xref: /reactos/dll/opengl/glu32/src/libtess/sweep.c (revision 5100859e)
1 /*
2  * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3  * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice including the dates of first publication and
13  * either this permission notice or a reference to
14  * http://oss.sgi.com/projects/FreeB/
15  * shall be included in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Except as contained in this notice, the name of Silicon Graphics, Inc.
26  * shall not be used in advertising or otherwise to promote the sale, use or
27  * other dealings in this Software without prior written authorization from
28  * Silicon Graphics, Inc.
29  */
30 /*
31 ** Author: Eric Veach, July 1994.
32 **
33 */
34 
35 #include "gluos.h"
36 #include <assert.h>
37 //#include <stddef.h>
38 //#include <setjmp.h>		/* longjmp */
39 //#include <limits.h>		/* LONG_MAX */
40 
41 //#include "mesh.h"
42 #include "geom.h"
43 #include "tess.h"
44 //#include "dict.h"
45 //#include "priorityq.h"
46 #include "memalloc.h"
47 #include "sweep.h"
48 
49 #ifndef TRUE
50 #define TRUE 1
51 #endif
52 #ifndef FALSE
53 #define FALSE 0
54 #endif
55 
56 #ifdef FOR_TRITE_TEST_PROGRAM
57 extern void DebugEvent( GLUtesselator *tess );
58 #else
59 #define DebugEvent( tess )
60 #endif
61 
62 /*
63  * Invariants for the Edge Dictionary.
64  * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
65  *   at any valid location of the sweep event
66  * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
67  *   share a common endpoint
68  * - for each e, e->Dst has been processed, but not e->Org
69  * - each edge e satisfies VertLeq(e->Dst,event) && VertLeq(event,e->Org)
70  *   where "event" is the current sweep line event.
71  * - no edge e has zero length
72  *
73  * Invariants for the Mesh (the processed portion).
74  * - the portion of the mesh left of the sweep line is a planar graph,
75  *   ie. there is *some* way to embed it in the plane
76  * - no processed edge has zero length
77  * - no two processed vertices have identical coordinates
78  * - each "inside" region is monotone, ie. can be broken into two chains
79  *   of monotonically increasing vertices according to VertLeq(v1,v2)
80  *   - a non-invariant: these chains may intersect (very slightly)
81  *
82  * Invariants for the Sweep.
83  * - if none of the edges incident to the event vertex have an activeRegion
84  *   (ie. none of these edges are in the edge dictionary), then the vertex
85  *   has only right-going edges.
86  * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
87  *   by ConnectRightVertex), then it is the only right-going edge from
88  *   its associated vertex.  (This says that these edges exist only
89  *   when it is necessary.)
90  */
91 
92 #undef	MAX
93 #undef	MIN
94 #define MAX(x,y)	((x) >= (y) ? (x) : (y))
95 #define MIN(x,y)	((x) <= (y) ? (x) : (y))
96 
97 /* When we merge two edges into one, we need to compute the combined
98  * winding of the new edge.
99  */
100 #define AddWinding(eDst,eSrc)	(eDst->winding += eSrc->winding, \
101                                  eDst->Sym->winding += eSrc->Sym->winding)
102 
103 static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent );
104 static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp );
105 static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp );
106 
107 static int EdgeLeq( GLUtesselator *tess, ActiveRegion *reg1,
108 		    ActiveRegion *reg2 )
109 /*
110  * Both edges must be directed from right to left (this is the canonical
111  * direction for the upper edge of each region).
112  *
113  * The strategy is to evaluate a "t" value for each edge at the
114  * current sweep line position, given by tess->event.  The calculations
115  * are designed to be very stable, but of course they are not perfect.
116  *
117  * Special case: if both edge destinations are at the sweep event,
118  * we sort the edges by slope (they would otherwise compare equally).
119  */
120 {
121   GLUvertex *event = tess->event;
122   GLUhalfEdge *e1, *e2;
123   GLdouble t1, t2;
124 
125   e1 = reg1->eUp;
126   e2 = reg2->eUp;
127 
128   if( e1->Dst == event ) {
129     if( e2->Dst == event ) {
130       /* Two edges right of the sweep line which meet at the sweep event.
131        * Sort them by slope.
132        */
133       if( VertLeq( e1->Org, e2->Org )) {
134 	return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0;
135       }
136       return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0;
137     }
138     return EdgeSign( e2->Dst, event, e2->Org ) <= 0;
139   }
140   if( e2->Dst == event ) {
141     return EdgeSign( e1->Dst, event, e1->Org ) >= 0;
142   }
143 
144   /* General case - compute signed distance *from* e1, e2 to event */
145   t1 = EdgeEval( e1->Dst, event, e1->Org );
146   t2 = EdgeEval( e2->Dst, event, e2->Org );
147   return (t1 >= t2);
148 }
149 
150 
151 static void DeleteRegion( GLUtesselator *tess, ActiveRegion *reg )
152 {
153   if( reg->fixUpperEdge ) {
154     /* It was created with zero winding number, so it better be
155      * deleted with zero winding number (ie. it better not get merged
156      * with a real edge).
157      */
158     assert( reg->eUp->winding == 0 );
159   }
160   reg->eUp->activeRegion = NULL;
161   dictDelete( tess->dict, reg->nodeUp ); /* __gl_dictListDelete */
162   memFree( reg );
163 }
164 
165 
166 static int FixUpperEdge( ActiveRegion *reg, GLUhalfEdge *newEdge )
167 /*
168  * Replace an upper edge which needs fixing (see ConnectRightVertex).
169  */
170 {
171   assert( reg->fixUpperEdge );
172   if ( !__gl_meshDelete( reg->eUp ) ) return 0;
173   reg->fixUpperEdge = FALSE;
174   reg->eUp = newEdge;
175   newEdge->activeRegion = reg;
176 
177   return 1;
178 }
179 
180 static ActiveRegion *TopLeftRegion( ActiveRegion *reg )
181 {
182   GLUvertex *org = reg->eUp->Org;
183   GLUhalfEdge *e;
184 
185   /* Find the region above the uppermost edge with the same origin */
186   do {
187     reg = RegionAbove( reg );
188   } while( reg->eUp->Org == org );
189 
190   /* If the edge above was a temporary edge introduced by ConnectRightVertex,
191    * now is the time to fix it.
192    */
193   if( reg->fixUpperEdge ) {
194     e = __gl_meshConnect( RegionBelow(reg)->eUp->Sym, reg->eUp->Lnext );
195     if (e == NULL) return NULL;
196     if ( !FixUpperEdge( reg, e ) ) return NULL;
197     reg = RegionAbove( reg );
198   }
199   return reg;
200 }
201 
202 static ActiveRegion *TopRightRegion( ActiveRegion *reg )
203 {
204   GLUvertex *dst = reg->eUp->Dst;
205 
206   /* Find the region above the uppermost edge with the same destination */
207   do {
208     reg = RegionAbove( reg );
209   } while( reg->eUp->Dst == dst );
210   return reg;
211 }
212 
213 static ActiveRegion *AddRegionBelow( GLUtesselator *tess,
214 				     ActiveRegion *regAbove,
215 				     GLUhalfEdge *eNewUp )
216 /*
217  * Add a new active region to the sweep line, *somewhere* below "regAbove"
218  * (according to where the new edge belongs in the sweep-line dictionary).
