1 /* 2 * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008) 3 * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice including the dates of first publication and 13 * either this permission notice or a reference to 14 * http://oss.sgi.com/projects/FreeB/ 15 * shall be included in all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, 21 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF 22 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Except as contained in this notice, the name of Silicon Graphics, Inc. 26 * shall not be used in advertising or otherwise to promote the sale, use or 27 * other dealings in this Software without prior written authorization from 28 * Silicon Graphics, Inc. 29 */ 30 /* 31 ** Author: Eric Veach, July 1994. 32 ** 33 */ 34 35 #include "gluos.h" 36 #include <assert.h> 37 //#include <stddef.h> 38 //#include <setjmp.h> /* longjmp */ 39 //#include <limits.h> /* LONG_MAX */ 40 41 //#include "mesh.h" 42 #include "geom.h" 43 #include "tess.h" 44 //#include "dict.h" 45 //#include "priorityq.h" 46 #include "memalloc.h" 47 #include "sweep.h" 48 49 #ifndef TRUE 50 #define TRUE 1 51 #endif 52 #ifndef FALSE 53 #define FALSE 0 54 #endif 55 56 #ifdef FOR_TRITE_TEST_PROGRAM 57 extern void DebugEvent( GLUtesselator *tess ); 58 #else 59 #define DebugEvent( tess ) 60 #endif 61 62 /* 63 * Invariants for the Edge Dictionary. 64 * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2) 65 * at any valid location of the sweep event 66 * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2 67 * share a common endpoint 68 * - for each e, e->Dst has been processed, but not e->Org 69 * - each edge e satisfies VertLeq(e->Dst,event) && VertLeq(event,e->Org) 70 * where "event" is the current sweep line event. 71 * - no edge e has zero length 72 * 73 * Invariants for the Mesh (the processed portion). 74 * - the portion of the mesh left of the sweep line is a planar graph, 75 * ie. there is *some* way to embed it in the plane 76 * - no processed edge has zero length 77 * - no two processed vertices have identical coordinates 78 * - each "inside" region is monotone, ie. can be broken into two chains 79 * of monotonically increasing vertices according to VertLeq(v1,v2) 80 * - a non-invariant: these chains may intersect (very slightly) 81 * 82 * Invariants for the Sweep. 83 * - if none of the edges incident to the event vertex have an activeRegion 84 * (ie. none of these edges are in the edge dictionary), then the vertex 85 * has only right-going edges. 86 * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced 87 * by ConnectRightVertex), then it is the only right-going edge from 88 * its associated vertex. (This says that these edges exist only 89 * when it is necessary.) 90 */ 91 92 #undef MAX 93 #undef MIN 94 #define MAX(x,y) ((x) >= (y) ? (x) : (y)) 95 #define MIN(x,y) ((x) <= (y) ? (x) : (y)) 96 97 /* When we merge two edges into one, we need to compute the combined 98 * winding of the new edge. 99 */ 100 #define AddWinding(eDst,eSrc) (eDst->winding += eSrc->winding, \ 101 eDst->Sym->winding += eSrc->Sym->winding) 102 103 static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent ); 104 static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp ); 105 static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp ); 106 107 static int EdgeLeq( GLUtesselator *tess, ActiveRegion *reg1, 108 ActiveRegion *reg2 ) 109 /* 110 * Both edges must be directed from right to left (this is the canonical 111 * direction for the upper edge of each region). 112 * 113 * The strategy is to evaluate a "t" value for each edge at the 114 * current sweep line position, given by tess->event. The calculations 115 * are designed to be very stable, but of course they are not perfect. 116 * 117 * Special case: if both edge destinations are at the sweep event, 118 * we sort the edges by slope (they would otherwise compare equally). 119 */ 120 { 121 GLUvertex *event = tess->event; 122 GLUhalfEdge *e1, *e2; 123 GLdouble t1, t2; 124 125 e1 = reg1->eUp; 126 e2 = reg2->eUp; 127 128 if( e1->Dst == event ) { 129 if( e2->Dst == event ) { 130 /* Two edges right of the sweep line which meet at the sweep event. 131 * Sort them by slope. 132 */ 133 if( VertLeq( e1->Org, e2->Org )) { 134 return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0; 135 } 136 return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0; 137 } 138 return EdgeSign( e2->Dst, event, e2->Org ) <= 0; 139 } 140 if( e2->Dst == event ) { 141 return EdgeSign( e1->Dst, event, e1->Org ) >= 0; 142 } 143 144 /* General case - compute signed distance *from* e1, e2 to event */ 145 t1 = EdgeEval( e1->Dst, event, e1->Org ); 146 t2 = EdgeEval( e2->Dst, event, e2->Org ); 147 return (t1 >= t2); 148 } 149 150 151 static void DeleteRegion( GLUtesselator *tess, ActiveRegion *reg ) 152 { 153 if( reg->fixUpperEdge ) { 154 /* It was created with zero winding number, so it better be 155 * deleted with zero winding number (ie. it better not get merged 156 * with a real edge). 157 */ 158 assert( reg->eUp->winding == 0 ); 159 } 160 reg->eUp->activeRegion = NULL; 161 dictDelete( tess->dict, reg->nodeUp ); /* __gl_dictListDelete */ 162 memFree( reg ); 163 } 164 165 166 static int FixUpperEdge( ActiveRegion *reg, GLUhalfEdge *newEdge ) 167 /* 168 * Replace an upper edge which needs fixing (see ConnectRightVertex). 169 */ 170 { 171 assert( reg->fixUpperEdge ); 172 if ( !__gl_meshDelete( reg->eUp ) ) return 0; 173 reg->fixUpperEdge = FALSE; 174 reg->eUp = newEdge; 175 newEdge->activeRegion = reg; 176 177 return 1; 178 } 179 180 static ActiveRegion *TopLeftRegion( ActiveRegion *reg ) 181 { 182 GLUvertex *org = reg->eUp->Org; 183 GLUhalfEdge *e; 184 185 /* Find the region above the uppermost edge with the same origin */ 186 do { 187 reg = RegionAbove( reg ); 188 } while( reg->eUp->Org == org ); 189 190 /* If the edge above was a temporary edge introduced by ConnectRightVertex, 191 * now is the time to fix it. 192 */ 193 if( reg->fixUpperEdge ) { 194 e = __gl_meshConnect( RegionBelow(reg)->eUp->Sym, reg->eUp->Lnext ); 195 if (e == NULL) return NULL; 196 if ( !FixUpperEdge( reg, e ) ) return NULL; 197 reg = RegionAbove( reg ); 198 } 199 return reg; 200 } 201 202 static ActiveRegion *TopRightRegion( ActiveRegion *reg ) 203 { 204 GLUvertex *dst = reg->eUp->Dst; 205 206 /* Find the region above the uppermost edge with the same destination */ 207 do { 208 reg = RegionAbove( reg ); 209 } while( reg->eUp->Dst == dst ); 210 return reg; 211 } 212 213 static ActiveRegion *AddRegionBelow( GLUtesselator *tess, 214 ActiveRegion *regAbove, 215 GLUhalfEdge *eNewUp ) 216 /* 217 * Add a new active region to the sweep line, *somewhere* below "regAbove" 218 * (according to where the new edge belongs in the sweep-line dictionary). 