1 /*
2  * linux/fs/jbd/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * Revoke information on buffers is a tri-state value:
51  *
52  * RevokeValid clear:	no cached revoke status, need to look it up
53  * RevokeValid set, Revoked clear:
54  *			buffer has not been revoked, and cancel_revoke
55  *			need do nothing.
56  * RevokeValid set, Revoked set:
57  *			buffer has been revoked.
58  */
59 
60 #ifndef __KERNEL__
61 #include "jfs_user.h"
62 #else
63 #include <linux/time.h>
64 #include <linux/fs.h>
65 #include <linux/jbd.h>
66 #include <linux/errno.h>
67 #include <linux/slab.h>
68 #include <linux/list.h>
69 #include <linux/init.h>
70 #endif
71 #include <linux/log2.h>
72 
73 static struct kmem_cache *revoke_record_cache = NULL;
74 static struct kmem_cache *revoke_table_cache = NULL;
75 
76 /* Each revoke record represents one single revoked block.  During
77    journal replay, this involves recording the transaction ID of the
78    last transaction to revoke this block. */
79 
80 struct jbd_revoke_record_s
81 {
82     struct list_head  hash;
83     tid_t		  sequence;	/* Used for recovery only */
84     unsigned long	  blocknr;
85 };
86 
87 
88 /* The revoke table is just a simple hash table of revoke records. */
89 struct jbd_revoke_table_s
90 {
91     /* It is conceivable that we might want a larger hash table
92      * for recovery.  Must be a power of two. */
93     int		  hash_size;
94     int		  hash_shift;
95     struct list_head *hash_table;
96 };
97 
98 
99 #ifdef __KERNEL__
100 static void write_one_revoke_record(journal_t *, transaction_t *,
101                                     struct journal_head **, int *,
102                                     struct jbd_revoke_record_s *);
103 static void flush_descriptor(journal_t *, struct journal_head *, int);
104 #endif
105 
106 /* Utility functions to maintain the revoke table */
107 
108 /* Borrowed from buffer.c: this is a tried and tested block hash function */
109 static inline int hash(journal_t *journal, unsigned long block)
110 {
111     struct jbd_revoke_table_s *table = journal->j_revoke;
112     int hash_shift = table->hash_shift;
113 
114     return ((block << (hash_shift - 6)) ^
115             (block >> 13) ^
116             (block << (hash_shift - 12))) & (table->hash_size - 1);
117 }
118 
119 static int insert_revoke_hash(journal_t *journal, unsigned long blocknr,
120                               tid_t seq)
121 {
122     struct list_head *hash_list;
123     struct jbd_revoke_record_s *record;
124 
125 repeat:
126     record = (struct jbd_revoke_record_s *)
127              kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
128     if (!record)
129         goto oom;
130 
131     record->sequence = seq;
132     record->blocknr = blocknr;
133     hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
134     jbd_lock(&journal->j_revoke_lock);
135     list_add(&record->hash, hash_list);
136     jbd_unlock(&journal->j_revoke_lock);
137     return 0;
138 
139 oom:
140     if (!journal_oom_retry)
141         return -ENOMEM;
142     jbd_debug(1, "ENOMEM in %s, retrying\n", __FUNCTION__);
143     yield();
144     goto repeat;
145 }
146 
147 /* Find a revoke record in the journal's hash table. */
148 
149 static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
150                     unsigned long blocknr)
151 {
152     struct list_head *hash_list;
153     struct jbd_revoke_record_s *record;
154 
155     hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
156 
157     jbd_lock(&journal->j_revoke_lock);
158     record = (struct jbd_revoke_record_s *) hash_list->next;
159     while (&(record->hash) != hash_list) {
160         if (record->blocknr == blocknr) {
161             jbd_unlock(&journal->j_revoke_lock);
162             return record;
163         }
164         record = (struct jbd_revoke_record_s *) record->hash.next;
165     }
166     jbd_unlock(&journal->j_revoke_lock);
167     return NULL;
168 }
169 
170 int __init journal_init_revoke_caches(void)
171 {
172     revoke_record_cache = kmem_cache_create("revoke_record",
173                                             sizeof(struct jbd_revoke_record_s),
174                                             0,
175                                             SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
176                                             NULL);
177     if (revoke_record_cache == 0)
