1 /* 2 * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008) 3 * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice including the dates of first publication and 13 * either this permission notice or a reference to 14 * http://oss.sgi.com/projects/FreeB/ 15 * shall be included in all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, 21 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF 22 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Except as contained in this notice, the name of Silicon Graphics, Inc. 26 * shall not be used in advertising or otherwise to promote the sale, use or 27 * other dealings in this Software without prior written authorization from 28 * Silicon Graphics, Inc. 29 */ 30 /* 31 ** Author: Eric Veach, July 1994. 32 ** 33 */ 34 35 #include "gluos.h" 36 //#include <stddef.h> 37 #include <assert.h> 38 #include "mesh.h" 39 #include "memalloc.h" 40 41 #ifndef TRUE 42 #define TRUE 1 43 #endif 44 #ifndef FALSE 45 #define FALSE 0 46 #endif 47 48 static GLUvertex *allocVertex() 49 { 50 return (GLUvertex *)memAlloc( sizeof( GLUvertex )); 51 } 52 53 static GLUface *allocFace() 54 { 55 return (GLUface *)memAlloc( sizeof( GLUface )); 56 } 57 58 /************************ Utility Routines ************************/ 59 60 /* Allocate and free half-edges in pairs for efficiency. 61 * The *only* place that should use this fact is allocation/free. 62 */ 63 typedef struct { GLUhalfEdge e, eSym; } EdgePair; 64 65 /* MakeEdge creates a new pair of half-edges which form their own loop. 66 * No vertex or face structures are allocated, but these must be assigned 67 * before the current edge operation is completed. 68 */ 69 static GLUhalfEdge *MakeEdge( GLUhalfEdge *eNext ) 70 { 71 GLUhalfEdge *e; 72 GLUhalfEdge *eSym; 73 GLUhalfEdge *ePrev; 74 EdgePair *pair = (EdgePair *)memAlloc( sizeof( EdgePair )); 75 if (pair == NULL) return NULL; 76 77 e = &pair->e; 78 eSym = &pair->eSym; 79 80 /* Make sure eNext points to the first edge of the edge pair */ 81 if( eNext->Sym < eNext ) { eNext = eNext->Sym; } 82 83 /* Insert in circular doubly-linked list before eNext. 84 * Note that the prev pointer is stored in Sym->next. 85 */ 86 ePrev = eNext->Sym->next; 87 eSym->next = ePrev; 88 ePrev->Sym->next = e; 89 e->next = eNext; 90 eNext->Sym->next = eSym; 91 92 e->Sym = eSym; 93 e->Onext = e; 94 e->Lnext = eSym; 95 e->Org = NULL; 96 e->Lface = NULL; 97 e->winding = 0; 98 e->activeRegion = NULL; 99 100 eSym->Sym = e; 101 eSym->Onext = eSym; 102 eSym->Lnext = e; 103 eSym->Org = NULL; 104 eSym->Lface = NULL; 105 eSym->winding = 0; 106 eSym->activeRegion = NULL; 107 108 return e; 109 } 110 111 /* Splice( a, b ) is best described by the Guibas/Stolfi paper or the 112 * CS348a notes (see mesh.h). Basically it modifies the mesh so that 113 * a->Onext and b->Onext are exchanged. This can have various effects 114 * depending on whether a and b belong to different face or vertex rings. 115 * For more explanation see __gl_meshSplice() below. 