1 /* 2 * linux/fs/jbd/revoke.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000 5 * 6 * Copyright 2000 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Journal revoke routines for the generic filesystem journaling code; 13 * part of the ext2fs journaling system. 14 * 15 * Revoke is the mechanism used to prevent old log records for deleted 16 * metadata from being replayed on top of newer data using the same 17 * blocks. The revoke mechanism is used in two separate places: 18 * 19 * + Commit: during commit we write the entire list of the current 20 * transaction's revoked blocks to the journal 21 * 22 * + Recovery: during recovery we record the transaction ID of all 23 * revoked blocks. If there are multiple revoke records in the log 24 * for a single block, only the last one counts, and if there is a log 25 * entry for a block beyond the last revoke, then that log entry still 26 * gets replayed. 27 * 28 * We can get interactions between revokes and new log data within a 29 * single transaction: 30 * 31 * Block is revoked and then journaled: 32 * The desired end result is the journaling of the new block, so we 33 * cancel the revoke before the transaction commits. 34 * 35 * Block is journaled and then revoked: 36 * The revoke must take precedence over the write of the block, so we 37 * need either to cancel the journal entry or to write the revoke 38 * later in the log than the log block. In this case, we choose the 39 * latter: journaling a block cancels any revoke record for that block 40 * in the current transaction, so any revoke for that block in the 41 * transaction must have happened after the block was journaled and so 42 * the revoke must take precedence. 43 * 44 * Block is revoked and then written as data: 45 * The data write is allowed to succeed, but the revoke is _not_ 46 * cancelled. We still need to prevent old log records from 47 * overwriting the new data. We don't even need to clear the revoke 48 * bit here. 49 * 50 * Revoke information on buffers is a tri-state value: 51 * 52 * RevokeValid clear: no cached revoke status, need to look it up 53 * RevokeValid set, Revoked clear: 54 * buffer has not been revoked, and cancel_revoke 55 * need do nothing. 56 * RevokeValid set, Revoked set: 57 * buffer has been revoked. 58 */ 59 60 #ifndef __KERNEL__ 61 #include "jfs_user.h" 62 #else 63 #include <linux/time.h> 64 #include <linux/fs.h> 65 #include <linux/jbd.h> 66 #include <linux/errno.h> 67 #include <linux/slab.h> 68 #include <linux/list.h> 69 #include <linux/init.h> 70 #endif 71 #include <linux/log2.h> 72 73 static struct kmem_cache *revoke_record_cache = NULL; 74 static struct kmem_cache *revoke_table_cache = NULL; 75 76 /* Each revoke record represents one single revoked block. During 77 journal replay, this involves recording the transaction ID of the 78 last transaction to revoke this block. */ 79 80 struct jbd_revoke_record_s 81 { 82 struct list_head hash; 83 tid_t sequence; /* Used for recovery only */ 84 unsigned long blocknr; 85 }; 86 87 88 /* The revoke table is just a simple hash table of revoke records. */ 89 struct jbd_revoke_table_s 90 { 91 /* It is conceivable that we might want a larger hash table 92 * for recovery. Must be a power of two. */ 93 int hash_size; 94 int hash_shift; 95 struct list_head *hash_table; 96 }; 97 98 99 #ifdef __KERNEL__ 100 static void write_one_revoke_record(journal_t *, transaction_t *, 101 struct journal_head **, int *, 102 struct jbd_revoke_record_s *); 103 static void flush_descriptor(journal_t *, struct journal_head *, int); 104 #endif 105 106 /* Utility functions to maintain the revoke table */ 107 108 /* Borrowed from buffer.c: this is a tried and tested block hash function */ 109 static inline int hash(journal_t *journal, unsigned long block) 110 { 111 struct jbd_revoke_table_s *table = journal->j_revoke; 112 int hash_shift = table->hash_shift; 113 114 return ((block << (hash_shift - 6)) ^ 115 (block >> 13) ^ 116 (block << (hash_shift - 12))) & (table->hash_size - 1); 117 } 118 119 static int insert_revoke_hash(journal_t *journal, unsigned long blocknr, 120 tid_t seq) 121 { 122 struct list_head *hash_list; 123 struct jbd_revoke_record_s *record; 124 125 repeat: 126 record = (struct jbd_revoke_record_s *) 127 kmem_cache_alloc(revoke_record_cache, GFP_NOFS); 128 if (!record) 129 goto oom; 130 131 record->sequence = seq; 132 record->blocknr = blocknr; 133 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 134 jbd_lock(&journal->j_revoke_lock); 135 list_add(&record->hash, hash_list); 136 jbd_unlock(&journal->j_revoke_lock); 137 return 0; 138 139 oom: 140 if (!journal_oom_retry) 141 return -ENOMEM; 142 jbd_debug(1, "ENOMEM in %s, retrying\n", __FUNCTION__); 143 yield(); 144 goto repeat; 145 } 146 147 /* Find a revoke record in the journal's hash table. */ 148 149 static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal, 150 unsigned long blocknr) 151 { 152 struct list_head *hash_list; 153 struct jbd_revoke_record_s *record; 154 155 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 156 157 jbd_lock(&journal->j_revoke_lock); 158 record = (struct jbd_revoke_record_s *) hash_list->next; 159 while (&(record->hash) != hash_list) { 160 if (record->blocknr == blocknr) { 161 jbd_unlock(&journal->j_revoke_lock); 162 return record; 163 } 164 record = (struct jbd_revoke_record_s *) record->hash.next; 165 } 166 jbd_unlock(&journal->j_revoke_lock); 167 return NULL; 168 } 169 170 int __init journal_init_revoke_caches(void) 171 { 172 revoke_record_cache = kmem_cache_create("revoke_record", 173 sizeof(struct jbd_revoke_record_s), 174 0, 175 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 176 NULL); 177 if (revoke_record_cache == 0) 178 return -ENOMEM; 179 180 revoke_table_cache = kmem_cache_create("revoke_table", 181 sizeof(struct jbd_revoke_table_s), 182 0, SLAB_TEMPORARY, NULL); 183 if (revoke_table_cache == 0) { 184 kmem_cache_destroy(revoke_record_cache); 185 revoke_record_cache = NULL; 186 return -ENOMEM; 187 } 188 return 0; 189 } 190 191 void journal_destroy_revoke_caches(void) 192 { 193 kmem_cache_destroy(revoke_record_cache); 194 revoke_record_cache = NULL; 195 kmem_cache_destroy(revoke_table_cache); 196 revoke_table_cache = NULL; 197 } 198 199 /* Initialise the revoke table for a given journal to a given size. */ 200 201 int journal_init_revoke(journal_t *journal, int hash_size) 202 { 203 int shift, tmp; 204 205 J_ASSERT (journal->j_revoke_table[0] == NULL); 206 207 shift = 0; 208 tmp = hash_size; 209 while ((tmp >>= 1UL) != 0UL) 210 shift++; 211 212 journal->j_revoke_table[0] = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL); 213 if (!journal->j_revoke_table[0]) 214 return -ENOMEM; 215 journal->j_revoke = journal->j_revoke_table[0]; 216 217 /* Check that the hash_size is a power of two */ 218 J_ASSERT(is_power_of_2(hash_size)); 219 220 journal->j_revoke->hash_size = hash_size; 221 222 journal->j_revoke->hash_shift = shift; 223 224 journal->j_revoke->hash_table = 225 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL); 226 if (!journal->j_revoke->hash_table) { 227 kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]); 228 journal->j_revoke = NULL; 229 return -ENOMEM; 230 } 231 232 for (tmp = 0; tmp < hash_size; tmp++) 233 INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]); 234 235 journal->j_revoke_table[1] = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL); 236 if (!journal->j_revoke_table[1]) { 237 kfree(journal->j_revoke_table[0]->hash_table); 238 kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]); 239 return -ENOMEM; 240 } 241 242 journal->j_revoke = journal->j_revoke_table[1]; 243 244 /* Check that the hash_size is a power of two */ 245 J_ASSERT(is_power_of_2(hash_size)); 246 247 journal->j_revoke->hash_size = hash_size; 248 249 journal->j_revoke->hash_shift = shift; 250 251 journal->j_revoke->hash_table = 252 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL); 253 if (!journal->j_revoke->hash_table) { 254 kfree(journal->j_revoke_table[0]->hash_table); 255 kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]); 256 kmem_cache_free(revoke_table_cache, journal->j_revoke_table[1]); 257 journal->j_revoke = NULL; 258 return -ENOMEM; 259 } 260 261 for (tmp = 0; tmp < hash_size; tmp++) 262 INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]); 263 264 jbd_lock_init(&journal->j_revoke_lock); 265 266 return 0; 267 } 268 269 /* Destoy a journal's revoke table. The table must already be empty! */ 270 271 void journal_destroy_revoke(journal_t *journal) 272 { 273 struct jbd_revoke_table_s *table; 274 struct list_head *hash_list; 275 int i; 276 277 table = journal->j_revoke_table[0]; 278 if (!table) 279 return; 280 281 for (i=0; i<table->hash_size; i++) { 282 hash_list = &table->hash_table[i]; 283 J_ASSERT (list_empty(hash_list)); 284 } 285 286 kfree(table->hash_table); 287 kmem_cache_free(revoke_table_cache, table); 288 journal->j_revoke = NULL; 289 290 table = journal->j_revoke_table[1]; 291 if (!table) 292 return; 293 294 for (i=0; i<table->hash_size; i++) { 295 hash_list = &table->hash_table[i]; 296 J_ASSERT (list_empty(hash_list)); 297 } 298 299 kfree(table->hash_table); 300 kmem_cache_free(revoke_table_cache, table); 301 journal->j_revoke = NULL; 302 } 303 304 305 #ifdef __KERNEL__ 306 307 /* 308 * journal_revoke: revoke a given buffer_head from the journal. This 309 * prevents the block from being replayed during recovery if we take a 310 * crash after this current transaction commits. Any subsequent 311 * metadata writes of the buffer in this transaction cancel the 312 * revoke. 313 * 314 * Note that this call may block --- it is up to the caller to make 315 * sure that there are no further calls to journal_write_metadata 316 * before the revoke is complete. In ext3, this implies calling the 317 * revoke before clearing the block bitmap when we are deleting 318 * metadata. 319 * 320 * Revoke performs a journal_forget on any buffer_head passed in as a 321 * parameter, but does _not_ forget the buffer_head if the bh was only 322 * found implicitly. 323 * 324 * bh_in may not be a journalled buffer - it may have come off 325 * the hash tables without an attached journal_head. 326 * 327 * If bh_in is non-zero, journal_revoke() will decrement its b_count 328 * by one. 329 */ 330 331 int journal_revoke(handle_t *handle, unsigned long blocknr, 332 struct buffer_head *bh_in) 333 { 334 struct buffer_head *bh = NULL; 335 journal_t *journal; 336 struct block_device *bdev; 337 int err; 338 339 might_sleep(); 340 if (bh_in) 341 BUFFER_TRACE(bh_in, "enter"); 342 343 journal = handle->h_transaction->t_journal; 344 if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)) { 345 J_ASSERT (!"Cannot set revoke feature!"); 346 return -EINVAL; 347 } 348 349 bdev = journal->j_fs_dev; 350 bh = bh_in; 351 352 if (!bh) { 353 bh = __find_get_block(bdev, blocknr, journal->j_blocksize); 