1 /* 2 * PROJECT: ReactOS Kernel 3 * LICENSE: BSD - See COPYING.ARM in the top level directory 4 * FILE: ntoskrnl/mm/ARM3/pool.c 5 * PURPOSE: ARM Memory Manager Pool Allocator 6 * PROGRAMMERS: ReactOS Portable Systems Group 7 */ 8 9 /* INCLUDES *******************************************************************/ 10 11 #include <ntoskrnl.h> 12 #define NDEBUG 13 #include <debug.h> 14 15 #define MODULE_INVOLVED_IN_ARM3 16 #include <mm/ARM3/miarm.h> 17 18 /* GLOBALS ********************************************************************/ 19 20 LIST_ENTRY MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS]; 21 PFN_COUNT MmNumberOfFreeNonPagedPool, MiExpansionPoolPagesInitialCharge; 22 PVOID MmNonPagedPoolEnd0; 23 PFN_NUMBER MiStartOfInitialPoolFrame, MiEndOfInitialPoolFrame; 24 KGUARDED_MUTEX MmPagedPoolMutex; 25 MM_PAGED_POOL_INFO MmPagedPoolInfo; 26 SIZE_T MmAllocatedNonPagedPool; 27 ULONG MmSpecialPoolTag; 28 ULONG MmConsumedPoolPercentage; 29 BOOLEAN MmProtectFreedNonPagedPool; 30 SLIST_HEADER MiNonPagedPoolSListHead; 31 ULONG MiNonPagedPoolSListMaximum = 4; 32 SLIST_HEADER MiPagedPoolSListHead; 33 ULONG MiPagedPoolSListMaximum = 8; 34 35 /* PRIVATE FUNCTIONS **********************************************************/ 36 37 VOID 38 NTAPI 39 MiProtectFreeNonPagedPool(IN PVOID VirtualAddress, 40 IN ULONG PageCount) 41 { 42 PMMPTE PointerPte, LastPte; 43 MMPTE TempPte; 44 45 /* If pool is physical, can't protect PTEs */ 46 if (MI_IS_PHYSICAL_ADDRESS(VirtualAddress)) return; 47 48 /* Get PTE pointers and loop */ 49 PointerPte = MiAddressToPte(VirtualAddress); 50 LastPte = PointerPte + PageCount; 51 do 52 { 53 /* Capture the PTE for safety */ 54 TempPte = *PointerPte; 55 56 /* Mark it as an invalid PTE, set proto bit to recognize it as pool */ 57 TempPte.u.Hard.Valid = 0; 58 TempPte.u.Soft.Prototype = 1; 59 MI_WRITE_INVALID_PTE(PointerPte, TempPte); 60 } while (++PointerPte < LastPte); 61 62 /* Flush the TLB */ 63 KeFlushEntireTb(TRUE, TRUE); 64 } 65 66 BOOLEAN 67 NTAPI 68 MiUnProtectFreeNonPagedPool(IN PVOID VirtualAddress, 69 IN ULONG PageCount) 70 { 71 PMMPTE PointerPte; 72 MMPTE TempPte; 73 PFN_NUMBER UnprotectedPages = 0; 74 75 /* If pool is physical, can't protect PTEs */ 76 if (MI_IS_PHYSICAL_ADDRESS(VirtualAddress)) return FALSE; 77 78 /* Get, and capture the PTE */ 79 PointerPte = MiAddressToPte(VirtualAddress); 80 TempPte = *PointerPte; 81 82 /* Loop protected PTEs */ 83 while ((TempPte.u.Hard.Valid == 0) && (TempPte.u.Soft.Prototype == 1)) 84 { 85 /* Unprotect the PTE */ 86 TempPte.u.Hard.Valid = 1; 87 TempPte.u.Soft.Prototype = 0; 88 MI_WRITE_VALID_PTE(PointerPte, TempPte); 89 90 /* One more page */ 91 if (++UnprotectedPages == PageCount) break; 92 93 /* Capture next PTE */ 94 TempPte = *(++PointerPte); 95 } 96 97 /* Return if any pages were unprotected */ 98 return UnprotectedPages ? TRUE : FALSE; 99 } 100 101 FORCEINLINE 102 VOID 103 MiProtectedPoolUnProtectLinks(IN PLIST_ENTRY Links, 104 OUT PVOID* PoolFlink, 105 OUT PVOID* PoolBlink) 106 { 107 BOOLEAN Safe; 108 PVOID PoolVa; 109 110 /* Initialize variables */ 111 *PoolFlink = *PoolBlink = NULL; 112 113 /* Check if the list has entries */ 114 if (IsListEmpty(Links) == FALSE) 115 { 116 /* We are going to need to forward link to do an insert */ 117 PoolVa = Links->Flink; 118 119 /* So make it safe to access */ 120 Safe = MiUnProtectFreeNonPagedPool(PoolVa, 1); 121 if (Safe) *PoolFlink = PoolVa; 122 } 123 124 /* Are we going to need