219 * The upper edge of the new region will be "eNewUp". 220 * Winding number and "inside" flag are not updated. 221 */ 222 { 223 ActiveRegion *regNew = (ActiveRegion *)memAlloc( sizeof( ActiveRegion )); 224 if (regNew == NULL) longjmp(tess->env,1); 225 226 regNew->eUp = eNewUp; 227 /* __gl_dictListInsertBefore */ 228 regNew->nodeUp = dictInsertBefore( tess->dict, regAbove->nodeUp, regNew ); 229 if (regNew->nodeUp == NULL) longjmp(tess->env,1); 230 regNew->fixUpperEdge = FALSE; 231 regNew->sentinel = FALSE; 232 regNew->dirty = FALSE; 233 234 eNewUp->activeRegion = regNew; 235 return regNew; 236 } 237 238 static GLboolean IsWindingInside( GLUtesselator *tess, int n ) 239 { 240 switch( tess->windingRule ) { 241 case GLU_TESS_WINDING_ODD: 242 return (n & 1); 243 case GLU_TESS_WINDING_NONZERO: 244 return (n != 0); 245 case GLU_TESS_WINDING_POSITIVE: 246 return (n > 0); 247 case GLU_TESS_WINDING_NEGATIVE: 248 return (n < 0); 249 case GLU_TESS_WINDING_ABS_GEQ_TWO: 250 return (n >= 2) || (n <= -2); 251 } 252 /*LINTED*/ 253 assert( FALSE ); 254 /*NOTREACHED*/ 255 return GL_FALSE; /* avoid compiler complaints */ 256 } 257 258 259 static void ComputeWinding( GLUtesselator *tess, ActiveRegion *reg ) 260 { 261 reg->windingNumber = RegionAbove(reg)->windingNumber + reg->eUp->winding; 262 reg->inside = IsWindingInside( tess, reg->windingNumber ); 263 } 264 265 266 static void FinishRegion( GLUtesselator *tess, ActiveRegion *reg ) 267 /* 268 * Delete a region from the sweep line. This happens when the upper 269 * and lower chains of a region meet (at a vertex on the sweep line). 270 * The "inside" flag is copied to the appropriate mesh face (we could 271 * not do this before -- since the structure of the mesh is always 272 * changing, this face may not have even existed until now). 273 */ 274 { 275 GLUhalfEdge *e = reg->eUp; 276 GLUface *f = e->Lface; 277 278 f->inside = reg->inside; 279 f->anEdge = e; /* optimization for __gl_meshTessellateMonoRegion() */ 280 DeleteRegion( tess, reg ); 281 } 282 283 284 static GLUhalfEdge *FinishLeftRegions( GLUtesselator *tess, 285 ActiveRegion *regFirst, ActiveRegion *regLast ) 286 /* 287 * We are given a vertex with one or more left-going edges. All affected 288 * edges should be in the edge dictionary. Starting at regFirst->eUp, 289 * we walk down deleting all regions where both edges have the same 290 * origin vOrg. At the same time we copy the "inside" flag from the 291 * active region to the face, since at this point each face will belong 292 * to at most one region (this was not necessarily true until this point 293 * in the sweep). The walk stops at the region above regLast; if regLast 294 * is NULL we walk as far as possible. At the same time we relink the 295 * mesh if necessary, so that the ordering of edges around vOrg is the 296 * same as in the dictionary. 297 */ 298 { 299 ActiveRegion *reg, *regPrev; 300 GLUhalfEdge *e, *ePrev; 301 302 regPrev = regFirst; 303 ePrev = regFirst->eUp; 304 while( regPrev != regLast ) { 305 regPrev->fixUpperEdge = FALSE; /* placement was OK */ 306 reg = RegionBelow( regPrev ); 307 e = reg->eUp; 308 if( e->Org != ePrev->Org ) { 309 if( ! reg->fixUpperEdge ) { 310 /* Remove the last left-going edge. Even though there are no further 311 * edges in the dictionary with this origin, there may be further 312 * such edges in the mesh (if we are adding left edges to a vertex 313 * that has already been processed). Thus it is important to call 314 * FinishRegion rather than just DeleteRegion. 315 */ 316 FinishRegion( tess, regPrev ); 317 break; 318 } 319 /* If the edge below was a temporary edge introduced by 320 * ConnectRightVertex, now is the time to fix it. 321 */ 322 e = __gl_meshConnect( ePrev->Lprev, e->Sym ); 323 if (e == NULL) longjmp(tess->env,1); 324 if ( !FixUpperEdge( reg, e ) ) longjmp(tess->env,1); 325 } 326 327 /* Relink edges so that ePrev->Onext == e */ 328 if( ePrev->Onext != e ) { 329 if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1); 330 if ( !__gl_meshSplice( ePrev, e ) ) longjmp(tess->env,1); 331 } 332 FinishRegion( tess, regPrev ); /* may change reg->eUp */ 333 ePrev = reg->eUp; 334 regPrev = reg; 335 } 336 return ePrev; 337 } 338 339 340 static void AddRightEdges( GLUtesselator *tess, ActiveRegion *regUp, 341 GLUhalfEdge *eFirst, GLUhalfEdge *eLast, GLUhalfEdge *eTopLeft, 342 GLboolean cleanUp ) 343 /* 344 * Purpose: insert right-going edges into the edge dictionary, and update 345 * winding numbers and mesh connectivity appropriately. All right-going 346 * edges share a common origin vOrg. Edges are inserted CCW starting at 347 * eFirst; the last edge inserted is eLast->Oprev. If vOrg has any 348 * left-going edges already processed, then eTopLeft must be the edge 349 * such that an imaginary upward vertical segment from vOrg would be 350 * contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft 351 * should be NULL. 352 */ 353 { 354 ActiveRegion *reg, *regPrev; 355 GLUhalfEdge *e, *ePrev; 356 int firstTime = TRUE; 357 358 /* Insert the new right-going edges in the dictionary */ 359 e = eFirst; 360 do { 361 assert( VertLeq( e->Org, e->Dst )); 362 AddRegionBelow( tess, regUp, e->Sym ); 363 e = e->Onext; 364 } while ( e != eLast ); 365 366 /* Walk *all* right-going edges from e->Org, in the dictionary order, 367 * updating the winding numbers of each region, and re-linking the mesh 368 * edges to match the dictionary ordering (if necessary). 369 */ 370 if( eTopLeft == NULL ) { 371 eTopLeft = RegionBelow( regUp )->eUp->Rprev; 372 } 373 regPrev = regUp; 374 ePrev = eTopLeft; 375 for( ;; ) { 376 reg = RegionBelow( regPrev ); 377 e = reg->eUp->Sym; 378 if( e->Org != ePrev->Org ) break; 379 380 if( e->Onext != ePrev ) { 381 /* Unlink e from its current position, and relink below ePrev */ 382 if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1); 383 if ( !