xref: /reactos/ntoskrnl/mm/ARM3/miarm.h (revision 6b700c6a)
1 /*
2  * PROJECT:         ReactOS Kernel
3  * LICENSE:         BSD - See COPYING.ARM in the top level directory
4  * FILE:            ntoskrnl/mm/ARM3/miarm.h
5  * PURPOSE:         ARM Memory Manager Header
6  * PROGRAMMERS:     ReactOS Portable Systems Group
7  */
8 
9 #pragma once
10 
11 #define MI_LOWEST_VAD_ADDRESS                   (PVOID)MM_LOWEST_USER_ADDRESS
12 
13 /* Make the code cleaner with some definitions for size multiples */
14 #define _1KB (1024u)
15 #define _1MB (1024 * _1KB)
16 #define _1GB (1024 * _1MB)
17 
18 /* Everyone loves 64K */
19 #define _64K (64 * _1KB)
20 
21 /* Size of a page table */
22 #define PT_SIZE  (PTE_PER_PAGE * sizeof(MMPTE))
23 
24 /* Size of a page directory */
25 #define PD_SIZE  (PDE_PER_PAGE * sizeof(MMPDE))
26 
27 /* Size of all page directories for a process */
28 #define SYSTEM_PD_SIZE (PPE_PER_PAGE * PD_SIZE)
29 #ifdef _M_IX86
30 C_ASSERT(SYSTEM_PD_SIZE == PAGE_SIZE);
31 #endif
32 
33 //
34 // Protection Bits part of the internal memory manager Protection Mask, from:
35 // http://reactos.org/wiki/Techwiki:Memory_management_in_the_Windows_XP_kernel
36 // https://www.reactos.org/wiki/Techwiki:Memory_Protection_constants
37 // and public assertions.
38 //
39 #define MM_ZERO_ACCESS         0
40 #define MM_READONLY            1
41 #define MM_EXECUTE             2
42 #define MM_EXECUTE_READ        3
43 #define MM_READWRITE           4
44 #define MM_WRITECOPY           5
45 #define MM_EXECUTE_READWRITE   6
46 #define MM_EXECUTE_WRITECOPY   7
47 #define MM_PROTECT_ACCESS      7
48 
49 //
50 // These are flags on top of the actual protection mask
51 //
52 #define MM_NOCACHE            0x08
53 #define MM_GUARDPAGE          0x10
54 #define MM_WRITECOMBINE       0x18
55 #define MM_PROTECT_SPECIAL    0x18
56 
57 //
58 // These are special cases
59 //
60 #define MM_DECOMMIT           (MM_ZERO_ACCESS | MM_GUARDPAGE)
61 #define MM_NOACCESS           (MM_ZERO_ACCESS | MM_WRITECOMBINE)
62 #define MM_OUTSWAPPED_KSTACK  (MM_EXECUTE_WRITECOPY | MM_WRITECOMBINE)
63 #define MM_INVALID_PROTECTION  0xFFFFFFFF
64 
65 //
66 // Specific PTE Definitions that map to the Memory Manager's Protection Mask Bits
67 // The Memory Manager's definition define the attributes that must be preserved
68 // and these PTE definitions describe the attributes in the hardware sense. This
69 // helps deal with hardware differences between the actual boolean expression of
70 // the argument.
71 //
72 // For example, in the logical attributes, we want to express read-only as a flag
73 // but on x86, it is writability that must be set. On the other hand, on x86, just
74 // like in the kernel, it is disabling the caches that requires a special flag,
75 // while on certain architectures such as ARM, it is enabling the cache which
76 // requires a flag.
77 //
78 #if defined(_M_IX86)
79 //
80 // Access Flags
81 //
82 #define PTE_READONLY            0 // Doesn't exist on x86
83 #define PTE_EXECUTE             0 // Not worrying about NX yet
84 #define PTE_EXECUTE_READ        0 // Not worrying about NX yet
85 #define PTE_READWRITE           0x2
86 #define PTE_WRITECOPY           0x200
87 #define PTE_EXECUTE_READWRITE   0x2 // Not worrying about NX yet
88 #define PTE_EXECUTE_WRITECOPY   0x200
89 #define PTE_PROTOTYPE           0x400
90 
91 //
92 // State Flags
93 //
94 #define PTE_VALID               0x1
95 #define PTE_ACCESSED            0x20
96 #define PTE_DIRTY               0x40
97 
98 //
99 // Cache flags
100 //
101 #define PTE_ENABLE_CACHE        0
102 #define PTE_DISABLE_CACHE       0x10
103 #define PTE_WRITECOMBINED_CACHE 0x10
104 #define PTE_PROTECT_MASK        0x612
105 #elif defined(_M_AMD64)
106 //
107 // Access Flags
108 //
109 #define PTE_READONLY            0x8000000000000000ULL
110 #define PTE_EXECUTE             0x0000000000000000ULL
111 #define PTE_EXECUTE_READ        PTE_EXECUTE /* EXECUTE implies READ on x64 */
112 #define PTE_READWRITE           0x8000000000000002ULL
113 #define PTE_WRITECOPY           0x8000000000000200ULL
114 #define PTE_EXECUTE_READWRITE   0x0000000000000002ULL
115 #define PTE_EXECUTE_WRITECOPY   0x0000000000000200ULL
116 #define PTE_PROTOTYPE           0x0000000000000400ULL
117 
118 //
119 // State Flags
120 //
121 #define PTE_VALID               0x0000000000000001ULL
122 #define PTE_ACCESSED            0x0000000000000020ULL
123 #define PTE_DIRTY               0x0000000000000040ULL
124 
125 //
126 // Cache flags
127 //
128 #define PTE_ENABLE_CACHE        0x0000000000000000ULL
129 #define PTE_DISABLE_CACHE       0x0000000000000010ULL
130 #define PTE_WRITECOMBINED_CACHE 0x0000000000000010ULL
131 #define PTE_PROTECT_MASK        0x8000000000000612ULL
132 #elif defined(_M_ARM)
133 #define PTE_READONLY            0x200
134 #define PTE_EXECUTE             0 // Not worrying about NX yet
135 #define PTE_EXECUTE_READ        0 // Not worrying about NX yet
136 #define PTE_READWRITE           0 // Doesn't exist on ARM
137 #define PTE_WRITECOPY           0 // Doesn't exist on ARM
138 #define PTE_EXECUTE_READWRITE   0 // Not worrying about NX yet
139 #define PTE_EXECUTE_WRITECOPY   0 // Not worrying about NX yet
140 #define PTE_PROTOTYPE           0x400 // Using the Shared bit
141 
142 //
143 // Cache flags
144 //
145 #define PTE_ENABLE_CACHE        0
146 #define PTE_DISABLE_CACHE       0x10
147 #define PTE_WRITECOMBINED_CACHE 0x10
148 #define PTE_PROTECT_MASK        0x610
149 #else
150 #error Define these please!
151 #endif
152 
153 //
154 // Mask for image section page protection
155 //
156 #define IMAGE_SCN_PROTECTION_MASK (IMAGE_SCN_MEM_WRITE | IMAGE_SCN_MEM_READ | IMAGE_SCN_MEM_EXECUTE)
157 
158 extern const ULONG_PTR MmProtectToPteMask[32];
159 extern const ULONG MmProtectToValue[32];
160 
161 //
162 // Assertions for session images, addresses, and PTEs
163 //
164 #define MI_IS_SESSION_IMAGE_ADDRESS(Address) \
165     (((Address) >= MiSessionImageStart) && ((Address) < MiSessionImageEnd))
166 
167 #define MI_IS_SESSION_ADDRESS(Address) \
168     (((Address) >= MmSessionBase) && ((Address) < MiSessionSpaceEnd))
169 
170 #define MI_IS_SESSION_PTE(Pte) \
171     ((((PMMPTE)Pte) >= MiSessionBasePte) && (((PMMPTE)Pte) < MiSessionLastPte))
172 
173 #define MI_IS_PAGE_TABLE_ADDRESS(Address) \
174     (((PVOID)(Address) >= (PVOID)PTE_BASE) && ((PVOID)(Address) <= (PVOID)PTE_TOP))
175 
176 #define MI_IS_SYSTEM_PAGE_TABLE_ADDRESS(Address) \
177     (((Address) >= (PVOID)MiAddressToPte(MmSystemRangeStart)) && ((Address) <= (PVOID)PTE_TOP))
178 
179 #define MI_IS_PAGE_TABLE_OR_HYPER_ADDRESS(Address) \
180     (((PVOID)(Address) >= (PVOID)PTE_BASE) && ((PVOID)(Address) <= (PVOID)MmHyperSpaceEnd))
181 
182 //
183 // Creates a software PTE with the given protection
184 //
185 #define MI_MAKE_SOFTWARE_PTE(p, x)          ((p)->u.Long = (x << MM_PTE_SOFTWARE_PROTECTION_BITS))
186 
187 //
188 // Marks a PTE as deleted
189 //
190 #define MI_SET_PFN_DELETED(x)               ((x)->PteAddress = (PMMPTE)((ULONG_PTR)(x)->PteAddress | 1))
191 #define MI_IS_PFN_DELETED(x)                ((ULONG_PTR)((x)->PteAddress) & 1)
192 
193 //
194 // Special values for LoadedImports
195 //
196 #ifdef _WIN64
197 #define MM_SYSLDR_NO_IMPORTS   (PVOID)0xFFFFFFFFFFFFFFFEULL
198 #define MM_SYSLDR_BOOT_LOADED  (PVOID)0xFFFFFFFFFFFFFFFFULL
199 #else
200 #define MM_SYSLDR_NO_IMPORTS   (PVOID)0xFFFFFFFE
201 #define MM_SYSLDR_BOOT_LOADED  (PVOID)0xFFFFFFFF
202 #endif
203 #define MM_SYSLDR_SINGLE_ENTRY 0x1
204 
205 //
206 // Number of initial session IDs
207 //
208 #define MI_INITIAL_SESSION_IDS  64
209 
210 #if defined(_M_IX86) || defined(_M_ARM)
211 //
212 // PFN List Sentinel
213 //
214 #define LIST_HEAD 0xFFFFFFFF
215 
216 //
217 // Because GCC cannot automatically downcast 0xFFFFFFFF to lesser-width bits,
218 // we need a manual definition suited to the number of bits in the PteFrame.
219 // This is used as a LIST_HEAD for the colored list
220 //
221 #define COLORED_LIST_HEAD ((1 << 25) - 1) // 0x1FFFFFF
222 #elif defined(_M_AMD64)
223 #define LIST_HEAD 0xFFFFFFFFFFFFFFFFLL
224 #define COLORED_LIST_HEAD ((1ULL << 57) - 1) // 0x1FFFFFFFFFFFFFFLL
225 #else
226 #error Define these please!