178         return -ENOMEM;
179 
180     revoke_table_cache = kmem_cache_create("revoke_table",
181                                            sizeof(struct jbd_revoke_table_s),
182                                            0, SLAB_TEMPORARY, NULL);
183     if (revoke_table_cache == 0) {
184         kmem_cache_destroy(revoke_record_cache);
185         revoke_record_cache = NULL;
186         return -ENOMEM;
187     }
188     return 0;
189 }
190 
191 void journal_destroy_revoke_caches(void)
192 {
193     kmem_cache_destroy(revoke_record_cache);
194     revoke_record_cache = NULL;
195     kmem_cache_destroy(revoke_table_cache);
196     revoke_table_cache = NULL;
197 }
198 
199 /* Initialise the revoke table for a given journal to a given size. */
200 
201 int journal_init_revoke(journal_t *journal, int hash_size)
202 {
203     int shift, tmp;
204 
205     J_ASSERT (journal->j_revoke_table[0] == NULL);
206 
207     shift = 0;
208     tmp = hash_size;
209     while ((tmp >>= 1UL) != 0UL)
210         shift++;
211 
212     journal->j_revoke_table[0] = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
213     if (!journal->j_revoke_table[0])
214         return -ENOMEM;
215     journal->j_revoke = journal->j_revoke_table[0];
216 
217     /* Check that the hash_size is a power of two */
218     J_ASSERT(is_power_of_2(hash_size));
219 
220     journal->j_revoke->hash_size = hash_size;
221 
222     journal->j_revoke->hash_shift = shift;
223 
224     journal->j_revoke->hash_table =
225         kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
226     if (!journal->j_revoke->hash_table) {
227         kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]);
228         journal->j_revoke = NULL;
229         return -ENOMEM;
230     }
231 
232     for (tmp = 0; tmp < hash_size; tmp++)
233         INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
234 
235     journal->j_revoke_table[1] = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
236     if (!journal->j_revoke_table[1]) {
237         kfree(journal->j_revoke_table[0]->hash_table);
238         kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]);
239         return -ENOMEM;
240     }
241 
242     journal->j_revoke = journal->j_revoke_table[1];
243 
244     /* Check that the hash_size is a power of two */
245     J_ASSERT(is_power_of_2(hash_size));
246 
247     journal->j_revoke->hash_size = hash_size;
248 
249     journal->j_revoke->hash_shift = shift;
250 
251     journal->j_revoke->hash_table =
252         kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
253     if (!journal->j_revoke->hash_table) {
254         kfree(journal->j_revoke_table[0]->hash_table);
255         kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]);
256         kmem_cache_free(revoke_table_cache, journal->j_revoke_table[1]);
257         journal->j_revoke = NULL;
258         return -ENOMEM;
259     }
260 
261     for (tmp = 0; tmp < hash_size; tmp++)
262         INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
263 
264     jbd_lock_init(&journal->j_revoke_lock);
265 
266     return 0;
267 }
268 
269 /* Destoy a journal's revoke table.  The table must already be empty! */
270 
271 void journal_destroy_revoke(journal_t *journal)
272 {
273     struct jbd_revoke_table_s *table;
274     struct list_head *hash_list;
275     int i;
276 
277     table = journal->j_revoke_table[0];
278     if (!table)
279         return;
280 
281     for (i=0; i<table->hash_size; i++) {
282         hash_list = &table->hash_table[i];
283         J_ASSERT (list_empty(hash_list));
284     }
285 
286     kfree(table->hash_table);
287     kmem_cache_free(revoke_table_cache, table);
288     journal->j_revoke = NULL;
289 
290     table = journal->j_revoke_table[1];
291     if (!table)
292         return;
293 
294     for (i=0; i<table->hash_size; i++) {
295         hash_list = &table->hash_table[i];
296         J_ASSERT (list_empty(hash_list));
297     }
298 
299     kfree(table->hash_table);
300     kmem_cache_free(revoke_table_cache, table);
301     journal->j_revoke = NULL;
302 }
303 
304 
305 #ifdef __KERNEL__
306 
307 /*
308  * journal_revoke: revoke a given buffer_head from the journal.  This
309  * prevents the block from being replayed during recovery if we take a
310  * crash after this current transaction commits.  Any subsequent
311  * metadata writes of the buffer in this transaction cancel the
312  * revoke.