__gl_meshSplice( ePrev->Oprev, e ) ) longjmp(tess->env,1); 384 } 385 /* Compute the winding number and "inside" flag for the new regions */ 386 reg->windingNumber = regPrev->windingNumber - e->winding; 387 reg->inside = IsWindingInside( tess, reg->windingNumber ); 388 389 /* Check for two outgoing edges with same slope -- process these 390 * before any intersection tests (see example in __gl_computeInterior). 391 */ 392 regPrev->dirty = TRUE; 393 if( ! firstTime && CheckForRightSplice( tess, regPrev )) { 394 AddWinding( e, ePrev ); 395 DeleteRegion( tess, regPrev ); 396 if ( !__gl_meshDelete( ePrev ) ) longjmp(tess->env,1); 397 } 398 firstTime = FALSE; 399 regPrev = reg; 400 ePrev = e; 401 } 402 regPrev->dirty = TRUE; 403 assert( regPrev->windingNumber - e->winding == reg->windingNumber ); 404 405 if( cleanUp ) { 406 /* Check for intersections between newly adjacent edges. */ 407 WalkDirtyRegions( tess, regPrev ); 408 } 409 } 410 411 412 static void CallCombine( GLUtesselator *tess, GLUvertex *isect, 413 void *data[4], GLfloat weights[4], int needed ) 414 { 415 GLdouble coords[3]; 416 417 /* Copy coord data in case the callback changes it. */ 418 coords[0] = isect->coords[0]; 419 coords[1] = isect->coords[1]; 420 coords[2] = isect->coords[2]; 421 422 isect->data = NULL; 423 CALL_COMBINE_OR_COMBINE_DATA( coords, data, weights, &isect->data ); 424 if( isect->data == NULL ) { 425 if( ! needed ) { 426 isect->data = data[0]; 427 } else if( ! tess->fatalError ) { 428 /* The only way fatal error is when two edges are found to intersect, 429 * but the user has not provided the callback necessary to handle 430 * generated intersection points. 431 */ 432 CALL_ERROR_OR_ERROR_DATA( GLU_TESS_NEED_COMBINE_CALLBACK ); 433 tess->fatalError = TRUE; 434 } 435 } 436 } 437 438 static void SpliceMergeVertices( GLUtesselator *tess, GLUhalfEdge *e1, 439 GLUhalfEdge *e2 ) 440 /* 441 * Two vertices with idential coordinates are combined into one. 442 * e1->Org is kept, while e2->Org is discarded. 443 */ 444 { 445 void *data[4] = { NULL, NULL, NULL, NULL }; 446 GLfloat weights[4] = { 0.5, 0.5, 0.0, 0.0 }; 447 448 data[0] = e1->Org->data; 449 data[1] = e2->Org->data; 450 CallCombine( tess, e1->Org, data, weights, FALSE ); 451 if ( !__gl_meshSplice( e1, e2 ) ) longjmp(tess->env,1); 452 } 453 454 static void VertexWeights( GLUvertex *isect, GLUvertex *org, GLUvertex *dst, 455 GLfloat *weights ) 456 /* 457 * Find some weights which describe how the intersection vertex is 458 * a linear combination of "org" and "dest". Each of the two edges 459 * which generated "isect" is allocated 50% of the weight; each edge 460 * splits the weight between its org and dst according to the 461 * relative distance to "isect". 462 */ 463 { 464 GLdouble t1 = VertL1dist( org, isect ); 465 GLdouble t2 = VertL1dist( dst, isect ); 466 467 weights[0] = 0.5 * t2 / (t1 + t2); 468 weights[1] = 0.5 * t1 / (t1 + t2); 469 isect->coords[0] += weights[0]*org->coords[0] + weights[1]*dst->coords[0]; 470 isect->coords[1] += weights[0]*org->coords[1] + weights[1]*dst->coords[1]; 471 isect->coords[2] += weights[0]*org->coords[2] + weights[1]*dst->coords[2]; 472 } 473 474 475 static void GetIntersectData( GLUtesselator *tess, GLUvertex *isect, 476 GLUvertex *orgUp, GLUvertex *dstUp, 477 GLUvertex *orgLo, GLUvertex *dstLo ) 478 /* 479 * We've computed a new intersection point, now we need a "data" pointer 480 * from the user so that we can refer to this new vertex in the 481 * rendering callbacks. 482 */ 483 { 484 void *data[4]; 485 GLfloat weights[4]; 486 487 data[0] = orgUp->data; 488 data[1] = dstUp->data; 489 data[2] = orgLo->data; 490 data[3] = dstLo->data; 491 492 isect->coords[0] = isect->coords[1] = isect->coords[2] = 0; 493 VertexWeights( isect, orgUp, dstUp, &weights[0] ); 494 VertexWeights( isect, orgLo, dstLo, &weights[2] ); 495 496 CallCombine( tess, isect, data, weights, TRUE ); 497 } 498 499 static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp ) 500 /* 501 * Check the upper and lower edge of "regUp", to make sure that the 502 * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which 503 * origin is leftmost). 504 * 505 * The main purpose is to splice right-going edges with the same 506 * dest vertex and nearly identical slopes (ie. we can't distinguish 507 * the slopes numerically). However the splicing can also help us 508 * to recover from numerical errors. For example, suppose at one 509 * point we checked eUp and eLo, and decided that eUp->Org is barely 510 * above eLo. Then later, we split eLo into two edges (eg. from 511 * a splice operation like this one). This can change the result of 512 * our test so that now eUp->Org is incident to eLo, or barely below it. 513 * We must correct this condition to maintain the dictionary invariants. 514 * 515 * One possibility is to check these edges for intersection again 516 * (ie. CheckForIntersect). This is what we do if possible. However 517 * CheckForIntersect requires that tess->event lies between eUp and eLo, 518 * so that it has something to fall back on when the intersection 519 * calculation gives us an unusable answer. So, for those cases where 520 * we can't check for intersection, this routine fixes the problem 521 * by just splicing the offending vertex into the other edge. 522 * This is a guaranteed solution, no matter how degenerate things get. 523 * Basically this is a combinatorial solution to a numerical problem. 524 */ 525 { 526 ActiveRegion *regLo = RegionBelow(regUp); 527 GLUhalfEdge *eUp = regUp->eUp; 528 GLUhalfEdge *eLo = regLo->eUp; 529 530 if( VertLeq( eUp->Org, eLo->Org )) { 531 if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return FALSE; 532 533 /* eUp->Org appears to be below eLo */ 534 if( ! VertEq( eUp->Org, eLo->Org )) { 535 /* Splice eUp->Org into eLo */ 536 if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1); 537 if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1); 538 regUp->dirty = regLo->dirty = TRUE; 539 540 } else if( eUp->Org != eLo->Org ) { 541 /* merge the two vertices, discarding eUp->Org */ 542 pqDelete( tess->pq, eUp->Org->pqHandle ); /* __gl_pqSortDelete */ 543 SpliceMergeVertices( tess, eLo->Oprev, eUp ); 544 } 545 } else { 546 if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return FALSE; 547 548 /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */ 549 RegionAbove(regUp)->dirty = regUp->dirty = TRUE; 550 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1); 551 if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1); 552 } 553 return TRUE; 554 } 555 556 static int CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp ) 557 /* 558 * Check the upper and lower edge of "regUp", to make sure that the 559 * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which 560 * destination is rightmost). 