219  * The upper edge of the new region will be "eNewUp".
220  * Winding number and "inside" flag are not updated.
221  */
222 {
223   ActiveRegion *regNew = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
224   if (regNew == NULL) longjmp(tess->env,1);
225 
226   regNew->eUp = eNewUp;
227   /* __gl_dictListInsertBefore */
228   regNew->nodeUp = dictInsertBefore( tess->dict, regAbove->nodeUp, regNew );
229   if (regNew->nodeUp == NULL) longjmp(tess->env,1);
230   regNew->fixUpperEdge = FALSE;
231   regNew->sentinel = FALSE;
232   regNew->dirty = FALSE;
233 
234   eNewUp->activeRegion = regNew;
235   return regNew;
236 }
237 
238 static GLboolean IsWindingInside( GLUtesselator *tess, int n )
239 {
240   switch( tess->windingRule ) {
241   case GLU_TESS_WINDING_ODD:
242     return (n & 1);
243   case GLU_TESS_WINDING_NONZERO:
244     return (n != 0);
245   case GLU_TESS_WINDING_POSITIVE:
246     return (n > 0);
247   case GLU_TESS_WINDING_NEGATIVE:
248     return (n < 0);
249   case GLU_TESS_WINDING_ABS_GEQ_TWO:
250     return (n >= 2) || (n <= -2);
251   }
252   /*LINTED*/
253   assert( FALSE );
254   /*NOTREACHED*/
255   return GL_FALSE;  /* avoid compiler complaints */
256 }
257 
258 
259 static void ComputeWinding( GLUtesselator *tess, ActiveRegion *reg )
260 {
261   reg->windingNumber = RegionAbove(reg)->windingNumber + reg->eUp->winding;
262   reg->inside = IsWindingInside( tess, reg->windingNumber );
263 }
264 
265 
266 static void FinishRegion( GLUtesselator *tess, ActiveRegion *reg )
267 /*
268  * Delete a region from the sweep line.  This happens when the upper
269  * and lower chains of a region meet (at a vertex on the sweep line).
270  * The "inside" flag is copied to the appropriate mesh face (we could
271  * not do this before -- since the structure of the mesh is always
272  * changing, this face may not have even existed until now).
273  */
274 {
275   GLUhalfEdge *e = reg->eUp;
276   GLUface *f = e->Lface;
277 
278   f->inside = reg->inside;
279   f->anEdge = e;   /* optimization for __gl_meshTessellateMonoRegion() */
280   DeleteRegion( tess, reg );
281 }
282 
283 
284 static GLUhalfEdge *FinishLeftRegions( GLUtesselator *tess,
285 	       ActiveRegion *regFirst, ActiveRegion *regLast )
286 /*
287  * We are given a vertex with one or more left-going edges.  All affected
288  * edges should be in the edge dictionary.  Starting at regFirst->eUp,
289  * we walk down deleting all regions where both edges have the same
290  * origin vOrg.  At the same time we copy the "inside" flag from the
291  * active region to the face, since at this point each face will belong
292  * to at most one region (this was not necessarily true until this point
293  * in the sweep).  The walk stops at the region above regLast; if regLast
294  * is NULL we walk as far as possible.	At the same time we relink the
295  * mesh if necessary, so that the ordering of edges around vOrg is the
296  * same as in the dictionary.
297  */
298 {
299   ActiveRegion *reg, *regPrev;
300   GLUhalfEdge *e, *ePrev;
301 
302   regPrev = regFirst;
303   ePrev = regFirst->eUp;
304   while( regPrev != regLast ) {
305     regPrev->fixUpperEdge = FALSE;	/* placement was OK */
306     reg = RegionBelow( regPrev );
307     e = reg->eUp;
308     if( e->Org != ePrev->Org ) {
309       if( ! reg->fixUpperEdge ) {
310 	/* Remove the last left-going edge.  Even though there are no further
311 	 * edges in the dictionary with this origin, there may be further
312 	 * such edges in the mesh (if we are adding left edges to a vertex
313 	 * that has already been processed).  Thus it is important to call
314 	 * FinishRegion rather than just DeleteRegion.
315 	 */
316 	FinishRegion( tess, regPrev );
317 	break;
318       }
319       /* If the edge below was a temporary edge introduced by
320        * ConnectRightVertex, now is the time to fix it.
321        */
322       e = __gl_meshConnect( ePrev->Lprev, e->Sym );
323       if (e == NULL) longjmp(tess->env,1);
324       if ( !FixUpperEdge( reg, e ) ) longjmp(tess->env,1);
325     }
326 
327     /* Relink edges so that ePrev->Onext == e */
328     if( ePrev->Onext != e ) {
329       if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
330       if ( !__gl_meshSplice( ePrev, e ) ) longjmp(tess->env,1);
331     }
332     FinishRegion( tess, regPrev );	/* may change reg->eUp */
333     ePrev = reg->eUp;
334     regPrev = reg;
335   }
336   return ePrev;
337 }
338 
339 
340 static void AddRightEdges( GLUtesselator *tess, ActiveRegion *regUp,
341        GLUhalfEdge *eFirst, GLUhalfEdge *eLast, GLUhalfEdge *eTopLeft,
342        GLboolean cleanUp )
343 /*
344  * Purpose: insert right-going edges into the edge dictionary, and update
345  * winding numbers and mesh connectivity appropriately.  All right-going
346  * edges share a common origin vOrg.  Edges are inserted CCW starting at
347  * eFirst; the last edge inserted is eLast->Oprev.  If vOrg has any
348  * left-going edges already processed, then eTopLeft must be the edge
349  * such that an imaginary upward vertical segment from vOrg would be
350  * contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft
351  * should be NULL.
352  */
353 {
354   ActiveRegion *reg, *regPrev;
355   GLUhalfEdge *e, *ePrev;
356   int firstTime = TRUE;
357 
358   /* Insert the new right-going edges in the dictionary */
359   e = eFirst;
360   do {
361     assert( VertLeq( e->Org, e->Dst ));
362     AddRegionBelow( tess, regUp, e->Sym );
363     e = e->Onext;
364   } while ( e != eLast );
365 
366   /* Walk *all* right-going edges from e->Org, in the dictionary order,
367    * updating the winding numbers of each region, and re-linking the mesh
368    * edges to match the dictionary ordering (if necessary).