313  *
314  * Note that this call may block --- it is up to the caller to make
315  * sure that there are no further calls to journal_write_metadata
316  * before the revoke is complete.  In ext3, this implies calling the
317  * revoke before clearing the block bitmap when we are deleting
318  * metadata.
319  *
320  * Revoke performs a journal_forget on any buffer_head passed in as a
321  * parameter, but does _not_ forget the buffer_head if the bh was only
322  * found implicitly.
323  *
324  * bh_in may not be a journalled buffer - it may have come off
325  * the hash tables without an attached journal_head.
326  *
327  * If bh_in is non-zero, journal_revoke() will decrement its b_count
328  * by one.
329  */
330 
331 int journal_revoke(handle_t *handle, unsigned long blocknr,
332                    struct buffer_head *bh_in)
333 {
334     struct buffer_head *bh = NULL;
335     journal_t *journal;
336     struct block_device *bdev;
337     int err;
338 
339     might_sleep();
340     if (bh_in)
341         BUFFER_TRACE(bh_in, "enter");
342 
343     journal = handle->h_transaction->t_journal;
344     if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)) {
345         J_ASSERT (!"Cannot set revoke feature!");
346         return -EINVAL;
347     }
348 
349     bdev = journal->j_fs_dev;
350     bh = bh_in;
351 
352     if (!bh) {
353         bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
354         if (bh)
355             BUFFER_TRACE(bh, "found on hash");
356     }
357 #ifdef JBD_EXPENSIVE_CHECKING
358     else {
359         struct buffer_head *bh2;
360 
361         /* If there is a different buffer_head lying around in
362          * memory anywhere... */
363         bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
364         if (bh2) {
365             /* ... and it has RevokeValid status... */
366             if (bh2 != bh && buffer_revokevalid(bh2))
367                 /* ...then it better be revoked too,
368                  * since it's illegal to create a revoke
369                  * record against a buffer_head which is
370                  * not marked revoked --- that would
371                  * risk missing a subsequent revoke
372                  * cancel. */
373                 J_ASSERT_BH(bh2, buffer_revoked(bh2));
374             put_bh(bh2);
375         }
376     }
377 #endif
378 
379     /* We really ought not ever to revoke twice in a row without
380            first having the revoke cancelled: it's illegal to free a
381            block twice without allocating it in between! */
382     if (bh) {
383         if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
384                          "inconsistent data on disk")) {
385             if (!bh_in)
386                 brelse(bh);
387             return -EIO;
388         }
389         set_buffer_revoked(bh);
390         set_buffer_revokevalid(bh);
391         if (bh_in) {
392             BUFFER_TRACE(bh_in, "call journal_forget");
393             journal_forget(handle, bh_in);
394         } else {
395             BUFFER_TRACE(bh, "call brelse");
396             __brelse(bh);
397         }
398     }
399 
400     jbd_debug(2, "insert revoke for block %lu, bh_in=%p\n", blocknr, bh_in);
401     err = insert_revoke_hash(journal, blocknr,
402                              handle->h_transaction->t_tid);
403     BUFFER_TRACE(bh_in, "exit");
404     return err;
405 }
406 
407 /*
408  * Cancel an outstanding revoke.  For use only internally by the
409  * journaling code (called from journal_get_write_access).
410  *
411  * We trust buffer_revoked() on the buffer if the buffer is already
412  * being journaled: if there is no revoke pending on the buffer, then we
413  * don't do anything here.
414  *
415  * This would break if it were possible for a buffer to be revoked and
416  * discarded, and then reallocated within the same transaction.  In such
417  * a case we would have lost the revoked bit, but when we arrived here
418  * the second time we would still have a pending revoke to cancel.  So,
419  * do not trust the Revoked bit on buffers unless RevokeValid is also
420  * set.
421  *
422  * The caller must have the journal locked.