227 #endif
228 
229 //
230 // Special IRQL value (found in assertions)
231 //
232 #define MM_NOIRQL (KIRQL)0xFFFFFFFF
233 
234 //
235 // Returns the color of a page
236 //
237 #define MI_GET_PAGE_COLOR(x)                ((x) & MmSecondaryColorMask)
238 #define MI_GET_NEXT_COLOR()                 (MI_GET_PAGE_COLOR(++MmSystemPageColor))
239 #define MI_GET_NEXT_PROCESS_COLOR(x)        (MI_GET_PAGE_COLOR(++(x)->NextPageColor))
240 
241 //
242 // Prototype PTEs that don't yet have a pagefile association
243 //
244 #ifdef _WIN64
245 #define MI_PTE_LOOKUP_NEEDED 0xffffffffULL
246 #else
247 #define MI_PTE_LOOKUP_NEEDED 0xFFFFF
248 #endif
249 
250 //
251 // Number of session data and tag pages
252 //
253 #define MI_SESSION_DATA_PAGES_MAXIMUM (MM_ALLOCATION_GRANULARITY / PAGE_SIZE)
254 #define MI_SESSION_TAG_PAGES_MAXIMUM  (MM_ALLOCATION_GRANULARITY / PAGE_SIZE)
255 
256 //
257 // Used by MiCheckSecuredVad
258 //
259 #define MM_READ_WRITE_ALLOWED   11
260 #define MM_READ_ONLY_ALLOWED    10
261 #define MM_NO_ACCESS_ALLOWED    01
262 #define MM_DELETE_CHECK         85
263 
264 //
265 // System views are binned into 64K chunks
266 //
267 #define MI_SYSTEM_VIEW_BUCKET_SIZE  _64K
268 
269 //
270 // FIXFIX: These should go in ex.h after the pool merge
271 //
272 #ifdef _WIN64
273 #define POOL_BLOCK_SIZE 16
274 #else
275 #define POOL_BLOCK_SIZE  8
276 #endif
277 #define POOL_LISTS_PER_PAGE (PAGE_SIZE / POOL_BLOCK_SIZE)
278 #define BASE_POOL_TYPE_MASK 1
279 #define POOL_MAX_ALLOC (PAGE_SIZE - (sizeof(POOL_HEADER) + POOL_BLOCK_SIZE))
280 
281 //
282 // Pool debugging/analysis/tracing flags
283 //
284 #define POOL_FLAG_CHECK_TIMERS 0x1
285 #define POOL_FLAG_CHECK_WORKERS 0x2
286 #define POOL_FLAG_CHECK_RESOURCES 0x4
287 #define POOL_FLAG_VERIFIER 0x8
288 #define POOL_FLAG_CHECK_DEADLOCK 0x10
289 #define POOL_FLAG_SPECIAL_POOL 0x20
290 #define POOL_FLAG_DBGPRINT_ON_FAILURE 0x40
291 #define POOL_FLAG_CRASH_ON_FAILURE 0x80
292 
293 //
294 // BAD_POOL_HEADER codes during pool bugcheck
295 //
296 #define POOL_CORRUPTED_LIST 3
297 #define POOL_SIZE_OR_INDEX_MISMATCH 5
298 #define POOL_ENTRIES_NOT_ALIGNED_PREVIOUS 6
299 #define POOL_HEADER_NOT_ALIGNED 7
300 #define POOL_HEADER_IS_ZERO 8
301 #define POOL_ENTRIES_NOT_ALIGNED_NEXT 9
302 #define POOL_ENTRY_NOT_FOUND 10
303 
304 //
305 // BAD_POOL_CALLER codes during pool bugcheck
306 //
307 #define POOL_ENTRY_CORRUPTED 1
308 #define POOL_ENTRY_ALREADY_FREE 6
309 #define POOL_ENTRY_NOT_ALLOCATED 7
310 #define POOL_ALLOC_IRQL_INVALID 8
311 #define POOL_FREE_IRQL_INVALID 9
312 #define POOL_BILLED_PROCESS_INVALID 13
313 #define POOL_HEADER_SIZE_INVALID 32
314 
315 typedef struct _POOL_DESCRIPTOR
316 {
317     POOL_TYPE PoolType;
318     ULONG PoolIndex;
319     ULONG RunningAllocs;
320     ULONG RunningDeAllocs;
321     ULONG TotalPages;
322     ULONG TotalBigPages;
323     ULONG Threshold;
324     PVOID LockAddress;
325     PVOID PendingFrees;
326     LONG PendingFreeDepth;
327     SIZE_T TotalBytes;
328     SIZE_T Spare0;
329     LIST_ENTRY ListHeads[POOL_LISTS_PER_PAGE];
330 } POOL_DESCRIPTOR, *PPOOL_DESCRIPTOR;
331 
332 typedef struct _POOL_HEADER
333 {
334     union
335     {
336         struct
337         {
338 #ifdef _WIN64
339             USHORT PreviousSize:8;
340             USHORT PoolIndex:8;
341             USHORT BlockSize:8;
342             USHORT PoolType:8;
343 #else
344             USHORT PreviousSize:9;
345             USHORT PoolIndex:7;
346             USHORT BlockSize:9;
347             USHORT PoolType:7;
348 #endif
349         };
350         ULONG Ulong1;
351     };
352 #ifdef _WIN64
353     ULONG PoolTag;
354 #endif
355     union
356     {
357 #ifdef _WIN64
358         PEPROCESS ProcessBilled;
359 #else
360         ULONG PoolTag;
361 #endif
362         struct
363         {
364             USHORT AllocatorBackTraceIndex;
365             USHORT PoolTagHash;
366         };
367     };
368 } POOL_HEADER, *PPOOL_HEADER;
369 
370 C_ASSERT(sizeof(POOL_HEADER) == POOL_BLOCK_SIZE);
371 C_ASSERT(POOL_BLOCK_SIZE == sizeof(LIST_ENTRY));
372 
373 typedef struct _POOL_TRACKER_TABLE
374 {
375     ULONG Key;
376     LONG NonPagedAllocs;
377     LONG NonPagedFrees;
378     SIZE_T NonPagedBytes;
379     LONG PagedAllocs;
380     LONG PagedFrees;
381     SIZE_T PagedBytes;
382 } POOL_TRACKER_TABLE, *PPOOL_TRACKER_TABLE;
383 
384 typedef struct _POOL_TRACKER_BIG_PAGES
385 {
386     PVOID Va;
387     ULONG Key;
388     ULONG NumberOfPages;
389     PVOID QuotaObject;
390 } POOL_TRACKER_BIG_PAGES, *PPOOL_TRACKER_BIG_PAGES;
391 
392 extern ULONG ExpNumberOfPagedPools;
393 extern POOL_DESCRIPTOR NonPagedPoolDescriptor;
394 extern PPOOL_DESCRIPTOR ExpPagedPoolDescriptor[16 + 1];
395 extern PPOOL_TRACKER_TABLE PoolTrackTable;
396 
397 //
398 // END FIXFIX
399 //
400 
401 typedef struct _MI_LARGE_PAGE_DRIVER_ENTRY
402 {
403     LIST_ENTRY Links;
404     UNICODE_STRING BaseName;
405 } MI_LARGE_PAGE_DRIVER_ENTRY, *PMI_LARGE_PAGE_DRIVER_ENTRY;
406 
407 typedef enum _MMSYSTEM_PTE_POOL_TYPE
408 {
409     SystemPteSpace,
410     NonPagedPoolExpansion,
411     MaximumPtePoolTypes
412 } MMSYSTEM_PTE_POOL_TYPE;
413 
414 typedef enum _MI_PFN_CACHE_ATTRIBUTE
415 {
416     MiNonCached,
417     MiCached,
418     MiWriteCombined,
419     MiNotMapped
420 } MI_PFN_CACHE_ATTRIBUTE, *PMI_PFN_CACHE_ATTRIBUTE;
421 
422 typedef struct _PHYSICAL_MEMORY_RUN
423 {
424     PFN_NUMBER BasePage;
425     PFN_NUMBER PageCount;
426 } PHYSICAL_MEMORY_RUN, *PPHYSICAL_MEMORY_RUN;
427 
428 typedef struct _PHYSICAL_MEMORY_DESCRIPTOR
429 {
430     ULONG NumberOfRuns;
431     PFN_NUMBER NumberOfPages;
432     PHYSICAL_MEMORY_RUN Run[1];
433 } PHYSICAL_MEMORY_DESCRIPTOR, *PPHYSICAL_MEMORY_DESCRIPTOR;
434 
435 typedef struct _MMCOLOR_TABLES
436 {
437     PFN_NUMBER Flink;
438     PVOID Blink;
439     PFN_NUMBER Count;
440 } MMCOLOR_TABLES, *PMMCOLOR_TABLES;
441 
442 typedef struct _MI_LARGE_PAGE_RANGES
443 {
444     PFN_NUMBER StartFrame;
445     PFN_NUMBER LastFrame;
446 } MI_LARGE_PAGE_RANGES, *PMI_LARGE_PAGE_RANGES;
447 
448 typedef struct _MMVIEW
449 {
450     ULONG_PTR Entry;
451     PCONTROL_AREA ControlArea;
452 } MMVIEW, *PMMVIEW;
453 
454 typedef struct _MMSESSION
455 {
456     KGUARDED_MUTEX SystemSpaceViewLock;
457     PKGUARDED_MUTEX SystemSpaceViewLockPointer;
458     PCHAR SystemSpaceViewStart;
459     PMMVIEW SystemSpaceViewTable;
460     ULONG SystemSpaceHashSize;
461     ULONG SystemSpaceHashEntries;
462     ULONG SystemSpaceHashKey;
463     ULONG BitmapFailures;
464     PRTL_BITMAP SystemSpaceBitMap;
465 } MMSESSION, *PMMSESSION;
466 
467 typedef struct _MM_SESSION_SPACE_FLAGS
468 {
469     ULONG Initialized:1;
470     ULONG DeletePending:1;
471     ULONG Filler:30;
472 } MM_SESSION_SPACE_FLAGS;
473 
474 typedef struct _MM_SESSION_SPACE
475 {
476     struct _MM_SESSION_SPACE *GlobalVirtualAddress;
477     LONG ReferenceCount;
478     union
479     {
480         ULONG LongFlags;
481         MM_SESSION_SPACE_FLAGS Flags;
482     } u;
483     ULONG SessionId;
484     LIST_ENTRY ProcessList;
485     LARGE_INTEGER LastProcessSwappedOutTime;
486     PFN_NUMBER SessionPageDirectoryIndex;
487     SIZE_T NonPageablePages;
488     SIZE_T CommittedPages;
489     PVOID PagedPoolStart;
490     PVOID PagedPoolEnd;
491     PMMPDE PagedPoolBasePde;
492     ULONG Color;
493     LONG ResidentProcessCount;
494     ULONG SessionPoolAllocationFailures[4];
495     LIST_ENTRY ImageList;
496     LCID LocaleId;
497     ULONG AttachCount;
498     KEVENT AttachEvent;
499     PEPROCESS LastProcess;
500     LONG ProcessReferenceToSession;
501     LIST_ENTRY WsListEntry;
502     GENERAL_LOOKASIDE Lookaside[SESSION_POOL_LOOKASIDES];
503     MMSESSION Session;
504     KGUARDED_MUTEX PagedPoolMutex;
505     MM_PAGED_POOL_INFO PagedPoolInfo;
506     MMSUPPORT Vm;
507     PMMWSLE Wsle;
508     PDRIVER_UNLOAD Win32KDriverUnload;
509     POOL_DESCRIPTOR PagedPool;
510 #if defined (_M_AMD64)
511     MMPDE PageDirectory;
512 #else
513     PMMPDE PageTables;
514 #endif
515 #if defined (_M_AMD64)
516     PMMPTE SpecialPoolFirstPte;
517     PMMPTE SpecialPoolLastPte;
518     PMMPTE NextPdeForSpecialPoolExpansion;
519     PMMPTE LastPdeForSpecialPoolExpansion;
520     PFN_NUMBER SpecialPagesInUse;
521 #endif
522     LONG ImageLoadingCount;
523 } MM_SESSION_SPACE, *PMM_SESSION_SPACE;
524 
525 extern PMM_SESSION_SPACE MmSessionSpace;
526 extern MMPTE HyperTemplatePte;
527 extern MMPDE ValidKernelPde;
528 extern MMPTE ValidKernelPte;
529 extern MMPDE ValidKernelPdeLocal;
530 extern MMPTE ValidKernelPteLocal;
531 extern MMPDE DemandZeroPde;