354 if (bh) 355 BUFFER_TRACE(bh, "found on hash"); 356 } 357 #ifdef JBD_EXPENSIVE_CHECKING 358 else { 359 struct buffer_head *bh2; 360 361 /* If there is a different buffer_head lying around in 362 * memory anywhere... */ 363 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize); 364 if (bh2) { 365 /* ... and it has RevokeValid status... */ 366 if (bh2 != bh && buffer_revokevalid(bh2)) 367 /* ...then it better be revoked too, 368 * since it's illegal to create a revoke 369 * record against a buffer_head which is 370 * not marked revoked --- that would 371 * risk missing a subsequent revoke 372 * cancel. */ 373 J_ASSERT_BH(bh2, buffer_revoked(bh2)); 374 put_bh(bh2); 375 } 376 } 377 #endif 378 379 /* We really ought not ever to revoke twice in a row without 380 first having the revoke cancelled: it's illegal to free a 381 block twice without allocating it in between! */ 382 if (bh) { 383 if (!J_EXPECT_BH(bh, !buffer_revoked(bh), 384 "inconsistent data on disk")) { 385 if (!bh_in) 386 brelse(bh); 387 return -EIO; 388 } 389 set_buffer_revoked(bh); 390 set_buffer_revokevalid(bh); 391 if (bh_in) { 392 BUFFER_TRACE(bh_in, "call journal_forget"); 393 journal_forget(handle, bh_in); 394 } else { 395 BUFFER_TRACE(bh, "call brelse"); 396 __brelse(bh); 397 } 398 } 399 400 jbd_debug(2, "insert revoke for block %lu, bh_in=%p\n", blocknr, bh_in); 401 err = insert_revoke_hash(journal, blocknr, 402 handle->h_transaction->t_tid); 403 BUFFER_TRACE(bh_in, "exit"); 404 return err; 405 } 406 407 /* 408 * Cancel an outstanding revoke. For use only internally by the 409 * journaling code (called from journal_get_write_access). 410 * 411 * We trust buffer_revoked() on the buffer if the buffer is already 412 * being journaled: if there is no revoke pending on the buffer, then we 413 * don't do anything here. 414 * 415 * This would break if it were possible for a buffer to be revoked and 416 * discarded, and then reallocated within the same transaction. In such 417 * a case we would have lost the revoked bit, but when we arrived here 418 * the second time we would still have a pending revoke to cancel. So, 419 * do not trust the Revoked bit on buffers unless RevokeValid is also 420 * set. 421 * 422 * The caller must have the journal locked. 423 */ 424 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh) 425 { 426 struct jbd_revoke_record_s *record; 427 journal_t *journal = handle->h_transaction->t_journal; 428 int need_cancel; 429 int did_revoke = 0; /* akpm: debug */ 430 struct buffer_head *bh = jh2bh(jh); 431 432 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh); 433 434 /* Is the existing Revoke bit valid? If so, we trust it, and 435 * only perform the full cancel if the revoke bit is set. If 436 * not, we can't trust the revoke bit, and we need to do the 437 * full search for a revoke record. */ 438 if (test_set_buffer_revokevalid(bh)) { 439 need_cancel = test_clear_buffer_revoked(bh); 440 } else { 441 need_cancel = 1; 442 clear_buffer_revoked(bh); 443 } 444 445 if (need_cancel) { 446 record = find_revoke_record(journal, (unsigned long)bh->b_blocknr); 447 if (record) { 448 jbd_debug(4, "cancelled existing revoke on " 449 "blocknr %llu\n", (u64)bh->b_blocknr); 450 jbd_lock(&journal->j_revoke_lock); 451 list_del(&record->hash); 452 jbd_unlock(&journal->j_revoke_lock); 453 kmem_cache_free(revoke_record_cache, record); 454 did_revoke = 1; 455 } 456 } 457 458 #ifdef JBD_EXPENSIVE_CHECKING 459 /* There better not be one left behind by now! */ 460 record = find_revoke_record(journal, bh->b_blocknr); 461 J_ASSERT_JH(jh, record == NULL); 462 #endif 463 464 /* Finally, have we just cleared revoke on an unhashed 465 * buffer_head? If so, we'd better make sure we clear the 466 * revoked status on any hashed alias too, otherwise the revoke 467 * state machine will get very upset later on. */ 468 if (need_cancel) { 469 struct buffer_head *bh2; 470 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size); 471 if (bh2) { 472 if (bh2 != bh) 473 clear_buffer_revoked(bh2); 474 __brelse(bh2); 475 } 476 } 477 return did_revoke; 478 } 479 480 /* journal_switch_revoke table select j_revoke for next transaction 481 * we do not want to suspend any processing until all revokes are 482 * written -bzzz 483 */ 484 void journal_switch_revoke_table(journal_t *journal) 485 { 486 int i; 487 488 if (journal->j_revoke == journal->j_revoke_table[0]) 489 journal->j_revoke = journal->j_revoke_table[1]; 490 else 491 journal->j_revoke = journal->j_revoke_table[0]; 492 493 for (i = 0; i < journal->j_revoke->hash_size; i++) 494 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]); 495 } 496 497 /* 498 * Write revoke records to the journal for all entries in the current 499 * revoke hash, deleting the entries as we go. 500 * 501 * Called with the journal lock held. 502 */ 503 504 void journal_write_revoke_records(journal_t *journal, 505 transaction_t *transaction) 506 { 507 struct journal_head *descriptor; 508 struct jbd_revoke_record_s *record; 509 struct jbd_revoke_table_s *revoke; 510 struct list_head *hash_list; 511 int i, offset, count; 512 513 descriptor = NULL; 514 offset = 0; 515 count = 0; 516 517 /* select revoke table for committing transaction */ 518 revoke = journal->j_revoke == journal->j_revoke_table[0] ? 519 journal->j_revoke_table[1] : journal->j_revoke_table[0]; 520 521 for (i = 0; i < revoke->hash_size; i++) { 522 hash_list = &revoke->hash_table[i]; 523 524 while (!list_empty(hash_list)) { 525 record = (struct jbd_revoke_record_s *) 526 hash_list->next; 527 write_one_revoke_record(journal, transaction, 528 &descriptor, &offset, 529 record); 530 count++; 531 list_del(&record->hash); 532 kmem_cache_free(revoke_record_cache, record); 533 } 534 } 535 if (descriptor) 536 flush_descriptor(journal, descriptor, offset); 537 jbd_debug(1, "Wrote %d revoke records\n", count); 538 } 539 540 /* 541 * Write out one revoke record. We need to create a new descriptor 542 * block if the old one is full or if we have not already created one. 543 */ 544 545 static void write_one_revoke_record(journal_t *journal, 546 transaction_t *transaction, 547 struct journal_head **descriptorp, 548 int *offsetp, 549 struct jbd_revoke_record_s *record) 550 { 551 struct journal_head *descriptor; 552 int offset; 553 journal_header_t *header; 554 555 /* If we are already aborting, this all becomes a noop. We 556 still need to go round the loop in 557 journal_write_revoke_records in order to free all of the 558 revoke records: only the IO to the journal is omitted. */ 559 if (is_journal_aborted(journal)) 560 return; 561 562 descriptor = *descriptorp; 563 offset = *offsetp; 564 565 /* Make sure we have a descriptor with space left for the record */ 566 if (descriptor) { 567 if (offset == journal->j_blocksize) { 568 flush_descriptor(journal, descriptor, offset); 569 descriptor = NULL; 570 } 571 } 572 573 if (!descriptor) { 574 descriptor = journal_get_descriptor_buffer(journal); 575 if (!descriptor) 576 return; 577 header = (journal_header_t *) &jh2bh(descriptor)->b_data[0]; 578 header->h_magic = cpu_to_be32(JFS_MAGIC_NUMBER); 579 header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK); 580 header->h_sequence = cpu_to_be32(transaction->t_tid); 581 582 /* Record