423  */
424 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
425 {
426     struct jbd_revoke_record_s *record;
427     journal_t *journal = handle->h_transaction->t_journal;
428     int need_cancel;
429     int did_revoke = 0;	/* akpm: debug */
430     struct buffer_head *bh = jh2bh(jh);
431 
432     jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
433 
434     /* Is the existing Revoke bit valid?  If so, we trust it, and
435      * only perform the full cancel if the revoke bit is set.  If
436      * not, we can't trust the revoke bit, and we need to do the
437      * full search for a revoke record. */
438     if (test_set_buffer_revokevalid(bh)) {
439         need_cancel = test_clear_buffer_revoked(bh);
440     } else {
441         need_cancel = 1;
442         clear_buffer_revoked(bh);
443     }
444 
445     if (need_cancel) {
446         record = find_revoke_record(journal, (unsigned long)bh->b_blocknr);
447         if (record) {
448             jbd_debug(4, "cancelled existing revoke on "
449                       "blocknr %llu\n", (u64)bh->b_blocknr);
450             jbd_lock(&journal->j_revoke_lock);
451             list_del(&record->hash);
452             jbd_unlock(&journal->j_revoke_lock);
453             kmem_cache_free(revoke_record_cache, record);
454             did_revoke = 1;
455         }
456     }
457 
458 #ifdef JBD_EXPENSIVE_CHECKING
459     /* There better not be one left behind by now! */
460     record = find_revoke_record(journal, bh->b_blocknr);
461     J_ASSERT_JH(jh, record == NULL);
462 #endif
463 
464     /* Finally, have we just cleared revoke on an unhashed
465      * buffer_head?  If so, we'd better make sure we clear the
466      * revoked status on any hashed alias too, otherwise the revoke
467      * state machine will get very upset later on. */
468     if (need_cancel) {
469         struct buffer_head *bh2;
470         bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
471         if (bh2) {
472             if (bh2 != bh)
473                 clear_buffer_revoked(bh2);
474             __brelse(bh2);
475         }
476     }
477     return did_revoke;
478 }
479 
480 /* journal_switch_revoke table select j_revoke for next transaction
481  * we do not want to suspend any processing until all revokes are
482  * written -bzzz
483  */
484 void journal_switch_revoke_table(journal_t *journal)
485 {
486     int i;
487 
488     if (journal->j_revoke == journal->j_revoke_table[0])
489         journal->j_revoke = journal->j_revoke_table[1];
490     else
491         journal->j_revoke = journal->j_revoke_table[0];
492 
493     for (i = 0; i < journal->j_revoke->hash_size; i++)
494         INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
495 }
496 
497 /*
498  * Write revoke records to the journal for all entries in the current
499  * revoke hash, deleting the entries as we go.
500  *
501  * Called with the journal lock held.
502  */
503 
504 void journal_write_revoke_records(journal_t *journal,
505                                   transaction_t *transaction)
506 {
507     struct journal_head *descriptor;
508     struct jbd_revoke_record_s *record;
509     struct jbd_revoke_table_s *revoke;
510     struct list_head *hash_list;
511     int i, offset, count;
512 
513     descriptor = NULL;
514     offset = 0;
515     count = 0;
516 
517     /* select revoke table for committing transaction */
518     revoke = journal->j_revoke == journal->j_revoke_table[0] ?
519              journal->j_revoke_table[1] : journal->j_revoke_table[0];
520 
521     for (i = 0; i < revoke->hash_size; i++) {
522         hash_list = &revoke->hash_table[i];
523 
524         while (!list_empty(hash_list)) {
525             record = (struct jbd_revoke_record_s *)
526                      hash_list->next;
527             write_one_revoke_record(journal, transaction,
528                                     &descriptor, &offset,
529                                     record);
530             count++;
531             list_del(&record->hash);
532             kmem_cache_free(revoke_record_cache, record);
533         }
534     }
535     if (descriptor)
536         flush_descriptor(journal, descriptor, offset);
537     jbd_debug(1, "Wrote %d revoke records\n", count);
538 }
539 
540 /*
541  * Write out one revoke record.  We need to create a new descriptor
542  * block if the old one is full or if we have not already created one.
