1 /* 2 * dlls/rsaenh/tomcrypt.h 3 * Function prototypes, type definitions and constant definitions 4 * for LibTomCrypt code. 5 * 6 * Copyright 2004 Michael Jung 7 * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca) 8 * 9 * This library is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU Lesser General Public 11 * License as published by the Free Software Foundation; either 12 * version 2.1 of the License, or (at your option) any later version. 13 * 14 * This library is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * Lesser General Public License for more details. 18 * 19 * You should have received a copy of the GNU Lesser General Public 20 * License along with this library; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA 22 */ 23 24 /* 25 * This file contains code from the LibTomCrypt cryptographic 26 * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt 27 * is in the public domain. The code in this file is tailored to 28 * special requirements. Take a look at http://libtomcrypt.org for the 29 * original version. 30 */ 31 32 #ifndef __WINE_TOMCRYPT_H_ 33 #define __WINE_TOMCRYPT_H_ 34 35 #include <stdio.h> 36 #include <string.h> 37 #include <stdlib.h> 38 //#include <limits.h> 39 #include <basetsd.h> 40 41 /* error codes [will be expanded in future releases] */ 42 enum { 43 CRYPT_OK=0, /* Result OK */ 44 CRYPT_ERROR, /* Generic Error */ 45 CRYPT_NOP, /* Not a failure but no operation was performed */ 46 47 CRYPT_INVALID_KEYSIZE, /* Invalid key size given */ 48 CRYPT_INVALID_ROUNDS, /* Invalid number of rounds */ 49 CRYPT_FAIL_TESTVECTOR, /* Algorithm failed test vectors */ 50 51 CRYPT_BUFFER_OVERFLOW, /* Not enough space for output */ 52 CRYPT_INVALID_PACKET, /* Invalid input packet given */ 53 54 CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */ 55 CRYPT_ERROR_READPRNG, /* Could not read enough from PRNG */ 56 57 CRYPT_INVALID_CIPHER, /* Invalid cipher specified */ 58 CRYPT_INVALID_HASH, /* Invalid hash specified */ 59 CRYPT_INVALID_PRNG, /* Invalid PRNG specified */ 60 61 CRYPT_MEM, /* Out of memory */ 62 63 CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */ 64 CRYPT_PK_NOT_PRIVATE, /* Requires a private PK key */ 65 66 CRYPT_INVALID_ARG, /* Generic invalid argument */ 67 CRYPT_FILE_NOTFOUND, /* File Not Found */ 68 69 CRYPT_PK_INVALID_TYPE, /* Invalid type of PK key */ 70 CRYPT_PK_INVALID_SYSTEM,/* Invalid PK system specified */ 71 CRYPT_PK_DUP, /* Duplicate key already in key ring */ 72 CRYPT_PK_NOT_FOUND, /* Key not found in keyring */ 73 CRYPT_PK_INVALID_SIZE, /* Invalid size input for PK parameters */ 74 75 CRYPT_INVALID_PRIME_SIZE/* Invalid size of prime requested */ 76 }; 77 78 #define CONST64(a,b) ((((ULONG64)(a)) << 32) | (b)) 79 typedef ULONG64 ulong64; 80 81 /* this is the "32-bit at least" data type 82 * Re-define it to suit your platform but it must be at least 32-bits 83 */ 84 typedef ULONG32 ulong32; 85 86 /* ---- HELPER MACROS ---- */ 87 #define STORE32H(x, y) \ 88 { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \ 89 (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); } 90 91 #define LOAD32H(x, y) \ 92 { x = ((unsigned long)((y)[0] & 255)<<24) | \ 93 ((unsigned long)((y)[1] & 255)<<16) | \ 94 ((unsigned long)((y)[2] & 255)<<8) | \ 95 ((unsigned long)((y)[3] & 255)); } 96 97 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC) 98 99 static inline unsigned ROR(unsigned word, int i) 100 { 101 __asm__("rorl %%cl,%0" 102 :"=r" (word) 103 :"0" (word),"c" (i)); 104 return word; 105 } 106 107 #else 108 109 /* rotates the hard way */ 110 #define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \ 111 ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL) 112 113 #endif 114 115 #undef MIN 116 #define MIN(x, y) ( ((x)<(y))?