116 */ 117 static void Splice( GLUhalfEdge *a, GLUhalfEdge *b ) 118 { 119 GLUhalfEdge *aOnext = a->Onext; 120 GLUhalfEdge *bOnext = b->Onext; 121 122 aOnext->Sym->Lnext = b; 123 bOnext->Sym->Lnext = a; 124 a->Onext = bOnext; 125 b->Onext = aOnext; 126 } 127 128 /* MakeVertex( newVertex, eOrig, vNext ) attaches a new vertex and makes it the 129 * origin of all edges in the vertex loop to which eOrig belongs. "vNext" gives 130 * a place to insert the new vertex in the global vertex list. We insert 131 * the new vertex *before* vNext so that algorithms which walk the vertex 132 * list will not see the newly created vertices. 133 */ 134 static void MakeVertex( GLUvertex *newVertex, 135 GLUhalfEdge *eOrig, GLUvertex *vNext ) 136 { 137 GLUhalfEdge *e; 138 GLUvertex *vPrev; 139 GLUvertex *vNew = newVertex; 140 141 assert(vNew != NULL); 142 143 /* insert in circular doubly-linked list before vNext */ 144 vPrev = vNext->prev; 145 vNew->prev = vPrev; 146 vPrev->next = vNew; 147 vNew->next = vNext; 148 vNext->prev = vNew; 149 150 vNew->anEdge = eOrig; 151 vNew->data = NULL; 152 /* leave coords, s, t undefined */ 153 154 /* fix other edges on this vertex loop */ 155 e = eOrig; 156 do { 157 e->Org = vNew; 158 e = e->Onext; 159 } while( e != eOrig ); 160 } 161 162 /* MakeFace( newFace, eOrig, fNext ) attaches a new face and makes it the left 163 * face of all edges in the face loop to which eOrig belongs. "fNext" gives 164 * a place to insert the new face in the global face list. We insert 165 * the new face *before* fNext so that algorithms which walk the face 166 * list will not see the newly created faces. 167 */ 168 static void MakeFace( GLUface *newFace, GLUhalfEdge *eOrig, GLUface *fNext ) 169 { 170 GLUhalfEdge *e; 171 GLUface *fPrev; 172 GLUface *fNew = newFace; 173 174 assert(fNew != NULL); 175 176 /* insert in circular doubly-linked list before fNext */ 177 fPrev = fNext->prev; 178 fNew->prev = fPrev; 179 fPrev->next = fNew; 180 fNew->next = fNext; 181 fNext->prev = fNew; 182 183 fNew->anEdge = eOrig; 184 fNew->data = NULL; 185 fNew->trail = NULL; 186 fNew->marked = FALSE; 187 188 /* The new face is marked "inside" if the old one was. This is a 189 * convenience for the common case where a face has been split in two. 190 */ 191 fNew->inside = fNext->inside; 192 193 /* fix other edges on this face loop */ 194 e = eOrig; 195 do { 196 e->Lface = fNew; 197 e = e->Lnext; 198 } while( e != eOrig ); 199 } 200 201 /* KillEdge( eDel ) destroys an edge (the half-edges eDel and eDel->Sym), 202 * and removes from the global edge list. 203 */ 204 static void KillEdge( GLUhalfEdge *eDel ) 205 { 206 GLUhalfEdge *ePrev, *eNext; 207 208 /* Half-edges are allocated in pairs, see EdgePair above */ 209 if( eDel->Sym < eDel ) { eDel = eDel->Sym; } 210 211 /* delete from circular doubly-linked list */ 212 eNext = eDel->next; 213 ePrev = eDel->Sym->next; 214 eNext->Sym->next = ePrev; 215 ePrev->Sym->next = eNext; 216 217 memFree( eDel ); 218 } 219 220 221 /* KillVertex( vDel ) destroys a vertex and removes it from the global 222 * vertex list. It updates the vertex loop to point to a given new vertex. 