532 extern MMPTE DemandZeroPte;
533 extern MMPTE PrototypePte;
534 extern MMPTE MmDecommittedPte;
535 extern BOOLEAN MmLargeSystemCache;
536 extern BOOLEAN MmZeroPageFile;
537 extern BOOLEAN MmProtectFreedNonPagedPool;
538 extern BOOLEAN MmTrackLockedPages;
539 extern BOOLEAN MmTrackPtes;
540 extern BOOLEAN MmDynamicPfn;
541 extern BOOLEAN MmMirroring;
542 extern BOOLEAN MmMakeLowMemory;
543 extern BOOLEAN MmEnforceWriteProtection;
544 extern SIZE_T MmAllocationFragment;
545 extern ULONG MmConsumedPoolPercentage;
546 extern ULONG MmVerifyDriverBufferType;
547 extern ULONG MmVerifyDriverLevel;
548 extern WCHAR MmVerifyDriverBuffer[512];
549 extern WCHAR MmLargePageDriverBuffer[512];
550 extern LIST_ENTRY MiLargePageDriverList;
551 extern BOOLEAN MiLargePageAllDrivers;
552 extern ULONG MmVerifyDriverBufferLength;
553 extern ULONG MmLargePageDriverBufferLength;
554 extern SIZE_T MmSizeOfNonPagedPoolInBytes;
555 extern SIZE_T MmMaximumNonPagedPoolInBytes;
556 extern PFN_NUMBER MmMaximumNonPagedPoolInPages;
557 extern PFN_NUMBER MmSizeOfPagedPoolInPages;
558 extern PVOID MmNonPagedSystemStart;
559 extern PVOID MmNonPagedPoolStart;
560 extern PVOID MmNonPagedPoolExpansionStart;
561 extern PVOID MmNonPagedPoolEnd;
562 extern SIZE_T MmSizeOfPagedPoolInBytes;
563 extern PVOID MmPagedPoolStart;
564 extern PVOID MmPagedPoolEnd;
565 extern PVOID MmSessionBase;
566 extern SIZE_T MmSessionSize;
567 extern PMMPTE MmFirstReservedMappingPte, MmLastReservedMappingPte;
568 extern PMMPTE MiFirstReservedZeroingPte;
569 extern MI_PFN_CACHE_ATTRIBUTE MiPlatformCacheAttributes[2][MmMaximumCacheType];
570 extern PPHYSICAL_MEMORY_DESCRIPTOR MmPhysicalMemoryBlock;
571 extern SIZE_T MmBootImageSize;
572 extern PMMPTE MmSystemPtesStart[MaximumPtePoolTypes];
573 extern PMMPTE MmSystemPtesEnd[MaximumPtePoolTypes];
574 extern PMEMORY_ALLOCATION_DESCRIPTOR MxFreeDescriptor;
575 extern MEMORY_ALLOCATION_DESCRIPTOR MxOldFreeDescriptor;
576 extern ULONG_PTR MxPfnAllocation;
577 extern MM_PAGED_POOL_INFO MmPagedPoolInfo;
578 extern RTL_BITMAP MiPfnBitMap;
579 extern KGUARDED_MUTEX MmPagedPoolMutex;
580 extern KGUARDED_MUTEX MmSectionCommitMutex;
581 extern PVOID MmPagedPoolStart;
582 extern PVOID MmPagedPoolEnd;
583 extern PVOID MmNonPagedSystemStart;
584 extern PVOID MiSystemViewStart;
585 extern SIZE_T MmSystemViewSize;
586 extern PVOID MmSessionBase;
587 extern PVOID MiSessionSpaceEnd;
588 extern PMMPTE MiSessionImagePteStart;
589 extern PMMPTE MiSessionImagePteEnd;
590 extern PMMPTE MiSessionBasePte;
591 extern PMMPTE MiSessionLastPte;
592 extern SIZE_T MmSizeOfPagedPoolInBytes;
593 extern PMMPDE MmSystemPagePtes;
594 extern PVOID MmSystemCacheStart;
595 extern PVOID MmSystemCacheEnd;
596 extern MMSUPPORT MmSystemCacheWs;
597 extern SIZE_T MmAllocatedNonPagedPool;
598 extern ULONG MmSpecialPoolTag;
599 extern PVOID MmHyperSpaceEnd;
600 extern PMMWSL MmSystemCacheWorkingSetList;
601 extern SIZE_T MmMinimumNonPagedPoolSize;
602 extern ULONG MmMinAdditionNonPagedPoolPerMb;
603 extern SIZE_T MmDefaultMaximumNonPagedPool;
604 extern ULONG MmMaxAdditionNonPagedPoolPerMb;
605 extern ULONG MmSecondaryColors;
606 extern ULONG MmSecondaryColorMask;
607 extern ULONG MmNumberOfSystemPtes;
608 extern ULONG MmMaximumNonPagedPoolPercent;
609 extern ULONG MmLargeStackSize;
610 extern PMMCOLOR_TABLES MmFreePagesByColor[FreePageList + 1];
611 extern MMPFNLIST MmStandbyPageListByPriority[8];
612 extern ULONG MmProductType;
613 extern MM_SYSTEMSIZE MmSystemSize;
614 extern PKEVENT MiLowMemoryEvent;
615 extern PKEVENT MiHighMemoryEvent;
616 extern PKEVENT MiLowPagedPoolEvent;
617 extern PKEVENT MiHighPagedPoolEvent;
618 extern PKEVENT MiLowNonPagedPoolEvent;
619 extern PKEVENT MiHighNonPagedPoolEvent;
620 extern PFN_NUMBER MmLowMemoryThreshold;
621 extern PFN_NUMBER MmHighMemoryThreshold;
622 extern PFN_NUMBER MiLowPagedPoolThreshold;
623 extern PFN_NUMBER MiHighPagedPoolThreshold;
624 extern PFN_NUMBER MiLowNonPagedPoolThreshold;
625 extern PFN_NUMBER MiHighNonPagedPoolThreshold;
626 extern PFN_NUMBER MmMinimumFreePages;
627 extern PFN_NUMBER MmPlentyFreePages;
628 extern SIZE_T MmMinimumStackCommitInBytes;
629 extern PFN_COUNT MiExpansionPoolPagesInitialCharge;
630 extern PFN_NUMBER MmResidentAvailablePages;
631 extern PFN_NUMBER MmResidentAvailableAtInit;
632 extern ULONG MmTotalFreeSystemPtes[MaximumPtePoolTypes];
633 extern PFN_NUMBER MmTotalSystemDriverPages;
634 extern ULONG MmCritsectTimeoutSeconds;
635 extern PVOID MiSessionImageStart;
636 extern PVOID MiSessionImageEnd;
637 extern PMMPTE MiHighestUserPte;
638 extern PMMPDE MiHighestUserPde;
639 extern PFN_NUMBER MmSystemPageDirectory[PPE_PER_PAGE];
640 extern PMMPTE MmSharedUserDataPte;
641 extern LIST_ENTRY MmProcessList;
642 extern KEVENT MmZeroingPageEvent;
643 extern ULONG MmSystemPageColor;
644 extern ULONG MmProcessColorSeed;
645 extern PMMWSL MmWorkingSetList;
646 extern PFN_NUMBER MiNumberOfFreePages;
647 extern SIZE_T MmSessionViewSize;
648 extern SIZE_T MmSessionPoolSize;
649 extern SIZE_T MmSessionImageSize;
650 extern PVOID MiSystemViewStart;
651 extern PVOID MiSessionPoolEnd;     // 0xBE000000
652 extern PVOID MiSessionPoolStart;   // 0xBD000000
653 extern PVOID MiSessionViewStart;   // 0xBE000000
654 extern PVOID MiSessionSpaceWs;
655 extern ULONG MmMaximumDeadKernelStacks;
656 extern SLIST_HEADER MmDeadStackSListHead;
657 extern MM_AVL_TABLE MmSectionBasedRoot;
658 extern KGUARDED_MUTEX MmSectionBasedMutex;
659 extern PVOID MmHighSectionBase;
660 extern SIZE_T MmSystemLockPagesCount;
661 extern ULONG_PTR MmSubsectionBase;
662 extern LARGE_INTEGER MmCriticalSectionTimeout;
663 extern LIST_ENTRY MmWorkingSetExpansionHead;
664 extern KSPIN_LOCK MmExpansionLock;
665 extern PETHREAD MiExpansionLockOwner;
666 
667 FORCEINLINE
668 BOOLEAN
669 MiIsMemoryTypeFree(TYPE_OF_MEMORY MemoryType)
670 {
671     return ((MemoryType == LoaderFree) ||
672             (MemoryType == LoaderLoadedProgram) ||
673             (MemoryType == LoaderFirmwareTemporary) ||
674             (MemoryType == LoaderOsloaderStack));
675 }
676 
677 FORCEINLINE
678 BOOLEAN
679 MiIsMemoryTypeInvisible(TYPE_OF_MEMORY MemoryType)
680 {
681     return ((MemoryType == LoaderFirmwarePermanent) ||
682             (MemoryType == LoaderSpecialMemory) ||
683             (MemoryType == LoaderHALCachedMemory) ||
684             (MemoryType == LoaderBBTMemory));
685 }
686 
687 #ifdef _M_AMD64
688 FORCEINLINE
689 BOOLEAN
690 MiIsUserPxe(PVOID Address)
691 {
692     return ((ULONG_PTR)Address >> 7) == 0x1FFFFEDF6FB7DA0ULL;
693 }
694 
695 FORCEINLINE
696 BOOLEAN
697 MiIsUserPpe(PVOID Address)
698 {
699     return ((ULONG_PTR)Address >> 16) == 0xFFFFF6FB7DA0ULL;
700 }
701 
702 FORCEINLINE
703 BOOLEAN
704 MiIsUserPde(PVOID Address)
705 {
706     return ((ULONG_PTR)Address >> 25) == 0x7FFFFB7DA0ULL;
707 }
708 
709 FORCEINLINE
710 BOOLEAN
711 MiIsUserPte(PVOID Address)
712 {
713     return ((ULONG_PTR)Address >> 34) == 0x3FFFFDA0ULL;
714 }
715 #else
716 FORCEINLINE
717 BOOLEAN
718 MiIsUserPde(PVOID Address)
719 {
720     return ((Address >= (PVOID)MiAddressToPde(NULL)) &&
721             (Address <= (PVOID)MiHighestUserPde));
722 }
723 
724 FORCEINLINE
725 BOOLEAN
726 MiIsUserPte(PVOID Address)
727 {
728     return (Address <= (PVOID)MiHighestUserPte);
729 }
730 #endif
731 
732 //
733 // Figures out the hardware bits for a PTE
734 //
735 FORCEINLINE
736 ULONG_PTR
737 MiDetermineUserGlobalPteMask(IN PVOID PointerPte)
738 {
739     MMPTE TempPte;
740 
741     /* Start fresh */
742     TempPte.u.Long = 0;
743 
744     /* Make it valid and accessed */
745     TempPte.u.Hard.Valid = TRUE;
746     MI_MAKE_ACCESSED_PAGE(&TempPte);
747 
748     /* Is this for user-mode? */
749     if (
750 #if (_MI_PAGING_LEVELS == 4)
751         MiIsUserPxe(PointerPte) ||
752 #endif
753 #if (_MI_PAGING_LEVELS >= 3)
754         MiIsUserPpe(PointerPte) ||
755 #endif
756         MiIsUserPde(PointerPte) ||
757         MiIsUserPte(PointerPte))
758     {
759         /* Set the owner bit */
760         MI_MAKE_OWNER_PAGE(&TempPte);
761     }
762 
763     /* FIXME: We should also set the global bit */
764 
765     /* Return the protection */
766     return TempPte.u.Long;
767 }
768 
769 //
770 // Creates a valid kernel PTE with the given protection
771 //
772 FORCEINLINE
773 VOID
774 MI_MAKE_HARDWARE_PTE_KERNEL(IN PMMPTE NewPte,
775                             IN PMMPTE MappingPte,
776                             IN ULONG_PTR ProtectionMask,
777                             IN PFN_NUMBER PageFrameNumber)
778 {
779     /* Only valid for kernel, non-session PTEs */