(x):(y) ) 117 118 #define byte(x, n) (((x) >> (8 * (n))) & 255) 119 120 typedef struct tag_rc2_key { 121 unsigned xkey[64]; 122 } rc2_key; 123 124 typedef struct tag_des_key { 125 ulong32 ek[32], dk[32]; 126 } des_key; 127 128 typedef struct tag_des3_key { 129 ulong32 ek[3][32], dk[3][32]; 130 } des3_key; 131 132 typedef struct tag_aes_key { 133 ulong32 eK[64], dK[64]; 134 int Nr; 135 } aes_key; 136 137 int rc2_setup(const unsigned char *key, int keylen, int bits, int num_rounds, rc2_key *skey); 138 void rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, rc2_key *key); 139 void rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, rc2_key *key); 140 141 int des_setup(const unsigned char *key, int keylen, int num_rounds, des_key *skey); 142 void des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des_key *key); 143 void des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des_key *key); 144 145 int des3_setup(const unsigned char *key, int keylen, int num_rounds, des3_key *skey); 146 void des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des3_key *key); 147 void des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des3_key *key); 148 149 int aes_setup(const unsigned char *key, int keylen, int rounds, aes_key *skey); 150 void aes_ecb_encrypt(const unsigned char *pt, unsigned char *ct, aes_key *skey); 151 void aes_ecb_decrypt(const unsigned char *ct, unsigned char *pt, aes_key *skey); 152 153 typedef struct tag_md2_state { 154 unsigned char chksum[16], X[48], buf[16]; 155 unsigned long curlen; 156 } md2_state; 157 158 int md2_init(md2_state * md); 159 int md2_process(md2_state * md, const unsigned char *buf, unsigned long len); 160 int md2_done(md2_state * md, unsigned char *hash); 161 162 struct rc4_prng { 163 int x, y; 164 unsigned char buf[256]; 165 }; 166 167 typedef union Prng_state { 168 struct rc4_prng rc4; 169 } prng_state; 170 171 int rc4_start(prng_state *prng); 172 int rc4_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng); 173 int rc4_ready(prng_state *prng); 174 unsigned long rc4_read(unsigned char *buf, unsigned long len, prng_state *prng); 175 176 /* some default configurations. 177 * 178 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits 179 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits 180 * 181 * At the very least a mp_digit must be able to hold 7 bits 182 * [any size beyond that is ok provided it doesn't overflow the data type] 183 */ 184 typedef unsigned long mp_digit; 185 typedef ulong64 mp_word; 186 #define DIGIT_BIT 28 187 188 #define MP_DIGIT_BIT DIGIT_BIT 189 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) 190 #define MP_DIGIT_MAX MP_MASK 191 192 /* equalities */ 193 #define MP_LT -1 /* less than */ 194 #define MP_EQ 0 /* equal to */ 195 #define MP_GT 1 /* greater than */ 196 197 #define MP_ZPOS 0 /* positive integer */ 198 #define MP_NEG 1 /* negative */ 199 200 #define MP_OKAY 0 /* ok result */ 201 #define MP_MEM -2 /* out of mem */ 202 #define MP_VAL -3 /* invalid input */ 203 #define MP_RANGE MP_VAL 204 205 #define MP_YES 1 /* yes response */ 206 #define MP_NO 0 /* no response */ 207 208 /* Primality generation flags */ 209 #define LTM_PRIME_BBS 0x0001 /* BBS style prime */ 210 #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ 211 #define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */ 212 #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ 213 214 typedef int mp_err; 215 216 /* define this to use lower memory usage routines (exptmods mostly) */ 217 /* #define MP_LOW_MEM */ 218 219 #define MP_PREC 64 /* default digits of precision */ 220 221 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ 222 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) 223 224 /* the infamous mp_int structure */ 225 typedef struct { 226 int used, alloc, sign; 227 mp_digit *dp; 228 } mp_int; 229 230 /* callback for mp_prime_random, should fill dst