xref: /reactos/ntoskrnl/include/internal/amd64/mm.h (revision 9393fc32)
1 /*
2  * kernel internal memory management definitions for amd64
3  */
4 #pragma once
5 
6 #define _MI_PAGING_LEVELS 4
7 #define _MI_HAS_NO_EXECUTE 1
8 
9 /* Memory layout base addresses (This is based on Vista!) */
10 #define MI_USER_PROBE_ADDRESS           (PVOID)0x000007FFFFFF0000ULL
11 #define MI_DEFAULT_SYSTEM_RANGE_START   (PVOID)0xFFFF080000000000ULL
12 #define MI_REAL_SYSTEM_RANGE_START             0xFFFF800000000000ULL
13 //#define MI_PAGE_TABLE_BASE                   0xFFFFF68000000000ULL // 512 GB page tables
14 #define HYPER_SPACE                            0xFFFFF70000000000ULL // 512 GB hyper space [MiVaProcessSpace]
15 #define HYPER_SPACE_END                        0xFFFFF77FFFFFFFFFULL
16 //#define MI_SHARED_SYSTEM_PAGE                0xFFFFF78000000000ULL
17 #define MI_SYSTEM_CACHE_WS_START               0xFFFFF78000001000ULL // 512 GB - 4 KB system cache working set
18 //#define MI_LOADER_MAPPINGS                   0xFFFFF80000000000ULL // 512 GB loader mappings aka KSEG0_BASE (NDK) [MiVaBootLoaded]
19 #define MM_SYSTEM_SPACE_START                  0xFFFFF88000000000ULL // 128 GB system PTEs [MiVaSystemPtes]
20 #define MI_DEBUG_MAPPING                (PVOID)0xFFFFF89FFFFFF000ULL // FIXME should be allocated from System PTEs
21 #define MI_PAGED_POOL_START             (PVOID)0xFFFFF8A000000000ULL // 128 GB paged pool [MiVaPagedPool]
22 //#define MI_PAGED_POOL_END                    0xFFFFF8BFFFFFFFFFULL
23 //#define MI_SESSION_SPACE_START               0xFFFFF90000000000ULL // 512 GB session space [MiVaSessionSpace]
24 //#define MI_SESSION_VIEW_END                    0xFFFFF97FFF000000ULL
25 #define MI_SESSION_SPACE_END                   0xFFFFF98000000000ULL
26 #define MI_SYSTEM_CACHE_START                  0xFFFFF98000000000ULL // 1 TB system cache (on Vista+ this is dynamic VA space) [MiVaSystemCache,MiVaSpecialPoolPaged,MiVaSpecialPoolNonPaged]
27 #define MI_SYSTEM_CACHE_END                    0xFFFFFA7FFFFFFFFFULL
28 #define MI_PFN_DATABASE                        0xFFFFFA8000000000ULL // up to 5.5 TB PFN database followed by non paged pool [MiVaPfnDatabase/MiVaNonPagedPool]
29 #define MI_NONPAGED_POOL_END            (PVOID)0xFFFFFFFFFFBFFFFFULL
30 //#define MM_HAL_VA_START                      0xFFFFFFFFFFC00000ULL // 4 MB HAL mappings, defined in NDK [MiVaHal]
31 #define MI_HIGHEST_SYSTEM_ADDRESS       (PVOID)0xFFFFFFFFFFFFFFFFULL
32 #define MmSystemRangeStart              ((PVOID)MI_REAL_SYSTEM_RANGE_START)
33 
34 /* WOW64 address definitions */
35 #define MM_HIGHEST_USER_ADDRESS_WOW64   0x7FFEFFFF
36 #define MM_SYSTEM_RANGE_START_WOW64     0x80000000
37 
38 /* The size of the virtual memory area that is mapped using a single PDE */
39 #define PDE_MAPPED_VA (PTE_PER_PAGE * PAGE_SIZE)