223 */ 224 static void KillVertex( GLUvertex *vDel, GLUvertex *newOrg ) 225 { 226 GLUhalfEdge *e, *eStart = vDel->anEdge; 227 GLUvertex *vPrev, *vNext; 228 229 /* change the origin of all affected edges */ 230 e = eStart; 231 do { 232 e->Org = newOrg; 233 e = e->Onext; 234 } while( e != eStart ); 235 236 /* delete from circular doubly-linked list */ 237 vPrev = vDel->prev; 238 vNext = vDel->next; 239 vNext->prev = vPrev; 240 vPrev->next = vNext; 241 242 memFree( vDel ); 243 } 244 245 /* KillFace( fDel ) destroys a face and removes it from the global face 246 * list. It updates the face loop to point to a given new face. 247 */ 248 static void KillFace( GLUface *fDel, GLUface *newLface ) 249 { 250 GLUhalfEdge *e, *eStart = fDel->anEdge; 251 GLUface *fPrev, *fNext; 252 253 /* change the left face of all affected edges */ 254 e = eStart; 255 do { 256 e->Lface = newLface; 257 e = e->Lnext; 258 } while( e != eStart ); 259 260 /* delete from circular doubly-linked list */ 261 fPrev = fDel->prev; 262 fNext = fDel->next; 263 fNext->prev = fPrev; 264 fPrev->next = fNext; 265 266 memFree( fDel ); 267 } 268 269 270 /****************** Basic Edge Operations **********************/ 271 272 /* __gl_meshMakeEdge creates one edge, two vertices, and a loop (face). 273 * The loop consists of the two new half-edges. 274 */ 275 GLUhalfEdge *__gl_meshMakeEdge( GLUmesh *mesh ) 276 { 277 GLUvertex *newVertex1= allocVertex(); 278 GLUvertex *newVertex2= allocVertex(); 279 GLUface *newFace= allocFace(); 280 GLUhalfEdge *e; 281 282 /* if any one is null then all get freed */ 283 if (newVertex1 == NULL || newVertex2 == NULL || newFace == NULL) { 284 if (newVertex1 != NULL) memFree(newVertex1); 285 if (newVertex2 != NULL) memFree(newVertex2); 286 if (newFace != NULL) memFree(newFace); 287 return NULL; 288 } 289 290 e = MakeEdge( &mesh->eHead ); 291 if (e == NULL) { 292 memFree(newVertex1); 293 memFree(newVertex2); 294 memFree(newFace); 295 return NULL; 296 } 297 298 MakeVertex( newVertex1, e, &mesh->vHead ); 299 MakeVertex( newVertex2, e->Sym, &mesh->vHead ); 300 MakeFace( newFace, e, &mesh->fHead ); 301 return e; 302 } 303 304 305 /* __gl_meshSplice( eOrg, eDst ) is the basic operation for changing the 306 * mesh connectivity and topology. It changes the mesh so that 307 * eOrg->Onext <- OLD( eDst->Onext ) 308 * eDst->Onext <- OLD( eOrg->Onext ) 309 * where OLD(...) means the value before the meshSplice operation. 310 * 311 * This can have two effects on the vertex structure: 312 * - if eOrg->Org != eDst->Org, the two vertices are merged together 313 * - if eOrg->Org == eDst->Org, the origin is split into two vertices 314 * In both cases, eDst->Org is changed and eOrg->Org is untouched. 315 * 316 * Similarly (and independently) for the face structure, 317 * - if eOrg->Lface == eDst->Lface, one loop is split into two 318 * - if eOrg->Lface != eDst->Lface, two distinct loops are joined into one 319 * In both cases, eDst->Lface is changed and eOrg->Lface is unaffected. 320 * 321 * Some special cases: 322 * If eDst == eOrg, the operation has no effect. 323 * If eDst == eOrg->Lnext, the new face will have a single edge. 324 * If eDst == eOrg->Lprev, the old face will have a single edge. 325 * If eDst == eOrg->Onext, the new vertex will have a single edge. 326 * If eDst == eOrg->Oprev, the old vertex will have a single edge. 327 */ 328 int __gl_meshSplice( GLUhalfEdge *eOrg, GLUhalfEdge *eDst ) 329 { 330 int joiningLoops = FALSE; 331 int joiningVertices = FALSE; 332 333 if( eOrg == eDst ) return 1; 334 335 if( eDst->Org != eOrg->Org ) { 336 /* We are merging two disjoint vertices -- destroy eDst->Org */ 337 joiningVertices = TRUE; 338 KillVertex( eDst->Org, eOrg->Org ); 339 } 340 if( eDst->Lface != eOrg->Lface ) { 341 /* We are connecting two disjoint loops -- destroy eDst->Lface */ 342 joiningLoops = TRUE; 343 KillFace( eDst->Lface, eOrg->Lface ); 344 } 345 346 /* Change the edge structure */ 347 Splice( eDst, eOrg ); 348 349 if( ! joiningVertices ) { 350 GLUvertex *newVertex= allocVertex(); 351 if (newVertex == NULL) return 0; 352 353 /* We split one vertex into two -- the new vertex is eDst->Org. 354 * Make sure the old vertex points to a valid half-edge. 355 */ 356 MakeVertex( newVertex, eDst, eOrg->Org ); 357 eOrg->Org->anEdge = eOrg; 358 } 359 if( ! joiningLoops ) { 360 GLUface *newFace= allocFace(); 361 if (newFace == NULL) return 0; 362 363 /* We split one loop into two -- the new loop is eDst->Lface. 364 * Make sure the old face points to a valid half-edge. 365 */ 366 MakeFace( newFace, eDst, eOrg->Lface ); 367 eOrg->Lface->anEdge = eOrg; 368 } 369 370 return 1; 371 } 372 373 374 /* __gl_meshDelete( eDel ) removes the edge eDel. There are several cases: 375 * if (eDel->Lface != eDel->Rface), we join two loops into one; the loop 376 * eDel->Lface is deleted. Otherwise, we are splitting one loop into two; 377 * the newly created loop will contain eDel->Dst. If the deletion of eDel 378 * would create isolated vertices, those are deleted as well. 379 * 380 * This function could be implemented as two calls to __gl_meshSplice 381 * plus a few calls to memFree, but this would allocate and delete 382 * unnecessary vertices and faces. 383 */ 384 int __gl_meshDelete( GLUhalfEdge *eDel ) 385 { 386 GLUhalfEdge *eDelSym = eDel->Sym; 387 int joiningLoops = FALSE; 388 389 /* First step: disconnect the origin vertex eDel->Org. We make all 390 * changes to get a consistent mesh in this "intermediate" state. 391 */ 392 if( eDel->Lface != eDel->Rface ) { 393 /* We are joining two loops into one -- remove the left face */ 394 joiningLoops = TRUE; 395 KillFace( eDel->Lface, eDel->Rface ); 396 } 397 398 if( eDel->Onext == eDel ) { 399 KillVertex( eDel->Org, NULL ); 400 } else { 401 /* Make sure that eDel->Org and eDel->Rface point to valid half-edges */ 402 eDel->Rface->anEdge = eDel->Oprev; 403 eDel->Org->anEdge = eDel->Onext; 404 405 Splice( eDel, eDel->Oprev ); 406 if( ! joiningLoops ) { 407 GLUface *newFace= allocFace(); 408 if (newFace == NULL) return 0; 409 410 /* We are splitting one loop into two -- create a new loop for eDel. */ 411 MakeFace( newFace, eDel, eDel->Lface ); 412 } 413 } 414 415 /* Claim: the mesh is now in a consistent state, except that eDel->Org 416 * may have been deleted. Now we disconnect eDel->Dst. 417 */ 418 if( eDelSym->Onext == eDelSym ) { 419 KillVertex( eDelSym->Org, NULL ); 420 KillFace( eDelSym->Lface, NULL ); 421 } else { 422 /* Make sure that eDel->Dst and eDel->Lface point to valid half-edges */ 423 eDel->Lface->anEdge = eDelSym->Oprev; 424 eDelSym->Org->anEdge = eDelSym->Onext; 425 Splice( eDelSym, eDelSym->Oprev ); 426 } 427 428 /* Any isolated vertices or faces have already been freed. */ 429 KillEdge( eDel ); 430 431 return 1; 432 } 433 434 435 /******************** Other Edge Operations **********************/ 436 437 /* All these routines can be implemented with the basic edge 438 * operations above. They are provided for convenience and efficiency. 