561 * 562 * Theoretically, this should always be true. However, splitting an edge 563 * into two pieces can change the results of previous tests. For example, 564 * suppose at one point we checked eUp and eLo, and decided that eUp->Dst 565 * is barely above eLo. Then later, we split eLo into two edges (eg. from 566 * a splice operation like this one). This can change the result of 567 * the test so that now eUp->Dst is incident to eLo, or barely below it. 568 * We must correct this condition to maintain the dictionary invariants 569 * (otherwise new edges might get inserted in the wrong place in the 570 * dictionary, and bad stuff will happen). 571 * 572 * We fix the problem by just splicing the offending vertex into the 573 * other edge. 574 */ 575 { 576 ActiveRegion *regLo = RegionBelow(regUp); 577 GLUhalfEdge *eUp = regUp->eUp; 578 GLUhalfEdge *eLo = regLo->eUp; 579 GLUhalfEdge *e; 580 581 assert( ! VertEq( eUp->Dst, eLo->Dst )); 582 583 if( VertLeq( eUp->Dst, eLo->Dst )) { 584 if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return FALSE; 585 586 /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */ 587 RegionAbove(regUp)->dirty = regUp->dirty = TRUE; 588 e = __gl_meshSplitEdge( eUp ); 589 if (e == NULL) longjmp(tess->env,1); 590 if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1); 591 e->Lface->inside = regUp->inside; 592 } else { 593 if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return FALSE; 594 595 /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */ 596 regUp->dirty = regLo->dirty = TRUE; 597 e = __gl_meshSplitEdge( eLo ); 598 if (e == NULL) longjmp(tess->env,1); 599 if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1); 600 e->Rface->inside = regUp->inside; 601 } 602 return TRUE; 603 } 604 605 606 static int CheckForIntersect( GLUtesselator *tess, ActiveRegion *regUp ) 607 /* 608 * Check the upper and lower edges of the given region to see if 609 * they intersect. If so, create the intersection and add it 610 * to the data structures. 611 * 612 * Returns TRUE if adding the new intersection resulted in a recursive 613 * call to AddRightEdges(); in this case all "dirty" regions have been 614 * checked for intersections, and possibly regUp has been deleted. 615 */ 616 { 617 ActiveRegion *regLo = RegionBelow(regUp); 618 GLUhalfEdge *eUp = regUp->eUp; 619 GLUhalfEdge *eLo = regLo->eUp; 620 GLUvertex *orgUp = eUp->Org; 621 GLUvertex *orgLo = eLo->Org; 622 GLUvertex *dstUp = eUp->Dst; 623 GLUvertex *dstLo = eLo->Dst; 624 GLdouble tMinUp, tMaxLo; 625 GLUvertex isect, *orgMin; 626 GLUhalfEdge *e; 627 628 assert( ! VertEq( dstLo, dstUp )); 629 assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 ); 630 assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 ); 631 assert( orgUp != tess->event && orgLo != tess->event ); 632 assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge ); 633 634 if( orgUp == orgLo ) return FALSE; /* right endpoints are the same */ 635 636 tMinUp = MIN( orgUp->t, dstUp->t ); 637 tMaxLo = MAX( orgLo->t, dstLo->t ); 638 if( tMinUp > tMaxLo ) return FALSE; /* t ranges do not overlap */ 639 640 if( VertLeq( orgUp, orgLo )) { 641 if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return FALSE; 642 } else { 643 if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return FALSE; 644 } 645 646 /* At this point the edges intersect, at least marginally */ 647 DebugEvent( tess ); 648 649 __gl_edgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect ); 650 /* The following properties are guaranteed: */ 651 assert( MIN( orgUp->t, dstUp->t ) <= isect.t ); 652 assert( isect.t <= MAX( orgLo->t, dstLo->t )); 653 assert( MIN( dstLo->s, dstUp->s ) <= isect.s ); 654 assert( isect.s <= MAX( orgLo->s, orgUp->s )); 655 656 if( VertLeq( &isect, tess->event )) { 657 /* The intersection point lies slightly to the left of the sweep line, 658 * so move it until it''s slightly to the right of the sweep line. 659 * (If we had perfect numerical precision, this would never happen 660 * in the first place). The easiest and safest thing to do is 661 * replace the intersection by tess->event. 662 */ 663 isect.s = tess->event->s; 664 isect.t = tess->event->t; 665 } 666 /* Similarly, if the computed intersection lies to the right of the 667 * rightmost origin (which should rarely happen), it can cause 668 * unbelievable inefficiency on sufficiently degenerate inputs. 669 * (If you have the test program, try running test54.d with the 670 * "X zoom" option turned on). 671 */ 672 orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo; 673 if( VertLeq( orgMin, &isect )) { 674 isect.s = orgMin->s; 675 isect.t = orgMin->t; 676 } 677 678 if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) { 679 /* Easy case -- intersection at one of the right endpoints */ 680 (void) CheckForRightSplice( tess, regUp ); 681 return FALSE; 682 } 683 684 if( (! VertEq( dstUp, tess->event ) 685 && EdgeSign( dstUp, tess->event, &isect ) >= 0) 686 || (! VertEq( dstLo, tess->event ) 687 && EdgeSign( dstLo, tess->event, &isect ) <= 0 )) 688 { 689 /* Very unusual -- the new upper or lower edge would pass on the 690 * wrong side of the sweep event, or through it. This can happen 691 * due to very small numerical errors in the intersection calculation. 692 */ 693 if( dstLo == tess->event ) { 694 /* Splice dstLo into eUp, and process the new region(s) */ 695 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1); 696 if ( !