780     ASSERT(MappingPte > MiHighestUserPte);
781     ASSERT(!MI_IS_SESSION_PTE(MappingPte));
782     ASSERT((MappingPte < (PMMPTE)PDE_BASE) || (MappingPte > (PMMPTE)PDE_TOP));
783 
784     /* Start fresh */
785     *NewPte = ValidKernelPte;
786 
787     /* Set the protection and page */
788     NewPte->u.Hard.PageFrameNumber = PageFrameNumber;
789     NewPte->u.Long |= MmProtectToPteMask[ProtectionMask];
790 }
791 
792 //
793 // Creates a valid PTE with the given protection
794 //
795 FORCEINLINE
796 VOID
797 MI_MAKE_HARDWARE_PTE(IN PMMPTE NewPte,
798                      IN PMMPTE MappingPte,
799                      IN ULONG_PTR ProtectionMask,
800                      IN PFN_NUMBER PageFrameNumber)
801 {
802     /* Set the protection and page */
803     NewPte->u.Long = MiDetermineUserGlobalPteMask(MappingPte);
804     NewPte->u.Long |= MmProtectToPteMask[ProtectionMask];
805     NewPte->u.Hard.PageFrameNumber = PageFrameNumber;
806 }
807 
808 //
809 // Creates a valid user PTE with the given protection
810 //
811 FORCEINLINE
812 VOID
813 MI_MAKE_HARDWARE_PTE_USER(IN PMMPTE NewPte,
814                           IN PMMPTE MappingPte,
815                           IN ULONG_PTR ProtectionMask,
816                           IN PFN_NUMBER PageFrameNumber)
817 {
818     /* Only valid for kernel, non-session PTEs */
819     ASSERT(MappingPte <= MiHighestUserPte);
820 
821     /* Start fresh */
822     NewPte->u.Long = 0;
823 
824     /* Set the protection and page */
825     NewPte->u.Hard.Valid = TRUE;
826     NewPte->u.Hard.Owner = TRUE;
827     NewPte->u.Hard.PageFrameNumber = PageFrameNumber;
828     NewPte->u.Long |= MmProtectToPteMask[ProtectionMask];
829 }
830 
831 #ifndef _M_AMD64
832 //
833 // Builds a Prototype PTE for the address of the PTE
834 //
835 FORCEINLINE
836 VOID
837 MI_MAKE_PROTOTYPE_PTE(IN PMMPTE NewPte,
838                       IN PMMPTE PointerPte)
839 {
840     ULONG_PTR Offset;
841 
842     /* Mark this as a prototype */
843     NewPte->u.Long = 0;
844     NewPte->u.Proto.Prototype = 1;
845 
846     /*
847      * Prototype PTEs are only valid in paged pool by design, this little trick
848      * lets us only use 30 bits for the adress of the PTE, as long as the area
849      * stays 1024MB At most.
850      */
851     Offset = (ULONG_PTR)PointerPte - (ULONG_PTR)MmPagedPoolStart;
852 
853     /*
854      * 7 bits go in the "low" (but we assume the bottom 2 are zero)
855      * and the other 21 bits go in the "high"
856      */
857     NewPte->u.Proto.ProtoAddressLow = (Offset & 0x1FC) >> 2;
858     NewPte->u.Proto.ProtoAddressHigh = (Offset & 0x3FFFFE00) >> 9;
859 }
860 
861 //
862 // Builds a Subsection PTE for the address of the Segment
863 //
864 FORCEINLINE
865 VOID
866 MI_MAKE_SUBSECTION_PTE(IN PMMPTE NewPte,
867                        IN PVOID Segment)
868 {
869     ULONG_PTR Offset;
870 
871     /* Mark this as a prototype */
872     NewPte->u.Long = 0;
873     NewPte->u.Subsect.Prototype = 1;
874 
875     /*
876      * Segments are only valid either in nonpaged pool. We store the 20 bit
877      * difference either from the top or bottom of nonpaged pool, giving a
878      * maximum of 128MB to each delta, meaning nonpaged pool cannot exceed
879      * 256MB.
880      */
881     if ((ULONG_PTR)Segment < ((ULONG_PTR)MmSubsectionBase + (128 * _1MB)))
882     {
883         Offset = (ULONG_PTR)Segment - (ULONG_PTR)MmSubsectionBase;
884         NewPte->u.Subsect.WhichPool = PagedPool;
885     }
886     else
887     {
888         Offset = (ULONG_PTR)MmNonPagedPoolEnd - (ULONG_PTR)Segment;
889         NewPte->u.Subsect.WhichPool = NonPagedPool;
890     }
891 
892     /*
893      * 4 bits go in the "low" (but we assume the bottom 3 are zero)
894      * and the other 20 bits go in the "high"
895      */
896     NewPte->u.Subsect.SubsectionAddressLow = (Offset & 0x78) >> 3;
897     NewPte->u.Subsect.SubsectionAddressHigh = (Offset & 0xFFFFF80) >> 7;
898 }
899 
900 FORCEINLINE
901 BOOLEAN
902 MI_IS_MAPPED_PTE(PMMPTE PointerPte)
903 {
904     /// \todo Make this reasonable code, this is UGLY!
905     return ((PointerPte->u.Long & 0xFFFFFC01) != 0);
906 }
907 
908 #endif
909 
910 FORCEINLINE
911 VOID
912 MI_MAKE_TRANSITION_PTE(_Out_ PMMPTE NewPte,
913                        _In_ PFN_NUMBER Page,
914                        _In_ ULONG Protection)
915 {
916     NewPte->u.Long = 0;
917     NewPte->u.Trans.Transition = 1;
918     NewPte->u.Trans.Protection = Protection;
919     NewPte->u.Trans.PageFrameNumber = Page;
920 }
921 
922 //
923 // Returns if the page is physically resident (ie: a large page)
924 // FIXFIX: CISC/x86 only?
925 //
926 FORCEINLINE
927 BOOLEAN
928 MI_IS_PHYSICAL_ADDRESS(IN PVOID Address)
929 {
930     PMMPDE PointerPde;
931 
932     /* Large pages are never paged out, always physically resident */
933     PointerPde = MiAddressToPde(Address);
934     return ((PointerPde->u.Hard.LargePage) && (PointerPde->u.Hard.Valid));
935 }
936 
937 //
938 // Writes a valid PTE
939 //
940 FORCEINLINE
941 VOID
942 MI_WRITE_VALID_PTE(IN PMMPTE PointerPte,
943                    IN MMPTE TempPte)
944 {
945     /* Write the valid PTE */
946     ASSERT(PointerPte->u.Hard.Valid == 0);
947     ASSERT(TempPte.u.Hard.Valid == 1);
948 #if _M_AMD64
949     ASSERT(!MI_IS_PAGE_TABLE_ADDRESS(MiPteToAddress(PointerPte)) ||
950            (TempPte.u.Hard.NoExecute == 0));
951 #endif
952     *PointerPte = TempPte;
953 }
954 
955 //
956 // Updates a valid PTE
957 //
958 FORCEINLINE
959 VOID
960 MI_UPDATE_VALID_PTE(IN PMMPTE PointerPte,
961                    IN MMPTE TempPte)
962 {
963     /* Write the valid PTE */
964     ASSERT(PointerPte->u.Hard.Valid == 1);
965     ASSERT(TempPte.u.Hard.Valid == 1);
966     ASSERT(PointerPte->u.Hard.PageFrameNumber == TempPte.u.Hard.PageFrameNumber);
967     *PointerPte = TempPte;
968 }
969 
970 //
971 // Writes an invalid PTE
972 //
973 FORCEINLINE
974 VOID
975 MI_WRITE_INVALID_PTE(IN PMMPTE PointerPte,
976                      IN MMPTE InvalidPte)
977 {
978     /* Write the invalid PTE */
979     ASSERT(InvalidPte.u.Hard.Valid == 0);
980     ASSERT(InvalidPte.u.Long != 0);
981     *PointerPte = InvalidPte;
982 }
983 
984 //
985 // Erase the PTE completely
986 //
987 FORCEINLINE
988 VOID
989 MI_ERASE_PTE(IN PMMPTE PointerPte)
990 {
991     /* Zero out the PTE */
992     ASSERT(PointerPte->u.Long != 0);
993     PointerPte->u.Long = 0;
994 }
995 
996 //
997 // Writes a valid PDE
998 //
999 FORCEINLINE
1000 VOID
1001 MI_WRITE_VALID_PDE(IN PMMPDE PointerPde,
1002                    IN MMPDE TempPde)
1003 {
1004     /* Write the valid PDE */
1005     ASSERT(PointerPde->u.Hard.Valid == 0);
1006 #ifdef _M_AMD64
1007     ASSERT(PointerPde->u.Hard.NoExecute == 0);
1008 #endif
1009     ASSERT(TempPde.u.Hard.Valid == 1);
1010     *PointerPde = TempPde;
1011 }
1012 
1013 //
1014 // Writes an invalid PDE
1015 //
1016 FORCEINLINE
1017 VOID
1018 MI_WRITE_INVALID_PDE(IN PMMPDE PointerPde,
1019                      IN MMPDE InvalidPde)
1020 {
1021     /* Write the invalid PDE */
1022     ASSERT(InvalidPde.u.Hard.Valid == 0);
1023     ASSERT(InvalidPde.u.Long != 0);
1024 #ifdef _M_AMD64
1025     ASSERT(InvalidPde.u.Soft.Protection == MM_EXECUTE_READWRITE);
1026 #endif
1027     *PointerPde = InvalidPde;
1028 }
1029 
1030 //
1031 // Checks if the thread already owns a working set
1032 //
1033 FORCEINLINE
1034 BOOLEAN
1035 MM_ANY_WS_LOCK_HELD(IN PETHREAD Thread)
1036 {
1037     /* If any of these are held, return TRUE */
1038     return ((Thread->OwnsProcessWorkingSetExclusive) ||
1039             (Thread->OwnsProcessWorkingSetShared) ||
1040             (Thread->OwnsSystemWorkingSetExclusive) ||
1041             (Thread->OwnsSystemWorkingSetShared) ||
1042             (Thread->OwnsSessionWorkingSetExclusive) ||
1043             (Thread->OwnsSessionWorkingSetShared));
1044 }
1045 
1046 //
1047 // Checks if the process owns the working set lock
1048 //
1049 FORCEINLINE
1050 BOOLEAN
1051 MI_WS_OWNER(IN PEPROCESS Process)
1052 {
1053     /* Check if this process is the owner, and that the thread owns the WS */
1054     if (PsGetCurrentThread()->OwnsProcessWorkingSetExclusive == 0)
1055     {
1056         DPRINT("Thread: %p is not an owner\n", PsGetCurrentThread());
1057     }
1058     if (KeGetCurrentThread()->ApcState.Process != &Process->Pcb)
1059     {
1060         DPRINT("Current thread %p is attached to another process %p\n", PsGetCurrentThread(), Process);
1061     }
1062     return ((KeGetCurrentThread()->ApcState.Process == &Process->Pcb) &&