a backward link too? */ 125 if (Links != Links->Blink) 126 { 127 /* Get the head's backward link for the insert */ 128 PoolVa = Links->Blink; 129 130 /* Make it safe to access */ 131 Safe = MiUnProtectFreeNonPagedPool(PoolVa, 1); 132 if (Safe) *PoolBlink = PoolVa; 133 } 134 } 135 136 FORCEINLINE 137 VOID 138 MiProtectedPoolProtectLinks(IN PVOID PoolFlink, 139 IN PVOID PoolBlink) 140 { 141 /* Reprotect the pages, if they got unprotected earlier */ 142 if (PoolFlink) MiProtectFreeNonPagedPool(PoolFlink, 1); 143 if (PoolBlink) MiProtectFreeNonPagedPool(PoolBlink, 1); 144 } 145 146 VOID 147 NTAPI 148 MiProtectedPoolInsertList(IN PLIST_ENTRY ListHead, 149 IN PLIST_ENTRY Entry, 150 IN BOOLEAN Critical) 151 { 152 PVOID PoolFlink, PoolBlink; 153 154 /* Make the list accessible */ 155 MiProtectedPoolUnProtectLinks(ListHead, &PoolFlink, &PoolBlink); 156 157 /* Now insert in the right position */ 158 Critical ? InsertHeadList(ListHead, Entry) : InsertTailList(ListHead, Entry); 159 160 /* And reprotect the pages containing the free links */ 161 MiProtectedPoolProtectLinks(PoolFlink, PoolBlink); 162 } 163 164 VOID 165 NTAPI 166 MiProtectedPoolRemoveEntryList(IN PLIST_ENTRY Entry) 167 { 168 PVOID PoolFlink, PoolBlink; 169 170 /* Make the list accessible */ 171 MiProtectedPoolUnProtectLinks(Entry, &PoolFlink, &PoolBlink); 172 173 /* Now remove */ 174 RemoveEntryList(Entry); 175 176 /* And reprotect the pages containing the free links */ 177 if (PoolFlink) MiProtectFreeNonPagedPool(PoolFlink, 1); 178 if (PoolBlink) MiProtectFreeNonPagedPool(PoolBlink, 1); 179 } 180 181 VOID 182 NTAPI 183 INIT_FUNCTION 184 MiInitializeNonPagedPoolThresholds(VOID) 185 { 186 PFN_NUMBER Size = MmMaximumNonPagedPoolInPages; 187 188 /* Default low threshold of 8MB or one third of nonpaged pool */ 189 MiLowNonPagedPoolThreshold = (8 * _1MB) >> PAGE_SHIFT; 190 MiLowNonPagedPoolThreshold = min(MiLowNonPagedPoolThreshold, Size / 3); 191 192 /* Default high threshold of 20MB or 50% */ 193 MiHighNonPagedPoolThreshold = (20 * _1MB) >> PAGE_SHIFT; 194 MiHighNonPagedPoolThreshold = min(MiHighNonPagedPoolThreshold, Size / 2); 195 ASSERT(MiLowNonPagedPoolThreshold < MiHighNonPagedPoolThreshold); 196 } 197 198 VOID 199 NTAPI 200 INIT_FUNCTION 201 MiInitializePoolEvents(VOID) 202 { 203 KIRQL OldIrql; 204 PFN_NUMBER FreePoolInPages; 205 206 /* Lock paged pool */ 207 KeAcquireGuardedMutex(&MmPagedPoolMutex); 208 209 /* Total size of the paged pool minus the allocated size, is free */ 210 FreePoolInPages = MmSizeOfPagedPoolInPages - MmPagedPoolInfo.AllocatedPagedPool; 211 212 /* Check the initial state high state */ 213 if (FreePoolInPages >= MiHighPagedPoolThreshold) 214 { 215 /* We have plenty of pool */ 216 KeSetEvent(MiHighPagedPoolEvent, 0, FALSE); 217 } 218 else 219 { 220 /* We don't */ 221 KeClearEvent(MiHighPagedPoolEvent); 222 } 223 224 /* Check the initial low state */ 225 if (FreePoolInPages <= MiLowPagedPoolThreshold) 226 { 227 /* We're very low in free pool memory */ 228 KeSetEvent(MiLowPagedPoolEvent, 0, FALSE); 229 } 230 else 231 { 232 /* We're not */ 233 KeClearEvent(MiLowPagedPoolEvent); 234 } 235 236 /* Release the paged pool lock */ 237 KeReleaseGuardedMutex(&MmPagedPoolMutex); 238 239 /* Now it's time for the nonpaged pool lock */ 240 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock); 241 242 /* Free pages are the maximum minus what's been allocated */ 243 FreePoolInPages = MmMaximumNonPagedPoolInPages - MmAllocatedNonPagedPool; 244 245 /* Check if we have plenty */ 246 if (FreePoolInPages >= MiHighNonPagedPoolThreshold) 247 { 248 /* We do, set the event */ 249 KeSetEvent(MiHighNonPagedPoolEvent, 0, FALSE); 250 } 251 else 252 { 253 /* We don't, clear the event */ 254 KeClearEvent(MiHighNonPagedPoolEvent); 255 } 256 257 /* Check if we have very little */ 258 if (FreePoolInPages <= MiLowNonPagedPoolThreshold) 259 { 260 /* We do, set the event */ 261 KeSetEvent(MiLowNonPagedPoolEvent, 0, FALSE); 262 } 263 else 264 { 265 /* We don't, clear it */ 266 KeClearEvent(MiLowNonPagedPoolEvent); 267 } 268 269 /* We're done, release the nonpaged pool lock */ 270 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 271 } 272 273 VOID 274 NTAPI 275 INIT_FUNCTION 276 MiInitializeNonPagedPool(VOID) 277 { 278 ULONG i; 279 PFN_COUNT PoolPages; 280 PMMFREE_POOL_ENTRY FreeEntry, FirstEntry; 281 PMMPTE PointerPte; 282 PAGED_CODE(); 283 284 // 285 // Initialize the pool S-LISTs as well as their maximum count. In general, 286 // we'll allow 8 times the default on a 2GB system, and two times the default 287 // on a 1GB system. 288 // 289 InitializeSListHead(&MiPagedPoolSListHead); 290 InitializeSListHead(&MiNonPagedPoolSListHead); 291 if (MmNumberOfPhysicalPages >= ((2 * _1GB) /PAGE_SIZE)) 292 { 293 MiNonPagedPoolSListMaximum *= 8; 294 MiPagedPoolSListMaximum *= 8; 295 } 296 else if (MmNumberOfPhysicalPages >= (_1GB /PAGE_SIZE)) 297 { 298 MiNonPagedPoolSListMaximum *= 2; 299 MiPagedPoolSListMaximum *= 2; 300 } 301 302 // 303 // However if debugging options for the pool are enabled, turn off the S-LIST 304 // to reduce the risk of messing things up even more 305 // 306 if (MmProtectFreedNonPagedPool) 307 { 308 MiNonPagedPoolSListMaximum = 0; 309 MiPagedPoolSListMaximum = 0; 310 } 311 312 // 313 // We keep 4 lists of free pages (4 lists help avoid contention) 314 // 315 for (i = 0; i < MI_MAX_FREE_PAGE_LISTS; i++) 316 { 317 // 318 // Initialize each of them 319 // 320 InitializeListHead(&MmNonPagedPoolFreeListHead[i]); 321 } 322 323 // 324 // Calculate how many pages the initial nonpaged pool has 325 // 326 PoolPages = (PFN_COUNT)BYTES_TO_PAGES(MmSizeOfNonPagedPoolInBytes); 327 MmNumberOfFreeNonPagedPool = PoolPages; 328 329 // 330 // Initialize the first free entry 331 // 332 FreeEntry = MmNonPagedPoolStart; 333 FirstEntry = FreeEntry; 334 FreeEntry->Size = PoolPages; 335 FreeEntry->Signature = MM_FREE_POOL_SIGNATURE; 336 FreeEntry->Owner = FirstEntry; 337 338 // 339 // Insert it into the last list 340 // 341 InsertHeadList(&MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS - 1], 342 &FreeEntry->List); 343 344 // 345 // Now create free entries for every single other page 346 // 347 while (PoolPages-- > 1) 348 { 349 // 350 // Link them all back to the original entry 351 // 352 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)FreeEntry + PAGE_SIZE); 353 FreeEntry->Owner = FirstEntry; 354 FreeEntry->Signature = MM_FREE_POOL_SIGNATURE; 355 } 356 357 // 358 // Validate and remember first allocated pool page 359 // 360 PointerPte = MiAddressToPte(MmNonPagedPoolStart); 361 ASSERT(PointerPte->u.Hard.Valid == 1); 362 MiStartOfInitialPoolFrame = PFN_FROM_PTE(PointerPte); 363 364 // 365 // Keep track of where initial nonpaged pool ends 366 // 367 MmNonPagedPoolEnd0 = (PVOID)((ULONG_PTR)MmNonPagedPoolStart + 368 MmSizeOfNonPagedPoolInBytes); 369 370 // 371 // Validate and remember last allocated pool page 372 // 373 PointerPte = MiAddressToPte((PVOID)((ULONG_PTR)MmNonPagedPoolEnd0 - 1)); 374 ASSERT(PointerPte->u.Hard.Valid == 1); 375 MiEndOfInitialPoolFrame = PFN_FROM_PTE(PointerPte); 376 377 // 378 // Validate the first nonpaged pool expansion page (which is a guard page) 379 // 380 PointerPte = MiAddressToPte(MmNonPagedPoolExpansionStart); 381 ASSERT(PointerPte->u.Hard.Valid == 0); 382 383 // 384 // Calculate the size of the expansion region alone 385 // 386 MiExpansionPoolPagesInitialCharge = (PFN_COUNT) 387 BYTES_TO_PAGES(MmMaximumNonPagedPoolInBytes - MmSizeOfNonPagedPoolInBytes); 388 389 // 390 // Remove 2 pages, since there's a guard page on top and on the bottom 391 // 392 MiExpansionPoolPagesInitialCharge -= 2; 393 394 // 395 // Now initialize the nonpaged pool expansion PTE space. Remember there's a 396 // guard page on top so make sure to skip it. The bottom guard page will be 397 // guaranteed by the fact our size is off by one. 398 // 399 MiInitializeSystemPtes(PointerPte + 1, 400 MiExpansionPoolPagesInitialCharge, 401 NonPagedPoolExpansion); 402 } 403 404 POOL_TYPE 405 NTAPI 406 MmDeterminePoolType(IN PVOID PoolAddress) 407 { 408 // 409 // Use a simple bounds check 410 // 411 if (PoolAddress >= MmPagedPoolStart && PoolAddress <= MmPagedPoolEnd) 412 return PagedPool; 413 else if (PoolAddress >= MmNonPagedPoolStart && PoolAddress <= MmNonPagedPoolEnd) 414 return NonPagedPool; 415 KeBugCheckEx(BAD_POOL_CALLER, 0x42, (ULONG_PTR)PoolAddress, 0, 0); 416 } 417 418 PVOID 419 NTAPI 420 MiAllocatePoolPages(IN POOL_TYPE PoolType, 421 IN SIZE_T SizeInBytes) 422 { 423 PFN_NUMBER PageFrameNumber; 424 PFN_COUNT SizeInPages, PageTableCount; 425 ULONG i; 426 KIRQL OldIrql; 427 PLIST_ENTRY NextEntry, NextHead, LastHead; 428 PMMPTE PointerPte, StartPte; 429 PMMPDE PointerPde; 430 ULONG EndAllocation; 431 MMPTE TempPte; 432 MMPDE TempPde; 433 PMMPFN Pfn1; 434 PVOID BaseVa, BaseVaStart; 435 PMMFREE_POOL_ENTRY FreeEntry; 436 437 // 438 // Figure out how big the allocation is in pages 439 // 440 SizeInPages = (PFN_COUNT)BYTES_TO_PAGES(SizeInBytes); 441 442 // 443 // Check for overflow 444 // 445 if (SizeInPages == 0) 446 { 447 // 448 // Fail 449 // 450 return NULL; 451 } 452 453 // 454 // Handle paged pool 455 // 456 if ((PoolType & BASE_POOL_TYPE_MASK) == PagedPool) 457 { 458 // 459 // If only one page is being requested, try to grab it from the S-LIST 460 // 461 if ((SizeInPages == 1) && (ExQueryDepthSList(&MiPagedPoolSListHead))) 462 { 463 BaseVa = InterlockedPopEntrySList(&MiPagedPoolSListHead); 464 if (BaseVa) return BaseVa; 465 } 466 467 // 468 // Lock the paged pool mutex 469 // 470 KeAcquireGuardedMutex(&MmPagedPoolMutex); 471 472 // 473 // Find some empty allocation space 474 // 475 i = RtlFindClearBitsAndSet(MmPagedPoolInfo.PagedPoolAllocationMap, 476 SizeInPages, 477 MmPagedPoolInfo.PagedPoolHint); 478 if (i == 0xFFFFFFFF) 479 { 480 // 481 // Get the page bit count 482 // 483 i = ((SizeInPages - 1) / PTE_COUNT) + 1; 484 DPRINT("Paged pool expansion: %lu %x\n", i, SizeInPages); 485 486 // 487 // Check if there is enougn paged pool expansion space left 488 // 489 if (MmPagedPoolInfo.NextPdeForPagedPoolExpansion > 490 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.LastPteForPagedPool)) 491 { 492 // 493 // Out of memory! 