__gl_meshSplice( eLo->Sym, eUp ) ) longjmp(tess->env,1); 697 regUp = TopLeftRegion( regUp ); 698 if (regUp == NULL) longjmp(tess->env,1); 699 eUp = RegionBelow(regUp)->eUp; 700 FinishLeftRegions( tess, RegionBelow(regUp), regLo ); 701 AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TRUE ); 702 return TRUE; 703 } 704 if( dstUp == tess->event ) { 705 /* Splice dstUp into eLo, and process the new region(s) */ 706 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1); 707 if ( !__gl_meshSplice( eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1); 708 regLo = regUp; 709 regUp = TopRightRegion( regUp ); 710 e = RegionBelow(regUp)->eUp->Rprev; 711 regLo->eUp = eLo->Oprev; 712 eLo = FinishLeftRegions( tess, regLo, NULL ); 713 AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TRUE ); 714 return TRUE; 715 } 716 /* Special case: called from ConnectRightVertex. If either 717 * edge passes on the wrong side of tess->event, split it 718 * (and wait for ConnectRightVertex to splice it appropriately). 719 */ 720 if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) { 721 RegionAbove(regUp)->dirty = regUp->dirty = TRUE; 722 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1); 723 eUp->Org->s = tess->event->s; 724 eUp->Org->t = tess->event->t; 725 } 726 if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) { 727 regUp->dirty = regLo->dirty = TRUE; 728 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1); 729 eLo->Org->s = tess->event->s; 730 eLo->Org->t = tess->event->t; 731 } 732 /* leave the rest for ConnectRightVertex */ 733 return FALSE; 734 } 735 736 /* General case -- split both edges, splice into new vertex. 737 * When we do the splice operation, the order of the arguments is 738 * arbitrary as far as correctness goes. However, when the operation 739 * creates a new face, the work done is proportional to the size of 740 * the new face. We expect the faces in the processed part of 741 * the mesh (ie. eUp->Lface) to be smaller than the faces in the 742 * unprocessed original contours (which will be eLo->Oprev->Lface). 743 */ 744 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1); 745 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1); 746 if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1); 747 eUp->Org->s = isect.s; 748 eUp->Org->t = isect.t; 749 eUp->Org->pqHandle = pqInsert( tess->pq, eUp->Org ); /* __gl_pqSortInsert */ 750 if (eUp->Org->pqHandle == LONG_MAX) { 751 pqDeletePriorityQ(tess->pq); /* __gl_pqSortDeletePriorityQ */ 752 tess->pq = NULL; 753 longjmp(tess->env,1); 754 } 755 GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo ); 756 RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TRUE; 757 return FALSE; 758 } 759 760 static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp ) 761 /* 762 * When the upper or lower edge of any region changes, the region is 763 * marked "dirty". This routine walks through all the dirty regions 764 * and makes sure that the dictionary invariants are satisfied 765 * (see the comments at the beginning of this file). Of course 766 * new dirty regions can be created as we make changes to restore 767 * the invariants. 768 */ 769 { 770 ActiveRegion *regLo = RegionBelow(regUp); 771 GLUhalfEdge *eUp, *eLo; 772 773 for( ;; ) { 774 /* Find the lowest dirty region (we walk from the bottom up). */ 775 while( regLo->dirty ) { 776 regUp = regLo; 777 regLo = RegionBelow(regLo); 778 } 779 if( ! regUp->dirty ) { 780 regLo = regUp; 781 regUp = RegionAbove( regUp ); 782 if( regUp == NULL || ! regUp->dirty ) { 783 /* We've walked all the dirty regions */ 784 return; 785 } 786 } 787 regUp->dirty = FALSE; 788 eUp = regUp->eUp; 789 eLo = regLo->eUp; 790 791 if( eUp->Dst != eLo->Dst ) { 792 /* Check that the edge ordering is obeyed at the Dst vertices. */ 793 if( CheckForLeftSplice( tess, regUp )) { 794 795 /* If the upper or lower edge was marked fixUpperEdge, then 796 * we no longer need it (since these edges are needed only for 797 * vertices which otherwise have no right-going edges). 798 */ 799 if( regLo->fixUpperEdge ) { 800 DeleteRegion( tess, regLo ); 801 if ( !__gl_meshDelete( eLo ) ) longjmp(tess->env,1); 802 regLo = RegionBelow( regUp ); 803 eLo = regLo->eUp; 804 } else if( regUp->fixUpperEdge ) { 805 DeleteRegion( tess, regUp ); 806 if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1); 807 regUp = RegionAbove( regLo ); 808 eUp = regUp->eUp; 809 } 810 } 811 } 812 if( eUp->Org != eLo->Org ) { 813 if( eUp->Dst != eLo->Dst 814 && ! regUp->fixUpperEdge && ! regLo->fixUpperEdge 815 && (eUp->Dst == tess->event || eLo->Dst == tess->event) ) 816 { 817 /* When all else fails in CheckForIntersect(), it uses tess->event 818 * as the intersection location. To make this possible, it requires 819 * that tess->event lie between the upper and lower edges, and also 820 * that neither of these is marked fixUpperEdge (since in the worst 821 * case it might splice one of these edges into tess->event, and 822 * violate the invariant that fixable edges are the only right-going 823 * edge from their associated vertex). 824 */ 825 if( CheckForIntersect( tess, regUp )) { 826 /* WalkDirtyRegions() was called recursively; we're done */ 827 return; 828 } 829 } else { 830 /* Even though we can't use CheckForIntersect(), the Org vertices 831 * may violate the dictionary edge ordering. Check and correct this. 832 */ 833 (void) CheckForRightSplice( tess, regUp ); 834 } 835 } 836 if( eUp->Org == eLo->Org && eUp->Dst == eLo->Dst ) { 837 /* A degenerate loop consisting of only two edges -- delete it. */ 838 AddWinding( eLo, eUp ); 839 DeleteRegion( tess, regUp ); 840 if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1); 841 regUp = RegionAbove( regLo ); 842 } 843 } 844 } 845 846 847 static void ConnectRightVertex( GLUtesselator *tess, ActiveRegion *regUp, 848 GLUhalfEdge *eBottomLeft ) 849 /* 850 * Purpose: connect a "right" vertex vEvent (one where all edges go left) 851 * to the unprocessed portion of the mesh. Since there are no right-going 852 * edges, two regions (one above vEvent and one below) are being merged 853 * into one. "regUp" is the upper of these two regions. 854 * 855 * There are two reasons for doing this (adding a right-going edge): 856 * - if the two regions being merged are "inside", we must add an edge 857 * to keep them separated (the combined region would not be monotone). 