1063             ((PsGetCurrentThread()->OwnsProcessWorkingSetExclusive) ||
1064              (PsGetCurrentThread()->OwnsProcessWorkingSetShared)));
1065 }
1066 
1067 //
1068 // New ARM3<->RosMM PAGE Architecture
1069 //
1070 FORCEINLINE
1071 BOOLEAN
1072 MiIsRosSectionObject(IN PVOID Section)
1073 {
1074     PSECTION RosSection = Section;
1075     return RosSection->u.Flags.filler;
1076 }
1077 
1078 #define MI_IS_ROS_PFN(x)     ((x)->u4.AweAllocation == TRUE)
1079 
1080 VOID
1081 NTAPI
1082 MiDecrementReferenceCount(
1083     IN PMMPFN Pfn1,
1084     IN PFN_NUMBER PageFrameIndex
1085 );
1086 
1087 FORCEINLINE
1088 BOOLEAN
1089 MI_IS_WS_UNSAFE(IN PEPROCESS Process)
1090 {
1091     return (Process->Vm.Flags.AcquiredUnsafe == TRUE);
1092 }
1093 
1094 //
1095 // Locks the working set for the given process
1096 //
1097 FORCEINLINE
1098 VOID
1099 MiLockProcessWorkingSet(IN PEPROCESS Process,
1100                         IN PETHREAD Thread)
1101 {
1102     /* Shouldn't already be owning the process working set */
1103     ASSERT(Thread->OwnsProcessWorkingSetShared == FALSE);
1104     ASSERT(Thread->OwnsProcessWorkingSetExclusive == FALSE);
1105 
1106     /* Block APCs, make sure that still nothing is already held */
1107     KeEnterGuardedRegion();
1108     ASSERT(!MM_ANY_WS_LOCK_HELD(Thread));
1109 
1110     /* Lock the working set */
1111     ExAcquirePushLockExclusive(&Process->Vm.WorkingSetMutex);
1112 
1113     /* Now claim that we own the lock */
1114     ASSERT(!MI_IS_WS_UNSAFE(Process));
1115     ASSERT(Thread->OwnsProcessWorkingSetExclusive == FALSE);
1116     Thread->OwnsProcessWorkingSetExclusive = TRUE;
1117 }
1118 
1119 FORCEINLINE
1120 VOID
1121 MiLockProcessWorkingSetShared(IN PEPROCESS Process,
1122                               IN PETHREAD Thread)
1123 {
1124     /* Shouldn't already be owning the process working set */
1125     ASSERT(Thread->OwnsProcessWorkingSetShared == FALSE);
1126     ASSERT(Thread->OwnsProcessWorkingSetExclusive == FALSE);
1127 
1128     /* Block APCs, make sure that still nothing is already held */
1129     KeEnterGuardedRegion();
1130     ASSERT(!MM_ANY_WS_LOCK_HELD(Thread));
1131 
1132     /* Lock the working set */
1133     ExAcquirePushLockShared(&Process->Vm.WorkingSetMutex);
1134 
1135     /* Now claim that we own the lock */
1136     ASSERT(!MI_IS_WS_UNSAFE(Process));
1137     ASSERT(Thread->OwnsProcessWorkingSetShared == FALSE);
1138     ASSERT(Thread->OwnsProcessWorkingSetExclusive == FALSE);
1139     Thread->OwnsProcessWorkingSetShared = TRUE;
1140 }
1141 
1142 FORCEINLINE
1143 VOID
1144 MiLockProcessWorkingSetUnsafe(IN PEPROCESS Process,
1145                               IN PETHREAD Thread)
1146 {
1147     /* Shouldn't already be owning the process working set */
1148     ASSERT(Thread->OwnsProcessWorkingSetExclusive == FALSE);
1149 
1150     /* APCs must be blocked, make sure that still nothing is already held */
1151     ASSERT(KeAreAllApcsDisabled() == TRUE);
1152     ASSERT(!MM_ANY_WS_LOCK_HELD(Thread));
1153 
1154     /* Lock the working set */
1155     ExAcquirePushLockExclusive(&Process->Vm.WorkingSetMutex);
1156 
1157     /* Now claim that we own the lock */
1158     ASSERT(!MI_IS_WS_UNSAFE(Process));
1159     Process->Vm.Flags.AcquiredUnsafe = 1;
1160     ASSERT(Thread->OwnsProcessWorkingSetExclusive == FALSE);
1161     Thread->OwnsProcessWorkingSetExclusive = TRUE;
1162 }
1163 
1164 //
1165 // Unlocks the working set for the given process
1166 //
1167 FORCEINLINE
1168 VOID
1169 MiUnlockProcessWorkingSet(IN PEPROCESS Process,
1170                           IN PETHREAD Thread)
1171 {
1172     /* Make sure we are the owner of a safe acquisition */
1173     ASSERT(MI_WS_OWNER(Process));
1174     ASSERT(!MI_IS_WS_UNSAFE(Process));
1175 
1176     /* The thread doesn't own it anymore */
1177     ASSERT(Thread->OwnsProcessWorkingSetExclusive == TRUE);
1178     Thread->OwnsProcessWorkingSetExclusive = FALSE;
1179 
1180     /* Release the lock and re-enable APCs */
1181     ExReleasePushLockExclusive(&Process->Vm.WorkingSetMutex);
1182     KeLeaveGuardedRegion();
1183 }
1184 
1185 //
1186 // Unlocks the working set for the given process
1187 //
1188 FORCEINLINE
1189 VOID
1190 MiUnlockProcessWorkingSetShared(IN PEPROCESS Process,
1191                                 IN PETHREAD Thread)
1192 {
1193     /* Make sure we are the owner of a safe acquisition (because shared) */
1194     ASSERT(MI_WS_OWNER(Process));
1195     ASSERT(!MI_IS_WS_UNSAFE(Process));
1196 
1197     /* Ensure we are in a shared acquisition */
1198     ASSERT(Thread->OwnsProcessWorkingSetShared == TRUE);
1199     ASSERT(Thread->OwnsProcessWorkingSetExclusive == FALSE);
1200 
1201     /* Don't claim the lock anylonger */
1202     Thread->OwnsProcessWorkingSetShared = FALSE;
1203 
1204     /* Release the lock and re-enable APCs */
1205     ExReleasePushLockShared(&Process->Vm.WorkingSetMutex);
1206     KeLeaveGuardedRegion();
1207 }
1208 
1209 //
1210 // Unlocks the working set for the given process
1211 //
1212 FORCEINLINE
1213 VOID
1214 MiUnlockProcessWorkingSetUnsafe(IN PEPROCESS Process,
1215                                 IN PETHREAD Thread)
1216 {
1217     /* Make sure we are the owner of an unsafe acquisition */
1218     ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
1219     ASSERT(KeAreAllApcsDisabled() == TRUE);
1220     ASSERT(MI_WS_OWNER(Process));
1221     ASSERT(MI_IS_WS_UNSAFE(Process));
1222 
1223     /* No longer unsafe */
1224     Process->Vm.Flags.AcquiredUnsafe = 0;
1225 
1226     /* The thread doesn't own it anymore */
1227     ASSERT(Thread->OwnsProcessWorkingSetExclusive == TRUE);
1228     Thread->OwnsProcessWorkingSetExclusive = FALSE;
1229 
1230     /* Release the lock but don't touch APC state */
1231     ExReleasePushLockExclusive(&Process->Vm.WorkingSetMutex);
1232     ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
1233 }
1234 
1235 //
1236 // Locks the working set
1237 //
1238 FORCEINLINE
1239 VOID
1240 MiLockWorkingSet(IN PETHREAD Thread,
1241                  IN PMMSUPPORT WorkingSet)
1242 {
1243     /* Block APCs */
1244     KeEnterGuardedRegion();
1245 
1246     /* Working set should be in global memory */
1247     ASSERT(MI_IS_SESSION_ADDRESS((PVOID)WorkingSet) == FALSE);
1248 
1249     /* Thread shouldn't already be owning something */
1250     ASSERT(!MM_ANY_WS_LOCK_HELD(Thread));
1251 
1252     /* Lock this working set */
1253     ExAcquirePushLockExclusive(&WorkingSet->WorkingSetMutex);
1254 
1255     /* Which working set is this? */
1256     if (WorkingSet == &MmSystemCacheWs)
1257     {
1258         /* Own the system working set */
1259         ASSERT((Thread->OwnsSystemWorkingSetExclusive == FALSE) &&
1260                (Thread->OwnsSystemWorkingSetShared == FALSE));
1261         Thread->OwnsSystemWorkingSetExclusive = TRUE;
1262     }
1263     else if (WorkingSet->Flags.SessionSpace)
1264     {
1265         /* Own the session working set */
1266         ASSERT((Thread->OwnsSessionWorkingSetExclusive == FALSE) &&
1267                (Thread->OwnsSessionWorkingSetShared == FALSE));
1268         Thread->OwnsSessionWorkingSetExclusive = TRUE;
1269     }
1270     else
1271     {
1272         /* Own the process working set */
1273         ASSERT((Thread->OwnsProcessWorkingSetExclusive == FALSE) &&
1274                (Thread->OwnsProcessWorkingSetShared == FALSE));
1275         Thread->OwnsProcessWorkingSetExclusive = TRUE;
1276     }
1277 }
1278 
1279 //
1280 // Unlocks the working set
1281 //
1282 FORCEINLINE
1283 VOID
1284 MiUnlockWorkingSet(IN PETHREAD Thread,
1285                    IN PMMSUPPORT WorkingSet)
1286 {
1287     /* Working set should be in global memory */
1288     ASSERT(MI_IS_SESSION_ADDRESS((PVOID)WorkingSet) == FALSE);
1289 
1290     /* Which working set is this? */
1291     if (WorkingSet == &MmSystemCacheWs)
1292     {
1293         /* Release the system working set */
1294         ASSERT((Thread->OwnsSystemWorkingSetExclusive == TRUE) ||
1295                (Thread->OwnsSystemWorkingSetShared == TRUE));
1296         Thread->OwnsSystemWorkingSetExclusive = FALSE;
1297     }
1298     else if (WorkingSet->Flags.SessionSpace)
1299     {
1300         /* Release the session working set */
1301         ASSERT((Thread->OwnsSessionWorkingSetExclusive == TRUE) ||
1302                (Thread->OwnsSessionWorkingSetShared == TRUE));
1303         Thread->OwnsSessionWorkingSetExclusive = 0;
1304     }
1305     else
1306     {
1307         /* Release the process working set */