40 
41 /* Misc address definitions */
42 //#define MI_NON_PAGED_SYSTEM_START_MIN   MM_SYSTEM_SPACE_START // FIXME
43 //#define MI_SYSTEM_PTE_START             MM_SYSTEM_SPACE_START
44 //#define MI_SYSTEM_PTE_END               (MI_SYSTEM_PTE_START + MI_NUMBER_SYSTEM_PTES * PAGE_SIZE - 1)
45 #define MI_SYSTEM_PTE_BASE              (PVOID)MiAddressToPte(KSEG0_BASE)
46 #define MM_HIGHEST_VAD_ADDRESS          (PVOID)((ULONG_PTR)MM_HIGHEST_USER_ADDRESS - (16 * PAGE_SIZE))
47 #define MI_MAPPING_RANGE_START          HYPER_SPACE
48 #define MI_MAPPING_RANGE_END            (MI_MAPPING_RANGE_START + MI_HYPERSPACE_PTES * PAGE_SIZE)
49 #define MI_DUMMY_PTE                        (MI_MAPPING_RANGE_END + PAGE_SIZE)
50 #define MI_VAD_BITMAP                       (MI_DUMMY_PTE + PAGE_SIZE)
51 #define MI_WORKING_SET_LIST                 (MI_VAD_BITMAP + PAGE_SIZE)
52 
53 /* Memory sizes */
54 #define MI_MIN_PAGES_FOR_NONPAGED_POOL_TUNING   ((255 * _1MB) >> PAGE_SHIFT)
55 #define MI_MIN_PAGES_FOR_SYSPTE_TUNING          ((19 * _1MB) >> PAGE_SHIFT)
56 #define MI_MIN_PAGES_FOR_SYSPTE_BOOST           ((32 * _1MB) >> PAGE_SHIFT)
57 #define MI_MIN_PAGES_FOR_SYSPTE_BOOST_BOOST     ((256 * _1MB) >> PAGE_SHIFT)
58 #define MI_MIN_INIT_PAGED_POOLSIZE              (32 * _1MB)
59 #define MI_MAX_INIT_NONPAGED_POOL_SIZE          (128ULL * 1024 * 1024 * 1024)
60 #define MI_MAX_NONPAGED_POOL_SIZE               (128ULL * 1024 * 1024 * 1024)
61 #define MI_SYSTEM_VIEW_SIZE                     (104 * _1MB)
62 #define MI_SESSION_VIEW_SIZE                    (104 * _1MB)
63 #define MI_SESSION_POOL_SIZE                    (64 * _1MB)
64 #define MI_SESSION_IMAGE_SIZE                   (16 * _1MB)
65 #define MI_SESSION_WORKING_SET_SIZE             (16 * _1MB)
66 #define MI_SESSION_SIZE                         (MI_SESSION_VIEW_SIZE + \
67                                                  MI_SESSION_POOL_SIZE + \
68                                                  MI_SESSION_IMAGE_SIZE + \
69                                                  MI_SESSION_WORKING_SET_SIZE)
70 #define MI_MIN_ALLOCATION_FRAGMENT              (4 * _1KB)
71 #define MI_ALLOCATION_FRAGMENT                  (64 * _1KB)
72 #define MI_MAX_ALLOCATION_FRAGMENT              (2  * _1MB)
73 
74 /* Misc constants */
75 #define MM_PTE_SOFTWARE_PROTECTION_BITS         5
76 #define MI_MIN_SECONDARY_COLORS                 8
77 #define MI_SECONDARY_COLORS                     64
78 #define MI_MAX_SECONDARY_COLORS                 1024
79 #define MI_NUMBER_SYSTEM_PTES                   22000
80 #define MI_MAX_FREE_PAGE_LISTS                  4
81 #define MI_HYPERSPACE_PTES                     (256 - 1)
82 #define MI_ZERO_PTES                           (32)
83 #define MI_MAX_ZERO_BITS                        53
84 #define SESSION_POOL_LOOKASIDES                 21