858 * - in any case, we must leave some record of vEvent in the dictionary, 859 * so that we can merge vEvent with features that we have not seen yet. 860 * For example, maybe there is a vertical edge which passes just to 861 * the right of vEvent; we would like to splice vEvent into this edge. 862 * 863 * However, we don't want to connect vEvent to just any vertex. We don''t 864 * want the new edge to cross any other edges; otherwise we will create 865 * intersection vertices even when the input data had no self-intersections. 866 * (This is a bad thing; if the user's input data has no intersections, 867 * we don't want to generate any false intersections ourselves.) 868 * 869 * Our eventual goal is to connect vEvent to the leftmost unprocessed 870 * vertex of the combined region (the union of regUp and regLo). 871 * But because of unseen vertices with all right-going edges, and also 872 * new vertices which may be created by edge intersections, we don''t 873 * know where that leftmost unprocessed vertex is. In the meantime, we 874 * connect vEvent to the closest vertex of either chain, and mark the region 875 * as "fixUpperEdge". This flag says to delete and reconnect this edge 876 * to the next processed vertex on the boundary of the combined region. 877 * Quite possibly the vertex we connected to will turn out to be the 878 * closest one, in which case we won''t need to make any changes. 879 */ 880 { 881 GLUhalfEdge *eNew; 882 GLUhalfEdge *eTopLeft = eBottomLeft->Onext; 883 ActiveRegion *regLo = RegionBelow(regUp); 884 GLUhalfEdge *eUp = regUp->eUp; 885 GLUhalfEdge *eLo = regLo->eUp; 886 int degenerate = FALSE; 887 888 if( eUp->Dst != eLo->Dst ) { 889 (void) CheckForIntersect( tess, regUp ); 890 } 891 892 /* Possible new degeneracies: upper or lower edge of regUp may pass 893 * through vEvent, or may coincide with new intersection vertex 894 */ 895 if( VertEq( eUp->Org, tess->event )) { 896 if ( !__gl_meshSplice( eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1); 897 regUp = TopLeftRegion( regUp ); 898 if (regUp == NULL) longjmp(tess->env,1); 899 eTopLeft = RegionBelow( regUp )->eUp; 900 FinishLeftRegions( tess, RegionBelow(regUp), regLo ); 901 degenerate = TRUE; 902 } 903 if( VertEq( eLo->Org, tess->event )) { 904 if ( !__gl_meshSplice( eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1); 905 eBottomLeft = FinishLeftRegions( tess, regLo, NULL ); 906 degenerate = TRUE; 907 } 908 if( degenerate ) { 909 AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE ); 910 return; 911 } 912 913 /* Non-degenerate situation -- need to add a temporary, fixable edge. 914 * Connect to the closer of eLo->Org, eUp->Org. 915 */ 916 if( VertLeq( eLo->Org, eUp->Org )) { 917 eNew = eLo->Oprev; 918 } else { 919 eNew = eUp; 920 } 921 eNew = __gl_meshConnect( eBottomLeft->Lprev, eNew ); 922 if (eNew == NULL) longjmp(tess->env,1); 923 924 /* Prevent cleanup, otherwise eNew might disappear before we've even 925 * had a chance to mark it as a temporary edge. 926 */ 927 AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, FALSE ); 928 eNew->Sym->activeRegion->fixUpperEdge = TRUE; 929 WalkDirtyRegions( tess, regUp ); 930 } 931 932 /* Because vertices at exactly the same location are merged together 933 * before we process the sweep event, some degenerate cases can't occur. 934 * However if someone eventually makes the modifications required to 935 * merge features which are close together, the cases below marked 936 * TOLERANCE_NONZERO will be useful. They were debugged before the 937 * code to merge identical vertices in the main loop was added. 938 */ 939 #define TOLERANCE_NONZERO FALSE 940 941 static void ConnectLeftDegenerate( GLUtesselator *tess, 942 ActiveRegion *regUp, GLUvertex *vEvent ) 943 /* 944 * The event vertex lies exacty on an already-processed edge or vertex. 945 * Adding the new vertex involves splicing it into the already-processed 946 * part of the mesh. 947 */ 948 { 949 GLUhalfEdge *e, *eTopLeft, *eTopRight, *eLast; 950 ActiveRegion *reg; 951 952 e = regUp->eUp; 953 if( VertEq( e->Org, vEvent )) { 954 /* e->Org is an unprocessed vertex - just combine them, and wait 955 * for e->Org to be pulled from the queue 956 */ 957 assert( TOLERANCE_NONZERO ); 958 SpliceMergeVertices( tess, e, vEvent->anEdge ); 959 return; 960 } 961 962 if( ! VertEq( e->Dst, vEvent )) { 963 /* General case -- splice vEvent into edge e which passes through it */ 964 if (__gl_meshSplitEdge( e->Sym ) == NULL) longjmp(tess->env,1); 965 if( regUp->fixUpperEdge ) { 966 /* This edge was fixable -- delete unused portion of original edge */ 967 if ( !__gl_meshDelete( e->Onext ) ) longjmp(tess->env,1); 968 regUp->fixUpperEdge = FALSE; 969 } 970 if ( !__gl_meshSplice( vEvent->anEdge, e ) ) longjmp(tess->env,1); 971 SweepEvent( tess, vEvent ); /* recurse */ 972 return; 973 } 974 975 /* vEvent coincides with e->Dst, which has already been processed. 976 * Splice in the additional right-going edges. 977 */ 978 assert( TOLERANCE_NONZERO ); 979 regUp = TopRightRegion( regUp ); 980 reg = RegionBelow( regUp ); 981 eTopRight = reg->eUp->Sym; 982 eTopLeft = eLast = eTopRight->Onext; 983 if( reg->fixUpperEdge ) { 984 /* Here e->Dst has only a single fixable edge going right. 985 * We can delete it since now we have some real right-going edges. 986 */ 987 assert( eTopLeft != eTopRight ); /* there are some left edges too */ 988 DeleteRegion( tess, reg ); 989 if ( !__gl_meshDelete( eTopRight ) ) longjmp(tess->env,1); 990 eTopRight = eTopLeft->Oprev; 991 } 992 if ( !