543  */
544 
545 static void write_one_revoke_record(journal_t *journal,
546                                     transaction_t *transaction,
547                                     struct journal_head **descriptorp,
548                                     int *offsetp,
549                                     struct jbd_revoke_record_s *record)
550 {
551     struct journal_head *descriptor;
552     int offset;
553     journal_header_t *header;
554 
555     /* If we are already aborting, this all becomes a noop.  We
556            still need to go round the loop in
557            journal_write_revoke_records in order to free all of the
558            revoke records: only the IO to the journal is omitted. */
559     if (is_journal_aborted(journal))
560         return;
561 
562     descriptor = *descriptorp;
563     offset = *offsetp;
564 
565     /* Make sure we have a descriptor with space left for the record */
566     if (descriptor) {
567         if (offset == journal->j_blocksize) {
568             flush_descriptor(journal, descriptor, offset);
569             descriptor = NULL;
570         }
571     }
572 
573     if (!descriptor) {
574         descriptor = journal_get_descriptor_buffer(journal);
575         if (!descriptor)
576             return;
577         header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
578         header->h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
579         header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
580         header->h_sequence  = cpu_to_be32(transaction->t_tid);
581 
582         /* Record it so that we can wait for IO completion later */
583         JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
584         journal_file_buffer(descriptor, transaction, BJ_LogCtl);
585 
586         offset = sizeof(journal_revoke_header_t);
587         *descriptorp = descriptor;
588     }
589 
590     * ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
591         cpu_to_be32(record->blocknr);
592     offset += 4;
593     *offsetp = offset;
594 }
595 
596 /*
597  * Flush a revoke descriptor out to the journal.  If we are aborting,
598  * this is a noop; otherwise we are generating a buffer which needs to
599  * be waited for during commit, so it has to go onto the appropriate
600  * journal buffer list.
601  */
602 
603 static void flush_descriptor(journal_t *journal,
604                              struct journal_head *descriptor,
605                              int offset)
606 {
607     journal_revoke_header_t *header;
608     struct buffer_head *bh = jh2bh(descriptor);
609 
610     if (is_journal_aborted(journal)) {
611         put_bh(bh);
612         return;
613     }
614 
615     header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
616     header->r_count = cpu_to_be32(offset);
617     set_buffer_jwrite(bh);
618     BUFFER_TRACE(bh, "write");
619     set_buffer_dirty(bh);
620     ll_rw_block(SWRITE, 1, &bh);
621 }
622 #endif
623 
624 /*
625  * Revoke support for recovery.
626  *
627  * Recovery needs to be able to:
628  *
629  *  record all revoke records, including the tid of the latest instance
630  *  of each revoke in the journal
631  *
632  *  check whether a given block in a given transaction should be replayed
633  *  (ie. has not been revoked by a revoke record in that or a subsequent
634  *  transaction)
635  *
636  *  empty the revoke table after recovery.
637  */
638 
639 /*
640  * First, setting revoke records.  We create a new revoke record for
641  * every block ever revoked in the log as we scan it for recovery, and
642  * we update the existing records if we find multiple revokes for a
643  * single block.
644  */
645 
646 int journal_set_revoke(journal_t *journal,
647                        unsigned long blocknr,
648                        tid_t sequence)
649 {
650     struct jbd_revoke_record_s *record;
651 
652     record = find_revoke_record(journal, blocknr);
653     if (record) {
654         /* If we have multiple occurrences, only record the
655          * latest sequence number in the hashed record */
656         if (tid_gt(sequence, record->sequence))
657             record->sequence = sequence;
658         return 0;
659     }
660     return insert_revoke_hash(journal, blocknr, sequence);
661 }
662 
663 /*
664  * Test revoke records.  For a given block referenced in the log, has
665  * that block been revoked?  A revoke record with a given transaction
666  * sequence number revokes all blocks in that transaction and earlier
667  * ones, but later transactions still need replayed.
668  */
669 
670 int journal_test_revoke(journal_t *journal,
671                         unsigned long blocknr,
672                         tid_t sequence)
673 {
674     struct jbd_revoke_record_s *record;
675 
676     record = find_revoke_record(journal, blocknr);
677     if (!record)
678         return 0;
679     if (tid_gt(sequence, record->sequence))
680         return 0;
681     return 1;
682 }
683 
684 /*
685  * Finally, once recovery is over, we need to clear the revoke table so
686  * that it can be reused by the running filesystem.
687  */
688 
689 void journal_clear_revoke(journal_t *journal)
690 {
691     int i;
692     struct list_head *hash_list;
693     struct jbd_revoke_record_s *record;
694     struct jbd_revoke_table_s *revoke;
695 
696     revoke = journal->j_revoke;
697 
698     for (i = 0; i < revoke->hash_size; i++) {
699         hash_list = &revoke->hash_table[i];
700         while (!list_empty(hash_list)) {
701             record = (struct jbd_revoke_record_s*) hash_list->next;
702             list_del(&record->hash);
703             kmem_cache_free(revoke_record_cache, record);
704         }
705     }
706 }
707