1308         ASSERT((Thread->OwnsProcessWorkingSetExclusive) ||
1309                (Thread->OwnsProcessWorkingSetShared));
1310         Thread->OwnsProcessWorkingSetExclusive = FALSE;
1311     }
1312 
1313     /* Release the working set lock */
1314     ExReleasePushLockExclusive(&WorkingSet->WorkingSetMutex);
1315 
1316     /* Unblock APCs */
1317     KeLeaveGuardedRegion();
1318 }
1319 
1320 FORCEINLINE
1321 VOID
1322 MiUnlockProcessWorkingSetForFault(IN PEPROCESS Process,
1323                                   IN PETHREAD Thread,
1324                                   OUT PBOOLEAN Safe,
1325                                   OUT PBOOLEAN Shared)
1326 {
1327     ASSERT(MI_WS_OWNER(Process));
1328 
1329     /* Check if the current owner is unsafe */
1330     if (MI_IS_WS_UNSAFE(Process))
1331     {
1332         /* Release unsafely */
1333         MiUnlockProcessWorkingSetUnsafe(Process, Thread);
1334         *Safe = FALSE;
1335         *Shared = FALSE;
1336     }
1337     else if (Thread->OwnsProcessWorkingSetExclusive == 1)
1338     {
1339         /* Owner is safe and exclusive, release normally */
1340         MiUnlockProcessWorkingSet(Process, Thread);
1341         *Safe = TRUE;
1342         *Shared = FALSE;
1343     }
1344     else
1345     {
1346         /* Owner is shared (implies safe), release normally */
1347         MiUnlockProcessWorkingSetShared(Process, Thread);
1348         *Safe = TRUE;
1349         *Shared = TRUE;
1350     }
1351 }
1352 
1353 FORCEINLINE
1354 VOID
1355 MiLockProcessWorkingSetForFault(IN PEPROCESS Process,
1356                                 IN PETHREAD Thread,
1357                                 IN BOOLEAN Safe,
1358                                 IN BOOLEAN Shared)
1359 {
1360     /* Check if this was a safe lock or not */
1361     if (Safe)
1362     {
1363         if (Shared)
1364         {
1365             /* Reacquire safely & shared */
1366             MiLockProcessWorkingSetShared(Process, Thread);
1367         }
1368         else
1369         {
1370             /* Reacquire safely */
1371             MiLockProcessWorkingSet(Process, Thread);
1372         }
1373     }
1374     else
1375     {
1376         /* Unsafe lock cannot be shared */
1377         ASSERT(Shared == FALSE);
1378         /* Reacquire unsafely */
1379         MiLockProcessWorkingSetUnsafe(Process, Thread);
1380     }
1381 }
1382 
1383 FORCEINLINE
1384 KIRQL
1385 MiAcquireExpansionLock(VOID)
1386 {
1387     KIRQL OldIrql;
1388 
1389     ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
1390     KeAcquireSpinLock(&MmExpansionLock, &OldIrql);
1391     ASSERT(MiExpansionLockOwner == NULL);
1392     MiExpansionLockOwner = PsGetCurrentThread();
1393     return OldIrql;
1394 }
1395 
1396 FORCEINLINE
1397 VOID
1398 MiReleaseExpansionLock(KIRQL OldIrql)
1399 {
1400     ASSERT(MiExpansionLockOwner == PsGetCurrentThread());
1401     MiExpansionLockOwner = NULL;
1402     KeReleaseSpinLock(&MmExpansionLock, OldIrql);
1403     ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
1404 }
1405 
1406 //
1407 // Returns the ProtoPTE inside a VAD for the given VPN
1408 //
1409 FORCEINLINE
1410 PMMPTE
1411 MI_GET_PROTOTYPE_PTE_FOR_VPN(IN PMMVAD Vad,
1412                              IN ULONG_PTR Vpn)
1413 {
1414     PMMPTE ProtoPte;
1415 
1416     /* Find the offset within the VAD's prototype PTEs */
1417     ProtoPte = Vad->FirstPrototypePte + (Vpn - Vad->StartingVpn);
1418     ASSERT(ProtoPte <= Vad->LastContiguousPte);
1419     return ProtoPte;
1420 }
1421 
1422 //
1423 // Returns the PFN Database entry for the given page number
1424 // Warning: This is not necessarily a valid PFN database entry!
1425 //
1426 FORCEINLINE
1427 PMMPFN
1428 MI_PFN_ELEMENT(IN PFN_NUMBER Pfn)
1429 {
1430     /* Get the entry */
1431     return &MmPfnDatabase[Pfn];
1432 };
1433 
1434 //
1435 // Drops a locked page without dereferencing it
1436 //
1437 FORCEINLINE
1438 VOID
1439 MiDropLockCount(IN PMMPFN Pfn1)
1440 {
1441     /* This page shouldn't be locked, but it should be valid */
1442     ASSERT(Pfn1->u3.e2.ReferenceCount != 0);
1443     ASSERT(Pfn1->u2.ShareCount == 0);
1444 
1445     /* Is this the last reference to the page */
1446     if (Pfn1->u3.e2.ReferenceCount == 1)
1447     {
1448         /* It better not be valid */
1449         ASSERT(Pfn1->u3.e1.PageLocation != ActiveAndValid);
1450 
1451         /* Is it a prototype PTE? */
1452         if ((Pfn1->u3.e1.PrototypePte == 1) &&
1453             (Pfn1->OriginalPte.u.Soft.Prototype == 1))
1454         {
1455             /* FIXME: We should return commit */
1456             DPRINT1("Not returning commit for prototype PTE\n");
1457         }
1458 
1459         /* Update the counter */
1460         InterlockedDecrementSizeT(&MmSystemLockPagesCount);
1461     }
1462 }
1463 
1464 //
1465 // Drops a locked page and dereferences it
1466 //
1467 FORCEINLINE
1468 VOID
1469 MiDereferencePfnAndDropLockCount(IN PMMPFN Pfn1)
1470 {
1471     USHORT RefCount, OldRefCount;
1472     PFN_NUMBER PageFrameIndex;
1473 
1474     /* Loop while we decrement the page successfully */
1475     do
1476     {
1477         /* There should be at least one reference */
1478         OldRefCount = Pfn1->u3.e2.ReferenceCount;
1479         ASSERT(OldRefCount != 0);
1480 
1481         /* Are we the last one */
1482         if (OldRefCount == 1)
1483         {
1484             /* The page shoudln't be shared not active at this point */
1485             ASSERT(Pfn1->u3.e2.ReferenceCount == 1);
1486             ASSERT(Pfn1->u3.e1.PageLocation != ActiveAndValid);
1487             ASSERT(Pfn1->u2.ShareCount == 0);
1488 
1489             /* Is it a prototype PTE? */
1490             if ((Pfn1->u3.e1.PrototypePte == 1) &&
1491                 (Pfn1->OriginalPte.u.Soft.Prototype == 1))
1492             {
1493                 /* FIXME: We should return commit */
1494                 DPRINT1("Not returning commit for prototype PTE\n");
1495             }
1496 
1497             /* Update the counter, and drop a reference the long way */
1498             InterlockedDecrementSizeT(&MmSystemLockPagesCount);
1499             PageFrameIndex = MiGetPfnEntryIndex(Pfn1);
1500             MiDecrementReferenceCount(Pfn1, PageFrameIndex);
1501             return;
1502         }
1503 
1504         /* Drop a reference the short way, and that's it */
1505         RefCount = InterlockedCompareExchange16((PSHORT)&Pfn1->u3.e2.ReferenceCount,
1506                                                 OldRefCount - 1,
1507                                                 OldRefCount);
1508         ASSERT(RefCount != 0);
1509     } while (OldRefCount != RefCount);
1510 
1511     /* If we got here, there should be more than one reference */
1512     ASSERT(RefCount > 1);
1513     if (RefCount == 2)
1514     {
1515         /* Is it still being shared? */
1516         if (Pfn1->u2.ShareCount >= 1)
1517         {
1518             /* Then it should be valid */
1519             ASSERT(Pfn1->u3.e1.PageLocation == ActiveAndValid);
1520 
1521             /* Is it a prototype PTE? */
1522             if ((Pfn1->u3.e1.PrototypePte == 1) &&
1523                 (Pfn1->OriginalPte.u.Soft.Prototype == 1))
1524             {
1525                 /* We don't handle ethis */
1526                 ASSERT(FALSE);
1527             }
1528 
1529             /* Update the counter */
1530             InterlockedDecrementSizeT(&MmSystemLockPagesCount);
1531         }
1532     }
1533 }
1534 
1535 //
1536 // References a locked page and updates the counter
1537 // Used in MmProbeAndLockPages to handle different edge cases
1538 //
1539 FORCEINLINE
1540 VOID
1541 MiReferenceProbedPageAndBumpLockCount(IN PMMPFN Pfn1)
1542 {
1543     USHORT RefCount, OldRefCount;
1544 
1545     /* Sanity check */
1546     ASSERT(Pfn1->u3.e2.ReferenceCount != 0);
1547 
1548     /* Does ARM3 own the page? */
1549     if (MI_IS_ROS_PFN(Pfn1))
1550     {
1551         /* ReactOS Mm doesn't track share count */
1552         ASSERT(Pfn1->u3.e1.PageLocation == ActiveAndValid);
1553     }
1554     else
1555     {
1556         /* On ARM3 pages, we should see a valid share count */
1557         ASSERT((Pfn1->u2.ShareCount != 0) && (Pfn1->u3.e1.PageLocation == ActiveAndValid));
1558 
1559         /* Is it a prototype PTE? */
1560         if ((Pfn1->u3.e1.PrototypePte == 1) &&
1561             (Pfn1->OriginalPte.u.Soft.Prototype == 1))
1562         {
1563             /* FIXME: We should charge commit */
1564             DPRINT1("Not charging commit for prototype PTE\n");
1565         }
1566     }
1567 