439 */ 440 441 442 /* __gl_meshAddEdgeVertex( eOrg ) creates a new edge eNew such that 443 * eNew == eOrg->Lnext, and eNew->Dst is a newly created vertex. 444 * eOrg and eNew will have the same left face. 445 */ 446 GLUhalfEdge *__gl_meshAddEdgeVertex( GLUhalfEdge *eOrg ) 447 { 448 GLUhalfEdge *eNewSym; 449 GLUhalfEdge *eNew = MakeEdge( eOrg ); 450 if (eNew == NULL) return NULL; 451 452 eNewSym = eNew->Sym; 453 454 /* Connect the new edge appropriately */ 455 Splice( eNew, eOrg->Lnext ); 456 457 /* Set the vertex and face information */ 458 eNew->Org = eOrg->Dst; 459 { 460 GLUvertex *newVertex= allocVertex(); 461 if (newVertex == NULL) return NULL; 462 463 MakeVertex( newVertex, eNewSym, eNew->Org ); 464 } 465 eNew->Lface = eNewSym->Lface = eOrg->Lface; 466 467 return eNew; 468 } 469 470 471 /* __gl_meshSplitEdge( eOrg ) splits eOrg into two edges eOrg and eNew, 472 * such that eNew == eOrg->Lnext. The new vertex is eOrg->Dst == eNew->Org. 473 * eOrg and eNew will have the same left face. 474 */ 475 GLUhalfEdge *__gl_meshSplitEdge( GLUhalfEdge *eOrg ) 476 { 477 GLUhalfEdge *eNew; 478 GLUhalfEdge *tempHalfEdge= __gl_meshAddEdgeVertex( eOrg ); 479 if (tempHalfEdge == NULL) return NULL; 480 481 eNew = tempHalfEdge->Sym; 482 483 /* Disconnect eOrg from eOrg->Dst and connect it to eNew->Org */ 484 Splice( eOrg->Sym, eOrg->Sym->Oprev ); 485 Splice( eOrg->Sym, eNew ); 486 487 /* Set the vertex and face information */ 488 eOrg->Dst = eNew->Org; 489 eNew->Dst->anEdge = eNew->Sym; /* may have pointed to eOrg->Sym */ 490 eNew->Rface = eOrg->Rface; 491 eNew->winding = eOrg->winding; /* copy old winding information */ 492 eNew->Sym->winding = eOrg->Sym->winding; 493 494 return eNew; 495 } 496 497 498 /* __gl_meshConnect( eOrg, eDst ) creates a new edge from eOrg->Dst 499 * to eDst->Org, and returns the corresponding half-edge eNew. 500 * If eOrg->Lface == eDst->Lface, this splits one loop into two, 501 * and the newly created loop is eNew->Lface. Otherwise, two disjoint 502 * loops are merged into one, and the loop eDst->Lface is destroyed. 503 * 504 * If (eOrg == eDst), the new face will have only two edges. 505 * If (eOrg->Lnext == eDst), the old face is reduced to a single edge. 506 * If (eOrg->Lnext->Lnext == eDst), the old face is reduced to two edges. 507 */ 508 GLUhalfEdge *__gl_meshConnect( GLUhalfEdge *eOrg, GLUhalfEdge *eDst ) 509 { 510 GLUhalfEdge *eNewSym; 511 int joiningLoops = FALSE; 512 GLUhalfEdge *eNew = MakeEdge( eOrg ); 513 if (eNew == NULL) return NULL; 514 515 eNewSym = eNew->Sym; 516 517 if( eDst->Lface != eOrg->Lface ) { 518 /* We are connecting two disjoint loops -- destroy eDst->Lface */ 519 joiningLoops = TRUE; 520 KillFace( eDst->Lface, eOrg->Lface ); 521 } 522 523 /* Connect the new edge appropriately */ 524 Splice( eNew, eOrg->Lnext ); 525 Splice( eNewSym, eDst ); 526 527 /* Set the vertex and face information */ 528 eNew->Org = eOrg->Dst; 529 eNewSym->Org = eDst->Org; 530 eNew->Lface = eNewSym->Lface = eOrg->Lface; 531 532 /* Make sure the old face points to a valid half-edge */ 533 eOrg->Lface->anEdge = eNewSym; 534 535 if( ! joiningLoops ) { 536 GLUface *newFace= allocFace(); 537 if (newFace == NULL) return NULL; 538 539 /* We split one loop into two -- the new loop is eNew->Lface */ 540 MakeFace( newFace, eNew, eOrg->Lface ); 541 } 542 return eNew; 543 } 544 545 546 /******************** Other Operations **********************/ 547 548 /* __gl_meshZapFace( fZap ) destroys a face and removes it from the 549 * global face list. All edges of fZap will have a NULL pointer as their 550 * left face. Any edges which also have a NULL pointer as their right face 551 * are deleted entirely (along with any isolated vertices this produces). 