494 // 495 DPRINT1("FAILED to allocate %Iu bytes from paged pool\n", SizeInBytes); 496 KeReleaseGuardedMutex(&MmPagedPoolMutex); 497 return NULL; 498 } 499 500 // 501 // Check if we'll have to expand past the last PTE we have available 502 // 503 if (((i - 1) + MmPagedPoolInfo.NextPdeForPagedPoolExpansion) > 504 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.LastPteForPagedPool)) 505 { 506 // 507 // We can only support this much then 508 // 509 PointerPde = MiPteToPde(MmPagedPoolInfo.LastPteForPagedPool); 510 PageTableCount = (PFN_COUNT)(PointerPde + 1 - 511 MmPagedPoolInfo.NextPdeForPagedPoolExpansion); 512 ASSERT(PageTableCount < i); 513 i = PageTableCount; 514 } 515 else 516 { 517 // 518 // Otherwise, there is plenty of space left for this expansion 519 // 520 PageTableCount = i; 521 } 522 523 // 524 // Get the template PDE we'll use to expand 525 // 526 TempPde = ValidKernelPde; 527 528 // 529 // Get the first PTE in expansion space 530 // 531 PointerPde = MmPagedPoolInfo.NextPdeForPagedPoolExpansion; 532 BaseVa = MiPdeToPte(PointerPde); 533 BaseVaStart = BaseVa; 534 535 // 536 // Lock the PFN database and loop pages 537 // 538 OldIrql = MiAcquirePfnLock(); 539 do 540 { 541 // 542 // It should not already be valid 543 // 544 ASSERT(PointerPde->u.Hard.Valid == 0); 545 546 /* Request a page */ 547 MI_SET_USAGE(MI_USAGE_PAGED_POOL); 548 MI_SET_PROCESS2("Kernel"); 549 PageFrameNumber = MiRemoveAnyPage(MI_GET_NEXT_COLOR()); 550 TempPde.u.Hard.PageFrameNumber = PageFrameNumber; 551 #if (_MI_PAGING_LEVELS >= 3) 552 /* On PAE/x64 systems, there's no double-buffering */ 553 ASSERT(FALSE); 554 #else 555 // 556 // Save it into our double-buffered system page directory 557 // 558 MmSystemPagePtes[((ULONG_PTR)PointerPde & (SYSTEM_PD_SIZE - 1)) / sizeof(MMPTE)] = TempPde; 559 560 /* Initialize the PFN */ 561 MiInitializePfnForOtherProcess(PageFrameNumber, 562 (PMMPTE)PointerPde, 563 MmSystemPageDirectory[(PointerPde - MiAddressToPde(NULL)) / PDE_COUNT]); 564 565 /* Write the actual PDE now */ 566 // MI_WRITE_VALID_PDE(PointerPde, TempPde); 567 #endif 568 // 569 // Move on to the next expansion address 570 // 571 PointerPde++; 572 BaseVa = (PVOID)((ULONG_PTR)BaseVa + PAGE_SIZE); 573 i--; 574 } while (i > 0); 575 576 // 577 // Release the PFN database lock 578 // 579 MiReleasePfnLock(OldIrql); 580 581 // 582 // These pages are now available, clear their availablity bits 583 // 584 EndAllocation = (ULONG)(MmPagedPoolInfo.NextPdeForPagedPoolExpansion - 585 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.FirstPteForPagedPool)) * 586 PTE_COUNT; 587 RtlClearBits(MmPagedPoolInfo.PagedPoolAllocationMap, 588 EndAllocation, 589 PageTableCount * PTE_COUNT); 590 591 // 592 // Update the next expansion location 593 // 594 MmPagedPoolInfo.NextPdeForPagedPoolExpansion += PageTableCount; 595 596 // 597 // Zero out the newly available memory 598 // 599 RtlZeroMemory(BaseVaStart, PageTableCount * PAGE_SIZE); 600 601 // 602 // Now try consuming the pages again 603 // 604 i = RtlFindClearBitsAndSet(MmPagedPoolInfo.PagedPoolAllocationMap, 605 SizeInPages, 606 0); 607 if (i == 0xFFFFFFFF) 608 { 609 // 610 // Out of memory! 