1 /*
2 ** License Applicability. Except to the extent portions of this file are
3 ** made subject to an alternative license as permitted in the SGI Free
4 ** Software License B, Version 1.1 (the "License"), the contents of this
5 ** file are subject only to the provisions of the License. You may not use
6 ** this file except in compliance with the License. You may obtain a copy
7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9 **
10 ** http://oss.sgi.com/projects/FreeB
11 **
12 ** Note that, as provided in the License, the Software is distributed on an
13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17 **
18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21 ** Copyright in any portions created by third parties is as indicated
22 ** elsewhere herein. All Rights Reserved.
23 **
24 ** Additional Notice Provisions: The application programming interfaces
25 ** established by SGI in conjunction with the Original Code are The
26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31 ** published by SGI, but has not been independently verified as being
32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
33 **
34 */
35 /*
36 */
37 
38 //#include <stdlib.h>
39 //#include <stdio.h>
40 
41 #include "glcurveval.h"
42 
43 
44 /*
45  *compute the Bezier polynomials C[n,j](v) for all j at v with
46  *return values stored in coeff[], where
47  *  C[n,j](v) = (n,j) * v^j * (1-v)^(n-j),
48  *  j=0,1,2,...,n.
49  *order : n+1
50  *vprime: v
51  *coeff : coeff[j]=C[n,j](v), this array store the returned values.
52  *The algorithm is a recursive scheme:
53  *   C[0,0]=1;
54  *   C[n,j](v) = (1-v)*C[n-1,j](v) + v*C[n-1,j-1](v), n>=1
55  *This code is copied from opengl/soft/so_eval.c:PreEvaluate
56  */
57 void OpenGLCurveEvaluator::inPreEvaluate(int order, REAL vprime, REAL *coeff)
58 {
59   int i, j;
60   REAL oldval, temp;
61   REAL oneMinusvprime;
62 
63   /*
64    * Minor optimization
65    * Compute orders 1 and 2 outright, and set coeff[0], coeff[1] to
66      * their i==1 loop values to avoid the initialization and the i==1 loop.
67      */
68   if (order == 1) {
69     coeff[0] = 1.0;
70     return;
71   }
72 
73   oneMinusvprime = 1-vprime;
74   coeff[0] = oneMinusvprime;
75   coeff[1] = vprime;
76   if (order == 2) return;
77 
78   for (i = 2; i < order; i++) {
79     oldval = coeff[0] * vprime;
80     coeff[0] = oneMinusvprime * coeff[0];
81     for (j = 1; j < i; j++) {
82       temp = oldval;
83       oldval = coeff[j] * vprime;
84 	    coeff[j] = temp + oneMinusvprime * coeff[j];
85     }
86     coeff[j] = oldval;
87   }
88 }
89 
90 void OpenGLCurveEvaluator::inMap1f(int which, //0: vert, 1: norm, 2: color, 3: tex
91 				   int k, //dimension
92 				   REAL ulower,
93 				   REAL uupper,
94 				   int ustride,
95 				   int uorder,
96 				   REAL *ctlpoints)
97 {
98   int i,x;
99   curveEvalMachine *temp_em;
100   switch(which){
101   case 0: //vertex
102     vertex_flag = 1;
103     temp_em = &em_vertex;
104     break;
105   case 1: //normal
106     normal_flag = 1;
107     temp_em = &em_normal;
108     break;
109   case 2: //color
110     color_flag = 1;
111     temp_em = &em_color;
112     break;
113   default:
114     texcoord_flag = 1;
115     temp_em = &em_texcoord;
116     break;
117   }
118 
119   REAL *data = temp_em->ctlpoints;
120   temp_em->uprime = -1; //initialized
121   temp_em->k = k;
122   temp_em->u1 = ulower;
123   temp_em->u2 = uupper;
124   temp_em->ustride = ustride;
125   temp_em->uorder = uorder;
126   /*copy the control points*/
127   for(i=0; i<uorder; i++){
128     for(x=0; x<k; x++){
129       data[x] = ctlpoints[x];
130     }
131     ctlpoints += ustride;
132     data += k;
133   }
134 }
135 
136 void OpenGLCurveEvaluator::inDoDomain1(curveEvalMachine *em, REAL u, REAL *retPoint)
137 {
138   int j, row;
139   REAL the_uprime;
140   REAL *data;
141 
142   if(em->u2 == em->u1)
143     return;
144   the_uprime = (u-em->u1) / (em->u2-em->u1);
145   /*use already cached values if possible*/
146   if(em->uprime != the_uprime){
147     inPreEvaluate(em->uorder, the_uprime, em->ucoeff);
148     em->uprime = the_uprime;
149   }
150 
151   for(j=0; j<em->k; j++){
152     data = em->ctlpoints+j;
153     retPoint[j] = 0.0;
154     for(row=0; row<em->uorder; row++)
155       {
156 	retPoint[j] += em->ucoeff[row] * (*data);
157 	data += em->k;
158       }
159   }
160 }
161 
162 void  OpenGLCurveEvaluator::inDoEvalCoord1(REAL u)
163 {
164   REAL temp_vertex[4];
165   REAL temp_normal[3];
166   REAL temp_color[4];
167   REAL temp_texcoord[4];
168   if(texcoord_flag) //there is a texture map
169     {
170       inDoDomain1(&em_texcoord, u, temp_texcoord);
171       texcoordCallBack(temp_texcoord, userData);
172     }
173 #ifdef DEBUG
174 printf("color_flag = %i\n", color_flag);
175 #endif
176   if(color_flag) //there is a color map
177     {
178       inDoDomain1(&em_color, u, temp_color);
179       colorCallBack(temp_color, userData);
180     }
181   if(normal_flag) //there is a normal map
182     {
183       inDoDomain1(&em_normal, u, temp_normal);
184       normalCallBack(temp_normal, userData);
185     }
186   if(vertex_flag)
187     {
188       inDoDomain1(&em_vertex, u, temp_vertex);
189       vertexCallBack(temp_vertex, userData);
190     }
191 }
192 
193 void OpenGLCurveEvaluator::inMapMesh1f(int umin, int umax)
194 {
195   REAL du, u;
196   int i;
197   if(global_grid_nu == 0)
198     return; //no points to output
199   du = (global_grid_u1 - global_grid_u0) / (REAL) global_grid_nu;
200   bgnline();
201   for(i=umin; i<= umax; i++){
202     u = (i==global_grid_nu)? global_grid_u1: global_grid_u0 + i*du;
203     inDoEvalCoord1(u);
204   }
205   endline();
206 }
207