369    */
370   if( eTopLeft == NULL ) {
371     eTopLeft = RegionBelow( regUp )->eUp->Rprev;
372   }
373   regPrev = regUp;
374   ePrev = eTopLeft;
375   for( ;; ) {
376     reg = RegionBelow( regPrev );
377     e = reg->eUp->Sym;
378     if( e->Org != ePrev->Org ) break;
379 
380     if( e->Onext != ePrev ) {
381       /* Unlink e from its current position, and relink below ePrev */
382       if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
383       if ( !__gl_meshSplice( ePrev->Oprev, e ) ) longjmp(tess->env,1);
384     }
385     /* Compute the winding number and "inside" flag for the new regions */
386     reg->windingNumber = regPrev->windingNumber - e->winding;
387     reg->inside = IsWindingInside( tess, reg->windingNumber );
388 
389     /* Check for two outgoing edges with same slope -- process these
390      * before any intersection tests (see example in __gl_computeInterior).
391      */
392     regPrev->dirty = TRUE;
393     if( ! firstTime && CheckForRightSplice( tess, regPrev )) {
394       AddWinding( e, ePrev );
395       DeleteRegion( tess, regPrev );
396       if ( !__gl_meshDelete( ePrev ) ) longjmp(tess->env,1);
397     }
398     firstTime = FALSE;
399     regPrev = reg;
400     ePrev = e;
401   }
402   regPrev->dirty = TRUE;
403   assert( regPrev->windingNumber - e->winding == reg->windingNumber );
404 
405   if( cleanUp ) {
406     /* Check for intersections between newly adjacent edges. */
407     WalkDirtyRegions( tess, regPrev );
408   }
409 }
410 
411 
412 static void CallCombine( GLUtesselator *tess, GLUvertex *isect,
413 			 void *data[4], GLfloat weights[4], int needed )
414 {
415   GLdouble coords[3];
416 
417   /* Copy coord data in case the callback changes it. */
418   coords[0] = isect->coords[0];
419   coords[1] = isect->coords[1];
420   coords[2] = isect->coords[2];
421 
422   isect->data = NULL;
423   CALL_COMBINE_OR_COMBINE_DATA( coords, data, weights, &isect->data );
424   if( isect->data == NULL ) {
425     if( ! needed ) {
426       isect->data = data[0];
427     } else if( ! tess->fatalError ) {
428       /* The only way fatal error is when two edges are found to intersect,
429        * but the user has not provided the callback necessary to handle
430        * generated intersection points.
431        */
432       CALL_ERROR_OR_ERROR_DATA( GLU_TESS_NEED_COMBINE_CALLBACK );
433       tess->fatalError = TRUE;
434     }
435   }
436 }
437 
438 static void SpliceMergeVertices( GLUtesselator *tess, GLUhalfEdge *e1,
439 				 GLUhalfEdge *e2 )
440 /*
441  * Two vertices with idential coordinates are combined into one.
442  * e1->Org is kept, while e2->Org is discarded.
443  */
444 {
445   void *data[4] = { NULL, NULL, NULL, NULL };
446   GLfloat weights[4] = { 0.5, 0.5, 0.0, 0.0 };
447 
448   data[0] = e1->Org->data;
449   data[1] = e2->Org->data;
450   CallCombine( tess, e1->Org, data, weights, FALSE );
451   if ( !__gl_meshSplice( e1, e2 ) ) longjmp(tess->env,1);
452 }
453 
454 static void VertexWeights( GLUvertex *isect, GLUvertex *org, GLUvertex *dst,
455 			   GLfloat *weights )
456 /*
457  * Find some weights which describe how the intersection vertex is
458  * a linear combination of "org" and "dest".  Each of the two edges
459  * which generated "isect" is allocated 50% of the weight; each edge
460  * splits the weight between its org and dst according to the
461  * relative distance to "isect".
462  */
463 {
464   GLdouble t1 = VertL1dist( org, isect );
465   GLdouble t2 = VertL1dist( dst, isect );
466 
467   weights[0] = 0.5 * t2 / (t1 + t2);
468   weights[1] = 0.5 * t1 / (t1 + t2);
469   isect->coords[0] += weights[0]*org->coords[0] + weights[1]*dst->coords[0];
470   isect->coords[1] += weights[0]*org->coords[1] + weights[1]*dst->coords[1];
471   isect->coords[2] += weights[0]*org->coords[2] + weights[1]*dst->coords[2];
472 }
473 
474 
475 static void GetIntersectData( GLUtesselator *tess, GLUvertex *isect,
476        GLUvertex *orgUp, GLUvertex *dstUp,
477        GLUvertex *orgLo, GLUvertex *dstLo )
478 /*
479  * We've computed a new intersection point, now we need a "data" pointer
480  * from the user so that we can refer to this new vertex in the
481  * rendering callbacks.
482  */
483 {
484   void *data[4];
485   GLfloat weights[4];
486 
487   data[0] = orgUp->data;
488   data[1] = dstUp->data;
489   data[2] = orgLo->data;
490   data[3] = dstLo->data;
491 
492   isect->coords[0] = isect->coords[1] = isect->coords[2] = 0;
493   VertexWeights( isect, orgUp, dstUp, &weights[0] );
494   VertexWeights( isect, orgLo, dstLo, &weights[2] );
495 
496   CallCombine( tess, isect, data, weights, TRUE );
497 }
498 
499 static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp )
500 /*
501  * Check the upper and lower edge of "regUp", to make sure that the
502  * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
503  * origin is leftmost).
504  *
505  * The main purpose is to splice right-going edges with the same
506  * dest vertex and nearly identical slopes (ie. we can't distinguish
507  * the slopes numerically).  However the splicing can also help us
508  * to recover from numerical errors.  For example, suppose at one
509  * point we checked eUp and eLo, and decided that eUp->Org is barely
510  * above eLo.  Then later, we split eLo into two edges (eg. from
511  * a splice operation like this one).  This can change the result of
512  * our test so that now eUp->Org is incident to eLo, or barely below it.
513  * We must correct this condition to maintain the dictionary invariants.
514  *
515  * One possibility is to check these edges for intersection again
516  * (ie. CheckForIntersect).  This is what we do if possible.  However
517  * CheckForIntersect requires that tess->event lies between eUp and eLo,
518  * so that it has something to fall back on when the intersection
519  * calculation gives us an unusable answer.  So, for those cases where
520  * we can't check for intersection, this routine fixes the problem
521  * by just splicing the offending vertex into the other edge.
522  * This is a guaranteed solution, no matter how degenerate things get.
523  * Basically this is a combinatorial solution to a numerical problem.