85 
86 /* MMPTE related defines */
87 #define MM_EMPTY_PTE_LIST  ((ULONG64)0xFFFFFFFF)
88 #define MM_EMPTY_LIST  ((ULONG_PTR)-1)
89 
90 
91 /* Easy accessing PFN in PTE */
92 #define PFN_FROM_PTE(v) ((v)->u.Hard.PageFrameNumber)
93 #define PFN_FROM_PDE(v) ((v)->u.Hard.PageFrameNumber)
94 #define PFN_FROM_PPE(v) ((v)->u.Hard.PageFrameNumber)
95 #define PFN_FROM_PXE(v) ((v)->u.Hard.PageFrameNumber)
96 
97 /* Macros for portable PTE modification */
98 #define MI_MAKE_DIRTY_PAGE(x)      ((x)->u.Hard.Dirty = 1)
99 #define MI_MAKE_CLEAN_PAGE(x)      ((x)->u.Hard.Dirty = 0)
100 #define MI_MAKE_ACCESSED_PAGE(x)   ((x)->u.Hard.Accessed = 1)
101 #define MI_PAGE_DISABLE_CACHE(x)   ((x)->u.Hard.CacheDisable = 1)
102 #define MI_PAGE_WRITE_THROUGH(x)   ((x)->u.Hard.WriteThrough = 1)
103 #define MI_PAGE_WRITE_COMBINED(x)  ((x)->u.Hard.WriteThrough = 0)
104 #define MI_IS_PAGE_LARGE(x)        ((x)->u.Hard.LargePage == 1)
105 #if !defined(CONFIG_SMP)
106 #define MI_IS_PAGE_WRITEABLE(x)    ((x)->u.Hard.Write == 1)
107 #else
108 #define MI_IS_PAGE_WRITEABLE(x)    ((x)->u.Hard.Writable == 1)
109 #endif
110 #define MI_IS_PAGE_COPY_ON_WRITE(x)((x)->u.Hard.CopyOnWrite == 1)
111 #define MI_IS_PAGE_EXECUTABLE(x)   ((x)->u.Hard.NoExecute == 0)
112 #define MI_IS_PAGE_DIRTY(x)        ((x)->u.Hard.Dirty == 1)
113 #define MI_MAKE_OWNER_PAGE(x)      ((x)->u.Hard.Owner = 1)
114 #if !defined(CONFIG_SMP)
115 #define MI_MAKE_WRITE_PAGE(x)      ((x)->u.Hard.Write = 1)
116 #else
117 #define MI_MAKE_WRITE_PAGE(x)      ((x)->u.Hard.Writable = 1)
118 #endif
119 
120 /* Macros to identify the page fault reason from the error code */
121 #define MI_IS_NOT_PRESENT_FAULT(FaultCode) !BooleanFlagOn(FaultCode, 0x1)
122 #define MI_IS_WRITE_ACCESS(FaultCode) BooleanFlagOn(FaultCode, 0x2)
123 #define MI_IS_INSTRUCTION_FETCH(FaultCode) BooleanFlagOn(FaultCode, 0x10)
124 
125 /* On x64, these are the same */
126 #define MI_WRITE_VALID_PPE MI_WRITE_VALID_PTE
127 #define ValidKernelPpe ValidKernelPde
128 
129 /* Convert an address to a corresponding PTE */
130 FORCEINLINE
131 PMMPTE
132 _MiAddressToPte(PVOID Address)
133 {
134     ULONG64 Offset = (ULONG64)Address >> (PTI_SHIFT - 3);
135     Offset &= 0xFFFFFFFFFULL << 3;
136     return (PMMPTE)(PTE_BASE + Offset);
137 }
138 #define MiAddressToPte(x) _MiAddressToPte((PVOID)(x))
139 
140 /* Convert an address to a corresponding PDE */
141 FORCEINLINE
142 PMMPTE
143 _MiAddressToPde(PVOID Address)
144 {
145     ULONG64 Offset = (ULONG64)Address >> (PDI_SHIFT - 3);
146     Offset &= 0x7FFFFFF << 3;
147     return (PMMPTE)(PDE_BASE + Offset);
148 }
149 #define MiAddressToPde(x) _MiAddressToPde((PVOID)(x))
150 
151 /* Convert an address to a corresponding PPE */
152 FORCEINLINE
153 PMMPTE
154 MiAddressToPpe(PVOID Address)
155 {
156     ULONG64 Offset = (ULONG64)Address >> (PPI_SHIFT - 3);