1568     /* More locked pages! */
1569     InterlockedIncrementSizeT(&MmSystemLockPagesCount);
1570 
1571     /* Loop trying to update the reference count */
1572     do
1573     {
1574         /* Get the current reference count, make sure it's valid */
1575         OldRefCount = Pfn1->u3.e2.ReferenceCount;
1576         ASSERT(OldRefCount != 0);
1577         ASSERT(OldRefCount < 2500);
1578 
1579         /* Bump it up by one */
1580         RefCount = InterlockedCompareExchange16((PSHORT)&Pfn1->u3.e2.ReferenceCount,
1581                                                 OldRefCount + 1,
1582                                                 OldRefCount);
1583         ASSERT(RefCount != 0);
1584     } while (OldRefCount != RefCount);
1585 
1586     /* Was this the first lock attempt? If not, undo our bump */
1587     if (OldRefCount != 1) InterlockedDecrementSizeT(&MmSystemLockPagesCount);
1588 }
1589 
1590 //
1591 // References a locked page and updates the counter
1592 // Used in all other cases except MmProbeAndLockPages
1593 //
1594 FORCEINLINE
1595 VOID
1596 MiReferenceUsedPageAndBumpLockCount(IN PMMPFN Pfn1)
1597 {
1598     USHORT NewRefCount;
1599 
1600     /* Is it a prototype PTE? */
1601     if ((Pfn1->u3.e1.PrototypePte == 1) &&
1602         (Pfn1->OriginalPte.u.Soft.Prototype == 1))
1603     {
1604         /* FIXME: We should charge commit */
1605         DPRINT1("Not charging commit for prototype PTE\n");
1606     }
1607 
1608     /* More locked pages! */
1609     InterlockedIncrementSizeT(&MmSystemLockPagesCount);
1610 
1611     /* Update the reference count */
1612     NewRefCount = InterlockedIncrement16((PSHORT)&Pfn1->u3.e2.ReferenceCount);
1613     if (NewRefCount == 2)
1614     {
1615         /* Is it locked or shared? */
1616         if (Pfn1->u2.ShareCount)
1617         {
1618             /* It's shared, so make sure it's active */
1619             ASSERT(Pfn1->u3.e1.PageLocation == ActiveAndValid);
1620         }
1621         else
1622         {
1623             /* It's locked, so we shouldn't lock again */
1624             InterlockedDecrementSizeT(&MmSystemLockPagesCount);
1625         }
1626     }
1627     else
1628     {
1629         /* Someone had already locked the page, so undo our bump */
1630         ASSERT(NewRefCount < 2500);
1631         InterlockedDecrementSizeT(&MmSystemLockPagesCount);
1632     }
1633 }
1634 
1635 //
1636 // References a locked page and updates the counter
1637 // Used in all other cases except MmProbeAndLockPages
1638 //
1639 FORCEINLINE
1640 VOID
1641 MiReferenceUnusedPageAndBumpLockCount(IN PMMPFN Pfn1)
1642 {
1643     USHORT NewRefCount;
1644 
1645     /* Make sure the page isn't used yet */
1646     ASSERT(Pfn1->u2.ShareCount == 0);
1647     ASSERT(Pfn1->u3.e1.PageLocation != ActiveAndValid);
1648 
1649     /* Is it a prototype PTE? */
1650     if ((Pfn1->u3.e1.PrototypePte == 1) &&
1651         (Pfn1->OriginalPte.u.Soft.Prototype == 1))
1652     {
1653         /* FIXME: We should charge commit */
1654         DPRINT1("Not charging commit for prototype PTE\n");
1655     }
1656 
1657     /* More locked pages! */
1658     InterlockedIncrementSizeT(&MmSystemLockPagesCount);
1659 
1660     /* Update the reference count */
1661     NewRefCount = InterlockedIncrement16((PSHORT)&Pfn1->u3.e2.ReferenceCount);
1662     if (NewRefCount != 1)
1663     {
1664         /* Someone had already locked the page, so undo our bump */
1665         ASSERT(NewRefCount < 2500);
1666         InterlockedDecrementSizeT(&MmSystemLockPagesCount);
1667     }
1668 }
1669 
1670 FORCEINLINE
1671 VOID
1672 MiIncrementPageTableReferences(IN PVOID Address)
1673 {
1674     PUSHORT RefCount;
1675 
1676     RefCount = &MmWorkingSetList->UsedPageTableEntries[MiGetPdeOffset(Address)];
1677 
1678     *RefCount += 1;
1679     ASSERT(*RefCount <= PTE_PER_PAGE);
1680 }
1681 
1682 FORCEINLINE
1683 VOID
1684 MiDecrementPageTableReferences(IN PVOID Address)
1685 {
1686     PUSHORT RefCount;
1687 
1688     RefCount = &MmWorkingSetList->UsedPageTableEntries[MiGetPdeOffset(Address)];
1689 
1690     *RefCount -= 1;
1691     ASSERT(*RefCount < PTE_PER_PAGE);
1692 }
1693 
1694 FORCEINLINE
1695 USHORT
1696 MiQueryPageTableReferences(IN PVOID Address)
1697 {
1698     PUSHORT RefCount;
1699 
1700     RefCount = &MmWorkingSetList->UsedPageTableEntries[MiGetPdeOffset(Address)];
1701 
1702     return *RefCount;
1703 }
1704 
1705 BOOLEAN
1706 NTAPI
1707 MmArmInitSystem(
1708     IN ULONG Phase,
1709     IN PLOADER_PARAMETER_BLOCK LoaderBlock
1710 );
1711 
1712 VOID
1713 NTAPI
1714 MiInitializeSessionSpaceLayout(VOID);
1715 
1716 NTSTATUS
1717 NTAPI
1718 MiInitMachineDependent(
1719     IN PLOADER_PARAMETER_BLOCK LoaderBlock
1720 );
1721 
1722 VOID
1723 NTAPI
1724 MiComputeColorInformation(
1725     VOID
1726 );
1727 
1728 VOID
1729 NTAPI
1730 MiMapPfnDatabase(
1731     IN PLOADER_PARAMETER_BLOCK LoaderBlock
1732 );
1733 
1734 VOID
1735 NTAPI
1736 MiInitializeColorTables(
1737     VOID
1738 );
1739 
1740 VOID
1741 NTAPI
1742 MiInitializePfnDatabase(
1743     IN PLOADER_PARAMETER_BLOCK LoaderBlock
1744 );
1745 
1746 VOID
1747 NTAPI
1748 MiInitializeSessionWsSupport(
1749     VOID
1750 );
1751 
1752 VOID
1753 NTAPI
1754 MiInitializeSessionIds(
1755     VOID
1756 );
1757 
1758 BOOLEAN
1759 NTAPI
1760 MiInitializeMemoryEvents(
1761     VOID
1762 );
1763 
1764 PFN_NUMBER
1765 NTAPI
1766 MxGetNextPage(
1767     IN PFN_NUMBER PageCount
1768 );
1769 
1770 PPHYSICAL_MEMORY_DESCRIPTOR
1771 NTAPI
1772 MmInitializeMemoryLimits(
1773     IN PLOADER_PARAMETER_BLOCK LoaderBlock,
1774     IN PBOOLEAN IncludeType
1775 );
1776 
1777 PFN_NUMBER
1778 NTAPI
1779 MiPagesInLoaderBlock(
1780     IN PLOADER_PARAMETER_BLOCK LoaderBlock,
1781     IN PBOOLEAN IncludeType
1782 );
1783 
1784 VOID
1785 FASTCALL
1786 MiSyncARM3WithROS(
1787     IN PVOID AddressStart,
1788     IN PVOID AddressEnd
1789 );
1790 
1791 NTSTATUS
1792 NTAPI
1793 MiRosProtectVirtualMemory(
1794     IN PEPROCESS Process,
1795     IN OUT PVOID *BaseAddress,
1796     IN OUT PSIZE_T NumberOfBytesToProtect,
1797     IN ULONG NewAccessProtection,
1798     OUT PULONG OldAccessProtection OPTIONAL
1799 );
1800 
1801 NTSTATUS
1802 NTAPI
1803 MmArmAccessFault(
1804     IN ULONG FaultCode,
1805     IN PVOID Address,
1806     IN KPROCESSOR_MODE Mode,
1807     IN PVOID TrapInformation
1808 );
1809 
1810 NTSTATUS
1811 FASTCALL
1812 MiCheckPdeForPagedPool(
1813     IN PVOID Address
1814 );
1815 
1816 VOID
1817 NTAPI
1818 MiInitializeNonPagedPool(
1819     VOID
1820 );
1821 
1822 VOID
1823 NTAPI
1824 MiInitializeNonPagedPoolThresholds(
1825     VOID
1826 );
1827 
1828 VOID
1829 NTAPI
1830 MiInitializePoolEvents(
1831     VOID
1832 );
1833 
1834 VOID                      //
1835 NTAPI                     //
1836 InitializePool(           //
1837     IN POOL_TYPE PoolType,// FIXFIX: This should go in ex.h after the pool merge
1838     IN ULONG Threshold    //
1839 );                        //
1840 
1841 // FIXFIX: THIS ONE TOO
1842 VOID
1843 NTAPI
1844 ExInitializePoolDescriptor(
1845     IN PPOOL_DESCRIPTOR PoolDescriptor,
1846     IN POOL_TYPE PoolType,
1847     IN ULONG PoolIndex,
1848     IN ULONG Threshold,
1849     IN PVOID PoolLock
1850 );
1851 
1852 NTSTATUS
1853 NTAPI
1854 MiInitializeSessionPool(
1855     VOID
1856 );
1857 
1858 VOID
1859 NTAPI
1860 MiInitializeSystemPtes(
1861     IN PMMPTE StartingPte,
1862     IN ULONG NumberOfPtes,
1863     IN MMSYSTEM_PTE_POOL_TYPE PoolType
1864 );
1865 
1866 PMMPTE
1867 NTAPI
1868 MiReserveSystemPtes(
1869     IN ULONG NumberOfPtes,
1870     IN MMSYSTEM_PTE_POOL_TYPE SystemPtePoolType
1871 );
1872 
1873 VOID
1874 NTAPI
1875 MiReleaseSystemPtes(
1876     IN PMMPTE StartingPte,
1877     IN ULONG NumberOfPtes,
1878     IN MMSYSTEM_PTE_POOL_TYPE SystemPtePoolType
1879 );
1880 
1881 
1882 PFN_NUMBER
1883 NTAPI
1884 MiFindContiguousPages(
1885     IN PFN_NUMBER LowestPfn,
1886     IN PFN_NUMBER HighestPfn,
1887     IN PFN_NUMBER BoundaryPfn,
1888     IN PFN_NUMBER SizeInPages,
1889     IN MEMORY_CACHING_TYPE CacheType
1890 );
1891 
1892 PVOID
1893 NTAPI
1894 MiCheckForContiguousMemory(
1895     IN PVOID BaseAddress,
1896     IN PFN_NUMBER BaseAddressPages,
1897     IN PFN_NUMBER SizeInPages,
1898     IN PFN_NUMBER LowestPfn,
1899     IN PFN_NUMBER HighestPfn,
1900     IN PFN_NUMBER BoundaryPfn,
1901     IN MI_PFN_CACHE_ATTRIBUTE CacheAttribute
1902 );
1903 
1904 PMDL
1905 NTAPI
1906 MiAllocatePagesForMdl(
1907     IN PHYSICAL_ADDRESS LowAddress,
1908     IN PHYSICAL_ADDRESS HighAddress,
1909     IN PHYSICAL_ADDRESS SkipBytes,