524  */
525 {
526   ActiveRegion *regLo = RegionBelow(regUp);
527   GLUhalfEdge *eUp = regUp->eUp;
528   GLUhalfEdge *eLo = regLo->eUp;
529 
530   if( VertLeq( eUp->Org, eLo->Org )) {
531     if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return FALSE;
532 
533     /* eUp->Org appears to be below eLo */
534     if( ! VertEq( eUp->Org, eLo->Org )) {
535       /* Splice eUp->Org into eLo */
536       if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
537       if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1);
538       regUp->dirty = regLo->dirty = TRUE;
539 
540     } else if( eUp->Org != eLo->Org ) {
541       /* merge the two vertices, discarding eUp->Org */
542       pqDelete( tess->pq, eUp->Org->pqHandle ); /* __gl_pqSortDelete */
543       SpliceMergeVertices( tess, eLo->Oprev, eUp );
544     }
545   } else {
546     if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return FALSE;
547 
548     /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
549     RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
550     if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
551     if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
552   }
553   return TRUE;
554 }
555 
556 static int CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp )
557 /*
558  * Check the upper and lower edge of "regUp", to make sure that the
559  * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
560  * destination is rightmost).
561  *
562  * Theoretically, this should always be true.  However, splitting an edge
563  * into two pieces can change the results of previous tests.  For example,
564  * suppose at one point we checked eUp and eLo, and decided that eUp->Dst
565  * is barely above eLo.  Then later, we split eLo into two edges (eg. from
566  * a splice operation like this one).  This can change the result of
567  * the test so that now eUp->Dst is incident to eLo, or barely below it.
568  * We must correct this condition to maintain the dictionary invariants
569  * (otherwise new edges might get inserted in the wrong place in the
570  * dictionary, and bad stuff will happen).
571  *
572  * We fix the problem by just splicing the offending vertex into the
573  * other edge.
574  */
575 {
576   ActiveRegion *regLo = RegionBelow(regUp);
577   GLUhalfEdge *eUp = regUp->eUp;
578   GLUhalfEdge *eLo = regLo->eUp;
579   GLUhalfEdge *e;
580 
581   assert( ! VertEq( eUp->Dst, eLo->Dst ));
582 
583   if( VertLeq( eUp->Dst, eLo->Dst )) {
584     if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return FALSE;
585 
586     /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
587     RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
588     e = __gl_meshSplitEdge( eUp );
589     if (e == NULL) longjmp(tess->env,1);
590     if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1);
591     e->Lface->inside = regUp->inside;
592   } else {
593     if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return FALSE;
594 
595     /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
596     regUp->dirty = regLo->dirty = TRUE;
597     e = __gl_meshSplitEdge( eLo );
598     if (e == NULL) longjmp(tess->env,1);
599     if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1);
600     e->Rface->inside = regUp->inside;
601   }
602   return TRUE;
603 }
604 
605 
606 static int CheckForIntersect( GLUtesselator *tess, ActiveRegion *regUp )
607 /*
608  * Check the upper and lower edges of the given region to see if
609  * they intersect.  If so, create the intersection and add it
610  * to the data structures.
611  *
612  * Returns TRUE if adding the new intersection resulted in a recursive
613  * call to AddRightEdges(); in this case all "dirty" regions have been
614  * checked for intersections, and possibly regUp has been deleted.
615  */
616 {
617   ActiveRegion *regLo = RegionBelow(regUp);
618   GLUhalfEdge *eUp = regUp->eUp;
619   GLUhalfEdge *eLo = regLo->eUp;
620   GLUvertex *orgUp = eUp->Org;
621   GLUvertex *orgLo = eLo->Org;
622   GLUvertex *dstUp = eUp->Dst;
623   GLUvertex *dstLo = eLo->Dst;
624   GLdouble tMinUp, tMaxLo;
625   GLUvertex isect, *orgMin;
626   GLUhalfEdge *e;
627 
628   assert( ! VertEq( dstLo, dstUp ));
629   assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 );
630   assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 );
631   assert( orgUp != tess->event && orgLo != tess->event );
632   assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge );
633 
634   if( orgUp == orgLo ) return FALSE;	/* right endpoints are the same */
635 
636   tMinUp = MIN( orgUp->t, dstUp->t );
637   tMaxLo = MAX( orgLo->t, dstLo->t );
638   if( tMinUp > tMaxLo ) return FALSE;	/* t ranges do not overlap */
639 
640   if( VertLeq( orgUp, orgLo )) {
641     if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return FALSE;
642   } else {
643     if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return FALSE;
644   }
645 
646   /* At this point the edges intersect, at least marginally */
647   DebugEvent( tess );
648 
649   __gl_edgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect );
650   /* The following properties are guaranteed: */
651   assert( MIN( orgUp->t, dstUp->t ) <= isect.t );
652   assert( isect.t <= MAX( orgLo->t, dstLo->t ));
653   assert( MIN( dstLo->s, dstUp->s ) <= isect.s );
654   assert( isect.s <= MAX( orgLo->s, orgUp->s ));
655 
656   if( VertLeq( &isect, tess->event )) {
657     /* The intersection point lies slightly to the left of the sweep line,
658      * so move it until it''s slightly to the right of the sweep line.
659      * (If we had perfect numerical precision, this would never happen
660      * in the first place).  The easiest and safest thing to do is
661      * replace the intersection by tess->event.
662      */
663     isect.s = tess->event->s;
664     isect.t = tess->event->t;
665   }
666   /* Similarly, if the computed intersection lies to the right of the
667    * rightmost origin (which should rarely happen), it can cause
668    * unbelievable inefficiency on sufficiently degenerate inputs.
669    * (If you have the test program, try running test54.d with the
670    * "X zoom" option turned on).
671    */
672   orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo;
673   if( VertLeq( orgMin, &isect )) {
674     isect.s = orgMin->s;
675     isect.t = orgMin->t;
676   }
677 
678   if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) {
679     /* Easy case -- intersection at one of the right endpoints */
680     (void) CheckForRightSplice( tess, regUp );
681     return FALSE;
682   }
683 
684   if(	 (! VertEq( dstUp, tess->event )
685 	  && EdgeSign( dstUp, tess->event, &isect ) >= 0)
686       || (! VertEq( dstLo, tess->event )
687 	  && EdgeSign( dstLo, tess->event, &isect ) <= 0 ))
688   {
689     /* Very unusual -- the new upper or lower edge would pass on the
690      * wrong side of the sweep event, or through it.  This can happen
691      * due to very small numerical errors in the intersection calculation.
692      */
693     if( dstLo == tess->event ) {
694       /* Splice dstLo into eUp, and process the new region(s) */
695       if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
696       if ( !__gl_meshSplice( eLo->Sym, eUp ) ) longjmp(tess->env,1);
697       regUp = TopLeftRegion( regUp );
698       if (regUp == NULL) longjmp(tess->env,1);
699       eUp = RegionBelow(regUp)->eUp;
700       FinishLeftRegions( tess, RegionBelow(regUp), regLo );
701       AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TRUE );
702       return TRUE;
703     }
704     if( dstUp == tess->event ) {
705       /* Splice dstUp into eLo, and process the new region(s) */
706       if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
707       if ( !__gl_meshSplice( eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1);
708       regLo = regUp;
709       regUp = TopRightRegion( regUp );
710       e = RegionBelow(regUp)->eUp->Rprev;
711       regLo->eUp = eLo->Oprev;
712       eLo = FinishLeftRegions( tess, regLo, NULL );
713       AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TRUE );
714       return TRUE;
715     }
716     /* Special case: called from ConnectRightVertex.  If either
717      * edge passes on the wrong side of tess->event, split it
718      * (and wait for ConnectRightVertex to splice it appropriately).