157     Offset &= 0x3FFFF << 3;
158     return (PMMPTE)(PPE_BASE + Offset);
159 }
160 
161 /* Convert an address to a corresponding PXE */
162 FORCEINLINE
163 PMMPTE
164 MiAddressToPxe(PVOID Address)
165 {
166     ULONG64 Offset = (ULONG64)Address >> (PXI_SHIFT - 3);
167     Offset &= PXI_MASK << 3;
168     return (PMMPTE)(PXE_BASE + Offset);
169 }
170 
171 /* Convert an address to a corresponding PTE offset/index */
172 FORCEINLINE
173 ULONG
174 MiAddressToPti(PVOID Address)
175 {
176     return ((((ULONG64)Address) >> PTI_SHIFT) & 0x1FF);
177 }
178 #define MiAddressToPteOffset(x) MiAddressToPti(x) // FIXME: bad name
179 
180 /* Convert an address to a corresponding PDE offset/index */
181 FORCEINLINE
182 ULONG
183 MiAddressToPdi(PVOID Address)
184 {
185     return ((((ULONG64)Address) >> PDI_SHIFT) & 0x1FF);
186 }
187 #define MiAddressToPdeOffset(x) MiAddressToPdi(x)
188 #define MiGetPdeOffset(x) MiAddressToPdi(x)
189 
190 /* Convert an address to a corresponding PXE offset/index */
191 FORCEINLINE
192 ULONG
193 MiAddressToPxi(PVOID Address)
194 {
195     return ((((ULONG64)Address) >> PXI_SHIFT) & 0x1FF);
196 }
197 
198 /* Convert a PTE into a corresponding address */
199 FORCEINLINE
200 PVOID
201 MiPteToAddress(PMMPTE PointerPte)
202 {
203     /* Use signed math */
204     return (PVOID)(((LONG64)PointerPte << 25) >> 16);
205 }
206 
207 /* Convert a PDE into a corresponding address */
208 FORCEINLINE
209 PVOID
210 MiPdeToAddress(PMMPTE PointerPde)
211 {
212     /* Use signed math */
213     return (PVOID)(((LONG64)PointerPde << 34) >> 16);
214 }
215 
216 /* Convert a PPE into a corresponding address */
217 FORCEINLINE
218 PVOID
219 MiPpeToAddress(PMMPTE PointerPpe)
220 {
221     /* Use signed math */
222     return (PVOID)(((LONG64)PointerPpe << 43) >> 16);
223 }
224 
225 /* Convert a PXE into a corresponding address */
226 FORCEINLINE
227 PVOID
228 MiPxeToAddress(PMMPTE PointerPxe)
229 {
230     /* Use signed math */
231     return (PVOID)(((LONG64)PointerPxe << 52) >> 16);
232 }
233 
234 /* Convert a PDE into its lowest PTE */
235 FORCEINLINE
236 PMMPTE
237 MiPdeToPte(PMMPDE PointerPde)
238 {
239     return (PMMPTE)MiPteToAddress(PointerPde);
240 }
241 
242 /* Convert a PPE into its lowest PTE */
243 FORCEINLINE
244 PMMPTE
245 MiPpeToPte(PMMPPE PointerPpe)
246 {
247     return (PMMPTE)MiPdeToAddress(PointerPpe);
248 }
249 
250 /* Convert a PXE into its lowest PTE */
251 FORCEINLINE
252 PMMPTE
253 MiPxeToPte(PMMPXE PointerPxe)
254 {
255     return (PMMPTE)MiPpeToAddress(PointerPxe);
256 }
257 
258 /* Convert a PTE to a corresponding PDE */
259 FORCEINLINE
260 PMMPDE
261 MiPteToPde(PMMPTE PointerPte)
262 {
263     return (PMMPDE)MiAddressToPte(PointerPte);
264 }
265 
266 /* Convert a PTE to a corresponding PPE */
267 FORCEINLINE
268 PMMPPE