__gl_meshSplice( vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1); 993 if( ! EdgeGoesLeft( eTopLeft )) { 994 /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */ 995 eTopLeft = NULL; 996 } 997 AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TRUE ); 998 } 999 1000 1001 static void ConnectLeftVertex( GLUtesselator *tess, GLUvertex *vEvent ) 1002 /* 1003 * Purpose: connect a "left" vertex (one where both edges go right) 1004 * to the processed portion of the mesh. Let R be the active region 1005 * containing vEvent, and let U and L be the upper and lower edge 1006 * chains of R. There are two possibilities: 1007 * 1008 * - the normal case: split R into two regions, by connecting vEvent to 1009 * the rightmost vertex of U or L lying to the left of the sweep line 1010 * 1011 * - the degenerate case: if vEvent is close enough to U or L, we 1012 * merge vEvent into that edge chain. The subcases are: 1013 * - merging with the rightmost vertex of U or L 1014 * - merging with the active edge of U or L 1015 * - merging with an already-processed portion of U or L 1016 */ 1017 { 1018 ActiveRegion *regUp, *regLo, *reg; 1019 GLUhalfEdge *eUp, *eLo, *eNew; 1020 ActiveRegion tmp; 1021 1022 /* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */ 1023 1024 /* Get a pointer to the active region containing vEvent */ 1025 tmp.eUp = vEvent->anEdge->Sym; 1026 /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */ 1027 regUp = (ActiveRegion *)dictKey( dictSearch( tess->dict, &tmp )); 1028 regLo = RegionBelow( regUp ); 1029 eUp = regUp->eUp; 1030 eLo = regLo->eUp; 1031 1032 /* Try merging with U or L first */ 1033 if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) == 0 ) { 1034 ConnectLeftDegenerate( tess, regUp, vEvent ); 1035 return; 1036 } 1037 1038 /* Connect vEvent to rightmost processed vertex of either chain. 1039 * e->Dst is the vertex that we will connect to vEvent. 1040 */ 1041 reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp : regLo; 1042 1043 if( regUp->inside || reg->fixUpperEdge) { 1044 if( reg == regUp ) { 1045 eNew = __gl_meshConnect( vEvent->anEdge->Sym, eUp->Lnext ); 1046 if (eNew == NULL) longjmp(tess->env,1); 1047 } else { 1048 GLUhalfEdge *tempHalfEdge= __gl_meshConnect( eLo->Dnext, vEvent->anEdge); 1049 if (tempHalfEdge == NULL) longjmp(tess->env,1); 1050 1051 eNew = tempHalfEdge->Sym; 1052 } 1053 if( reg->fixUpperEdge ) { 1054 if ( !FixUpperEdge( reg, eNew ) ) longjmp(tess->env,1); 1055 } else { 1056 ComputeWinding( tess, AddRegionBelow( tess, regUp, eNew )); 1057 } 1058 SweepEvent( tess, vEvent ); 1059 } else { 1060 /* The new vertex is in a region which does not belong to the polygon. 1061 * We don''t need to connect this vertex to the rest of the mesh. 1062 */ 1063 AddRightEdges( tess, regUp, vEvent->anEdge, vEvent->anEdge, NULL, TRUE ); 1064 } 1065 } 1066 1067 1068 static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent ) 1069 /* 1070 * Does everything necessary when the sweep line crosses a vertex. 1071 * Updates the mesh and the edge dictionary. 1072 */ 1073 { 1074 ActiveRegion *regUp, *reg; 1075 GLUhalfEdge *e, *eTopLeft, *eBottomLeft; 1076 1077 tess->event = vEvent; /* for access in EdgeLeq() */ 1078 DebugEvent( tess ); 1079 1080 /* Check if this vertex is the right endpoint of an edge that is 1081 * already in the dictionary. In this case we don't need to waste 1082 * time searching for the location to insert new edges. 1083 */ 1084 e = vEvent->anEdge; 1085 while( e->activeRegion == NULL ) { 1086 e = e->Onext; 1087 if( e == vEvent->anEdge ) { 1088 /* All edges go right -- not incident to any processed edges */ 1089 ConnectLeftVertex( tess, vEvent ); 1090 return; 1091 } 1092 } 1093 1094 /* Processing consists of two phases: first we "finish" all the 1095 * active regions where both the upper and lower edges terminate 1096 * at vEvent (ie. vEvent is closing off these regions). 1097 * We mark these faces "inside" or "outside" the polygon according 1098 * to their winding number, and delete the edges from the dictionary. 1099 * This takes care of all the left-going edges from vEvent. 1100 */ 1101 regUp = TopLeftRegion( e->activeRegion ); 1102 if (regUp == NULL) longjmp(tess->env,1); 1103 reg = RegionBelow( regUp ); 1104 eTopLeft = reg->eUp; 1105 eBottomLeft = FinishLeftRegions( tess, reg, NULL ); 1106 1107 /* Next we process all the right-going edges from vEvent. This 1108 * involves adding the edges to the dictionary, and creating the 1109 * associated "active regions" which record information about the 1110 * regions between adjacent dictionary edges. 1111 */ 1112 if( eBottomLeft->Onext == eTopLeft ) { 1113 /* No right-going edges -- add a temporary "fixable" edge */ 1114 ConnectRightVertex( tess, regUp, eBottomLeft ); 1115 } else { 1116 AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE ); 1117 } 1118 } 1119 1120 1121 /* Make the sentinel coordinates big enough that they will never be 1122 * merged with real input features. (Even with the largest possible 1123 * input contour and the maximum tolerance of 1.0, no merging will be 1124 * done with coordinates larger than 3 * GLU_TESS_MAX_COORD). 1125 */ 1126 #define SENTINEL_COORD (4 * GLU_TESS_MAX_COORD) 1127 1128 static void AddSentinel( GLUtesselator *tess, GLdouble t ) 1129 /* 1130 * We add two sentinel edges above and below all other edges, 1131 * to avoid special cases at the top and bottom. 1132 */ 1133 { 1134 GLUhalfEdge *e; 1135 ActiveRegion *reg = (ActiveRegion *)memAlloc( sizeof( ActiveRegion )); 1136 if (reg == NULL) longjmp(tess->env,1); 1137 1138 e = __gl_meshMakeEdge( tess->mesh ); 1139 if (e == NULL) longjmp(tess->env,1); 1140 1141 e->Org->s = SENTINEL_COORD; 1142 e->Org->t = t; 1143 e->Dst->s = -SENTINEL_COORD; 1144 e->Dst->t = t; 1145 tess->event = e->Dst; /* initialize it */ 1146 1147 reg->eUp = e; 1148 reg->windingNumber = 0; 1149 reg->inside = FALSE; 1150 reg->fixUpperEdge = FALSE; 1151 reg->sentinel = TRUE; 1152 reg->dirty = FALSE; 1153 reg->nodeUp = dictInsert( tess->dict, reg ); /* __gl_dictListInsertBefore */ 1154 if (reg->nodeUp == NULL) longjmp(tess->env,1); 1155 } 1156 1157 1158 static void InitEdgeDict( GLUtesselator *tess ) 1159 /* 1160 * We maintain an ordering of edge intersections with the sweep line. 1161 * This order is maintained in a dynamic dictionary. 1162 */ 1163 { 1164 /* __gl_dictListNewDict */ 1165 tess->dict = dictNewDict( tess, (int (*)(void *, DictKey, DictKey)) EdgeLeq ); 1166 if (tess->dict == NULL) longjmp(tess->env,1); 1167 1168 AddSentinel( tess, -SENTINEL_COORD ); 1169 AddSentinel( tess, SENTINEL_COORD ); 1170 } 1171 1172 1173 static void DoneEdgeDict( GLUtesselator *tess ) 1174 { 1175 ActiveRegion *reg; 1176 #ifndef NDEBUG 1177 int fixedEdges = 0; 1178 #endif 1179 1180 /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */ 1181 while( (reg = (ActiveRegion *)dictKey( dictMin( tess->dict ))) != NULL ) { 1182 /* 1183 * At the end of all processing, the dictionary should contain 1184 * only the two sentinel edges, plus at most one "fixable" edge 1185 * created by ConnectRightVertex(). 