719      */
720     if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) {
721       RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
722       if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
723       eUp->Org->s = tess->event->s;
724       eUp->Org->t = tess->event->t;
725     }
726     if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) {
727       regUp->dirty = regLo->dirty = TRUE;
728       if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
729       eLo->Org->s = tess->event->s;
730       eLo->Org->t = tess->event->t;
731     }
732     /* leave the rest for ConnectRightVertex */
733     return FALSE;
734   }
735 
736   /* General case -- split both edges, splice into new vertex.
737    * When we do the splice operation, the order of the arguments is
738    * arbitrary as far as correctness goes.  However, when the operation
739    * creates a new face, the work done is proportional to the size of
740    * the new face.  We expect the faces in the processed part of
741    * the mesh (ie. eUp->Lface) to be smaller than the faces in the
742    * unprocessed original contours (which will be eLo->Oprev->Lface).
743    */
744   if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
745   if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
746   if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
747   eUp->Org->s = isect.s;
748   eUp->Org->t = isect.t;
749   eUp->Org->pqHandle = pqInsert( tess->pq, eUp->Org ); /* __gl_pqSortInsert */
750   if (eUp->Org->pqHandle == LONG_MAX) {
751      pqDeletePriorityQ(tess->pq);	/* __gl_pqSortDeletePriorityQ */
752      tess->pq = NULL;
753      longjmp(tess->env,1);
754   }
755   GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo );
756   RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TRUE;
757   return FALSE;
758 }
759 
760 static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp )
761 /*
762  * When the upper or lower edge of any region changes, the region is
763  * marked "dirty".  This routine walks through all the dirty regions
764  * and makes sure that the dictionary invariants are satisfied
765  * (see the comments at the beginning of this file).  Of course
766  * new dirty regions can be created as we make changes to restore
767  * the invariants.
768  */
769 {
770   ActiveRegion *regLo = RegionBelow(regUp);
771   GLUhalfEdge *eUp, *eLo;
772 
773   for( ;; ) {
774     /* Find the lowest dirty region (we walk from the bottom up). */
775     while( regLo->dirty ) {
776       regUp = regLo;
777       regLo = RegionBelow(regLo);
778     }
779     if( ! regUp->dirty ) {
780       regLo = regUp;
781       regUp = RegionAbove( regUp );
782       if( regUp == NULL || ! regUp->dirty ) {
783 	/* We've walked all the dirty regions */
784 	return;
785       }
786     }
787     regUp->dirty = FALSE;
788     eUp = regUp->eUp;
789     eLo = regLo->eUp;
790 
791     if( eUp->Dst != eLo->Dst ) {
792       /* Check that the edge ordering is obeyed at the Dst vertices. */
793       if( CheckForLeftSplice( tess, regUp )) {
794 
795 	/* If the upper or lower edge was marked fixUpperEdge, then
796 	 * we no longer need it (since these edges are needed only for
797 	 * vertices which otherwise have no right-going edges).
798 	 */
799 	if( regLo->fixUpperEdge ) {
800 	  DeleteRegion( tess, regLo );
801 	  if ( !__gl_meshDelete( eLo ) ) longjmp(tess->env,1);
802 	  regLo = RegionBelow( regUp );
803 	  eLo = regLo->eUp;
804 	} else if( regUp->fixUpperEdge ) {
805 	  DeleteRegion( tess, regUp );
806 	  if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
807 	  regUp = RegionAbove( regLo );
808 	  eUp = regUp->eUp;
809 	}
810       }
811     }
812     if( eUp->Org != eLo->Org ) {
813       if(    eUp->Dst != eLo->Dst
814 	  && ! regUp->fixUpperEdge && ! regLo->fixUpperEdge
815 	  && (eUp->Dst == tess->event || eLo->Dst == tess->event) )
816       {
817 	/* When all else fails in CheckForIntersect(), it uses tess->event
818 	 * as the intersection location.  To make this possible, it requires
819 	 * that tess->event lie between the upper and lower edges, and also
820 	 * that neither of these is marked fixUpperEdge (since in the worst
821 	 * case it might splice one of these edges into tess->event, and
822 	 * violate the invariant that fixable edges are the only right-going
823 	 * edge from their associated vertex).
824 	 */
825 	if( CheckForIntersect( tess, regUp )) {
826 	  /* WalkDirtyRegions() was called recursively; we're done */
827 	  return;
828 	}
829       } else {
830 	/* Even though we can't use CheckForIntersect(), the Org vertices
831 	 * may violate the dictionary edge ordering.  Check and correct this.
832 	 */
833 	(void) CheckForRightSplice( tess, regUp );
834       }
835     }
836     if( eUp->Org == eLo->Org && eUp->Dst == eLo->Dst ) {
837       /* A degenerate loop consisting of only two edges -- delete it. */
838       AddWinding( eLo, eUp );
839       DeleteRegion( tess, regUp );
840       if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
841       regUp = RegionAbove( regLo );
842     }
843   }
844 }
845 
846 
847 static void ConnectRightVertex( GLUtesselator *tess, ActiveRegion *regUp,
848 				GLUhalfEdge *eBottomLeft )
849 /*
850  * Purpose: connect a "right" vertex vEvent (one where all edges go left)
851  * to the unprocessed portion of the mesh.  Since there are no right-going
852  * edges, two regions (one above vEvent and one below) are being merged
853  * into one.  "regUp" is the upper of these two regions.
854  *
855  * There are two reasons for doing this (adding a right-going edge):
856  *  - if the two regions being merged are "inside", we must add an edge
857  *    to keep them separated (the combined region would not be monotone).
858  *  - in any case, we must leave some record of vEvent in the dictionary,
859  *    so that we can merge vEvent with features that we have not seen yet.
860  *    For example, maybe there is a vertical edge which passes just to
861  *    the right of vEvent; we would like to splice vEvent into this edge.
862  *
863  * However, we don't want to connect vEvent to just any vertex.  We don''t
864  * want the new edge to cross any other edges; otherwise we will create
865  * intersection vertices even when the input data had no self-intersections.
866  * (This is a bad thing; if the user's input data has no intersections,
867  * we don't want to generate any false intersections ourselves.)
868  *
869  * Our eventual goal is to connect vEvent to the leftmost unprocessed
870  * vertex of the combined region (the union of regUp and regLo).
871  * But because of unseen vertices with all right-going edges, and also
872  * new vertices which may be created by edge intersections, we don''t
873  * know where that leftmost unprocessed vertex is.  In the meantime, we
874  * connect vEvent to the closest vertex of either chain, and mark the region
875  * as "fixUpperEdge".  This flag says to delete and reconnect this edge
876  * to the next processed vertex on the boundary of the combined region.