269 MiPteToPpe(PMMPTE PointerPte)
270 {
271     return (PMMPPE)MiAddressToPde(PointerPte);
272 }
273 
274 /* Convert a PTE to a corresponding PXE */
275 FORCEINLINE
276 PMMPXE
277 MiPteToPxe(PMMPTE PointerPte)
278 {
279     return (PMMPXE)MiAddressToPpe(PointerPte);
280 }
281 
282 /* Convert a PDE to a corresponding PPE */
283 FORCEINLINE
284 PMMPDE
285 MiPdeToPpe(PMMPDE PointerPde)
286 {
287     return (PMMPPE)MiAddressToPte(PointerPde);
288 }
289 
290 /* Convert a PDE to a corresponding PXE */
291 FORCEINLINE
292 PMMPXE
293 MiPdeToPxe(PMMPDE PointerPde)
294 {
295     return (PMMPXE)MiAddressToPde(PointerPde);
296 }
297 
298 /* Check P*E boundaries */
299 #define MiIsPteOnPdeBoundary(PointerPte) \
300     ((((ULONG_PTR)PointerPte) & (PAGE_SIZE - 1)) == 0)
301 #define MiIsPteOnPpeBoundary(PointerPte) \
302     ((((ULONG_PTR)PointerPte) & (PDE_PER_PAGE * PAGE_SIZE - 1)) == 0)
303 #define MiIsPteOnPxeBoundary(PointerPte) \
304     ((((ULONG_PTR)PointerPte) & (PPE_PER_PAGE * PDE_PER_PAGE * PAGE_SIZE - 1)) == 0)
305 
306 //
307 // Decodes a Prototype PTE into the underlying PTE
308 //
309 #define MiProtoPteToPte(x)                  \
310     (PMMPTE)(((LONG64)(x)->u.Long) >> 16) /* Sign extend 48 bits */
311 
312 //
313 // Decodes a Prototype PTE into the underlying PTE
314 // The 48 bit signed value gets sign-extended to 64 bits.
315 //
316 #define MiSubsectionPteToSubsection(x)                              \
317         (PMMPTE)((LONG64)(x)->u.Subsect.SubsectionAddress)
318 
319 FORCEINLINE
320 VOID
321 MI_MAKE_SUBSECTION_PTE(
322     _Out_ PMMPTE NewPte,
323     _In_ PVOID Segment)
324 {
325     /* Mark this as a prototype */
326     NewPte->u.Long = 0;
327     NewPte->u.Subsect.Prototype = 1;
328 
329     /* Store the lower 48 bits of the Segment address */
330     NewPte->u.Subsect.SubsectionAddress = ((ULONG_PTR)Segment & 0x0000FFFFFFFFFFFF);
331 }
332 
333 FORCEINLINE
334 VOID
335 MI_MAKE_PROTOTYPE_PTE(IN PMMPTE NewPte,
336                       IN PMMPTE PointerPte)
337 {
338     /* Store the Address */
339     NewPte->u.Long = (ULONG64)PointerPte << 16;
340 
341     /* Mark this as a prototype PTE */
342     NewPte->u.Proto.Prototype = 1;
343 
344     ASSERT(MiProtoPteToPte(NewPte) == PointerPte);
345 }
346 
347 FORCEINLINE
348 BOOLEAN
349 MI_IS_MAPPED_PTE(PMMPTE PointerPte)
350 {
351     return ((PointerPte->u.Hard.Valid != 0) ||
352             (PointerPte->u.Proto.Prototype != 0) ||
353             (PointerPte->u.Trans.Transition != 0) ||
354             (PointerPte->u.Hard.PageFrameNumber != 0));
355 }
356 
357 FORCEINLINE
358 BOOLEAN
359 MiIsPdeForAddressValid(PVOID Address)
360 {
361     return ((MiAddressToPxe(Address)->u.Hard.Valid) &&
362             (MiAddressToPpe(Address)->u.Hard.Valid) &&
363             (MiAddressToPde(Address)->u.Hard.Valid));
364 }
365 
366