552 * An entire mesh can be deleted by zapping its faces, one at a time, 553 * in any order. Zapped faces cannot be used in further mesh operations! 554 */ 555 void __gl_meshZapFace( GLUface *fZap ) 556 { 557 GLUhalfEdge *eStart = fZap->anEdge; 558 GLUhalfEdge *e, *eNext, *eSym; 559 GLUface *fPrev, *fNext; 560 561 /* walk around face, deleting edges whose right face is also NULL */ 562 eNext = eStart->Lnext; 563 do { 564 e = eNext; 565 eNext = e->Lnext; 566 567 e->Lface = NULL; 568 if( e->Rface == NULL ) { 569 /* delete the edge -- see __gl_MeshDelete above */ 570 571 if( e->Onext == e ) { 572 KillVertex( e->Org, NULL ); 573 } else { 574 /* Make sure that e->Org points to a valid half-edge */ 575 e->Org->anEdge = e->Onext; 576 Splice( e, e->Oprev ); 577 } 578 eSym = e->Sym; 579 if( eSym->Onext == eSym ) { 580 KillVertex( eSym->Org, NULL ); 581 } else { 582 /* Make sure that eSym->Org points to a valid half-edge */ 583 eSym->Org->anEdge = eSym->Onext; 584 Splice( eSym, eSym->Oprev ); 585 } 586 KillEdge( e ); 587 } 588 } while( e != eStart ); 589 590 /* delete from circular doubly-linked list */ 591 fPrev = fZap->prev; 592 fNext = fZap->next; 593 fNext->prev = fPrev; 594 fPrev->next = fNext; 595 596 memFree( fZap ); 597 } 598 599 600 /* __gl_meshNewMesh() creates a new mesh with no edges, no vertices, 601 * and no loops (what we usually call a "face"). 602 */ 603 GLUmesh *__gl_meshNewMesh( void ) 604 { 605 GLUvertex *v; 606 GLUface *f; 607 GLUhalfEdge *e; 608 GLUhalfEdge *eSym; 609 GLUmesh *mesh = (GLUmesh *)memAlloc( sizeof( GLUmesh )); 610 if (mesh == NULL) { 611 return NULL; 612 } 613 614 v = &mesh->vHead; 615 f = &mesh->fHead; 616 e = &mesh->eHead; 617 eSym = &mesh->eHeadSym; 618 619 v->next = v->prev = v; 620 v->anEdge = NULL; 621 v->data = NULL; 622 623 f->next = f->prev = f; 624 f->anEdge = NULL; 625 f->data = NULL; 626 f->trail = NULL; 627 f->marked = FALSE; 628 f->inside = FALSE; 629 630 e->next = e; 631 e->Sym = eSym; 632 e->Onext = NULL; 633 e->Lnext = NULL; 634 e->Org = NULL; 635 e->Lface = NULL; 636 e->winding = 0; 637 e->activeRegion = NULL; 638 639 eSym->next = eSym; 640 eSym->Sym = e; 641 eSym->Onext = NULL; 642 eSym->Lnext = NULL; 643 eSym->Org = NULL; 644 eSym->Lface = NULL; 645 eSym->winding = 0; 646 eSym->activeRegion = NULL; 647 648 return mesh; 649 } 650 651 652 /* __gl_meshUnion( mesh1, mesh2 ) forms the union of all structures in 653 * both meshes, and returns the new mesh (the old meshes are destroyed). 