877  * Quite possibly the vertex we connected to will turn out to be the
878  * closest one, in which case we won''t need to make any changes.
879  */
880 {
881   GLUhalfEdge *eNew;
882   GLUhalfEdge *eTopLeft = eBottomLeft->Onext;
883   ActiveRegion *regLo = RegionBelow(regUp);
884   GLUhalfEdge *eUp = regUp->eUp;
885   GLUhalfEdge *eLo = regLo->eUp;
886   int degenerate = FALSE;
887 
888   if( eUp->Dst != eLo->Dst ) {
889     (void) CheckForIntersect( tess, regUp );
890   }
891 
892   /* Possible new degeneracies: upper or lower edge of regUp may pass
893    * through vEvent, or may coincide with new intersection vertex
894    */
895   if( VertEq( eUp->Org, tess->event )) {
896     if ( !__gl_meshSplice( eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1);
897     regUp = TopLeftRegion( regUp );
898     if (regUp == NULL) longjmp(tess->env,1);
899     eTopLeft = RegionBelow( regUp )->eUp;
900     FinishLeftRegions( tess, RegionBelow(regUp), regLo );
901     degenerate = TRUE;
902   }
903   if( VertEq( eLo->Org, tess->event )) {
904     if ( !__gl_meshSplice( eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1);
905     eBottomLeft = FinishLeftRegions( tess, regLo, NULL );
906     degenerate = TRUE;
907   }
908   if( degenerate ) {
909     AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
910     return;
911   }
912 
913   /* Non-degenerate situation -- need to add a temporary, fixable edge.
914    * Connect to the closer of eLo->Org, eUp->Org.
915    */
916   if( VertLeq( eLo->Org, eUp->Org )) {
917     eNew = eLo->Oprev;
918   } else {
919     eNew = eUp;
920   }
921   eNew = __gl_meshConnect( eBottomLeft->Lprev, eNew );
922   if (eNew == NULL) longjmp(tess->env,1);
923 
924   /* Prevent cleanup, otherwise eNew might disappear before we've even
925    * had a chance to mark it as a temporary edge.
926    */
927   AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, FALSE );
928   eNew->Sym->activeRegion->fixUpperEdge = TRUE;
929   WalkDirtyRegions( tess, regUp );
930 }
931 
932 /* Because vertices at exactly the same location are merged together
933  * before we process the sweep event, some degenerate cases can't occur.
934  * However if someone eventually makes the modifications required to
935  * merge features which are close together, the cases below marked
936  * TOLERANCE_NONZERO will be useful.  They were debugged before the
937  * code to merge identical vertices in the main loop was added.
938  */
939 #define TOLERANCE_NONZERO	FALSE
940 
941 static void ConnectLeftDegenerate( GLUtesselator *tess,
942 				   ActiveRegion *regUp, GLUvertex *vEvent )
943 /*
944  * The event vertex lies exacty on an already-processed edge or vertex.
945  * Adding the new vertex involves splicing it into the already-processed
946  * part of the mesh.
947  */
948 {
949   GLUhalfEdge *e, *eTopLeft, *eTopRight, *eLast;
950   ActiveRegion *reg;
951 
952   e = regUp->eUp;
953   if( VertEq( e->Org, vEvent )) {
954     /* e->Org is an unprocessed vertex - just combine them, and wait
955      * for e->Org to be pulled from the queue
956      */
957     assert( TOLERANCE_NONZERO );
958     SpliceMergeVertices( tess, e, vEvent->anEdge );
959     return;
960   }
961 
962   if( ! VertEq( e->Dst, vEvent )) {
963     /* General case -- splice vEvent into edge e which passes through it */
964     if (__gl_meshSplitEdge( e->Sym ) == NULL) longjmp(tess->env,1);
965     if( regUp->fixUpperEdge ) {
966       /* This edge was fixable -- delete unused portion of original edge */
967       if ( !__gl_meshDelete( e->Onext ) ) longjmp(tess->env,1);
968       regUp->fixUpperEdge = FALSE;
969     }
970     if ( !__gl_meshSplice( vEvent->anEdge, e ) ) longjmp(tess->env,1);
971     SweepEvent( tess, vEvent ); /* recurse */
972     return;
973   }
974 
975   /* vEvent coincides with e->Dst, which has already been processed.
976    * Splice in the additional right-going edges.
977    */
978   assert( TOLERANCE_NONZERO );
979   regUp = TopRightRegion( regUp );
980   reg = RegionBelow( regUp );
981   eTopRight = reg->eUp->Sym;
982   eTopLeft = eLast = eTopRight->Onext;
983   if( reg->fixUpperEdge ) {
984     /* Here e->Dst has only a single fixable edge going right.
985      * We can delete it since now we have some real right-going edges.
986      */
987     assert( eTopLeft != eTopRight );   /* there are some left edges too */
988     DeleteRegion( tess, reg );
989     if ( !__gl_meshDelete( eTopRight ) ) longjmp(tess->env,1);
990     eTopRight = eTopLeft->Oprev;
991   }
992   if ( !__gl_meshSplice( vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1);
993   if( ! EdgeGoesLeft( eTopLeft )) {
994     /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */
995     eTopLeft = NULL;
996   }
997   AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TRUE );
998 }
999 
1000 
1001 static void ConnectLeftVertex( GLUtesselator *tess, GLUvertex *vEvent )
1002 /*
1003  * Purpose: connect a "left" vertex (one where both edges go right)
1004  * to the processed portion of the mesh.  Let R be the active region
1005  * containing vEvent, and let U and L be the upper and lower edge
1006  * chains of R.  There are two possibilities:
1007  *
1008  * - the normal case: split R into two regions, by connecting vEvent to
1009  *   the rightmost vertex of U or L lying to the left of the sweep line
1010  *
1011  * - the degenerate case: if vEvent is close enough to U or L, we
1012  *   merge vEvent into that edge chain.  The subcases are:
1013  *	- merging with the rightmost vertex of U or L
1014  *	- merging with the active edge of U or L
1015  *	- merging with an already-processed portion of U or L
1016  */
1017 {
1018   ActiveRegion *regUp, *regLo, *reg;
1019   GLUhalfEdge *eUp, *eLo, *eNew;
1020   ActiveRegion tmp;
1021 
1022   /* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */
1023 
1024   /* Get a pointer to the active region containing vEvent */
1025   tmp.eUp = vEvent->anEdge->Sym;
1026   /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */
1027   regUp = (ActiveRegion *)dictKey( dictSearch( tess->dict, &tmp ));
1028   regLo = RegionBelow( regUp );
1029   eUp = regUp->eUp;
1030   eLo = regLo->eUp;
1031 
1032   /* Try merging with U or L first */
1033   if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) == 0 ) {
1034     ConnectLeftDegenerate( tess, regUp, vEvent );
1035     return;
1036   }
1037 
1038   /* Connect vEvent to rightmost processed vertex of either chain.