with random bytes and return how many read [up to len] */ 231 typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); 232 233 #define DIGIT(m,k) ((m)->dp[(k)]) 234 235 /* error code to char* string */ 236 char *mp_error_to_string(int code); 237 238 /* init a null terminated series of arguments */ 239 int mp_init_multi(mp_int *mp, ...); 240 241 /* clear a null terminated series of arguments */ 242 void mp_clear_multi(mp_int *mp, ...); 243 244 /* shrink ram required for a bignum */ 245 int mp_shrink(mp_int *a); 246 247 /* ---> Basic Manipulations <--- */ 248 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) 249 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) 250 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) 251 252 /* set a 32-bit const */ 253 int mp_set_int(mp_int *a, unsigned long b); 254 255 /* get a 32-bit value */ 256 unsigned long mp_get_int(const mp_int * a); 257 258 /* initialize and set a digit */ 259 int mp_init_set (mp_int * a, mp_digit b); 260 261 /* initialize and set 32-bit value */ 262 int mp_init_set_int (mp_int * a, unsigned long b); 263 264 /* copy, b = a */ 265 int mp_copy(const mp_int *a, mp_int *b); 266 267 /* inits and copies, a = b */ 268 int mp_init_copy(mp_int *a, const mp_int *b); 269 270 /* ---> digit manipulation <--- */ 271 272 /* I Love Earth! */ 273 274 /* makes a pseudo-random int of a given size */ 275 int mp_rand(mp_int *a, int digits); 276 277 /* ---> binary operations <--- */ 278 /* c = a XOR b */ 279 int mp_xor(mp_int *a, mp_int *b, mp_int *c); 280 281 /* c = a OR b */ 282 int mp_or(mp_int *a, mp_int *b, mp_int *c); 283 284 /* c = a AND b */ 285 int mp_and(mp_int *a, mp_int *b, mp_int *c); 286 287 /* ---> Basic arithmetic <--- */ 288 289 /* b = -a */ 290 int mp_neg(mp_int *a, mp_int *b); 291 292 /* compare a to b */ 293 int mp_cmp(const mp_int *a, const mp_int *b); 294 295 /* c = a + b */ 296 int mp_add(mp_int *a, mp_int *b, mp_int *c); 297 298 /* c = a - b */ 299 int mp_sub(mp_int *a, mp_int *b, mp_int *c); 300 301 /* c = a * b */ 302 int mp_mul(const mp_int *a, const mp_int *b, mp_int *c); 303 304 /* c = a mod b, 0 <= c < b */ 305 int mp_mod(const mp_int *a, mp_int *b, mp_int *c); 306 307 /* ---> single digit functions <--- */ 308 309 /* compare against a single digit */ 310 int mp_cmp_d(const mp_int *a, mp_digit b); 311 312 /* c = a - b */ 313 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); 314 315 /* a/3 => 3c + d == a */ 316 int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); 317 318 /* c = a**b */ 319 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); 320 321 /* ---> number theory <--- */ 322 323 /* d = a + b (mod c) */ 324 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); 325 326 /* d = a - b (mod c) */ 327 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); 328 329 /* d = a * b (mod c) */ 330 int mp_mulmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d); 331 332 /* c = 1/a (mod b) */ 333 int mp_invmod(const mp_int *a, mp_int *b, mp_int *c); 334 335 /* c = (a, b) */ 336 int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c); 337 338 /* produces value such that U1*a + U2*b = U3 */ 339 int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); 340 341 /* c = [a, b] or (a*b)/(a, b) */ 342 int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c); 343 344 /* finds one of the b'th root of a, such that |c|**b <= |a| 345 * 346 * returns error if a < 0 and b is even 347 */ 348 int mp_n_root(mp_int *a, mp_digit b, mp_int *c); 349 350 /* special sqrt algo */ 351 int mp_sqrt(mp_int *arg, mp_int *ret); 352 353 /* is number a square? */ 354 int mp_is_square(mp_int *arg, int *ret); 355 356 /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ 357 int mp_jacobi(mp_int *a, mp_int *n, int *c); 358 359 /* returns 1 if a is a valid DR modulus */ 360 int mp_dr_is_modulus(mp_int *a); 361 362 /* returns true if a can be reduced with mp_reduce_2k */ 363 int mp_reduce_is_2k(mp_int *a); 364 365 /* d = a**b (mod c) */ 366 int mp_exptmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d); 367 368 /* ---> Primes <--- */ 369 370 /* number of primes */ 371 #define PRIME_SIZE 256 372 373 /* performs one Fermat test of "a" using base "b". 