1186 */ 1187 if( ! reg->sentinel ) { 1188 assert( reg->fixUpperEdge ); 1189 assert( ++fixedEdges == 1 ); 1190 } 1191 assert( reg->windingNumber == 0 ); 1192 DeleteRegion( tess, reg ); 1193 /* __gl_meshDelete( reg->eUp );*/ 1194 } 1195 dictDeleteDict( tess->dict ); /* __gl_dictListDeleteDict */ 1196 } 1197 1198 1199 static void RemoveDegenerateEdges( GLUtesselator *tess ) 1200 /* 1201 * Remove zero-length edges, and contours with fewer than 3 vertices. 1202 */ 1203 { 1204 GLUhalfEdge *e, *eNext, *eLnext; 1205 GLUhalfEdge *eHead = &tess->mesh->eHead; 1206 1207 /*LINTED*/ 1208 for( e = eHead->next; e != eHead; e = eNext ) { 1209 eNext = e->next; 1210 eLnext = e->Lnext; 1211 1212 if( VertEq( e->Org, e->Dst ) && e->Lnext->Lnext != e ) { 1213 /* Zero-length edge, contour has at least 3 edges */ 1214 1215 SpliceMergeVertices( tess, eLnext, e ); /* deletes e->Org */ 1216 if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1); /* e is a self-loop */ 1217 e = eLnext; 1218 eLnext = e->Lnext; 1219 } 1220 if( eLnext->Lnext == e ) { 1221 /* Degenerate contour (one or two edges) */ 1222 1223 if( eLnext != e ) { 1224 if( eLnext == eNext || eLnext == eNext->Sym ) { eNext = eNext->next; } 1225 if ( !__gl_meshDelete( eLnext ) ) longjmp(tess->env,1); 1226 } 1227 if( e == eNext || e == eNext->Sym ) { eNext = eNext->next; } 1228 if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1); 1229 } 1230 } 1231 } 1232 1233 static int InitPriorityQ( GLUtesselator *tess ) 1234 /* 1235 * Insert all vertices into the priority queue which determines the 1236 * order in which vertices cross the sweep line. 1237 */ 1238 { 1239 PriorityQ *pq; 1240 GLUvertex *v, *vHead; 1241 1242 /* __gl_pqSortNewPriorityQ */ 1243 pq = tess->pq = pqNewPriorityQ( (int (*)(PQkey, PQkey)) __gl_vertLeq ); 1244 if (pq == NULL) return 0; 1245 1246 vHead = &tess->mesh->vHead; 1247 for( v = vHead->next; v != vHead; v = v->next ) { 1248 v->pqHandle = pqInsert( pq, v ); /* __gl_pqSortInsert */ 1249 if (v->pqHandle == LONG_MAX) break; 1250 } 1251 if (v != vHead || !pqInit( pq ) ) { /* __gl_pqSortInit */ 1252 pqDeletePriorityQ(tess->pq); /* __gl_pqSortDeletePriorityQ */ 1253 tess->pq = NULL; 1254 return 0; 1255 } 1256 1257 return 1; 1258 } 1259 1260 1261 static void DonePriorityQ( GLUtesselator *tess ) 1262 { 1263 pqDeletePriorityQ( tess->pq ); /* __gl_pqSortDeletePriorityQ */ 1264 } 1265 1266 1267 static int RemoveDegenerateFaces( GLUmesh *mesh ) 1268 /* 1269 * Delete any degenerate faces with only two edges. WalkDirtyRegions() 1270 * will catch almost all of these, but it won't catch degenerate faces 1271 * produced by splice operations on already-processed edges. 1272 * The two places this can happen are in FinishLeftRegions(), when 1273 * we splice in a "temporary" edge produced by ConnectRightVertex(), 1274 * and in CheckForLeftSplice(), where we splice already-processed 1275 * edges to ensure that our dictionary invariants are not violated 1276 * by numerical errors. 1277 * 1278 * In both these cases it is *very* dangerous to delete the offending 1279 * edge at the time, since one of the routines further up the stack 1280 * will sometimes be keeping a pointer to that edge. 1281 */ 1282 { 1283 GLUface *f, *fNext; 1284 GLUhalfEdge *e; 1285 1286 /*LINTED*/ 1287 for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) { 1288 fNext = f->next; 1289 e = f->anEdge; 1290 assert( e->Lnext != e ); 1291 1292 if( e->Lnext->Lnext == e ) { 1293 /* A face with only two edges */ 1294 AddWinding( e->Onext, e ); 1295 if ( !__gl_meshDelete( e ) ) return 0; 1296 } 1297 } 1298 return 1; 1299 } 1300 1301 int __gl_computeInterior( GLUtesselator *tess ) 1302 /* 1303 * __gl_computeInterior( tess ) computes the planar arrangement specified 1304 * by the given contours, and further subdivides this arrangement 1305 * into regions. Each region is marked "inside" if it belongs 1306 * to the polygon, according to the rule given by tess->windingRule. 1307 * Each interior region is guaranteed be monotone. 1308 */ 1309 { 1310 GLUvertex *v, *vNext; 1311 1312 tess->fatalError = FALSE; 1313 1314 /* Each vertex defines an event for our sweep line. Start by inserting 1315 * all the vertices in a priority queue. Events are processed in 1316 * lexicographic order, ie. 1317 * 1318 * e1 < e2 iff e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y) 1319 */ 1320 RemoveDegenerateEdges( tess ); 1321 if ( !InitPriorityQ( tess ) ) return 0; /* if error */ 1322 InitEdgeDict( tess ); 1323 1324 /* __gl_pqSortExtractMin */ 1325 while( (v = (GLUvertex *)pqExtractMin( tess->pq )) != NULL ) { 1326 for( ;; ) { 1327 vNext = (GLUvertex *)pqMinimum( tess->pq ); /* __gl_pqSortMinimum */ 1328 if( vNext == NULL || ! VertEq( vNext, v )) break; 1329 1330 /* Merge together all vertices at exactly the same location. 1331 * This is more efficient than processing them one at a time, 1332 * simplifies the code (see ConnectLeftDegenerate), and is also 1333 * important for correct handling of certain degenerate cases. 1334 * For example, suppose there are two identical edges A and B 1335 * that belong to different contours (so without this code they would 1336 * be processed by separate sweep events). Suppose another edge C 1337 * crosses A and B from above. When A is processed, we split it 1338 * at its intersection point with C. However this also splits C, 1339 * so when we insert B we may compute a slightly different 1340 * intersection point. This might leave two edges with a small 1341 * gap between them. This kind of error is especially obvious 1342 * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY). 1343 */ 1344 vNext = (GLUvertex *)pqExtractMin( tess->pq ); /* __gl_pqSortExtractMin*/ 1345 SpliceMergeVertices( tess, v->anEdge, vNext->anEdge ); 1346 } 1347 SweepEvent( tess, v ); 1348 } 1349 1350 /* Set tess->event for debugging purposes */ 1351 /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */ 1352 tess->event = ((ActiveRegion *) dictKey( dictMin( tess->dict )))->eUp->Org; 1353 DebugEvent( tess ); 1354 DoneEdgeDict( tess ); 1355 DonePriorityQ( tess ); 1356 1357 if ( !RemoveDegenerateFaces( tess->mesh ) ) return 0; 1358 __gl_meshCheckMesh( tess->mesh ); 1359 1360 return 1; 1361 } 1362