it so that we can wait for IO completion later */ 583 JBUFFER_TRACE(descriptor, "file as BJ_LogCtl"); 584 journal_file_buffer(descriptor, transaction, BJ_LogCtl); 585 586 offset = sizeof(journal_revoke_header_t); 587 *descriptorp = descriptor; 588 } 589 590 * ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) = 591 cpu_to_be32(record->blocknr); 592 offset += 4; 593 *offsetp = offset; 594 } 595 596 /* 597 * Flush a revoke descriptor out to the journal. If we are aborting, 598 * this is a noop; otherwise we are generating a buffer which needs to 599 * be waited for during commit, so it has to go onto the appropriate 600 * journal buffer list. 601 */ 602 603 static void flush_descriptor(journal_t *journal, 604 struct journal_head *descriptor, 605 int offset) 606 { 607 journal_revoke_header_t *header; 608 struct buffer_head *bh = jh2bh(descriptor); 609 610 if (is_journal_aborted(journal)) { 611 put_bh(bh); 612 return; 613 } 614 615 header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data; 616 header->r_count = cpu_to_be32(offset); 617 set_buffer_jwrite(bh); 618 BUFFER_TRACE(bh, "write"); 619 set_buffer_dirty(bh); 620 ll_rw_block(SWRITE, 1, &bh); 621 } 622 #endif 623 624 /* 625 * Revoke support for recovery. 626 * 627 * Recovery needs to be able to: 628 * 629 * record all revoke records, including the tid of the latest instance 630 * of each revoke in the journal 631 * 632 * check whether a given block in a given transaction should be replayed 633 * (ie. has not been revoked by a revoke record in that or a subsequent 634 * transaction) 635 * 636 * empty the revoke table after recovery. 637 */ 638 639 /* 640 * First, setting revoke records. We create a new revoke record for 641 * every block ever revoked in the log as we scan it for recovery, and 642 * we update the existing records if we find multiple revokes for a 643 * single block. 644 */ 645 646 int journal_set_revoke(journal_t *journal, 647 unsigned long blocknr, 648 tid_t sequence) 649 { 650 struct jbd_revoke_record_s *record; 651 652 record = find_revoke_record(journal, blocknr); 653 if (record) { 654 /* If we have multiple occurrences, only record the 655 * latest sequence number in the hashed record */ 656 if (tid_gt(sequence, record->sequence)) 657 record->sequence = sequence; 658 return 0; 659 } 660 return insert_revoke_hash(journal, blocknr, sequence); 661 } 662 663 /* 664 * Test revoke records. For a given block referenced in the log, has 665 * that block been revoked? A revoke record with a given transaction 666 * sequence number revokes all blocks in that transaction and earlier 667 * ones, but later transactions still need replayed. 668 */ 669 670 int journal_test_revoke(journal_t *journal, 671 unsigned long blocknr, 672 tid_t sequence) 673 { 674 struct jbd_revoke_record_s *record; 675 676 record = find_revoke_record(journal, blocknr); 677 if (!record) 678 return 0; 679 if (tid_gt(sequence, record->sequence)) 680 return 0; 681 return 1; 682 } 683 684 /* 685 * Finally, once recovery is over, we need to clear the revoke table so 686 * that it can be reused by the running filesystem. 687 */ 688 689 void journal_clear_revoke(journal_t *journal) 690 { 691 int i; 692 struct list_head *hash_list; 693 struct jbd_revoke_record_s *record; 694 struct jbd_revoke_table_s *revoke; 695 696 revoke = journal->j_revoke; 697 698 for (i = 0; i < revoke->hash_size; i++) { 699 hash_list = &revoke->hash_table[i]; 700 while (!list_empty(hash_list)) { 701 record = (struct jbd_revoke_record_s*) hash_list->next; 702 list_del(&record->hash); 703 kmem_cache_free(revoke_record_cache, record); 704 } 705 } 706 } 707