374 * Sets result to 0 if composite or 1 if probable prime 375 */ 376 int mp_prime_fermat(mp_int *a, mp_int *b, int *result); 377 378 /* This gives [for a given bit size] the number of trials required 379 * such that Miller-Rabin gives a prob of failure lower than 2^-96 380 */ 381 int mp_prime_rabin_miller_trials(int size); 382 383 /* finds the next prime after the number "a" using "t" trials 384 * of Miller-Rabin. 385 * 386 * bbs_style = 1 means the prime must be congruent to 3 mod 4 387 */ 388 int mp_prime_next_prime(mp_int *a, int t, int bbs_style); 389 390 /* makes a truly random prime of a given size (bytes), 391 * call with bbs = 1 if you want it to be congruent to 3 mod 4 392 * 393 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can 394 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself 395 * so it can be NULL 396 * 397 * The prime generated will be larger than 2^(8*size). 398 */ 399 #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) 400 401 /* makes a truly random prime of a given size (bits), 402 * 403 * Flags are as follows: 404 * 405 * LTM_PRIME_BBS - make prime congruent to 3 mod 4 406 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) 407 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero 408 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one 409 * 410 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can 411 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself 412 * so it can be NULL 413 * 414 */ 415 int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); 416 417 /* ---> radix conversion <--- */ 418 int mp_count_bits(const mp_int *a); 419 420 int mp_unsigned_bin_size(const mp_int *a); 421 int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); 422 int mp_to_unsigned_bin(const mp_int *a, unsigned char *b); 423 424 int mp_read_signed_bin(mp_int *a, unsigned char *b, int c); 425 int mp_to_signed_bin(mp_int *a, unsigned char *b); 426 427 int mp_read_radix(mp_int *a, char *str, int radix); 428 int mp_toradix(mp_int *a, char *str, int radix); 429 int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); 430 int mp_radix_size(mp_int *a, int radix, int *size); 431 432 int mp_fread(mp_int *a, int radix, FILE *stream); 433 int mp_fwrite(mp_int *a, int radix, FILE *stream); 434 435 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) 436 #define mp_raw_size(mp) mp_signed_bin_size(mp) 437 #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) 438 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) 439 #define mp_mag_size(mp) mp_unsigned_bin_size(mp) 440 #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) 441 442 #define mp_tobinary(M, S) mp_toradix((M), (S), 2) 443 #define mp_tooctal(M, S) mp_toradix((M), (S), 8) 444 #define mp_todecimal(M, S) mp_toradix((M), (S), 10) 445 #define mp_tohex(M, S) mp_toradix((M), (S), 16) 446 447 extern const char *mp_s_rmap; 448 449 #define PK_PRIVATE 0 /* PK private keys */ 450 #define PK_PUBLIC 1 /* PK public keys */ 451 452 /* Min and Max RSA key sizes (in bits) */ 453 #define MIN_RSA_SIZE 384 454 #define MAX_RSA_SIZE 16384 455 456 typedef struct Rsa_key { 457 int type; 458 mp_int e, d, N, p, q, qP, dP, dQ; 459 } rsa_key; 460 461 int rsa_make_key(int size, long e, rsa_key *key); 462 463 int rsa_exptmod(const unsigned char *in, unsigned long inlen, 464 unsigned char *out, unsigned long *outlen, int which, 465 rsa_key *key); 466 467 void rsa_free(rsa_key *key); 468 469 #endif /* __WINE_TOMCRYPT_H_ */ 470