1039    * e->Dst is the vertex that we will connect to vEvent.
1040    */
1041   reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp : regLo;
1042 
1043   if( regUp->inside || reg->fixUpperEdge) {
1044     if( reg == regUp ) {
1045       eNew = __gl_meshConnect( vEvent->anEdge->Sym, eUp->Lnext );
1046       if (eNew == NULL) longjmp(tess->env,1);
1047     } else {
1048       GLUhalfEdge *tempHalfEdge= __gl_meshConnect( eLo->Dnext, vEvent->anEdge);
1049       if (tempHalfEdge == NULL) longjmp(tess->env,1);
1050 
1051       eNew = tempHalfEdge->Sym;
1052     }
1053     if( reg->fixUpperEdge ) {
1054       if ( !FixUpperEdge( reg, eNew ) ) longjmp(tess->env,1);
1055     } else {
1056       ComputeWinding( tess, AddRegionBelow( tess, regUp, eNew ));
1057     }
1058     SweepEvent( tess, vEvent );
1059   } else {
1060     /* The new vertex is in a region which does not belong to the polygon.
1061      * We don''t need to connect this vertex to the rest of the mesh.
1062      */
1063     AddRightEdges( tess, regUp, vEvent->anEdge, vEvent->anEdge, NULL, TRUE );
1064   }
1065 }
1066 
1067 
1068 static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent )
1069 /*
1070  * Does everything necessary when the sweep line crosses a vertex.
1071  * Updates the mesh and the edge dictionary.
1072  */
1073 {
1074   ActiveRegion *regUp, *reg;
1075   GLUhalfEdge *e, *eTopLeft, *eBottomLeft;
1076 
1077   tess->event = vEvent; 	/* for access in EdgeLeq() */
1078   DebugEvent( tess );
1079 
1080   /* Check if this vertex is the right endpoint of an edge that is
1081    * already in the dictionary.  In this case we don't need to waste
1082    * time searching for the location to insert new edges.
1083    */
1084   e = vEvent->anEdge;
1085   while( e->activeRegion == NULL ) {
1086     e = e->Onext;
1087     if( e == vEvent->anEdge ) {
1088       /* All edges go right -- not incident to any processed edges */
1089       ConnectLeftVertex( tess, vEvent );
1090       return;
1091     }
1092   }
1093 
1094   /* Processing consists of two phases: first we "finish" all the
1095    * active regions where both the upper and lower edges terminate
1096    * at vEvent (ie. vEvent is closing off these regions).
1097    * We mark these faces "inside" or "outside" the polygon according
1098    * to their winding number, and delete the edges from the dictionary.
1099    * This takes care of all the left-going edges from vEvent.
1100    */
1101   regUp = TopLeftRegion( e->activeRegion );
1102   if (regUp == NULL) longjmp(tess->env,1);
1103   reg = RegionBelow( regUp );
1104   eTopLeft = reg->eUp;
1105   eBottomLeft = FinishLeftRegions( tess, reg, NULL );
1106 
1107   /* Next we process all the right-going edges from vEvent.  This
1108    * involves adding the edges to the dictionary, and creating the
1109    * associated "active regions" which record information about the
1110    * regions between adjacent dictionary edges.
1111    */
1112   if( eBottomLeft->Onext == eTopLeft ) {
1113     /* No right-going edges -- add a temporary "fixable" edge */
1114     ConnectRightVertex( tess, regUp, eBottomLeft );
1115   } else {
1116     AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
1117   }
1118 }
1119 
1120 
1121 /* Make the sentinel coordinates big enough that they will never be
1122  * merged with real input features.  (Even with the largest possible
1123  * input contour and the maximum tolerance of 1.0, no merging will be
1124  * done with coordinates larger than 3 * GLU_TESS_MAX_COORD).
1125  */
1126 #define SENTINEL_COORD	(4 * GLU_TESS_MAX_COORD)
1127 
1128 static void AddSentinel( GLUtesselator *tess, GLdouble t )
1129 /*
1130  * We add two sentinel edges above and below all other edges,
1131  * to avoid special cases at the top and bottom.
1132  */
1133 {
1134   GLUhalfEdge *e;
1135   ActiveRegion *reg = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
1136   if (reg == NULL) longjmp(tess->env,1);
1137 
1138   e = __gl_meshMakeEdge( tess->mesh );
1139   if (e == NULL) longjmp(tess->env,1);
1140 
1141   e->Org->s = SENTINEL_COORD;
1142   e->Org->t = t;
1143   e->Dst->s = -SENTINEL_COORD;
1144   e->Dst->t = t;
1145   tess->event = e->Dst; 	/* initialize it */
1146 
1147   reg->eUp = e;
1148   reg->windingNumber = 0;
1149   reg->inside = FALSE;
1150   reg->fixUpperEdge = FALSE;
1151   reg->sentinel = TRUE;
1152   reg->dirty = FALSE;
1153   reg->nodeUp = dictInsert( tess->dict, reg ); /* __gl_dictListInsertBefore */
1154   if (reg->nodeUp == NULL) longjmp(tess->env,1);
1155 }
1156 
1157 
1158 static void InitEdgeDict( GLUtesselator *tess )
1159 /*
1160  * We maintain an ordering of edge intersections with the sweep line.
1161  * This order is maintained in a dynamic dictionary.
1162  */
1163 {
1164   /* __gl_dictListNewDict */
1165   tess->dict = dictNewDict( tess, (int (*)(void *, DictKey, DictKey)) EdgeLeq );
1166   if (tess->dict == NULL) longjmp(tess->env,1);
1167 
1168   AddSentinel( tess, -SENTINEL_COORD );
1169   AddSentinel( tess, SENTINEL_COORD );
1170 }
1171 
1172 
1173 static void DoneEdgeDict( GLUtesselator *tess )
1174 {
1175   ActiveRegion *reg;
1176 #ifndef NDEBUG
1177   int fixedEdges = 0;
1178 #endif
1179 
1180   /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
1181   while( (reg = (ActiveRegion *)dictKey( dictMin( tess->dict ))) != NULL ) {
1182     /*
1183      * At the end of all processing, the dictionary should contain
1184      * only the two sentinel edges, plus at most one "fixable" edge
1185      * created by ConnectRightVertex().
1186      */
1187     if( ! reg->sentinel ) {
1188       assert( reg->fixUpperEdge );
1189       assert( ++fixedEdges == 1 );
1190     }
1191     assert( reg->windingNumber == 0 );
1192     DeleteRegion( tess, reg );
1193 /*    __gl_meshDelete( reg->eUp );*/
1194   }
1195   dictDeleteDict( tess->dict ); /* __gl_dictListDeleteDict */
1196 }
1197 
1198 
1199 static void RemoveDegenerateEdges( GLUtesselator *tess )
1200 /*
1201  * Remove zero-length edges, and contours with fewer than 3 vertices.
