime
2953              * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2954              * Make sure it is satisfied, while keeping X = 3 mod 4
2955              */
2956 
2957             X->p[0] |= 2;
2958 
2959             MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
2960             if( r == 0 )
2961                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
2962             else if( r == 1 )
2963                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
2964 
2965             /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2966             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
2967             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
2968 
2969             while( 1 )
2970             {
2971                 /*
2972                  * First, check small factors for X and Y
2973                  * before doing Miller-Rabin on any of them
2974                  */
2975                 if( ( ret = mpi_check_small_factors(  X         ) ) == 0 &&
2976                     ( ret = mpi_check_small_factors( &Y         ) ) == 0 &&
2977                     ( ret = mpi_miller_rabin(  X, rounds, f_rng, p_rng  ) )
2978                                                                     == 0 &&
2979                     ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng  ) )
2980                                                                     == 0 )
2981                     goto cleanup;
2982 
2983                 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2984                     goto cleanup;
2985 
2986                 /*
2987                  * Next candidates. We want to preserve Y = (X-1) / 2 and
2988                  * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2989                  * so up Y by 6 and X by 12.
2990                  */
2991                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int(  X,  X, 12 ) );
2992                 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6  ) );
2993             }
2994         }
2995     }
2996 
2997 cleanup:
2998 
2999     mbedtls_mpi_free( &Y );
3000 
3001     return( ret );
3002 }
3003 
3004 #endif /* MBEDTLS_GENPRIME */
3005 
3006 #if defined(MBEDTLS_SELF_TEST)
3007 
3008 #define GCD_PAIR_COUNT  3
3009 
3010 static const int gcd_pairs[GCD_PAIR_COUNT][3] =
3011 {
3012     { 693, 609, 21 },
3013     { 1764, 868, 28 },
3014     { 768454923, 542167814, 1 }
3015 };
3016 
3017 /*
3018  * Checkup routine
3019  */
3020 int mbedtls_mpi_self_test( int verbose )
3021 {
3022     int ret, i;
3023     mbedtls_mpi A, E, N, X, Y, U, V;
3024 
3025     mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
3026     mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
3027 
3028     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
3029         "EFE021C2645FD1DC586E69184AF4A31E" \
3030         "D5F53E93B5F123FA41680867BA110131" \
3031         "944FE7952E2517337780CB0DB80E61AA" \
3032         "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
3033 
3034     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
3035         "B2E7EFD37075B9F03FF989C7C5051C20" \
3036         "34D2A323810251127E7BF8625A4F49A5" \
3037         "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
3038         "5B5C25763222FEFCCFC38B832366C29E" ) );
3039 
3040     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
3041         "0066A198186C18C10B2F5ED9B522752A" \
3042         "9830B69916E535C8F047518A889A43A5" \
3043         "94B6BED27A168D31D4A52F88925AA8F5" ) );
3044 
3045     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
3046 
3047     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
3048         "602AB7ECA597A3D6B56FF9829A5E8B85" \
3049         "9E857EA95A03512E2BAE7391688D264A" \
3050         "A5663B0341DB9CCFD2C4C5F421FEC814" \
3051         "8001B72E848A38CAE1C65F78E56ABDEF" \
3052         "E12D3C039B8A02D6BE593F0BBBDA56F1" \
3053         "ECF677152EF804370C1A305CAF3B5BF1" \
3054         "30879B56C61DE584A0F53A2447A51E" ) );
3055 
3056     if( verbose != 0 )
3057         mbedtls_printf( "  MPI test #1 (mul_mpi): " );
3058 
3059     if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
3060     {
3061         if( verbose != 0 )
3062             mbedtls_printf( "failed\n" );
3063 
3064         ret = 1;
3065         goto cleanup;
3066     }
3067 
3068     if( verbose != 0 )
3069         mbedtls_printf( "passed\n" );
3070 
3071     MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
3072 
3073     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
3074         "256567336059E52CAE22925474705F39A94" ) );
3075 
3076     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
3077         "6613F26162223DF488E9CD48CC132C7A" \
3078         "0AC93C701B001B092E4E5B9F73BCD27B" \
3079         "9EE50D0657C77F374E903CDFA4C642" ) );
3080 
3081     if( verbose != 0 )
3082         mbedtls_printf( "  MPI test #2 (div_mpi): " );
3083 
3084     if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
3085         mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
3086     {
3087         if( verbose != 0 )
3088             mbedtls_printf( "failed\n" );
3089 
3090         ret = 1;
3091         goto cleanup;
3092     }
3093 
3094     if( verbose != 0 )
3095         mbedtls_printf( "passed\n" );
3096 
3097     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
3098 
3099     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
3100         "36E139AEA55215609D2816998ED020BB" \
3101         "BD96C37890F65171D948E9BC7CBAA4D9" \
3102         "325D24D6A3C12710F10A09FA08AB87" ) );
3103 
3104     if( verbose != 0 )
3105         mbedtls_printf( "  MPI test #3 (exp_mod): " );
3106 
3107     if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
3108     {
3109         if( verbose != 0 )
3110             mbedtls_printf( "failed\n" );
3111 
3112         ret = 1;
3113         goto cleanup;
3114     }
3115 
3116     if( verbose != 0 )
3117         mbedtls_printf( "passed\n" );
3118 
3119     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
3120 
3121     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
3122         "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
3123         "C3DBA76456363A10869622EAC2DD84EC" \
3124         "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
3125 
3126     if( verbose != 0 )
3127         mbedtls_printf( "  MPI test #4 (inv_mod): " );
3128 
3129     if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
3130     {
3131         if( verbose != 0 )
3132             mbedtls_printf( "failed\n" );
3133 
3134         ret = 1;
3135         goto cleanup;
3136     }
3137 
3138     if( verbose != 0 )
3139         mbedtls_printf( "passed\n" );
3140 
3141     if( verbose != 0 )
3142         mbedtls_printf( "  MPI test #5 (simple gcd): " );
3143 
3144     for( i = 0; i < GCD_PAIR_COUNT; i++ )
3145     {
3146         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
3147         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
3148 
3149         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
3150 
3151         if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
3152         {
3153             if( verbose != 0 )
3154                 mbedtls_printf( "failed at %d\n", i );
3155 
3156             ret = 1;
3157             goto cleanup;
3158         }
3159     }
3160 
3161     if( verbose != 0 )
3162         mbedtls_printf( "passed\n" );
3163 
3164 cleanup:
3165 
3166     if( ret != 0 && verbose != 0 )
3167         mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
3168 
3169     mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
3170     mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
3171 
3172     if( verbose != 0 )
3173         mbedtls_printf( "\n" );
3174 
3175     return( ret );
3176 }
3177 
3178 #endif /* MBEDTLS_SELF_TEST */
3179 
3180 #endif /* MBEDTLS_BIGNUM_C */
3181