654 */ 655 GLUmesh *__gl_meshUnion( GLUmesh *mesh1, GLUmesh *mesh2 ) 656 { 657 GLUface *f1 = &mesh1->fHead; 658 GLUvertex *v1 = &mesh1->vHead; 659 GLUhalfEdge *e1 = &mesh1->eHead; 660 GLUface *f2 = &mesh2->fHead; 661 GLUvertex *v2 = &mesh2->vHead; 662 GLUhalfEdge *e2 = &mesh2->eHead; 663 664 /* Add the faces, vertices, and edges of mesh2 to those of mesh1 */ 665 if( f2->next != f2 ) { 666 f1->prev->next = f2->next; 667 f2->next->prev = f1->prev; 668 f2->prev->next = f1; 669 f1->prev = f2->prev; 670 } 671 672 if( v2->next != v2 ) { 673 v1->prev->next = v2->next; 674 v2->next->prev = v1->prev; 675 v2->prev->next = v1; 676 v1->prev = v2->prev; 677 } 678 679 if( e2->next != e2 ) { 680 e1->Sym->next->Sym->next = e2->next; 681 e2->next->Sym->next = e1->Sym->next; 682 e2->Sym->next->Sym->next = e1; 683 e1->Sym->next = e2->Sym->next; 684 } 685 686 memFree( mesh2 ); 687 return mesh1; 688 } 689 690 691 #ifdef DELETE_BY_ZAPPING 692 693 /* __gl_meshDeleteMesh( mesh ) will free all storage for any valid mesh. 694 */ 695 void __gl_meshDeleteMesh( GLUmesh *mesh ) 696 { 697 GLUface *fHead = &mesh->fHead; 698 699 while( fHead->next != fHead ) { 700 __gl_meshZapFace( fHead->next ); 701 } 702 assert( mesh->vHead.next == &mesh->vHead ); 703 704 memFree( mesh ); 705 } 706 707 #else 708 709 /* __gl_meshDeleteMesh( mesh ) will free all storage for any valid mesh. 710 */ 711 void __gl_meshDeleteMesh( GLUmesh *mesh ) 712 { 713 GLUface *f, *fNext; 714 GLUvertex *v, *vNext; 715 GLUhalfEdge *e, *eNext; 716 717 for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) { 718 fNext = f->next; 719 memFree( f ); 720 } 721 722 for( v = mesh->vHead.next; v != &mesh->vHead; v = vNext ) { 723 vNext = v->next; 724 memFree( v ); 725 } 726 727 for( e = mesh->eHead.next; e != &mesh->eHead; e = eNext ) { 728 /* One call frees both e and e->Sym (see EdgePair above) */ 729 eNext = e->next; 730 memFree( e ); 731 } 732 733 memFree( mesh ); 734 } 735 736 #endif 737 738 #ifndef NDEBUG 739 740 /* __gl_meshCheckMesh( mesh ) checks a mesh for self-consistency. 741 */ 742 void __gl_meshCheckMesh( GLUmesh *mesh ) 743 { 744 GLUface *fHead = &mesh->fHead; 745 GLUvertex *vHead = &mesh->vHead; 746 GLUhalfEdge *eHead = &mesh->eHead; 747 GLUface *f, *fPrev; 748 GLUvertex *v, *vPrev; 749 GLUhalfEdge *e, *ePrev; 750 751 fPrev = fHead; 752 for( fPrev = fHead ; (f = fPrev->next) != fHead; fPrev = f) { 753 assert( f->prev == fPrev ); 754 e = f->anEdge; 755 do { 756 assert( e->Sym != e ); 757 assert( e->Sym->Sym == e ); 758 assert( e->Lnext->Onext->Sym == e ); 759 assert( e->Onext->Sym->Lnext == e ); 760 assert( e->Lface == f ); 761 e = e->Lnext; 762 } while( e != f->anEdge ); 763 } 764 assert( f->prev == fPrev && f->anEdge == NULL && f->data == NULL ); 765 766 vPrev = vHead; 767 for( vPrev = vHead ; (v = vPrev->next) != vHead; vPrev = v) { 768 assert( v->prev == vPrev ); 769 e = v->anEdge; 770 do { 771 assert( e->Sym != e ); 772 assert( e->Sym->Sym == e ); 773 assert( e->Lnext->Onext->Sym == e ); 774 assert( e->Onext->Sym->Lnext == e ); 775 assert( e->Org == v ); 776 e = e->Onext; 777 } while( e != v->anEdge ); 778 } 779 assert( v->prev == vPrev && v->anEdge == NULL && v->data == NULL ); 780 781 ePrev = eHead; 782 for( ePrev = eHead ; (e = ePrev->next) != eHead; ePrev = e) { 783 assert( e->Sym->next == ePrev->Sym ); 784 assert( e->Sym != e ); 785 assert( e->Sym->Sym == e ); 786 assert( e->Org != NULL ); 787 assert( e->Dst != NULL ); 788 assert( e->Lnext->Onext->Sym == e ); 789 assert( e->Onext->Sym->Lnext == e ); 790 } 791 assert( e->Sym->next == ePrev->Sym 792 && e->Sym == &mesh->eHeadSym 793 && e->Sym->Sym == e 794 && e->Org == NULL && e->Dst == NULL 795 && e->Lface == NULL && e->Rface == NULL ); 796 } 797 798 #endif 799