611 // 612 DPRINT1("FAILED to allocate %Iu bytes from paged pool\n", SizeInBytes); 613 KeReleaseGuardedMutex(&MmPagedPoolMutex); 614 return NULL; 615 } 616 } 617 618 // 619 // Update the pool hint if the request was just one page 620 // 621 if (SizeInPages == 1) MmPagedPoolInfo.PagedPoolHint = i + 1; 622 623 // 624 // Update the end bitmap so we know the bounds of this allocation when 625 // the time comes to free it 626 // 627 EndAllocation = i + SizeInPages - 1; 628 RtlSetBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, EndAllocation); 629 630 // 631 // Now we can release the lock (it mainly protects the bitmap) 632 // 633 KeReleaseGuardedMutex(&MmPagedPoolMutex); 634 635 // 636 // Now figure out where this allocation starts 637 // 638 BaseVa = (PVOID)((ULONG_PTR)MmPagedPoolStart + (i << PAGE_SHIFT)); 639 640 // 641 // Flush the TLB 642 // 643 KeFlushEntireTb(TRUE, TRUE); 644 645 /* Setup a demand-zero writable PTE */ 646 MI_MAKE_SOFTWARE_PTE(&TempPte, MM_READWRITE); 647 648 // 649 // Find the first and last PTE, then loop them all 650 // 651 PointerPte = MiAddressToPte(BaseVa); 652 StartPte = PointerPte + SizeInPages; 653 do 654 { 655 // 656 // Write the demand zero PTE and keep going 657 // 658 MI_WRITE_INVALID_PTE(PointerPte, TempPte); 659 } while (++PointerPte < StartPte); 660 661 // 662 // Return the allocation address to the caller 663 // 664 return BaseVa; 665 } 666 667 // 668 // If only one page is being requested, try to grab it from the S-LIST 669 // 670 if ((SizeInPages == 1) && (ExQueryDepthSList(&MiNonPagedPoolSListHead))) 671 { 672 BaseVa = InterlockedPopEntrySList(&MiNonPagedPoolSListHead); 673 if (BaseVa) return BaseVa; 674 } 675 676 // 677 // Allocations of less than 4 pages go into their individual buckets 678 // 679 i = SizeInPages - 1; 680 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1; 681 682 // 683 // Loop through all the free page lists based on the page index 684 // 685 NextHead = &MmNonPagedPoolFreeListHead[i]; 686 LastHead = &MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS]; 687 688 // 689 // Acquire the nonpaged pool lock 690 // 691 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock); 692 do 693 { 694 // 695 // Now loop through all the free page entries in this given list 696 // 697 NextEntry = NextHead->Flink; 698 while (NextEntry != NextHead) 699 { 700 /* Is freed non paged pool enabled */ 701 if (MmProtectFreedNonPagedPool) 702 { 703 /* We need to be able to touch this page, unprotect it */ 704 MiUnProtectFreeNonPagedPool(NextEntry, 0); 705 } 706 707 // 708 // Grab the entry and see if it can handle our allocation 709 // 710 FreeEntry = CONTAINING_RECORD(NextEntry, MMFREE_POOL_ENTRY, List); 711 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE); 712 if (FreeEntry->Size >= SizeInPages) 713 { 714 // 715 // It does, so consume the pages from here 716 // 717 FreeEntry->Size -= SizeInPages; 718 719 // 720 // The allocation will begin in this free page area 721 // 722 BaseVa = (PVOID)((ULONG_PTR)FreeEntry + 723 (FreeEntry->Size << PAGE_SHIFT)); 724 725 /* Remove the item from the list, depending if pool is protected */ 726 if (MmProtectFreedNonPagedPool) 727 MiProtectedPoolRemoveEntryList(&FreeEntry->List); 728 else 729 RemoveEntryList(&FreeEntry->List); 730 731 // 732 // However, check if its' still got space left 733 // 734 if (FreeEntry->Size != 0) 735 { 736 /* Check which list to insert this entry into */ 737 i = FreeEntry->Size - 1; 738 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1; 739 740 /* Insert the entry into the free list head, check for prot. pool */ 741 if (MmProtectFreedNonPagedPool) 742 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE); 743 else 744 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List); 745 746 /* Is freed non paged pool protected? */ 747 if (MmProtectFreedNonPagedPool) 748 { 749 /* Protect the freed pool! */ 750 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size); 