1202  */
1203 {
1204   GLUhalfEdge *e, *eNext, *eLnext;
1205   GLUhalfEdge *eHead = &tess->mesh->eHead;
1206 
1207   /*LINTED*/
1208   for( e = eHead->next; e != eHead; e = eNext ) {
1209     eNext = e->next;
1210     eLnext = e->Lnext;
1211 
1212     if( VertEq( e->Org, e->Dst ) && e->Lnext->Lnext != e ) {
1213       /* Zero-length edge, contour has at least 3 edges */
1214 
1215       SpliceMergeVertices( tess, eLnext, e );	/* deletes e->Org */
1216       if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1); /* e is a self-loop */
1217       e = eLnext;
1218       eLnext = e->Lnext;
1219     }
1220     if( eLnext->Lnext == e ) {
1221       /* Degenerate contour (one or two edges) */
1222 
1223       if( eLnext != e ) {
1224 	if( eLnext == eNext || eLnext == eNext->Sym ) { eNext = eNext->next; }
1225 	if ( !__gl_meshDelete( eLnext ) ) longjmp(tess->env,1);
1226       }
1227       if( e == eNext || e == eNext->Sym ) { eNext = eNext->next; }
1228       if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1);
1229     }
1230   }
1231 }
1232 
1233 static int InitPriorityQ( GLUtesselator *tess )
1234 /*
1235  * Insert all vertices into the priority queue which determines the
1236  * order in which vertices cross the sweep line.
1237  */
1238 {
1239   PriorityQ *pq;
1240   GLUvertex *v, *vHead;
1241 
1242   /* __gl_pqSortNewPriorityQ */
1243   pq = tess->pq = pqNewPriorityQ( (int (*)(PQkey, PQkey)) __gl_vertLeq );
1244   if (pq == NULL) return 0;
1245 
1246   vHead = &tess->mesh->vHead;
1247   for( v = vHead->next; v != vHead; v = v->next ) {
1248     v->pqHandle = pqInsert( pq, v ); /* __gl_pqSortInsert */
1249     if (v->pqHandle == LONG_MAX) break;
1250   }
1251   if (v != vHead || !pqInit( pq ) ) { /* __gl_pqSortInit */
1252     pqDeletePriorityQ(tess->pq);	/* __gl_pqSortDeletePriorityQ */
1253     tess->pq = NULL;
1254     return 0;
1255   }
1256 
1257   return 1;
1258 }
1259 
1260 
1261 static void DonePriorityQ( GLUtesselator *tess )
1262 {
1263   pqDeletePriorityQ( tess->pq ); /* __gl_pqSortDeletePriorityQ */
1264 }
1265 
1266 
1267 static int RemoveDegenerateFaces( GLUmesh *mesh )
1268 /*
1269  * Delete any degenerate faces with only two edges.  WalkDirtyRegions()
1270  * will catch almost all of these, but it won't catch degenerate faces
1271  * produced by splice operations on already-processed edges.
1272  * The two places this can happen are in FinishLeftRegions(), when
1273  * we splice in a "temporary" edge produced by ConnectRightVertex(),
1274  * and in CheckForLeftSplice(), where we splice already-processed
1275  * edges to ensure that our dictionary invariants are not violated
1276  * by numerical errors.
1277  *
1278  * In both these cases it is *very* dangerous to delete the offending
1279  * edge at the time, since one of the routines further up the stack
1280  * will sometimes be keeping a pointer to that edge.
1281  */
1282 {
1283   GLUface *f, *fNext;
1284   GLUhalfEdge *e;
1285 
1286   /*LINTED*/
1287   for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) {
1288     fNext = f->next;
1289     e = f->anEdge;
1290     assert( e->Lnext != e );
1291 
1292     if( e->Lnext->Lnext == e ) {
1293       /* A face with only two edges */
1294       AddWinding( e->Onext, e );
1295       if ( !__gl_meshDelete( e ) ) return 0;
1296     }
1297   }
1298   return 1;
1299 }
1300 
1301 int __gl_computeInterior( GLUtesselator *tess )
1302 /*
1303  * __gl_computeInterior( tess ) computes the planar arrangement specified
1304  * by the given contours, and further subdivides this arrangement
1305  * into regions.  Each region is marked "inside" if it belongs
1306  * to the polygon, according to the rule given by tess->windingRule.
1307  * Each interior region is guaranteed be monotone.
1308  */
1309 {
1310   GLUvertex *v, *vNext;
1311 
1312   tess->fatalError = FALSE;
1313 
1314   /* Each vertex defines an event for our sweep line.  Start by inserting
1315    * all the vertices in a priority queue.  Events are processed in
1316    * lexicographic order, ie.
1317    *
1318    *	e1 < e2  iff  e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
1319    */
1320   RemoveDegenerateEdges( tess );
1321   if ( !InitPriorityQ( tess ) ) return 0; /* if error */
1322   InitEdgeDict( tess );
1323 
1324   /* __gl_pqSortExtractMin */
1325   while( (v = (GLUvertex *)pqExtractMin( tess->pq )) != NULL ) {
1326     for( ;; ) {
1327       vNext = (GLUvertex *)pqMinimum( tess->pq ); /* __gl_pqSortMinimum */
1328       if( vNext == NULL || ! VertEq( vNext, v )) break;
1329 
1330       /* Merge together all vertices at exactly the same location.
1331        * This is more efficient than processing them one at a time,
1332        * simplifies the code (see ConnectLeftDegenerate), and is also
1333        * important for correct handling of certain degenerate cases.
1334        * For example, suppose there are two identical edges A and B
1335        * that belong to different contours (so without this code they would
1336        * be processed by separate sweep events).  Suppose another edge C
1337        * crosses A and B from above.  When A is processed, we split it
1338        * at its intersection point with C.  However this also splits C,
1339        * so when we insert B we may compute a slightly different
1340        * intersection point.  This might leave two edges with a small
1341        * gap between them.  This kind of error is especially obvious
1342        * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY).
1343        */
1344       vNext = (GLUvertex *)pqExtractMin( tess->pq ); /* __gl_pqSortExtractMin*/
1345       SpliceMergeVertices( tess, v->anEdge, vNext->anEdge );
1346     }
1347     SweepEvent( tess, v );
1348   }
1349 
1350   /* Set tess->event for debugging purposes */
1351   /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
1352   tess->event = ((ActiveRegion *) dictKey( dictMin( tess->dict )))->eUp->Org;
1353   DebugEvent( tess );
1354   DoneEdgeDict( tess );
1355   DonePriorityQ( tess );
1356 
1357   if ( !RemoveDegenerateFaces( tess->mesh ) ) return 0;
1358   __gl_meshCheckMesh( tess->mesh );
1359 
1360   return 1;
1361 }
1362