1910     IN SIZE_T TotalBytes,
1911     IN MI_PFN_CACHE_ATTRIBUTE CacheAttribute,
1912     IN ULONG Flags
1913 );
1914 
1915 VOID
1916 NTAPI
1917 MiInsertPageInList(
1918     IN PMMPFNLIST ListHead,
1919     IN PFN_NUMBER PageFrameIndex
1920 );
1921 
1922 VOID
1923 NTAPI
1924 MiUnlinkFreeOrZeroedPage(
1925     IN PMMPFN Entry
1926 );
1927 
1928 VOID
1929 NTAPI
1930 MiUnlinkPageFromList(
1931     IN PMMPFN Pfn
1932 );
1933 
1934 VOID
1935 NTAPI
1936 MiInitializePfn(
1937     IN PFN_NUMBER PageFrameIndex,
1938     IN PMMPTE PointerPte,
1939     IN BOOLEAN Modified
1940 );
1941 
1942 NTSTATUS
1943 NTAPI
1944 MiInitializeAndChargePfn(
1945     OUT PPFN_NUMBER PageFrameIndex,
1946     IN PMMPDE PointerPde,
1947     IN PFN_NUMBER ContainingPageFrame,
1948     IN BOOLEAN SessionAllocation
1949 );
1950 
1951 VOID
1952 NTAPI
1953 MiInitializePfnAndMakePteValid(
1954     IN PFN_NUMBER PageFrameIndex,
1955     IN PMMPTE PointerPte,
1956     IN MMPTE TempPte
1957 );
1958 
1959 VOID
1960 NTAPI
1961 MiInitializePfnForOtherProcess(
1962     IN PFN_NUMBER PageFrameIndex,
1963     IN PVOID PteAddress,
1964     IN PFN_NUMBER PteFrame
1965 );
1966 
1967 VOID
1968 NTAPI
1969 MiDecrementShareCount(
1970     IN PMMPFN Pfn1,
1971     IN PFN_NUMBER PageFrameIndex
1972 );
1973 
1974 PFN_NUMBER
1975 NTAPI
1976 MiRemoveAnyPage(
1977     IN ULONG Color
1978 );
1979 
1980 PFN_NUMBER
1981 NTAPI
1982 MiRemoveZeroPage(
1983     IN ULONG Color
1984 );
1985 
1986 VOID
1987 NTAPI
1988 MiZeroPhysicalPage(
1989     IN PFN_NUMBER PageFrameIndex
1990 );
1991 
1992 VOID
1993 NTAPI
1994 MiInsertPageInFreeList(
1995     IN PFN_NUMBER PageFrameIndex
1996 );
1997 
1998 PFN_COUNT
1999 NTAPI
2000 MiDeleteSystemPageableVm(
2001     IN PMMPTE PointerPte,
2002     IN PFN_NUMBER PageCount,
2003     IN ULONG Flags,
2004     OUT PPFN_NUMBER ValidPages
2005 );
2006 
2007 ULONG
2008 NTAPI
2009 MiGetPageProtection(
2010     IN PMMPTE PointerPte
2011 );
2012 
2013 PLDR_DATA_TABLE_ENTRY
2014 NTAPI
2015 MiLookupDataTableEntry(
2016     IN PVOID Address
2017 );
2018 
2019 VOID
2020 NTAPI
2021 MiInitializeDriverLargePageList(
2022     VOID
2023 );
2024 
2025 VOID
2026 NTAPI
2027 MiInitializeLargePageSupport(
2028     VOID
2029 );
2030 
2031 VOID
2032 NTAPI
2033 MiSyncCachedRanges(
2034     VOID
2035 );
2036 
2037 BOOLEAN
2038 NTAPI
2039 MiIsPfnInUse(
2040     IN PMMPFN Pfn1
2041 );
2042 
2043 PMMVAD
2044 NTAPI
2045 MiLocateAddress(
2046     IN PVOID VirtualAddress
2047 );
2048 
2049 TABLE_SEARCH_RESULT
2050 NTAPI
2051 MiCheckForConflictingNode(
2052     IN ULONG_PTR StartVpn,
2053     IN ULONG_PTR EndVpn,
2054     IN PMM_AVL_TABLE Table,
2055     OUT PMMADDRESS_NODE *NodeOrParent
2056 );
2057 
2058 TABLE_SEARCH_RESULT
2059 NTAPI
2060 MiFindEmptyAddressRangeDownTree(
2061     IN SIZE_T Length,
2062     IN ULONG_PTR BoundaryAddress,
2063     IN ULONG_PTR Alignment,
2064     IN PMM_AVL_TABLE Table,
2065     OUT PULONG_PTR Base,
2066     OUT PMMADDRESS_NODE *Parent
2067 );
2068 
2069 NTSTATUS
2070 NTAPI
2071 MiFindEmptyAddressRangeDownBasedTree(
2072     IN SIZE_T Length,
2073     IN ULONG_PTR BoundaryAddress,
2074     IN ULONG_PTR Alignment,
2075     IN PMM_AVL_TABLE Table,
2076     OUT PULONG_PTR Base
2077 );
2078 
2079 TABLE_SEARCH_RESULT
2080 NTAPI
2081 MiFindEmptyAddressRangeInTree(
2082     IN SIZE_T Length,
2083     IN ULONG_PTR Alignment,
2084     IN PMM_AVL_TABLE Table,
2085     OUT PMMADDRESS_NODE *PreviousVad,
2086     OUT PULONG_PTR Base
2087 );
2088 
2089 NTSTATUS
2090 NTAPI
2091 MiCheckSecuredVad(
2092     IN PMMVAD Vad,
2093     IN PVOID Base,
2094     IN SIZE_T Size,
2095     IN ULONG ProtectionMask
2096 );
2097 
2098 VOID
2099 NTAPI
2100 MiInsertVad(
2101     _Inout_ PMMVAD Vad,
2102     _Inout_ PMM_AVL_TABLE VadRoot);
2103 
2104 NTSTATUS
2105 NTAPI
2106 MiInsertVadEx(
2107     _Inout_ PMMVAD Vad,
2108     _In_ ULONG_PTR *BaseAddress,
2109     _In_ SIZE_T ViewSize,
2110     _In_ ULONG_PTR HighestAddress,
2111     _In_ ULONG_PTR Alignment,
2112     _In_ ULONG AllocationType);
2113 
2114 VOID
2115 NTAPI
2116 MiInsertBasedSection(
2117     IN PSECTION Section
2118 );
2119 
2120 NTSTATUS
2121 NTAPI
2122 MiUnmapViewOfSection(
2123     IN PEPROCESS Process,
2124     IN PVOID BaseAddress,
2125     IN ULONG Flags
2126 );
2127 
2128 NTSTATUS
2129 NTAPI
2130 MiRosUnmapViewOfSection(
2131     IN PEPROCESS Process,
2132     IN PVOID BaseAddress,
2133     IN BOOLEAN SkipDebuggerNotify
2134 );
2135 
2136 VOID
2137 NTAPI
2138 MiInsertNode(
2139     IN PMM_AVL_TABLE Table,
2140     IN PMMADDRESS_NODE NewNode,
2141     PMMADDRESS_NODE Parent,
2142     TABLE_SEARCH_RESULT Result
2143 );
2144 
2145 VOID
2146 NTAPI
2147 MiRemoveNode(
2148     IN PMMADDRESS_NODE Node,
2149     IN PMM_AVL_TABLE Table
2150 );
2151 
2152 PMMADDRESS_NODE
2153 NTAPI
2154 MiGetPreviousNode(
2155     IN PMMADDRESS_NODE Node
2156 );
2157 
2158 PMMADDRESS_NODE
2159 NTAPI
2160 MiGetNextNode(
2161     IN PMMADDRESS_NODE Node
2162 );
2163 
2164 BOOLEAN
2165 NTAPI
2166 MiInitializeSystemSpaceMap(
2167     IN PMMSESSION InputSession OPTIONAL
2168 );
2169 
2170 VOID
2171 NTAPI
2172 MiSessionRemoveProcess(
2173     VOID
2174 );
2175 
2176 VOID
2177 NTAPI
2178 MiReleaseProcessReferenceToSessionDataPage(
2179     IN PMM_SESSION_SPACE SessionGlobal
2180 );
2181 
2182 VOID
2183 NTAPI
2184 MiSessionAddProcess(
2185     IN PEPROCESS NewProcess
2186 );
2187 
2188 NTSTATUS
2189 NTAPI
2190 MiSessionCommitPageTables(
2191     IN PVOID StartVa,
2192     IN PVOID EndVa
2193 );
2194 
2195 ULONG
2196 NTAPI
2197 MiMakeProtectionMask(
2198     IN ULONG Protect
2199 );
2200 
2201 VOID
2202 NTAPI
2203 MiDeleteVirtualAddresses(
2204     IN ULONG_PTR Va,
2205     IN ULONG_PTR EndingAddress,
2206     IN PMMVAD Vad
2207 );
2208 
2209 VOID
2210 NTAPI
2211 MiDeletePte(
2212     IN PMMPTE PointerPte,
2213     IN PVOID VirtualAddress,
2214     IN PEPROCESS CurrentProcess,
2215     IN PMMPTE PrototypePte
2216 );
2217 
2218 ULONG
2219 NTAPI
2220 MiMakeSystemAddressValid(
2221     IN PVOID PageTableVirtualAddress,
2222     IN PEPROCESS CurrentProcess
2223 );
2224 
2225 ULONG
2226 NTAPI
2227 MiMakeSystemAddressValidPfn(
2228     IN PVOID VirtualAddress,
2229     IN KIRQL OldIrql
2230 );
2231 
2232 VOID
2233 NTAPI
2234 MiRemoveMappedView(
2235     IN PEPROCESS CurrentProcess,
2236     IN PMMVAD Vad
2237 );
2238 
2239 PSUBSECTION
2240 NTAPI
2241 MiLocateSubsection(
2242     IN PMMVAD Vad,
2243     IN ULONG_PTR Vpn
2244 );
2245 
2246 VOID
2247 NTAPI
2248 MiDeleteARM3Section(
2249     PVOID ObjectBody
2250 );
2251 
2252 NTSTATUS
2253 NTAPI
2254 MiQueryMemorySectionName(
2255     IN HANDLE ProcessHandle,
2256     IN PVOID BaseAddress,
2257     OUT PVOID MemoryInformation,
2258     IN SIZE_T MemoryInformationLength,
2259     OUT PSIZE_T ReturnLength
2260 );
2261 
2262 NTSTATUS
2263 NTAPI
2264 MiRosUnmapViewInSystemSpace(
2265     IN PVOID MappedBase
2266 );
2267 
2268 POOL_TYPE
2269 NTAPI
2270 MmDeterminePoolType(
2271     IN PVOID PoolAddress
2272 );
2273 
2274 VOID
2275 NTAPI
2276 MiMakePdeExistAndMakeValid(
2277     IN PMMPDE PointerPde,
2278     IN PEPROCESS TargetProcess,
2279     IN KIRQL OldIrql
2280 );
2281 
2282 VOID
2283 NTAPI
2284 MiWriteProtectSystemImage(
2285     _In_ PVOID ImageBase);
2286 
2287 //
2288 // MiRemoveZeroPage will use inline code to zero out the page manually if only
2289 // free pages are available. In some scenarios, we don't/can't run that piece of
2290 // code and would rather only have a real zero page. If we can't have a zero page,
2291 // then we'd like to have our own code to grab a free page and zero it out, by
2292 // using MiRemoveAnyPage. This macro implements this.
2293 //
2294 FORCEINLINE
2295 PFN_NUMBER
2296 MiRemoveZeroPageSafe(IN ULONG Color)
2297 {
2298     if (MmFreePagesByColor[ZeroedPageList][Color].Flink != LIST_HEAD) return MiRemoveZeroPage(Color);
2299     return 0;
2300 }
2301 
2302 #if (_MI_PAGING_LEVELS == 2)
2303 FORCEINLINE
2304 BOOLEAN
2305 MiSynchronizeSystemPde(PMMPDE PointerPde)
2306 {
2307     MMPDE SystemPde;
2308     ULONG Index;
2309 
2310     /* Get the Index from the PDE */
2311     Index = ((ULONG_PTR)PointerPde & (SYSTEM_PD_SIZE - 1)) / sizeof(MMPTE);
2312 
2313     /* Copy the PDE from the double-mapped system page directory */
2314     SystemPde = MmSystemPagePtes[Index];
2315     *PointerPde = SystemPde;
2316 
2317     /* Make sure we re-read the PDE and PTE */
2318     KeMemoryBarrierWithoutFence();
2319 
2320     /* Return, if we had success */
2321     return SystemPde.u.Hard.Valid != 0;
2322 }
2323 #endif
2324 
2325 /* EOF */
2326