751 } 752 } 753 754 // 755 // Grab the PTE for this allocation 756 // 757 PointerPte = MiAddressToPte(BaseVa); 758 ASSERT(PointerPte->u.Hard.Valid == 1); 759 760 // 761 // Grab the PFN NextEntry and index 762 // 763 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte)); 764 765 // 766 // Now mark it as the beginning of an allocation 767 // 768 ASSERT(Pfn1->u3.e1.StartOfAllocation == 0); 769 Pfn1->u3.e1.StartOfAllocation = 1; 770 771 /* Mark it as special pool if needed */ 772 ASSERT(Pfn1->u4.VerifierAllocation == 0); 773 if (PoolType & VERIFIER_POOL_MASK) 774 { 775 Pfn1->u4.VerifierAllocation = 1; 776 } 777 778 // 779 // Check if the allocation is larger than one page 780 // 781 if (SizeInPages != 1) 782 { 783 // 784 // Navigate to the last PFN entry and PTE 785 // 786 PointerPte += SizeInPages - 1; 787 ASSERT(PointerPte->u.Hard.Valid == 1); 788 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 789 } 790 791 // 792 // Mark this PFN as the last (might be the same as the first) 793 // 794 ASSERT(Pfn1->u3.e1.EndOfAllocation == 0); 795 Pfn1->u3.e1.EndOfAllocation = 1; 796 797 // 798 // Release the nonpaged pool lock, and return the allocation 799 // 800 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 801 return BaseVa; 802 } 803 804 // 805 // Try the next free page entry 806 // 807 NextEntry = FreeEntry->List.Flink; 808 809 /* Is freed non paged pool protected? */ 810 if (MmProtectFreedNonPagedPool) 811 { 812 /* Protect the freed pool! */ 813 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size); 814 } 815 } 816 } while (++NextHead < LastHead); 817 818 // 819 // If we got here, we're out of space. 820 // Start by releasing the lock 821 // 822 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 823 824 // 825 // Allocate some system PTEs 826 // 827 StartPte = MiReserveSystemPtes(SizeInPages, NonPagedPoolExpansion); 828 PointerPte = StartPte; 829 if (StartPte == NULL) 830 { 831 // 832 // Ran out of memory 833 // 834 DPRINT1("Out of NP Expansion Pool\n"); 835 return NULL; 836 } 837 838 // 839 // Acquire the pool lock now 840 // 841 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock); 842 843 // 844 // Lock the PFN database too 845 // 846 MiAcquirePfnLockAtDpcLevel(); 847 848 // 849 // Loop the pages 850 // 851 TempPte = ValidKernelPte; 852 do 853 { 854 /* Allocate a page */ 855 MI_SET_USAGE(MI_USAGE_PAGED_POOL); 856 MI_SET_PROCESS2("Kernel"); 857 PageFrameNumber = MiRemoveAnyPage(MI_GET_NEXT_COLOR()); 858 859 /* Get the PFN entry for it and fill it out */ 860 Pfn1 = MiGetPfnEntry(PageFrameNumber); 861 Pfn1->u3.e2.ReferenceCount = 1; 862 Pfn1->u2.ShareCount = 1; 863 Pfn1->PteAddress = PointerPte; 864 Pfn1->u3.e1.PageLocation = ActiveAndValid; 865 Pfn1->u4.VerifierAllocation = 0; 866 867 /* Write the PTE for it */ 868 TempPte.u.Hard.PageFrameNumber = PageFrameNumber; 869 MI_WRITE_VALID_PTE(PointerPte++, TempPte); 870 } while (--SizeInPages > 0); 871 872 // 873 // This is the last page 874 // 875 Pfn1->u3.e1.EndOfAllocation = 1; 876 877 // 878 // Get the first page and mark it as such 879 // 880 Pfn1 = MiGetPfnEntry(StartPte->u.Hard.PageFrameNumber); 881 Pfn1->u3.e1.StartOfAllocation = 1; 882 883 /* Mark it as a verifier allocation if needed */ 884 ASSERT(Pfn1->u4.VerifierAllocation == 0); 885 if (PoolType & VERIFIER_POOL_MASK) Pfn1->u4.VerifierAllocation = 1; 886 887 // 888 // Release the PFN and nonpaged pool lock 889 // 890 MiReleasePfnLockFromDpcLevel(); 891 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 892 893 // 894 // Return the address 895 // 896 return MiPteToAddress(StartPte); 897 } 898 899 ULONG 900 NTAPI 901 MiFreePoolPages(IN PVOID StartingVa) 902 { 903 PMMPTE PointerPte, StartPte; 904 PMMPFN Pfn1, StartPfn; 905 PFN_COUNT FreePages, NumberOfPages; 906 KIRQL OldIrql; 907 PMMFREE_POOL_ENTRY FreeEntry, NextEntry, LastEntry; 908 ULONG i, End; 909 ULONG_PTR Offset; 910 911 // 912 // Handle paged pool 913 // 914 if ((StartingVa >= MmPagedPoolStart) && (StartingVa <= MmPagedPoolEnd)) 915 { 916 // 917 // Calculate the offset from the beginning of paged pool, and convert it 918 // into pages 919 // 920 Offset = (ULONG_PTR)StartingVa - (ULONG_PTR)MmPagedPoolStart; 921 i = (ULONG)(Offset >> PAGE_SHIFT); 922 End = i; 923 924 // 925 // Now use the end bitmap to scan until we find a set bit, meaning that 926 // this allocation finishes here 927 // 928 while (!RtlTestBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, End)) End++; 929 930 // 931 // Now calculate the total number of pages this allocation spans. If it's 932 // only one page, add it to the S-LIST instead of freeing it 933 // 934 NumberOfPages = End - i + 1; 935 if ((NumberOfPages == 1) && 936 (ExQueryDepthSList(&MiPagedPoolSListHead) < MiPagedPoolSListMaximum)) 937 { 938 InterlockedPushEntrySList(&MiPagedPoolSListHead, StartingVa); 939 return 1; 940 } 941 942 /* Delete the actual pages */ 943 PointerPte = MmPagedPoolInfo.FirstPteForPagedPool + i; 944 FreePages = MiDeleteSystemPageableVm(PointerPte, NumberOfPages, 0, NULL); 945 ASSERT(FreePages == NumberOfPages); 946 947 // 948 // Acquire the paged pool lock 949 // 950 KeAcquireGuardedMutex(&MmPagedPoolMutex); 951 952 // 953 // Clear the allocation and free bits 954 // 955 RtlClearBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, End); 956 RtlClearBits(MmPagedPoolInfo.PagedPoolAllocationMap, i, NumberOfPages); 957 958 // 959 // Update the hint if we need to 960 // 961 if (i < MmPagedPoolInfo.PagedPoolHint) MmPagedPoolInfo.PagedPoolHint = i; 962 963 // 964 // Release the lock protecting the bitmaps 965 // 966 KeReleaseGuardedMutex(&MmPagedPoolMutex); 967 968 // 969 // And finally return the number of pages freed 970 // 971 return NumberOfPages; 972 } 973 974 // 975 // Get the first PTE and its corresponding PFN entry. If this is also the 976 // last PTE, meaning that this allocation was only for one page, push it into 977 // the S-LIST instead of freeing it 978 // 979 StartPte = PointerPte = MiAddressToPte(StartingVa); 980 StartPfn = Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 981 if ((Pfn1->u3.e1.EndOfAllocation == 1) && 982 (ExQueryDepthSList(&MiNonPagedPoolSListHead) < MiNonPagedPoolSListMaximum)) 983 { 984 InterlockedPushEntrySList(&MiNonPagedPoolSListHead, StartingVa); 985 return 1; 986 } 987 988 // 989 // Loop until we find the last PTE 990 // 991 while (Pfn1->u3.e1.EndOfAllocation == 0) 992 { 993 // 994 // Keep going 995 // 996 PointerPte++; 997 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 998 } 999 1000 // 1001 // Now we know how many pages we have 1002 // 1003 NumberOfPages = (PFN_COUNT)(PointerPte - StartPte + 1); 1004 1005 // 1006 // Acquire the nonpaged pool lock 1007 // 1008 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock); 1009 1010 // 1011 // Mark the first and last PTEs as not part of an allocation anymore 1012 // 1013 StartPfn->u3.e1.StartOfAllocation = 0; 1014 Pfn1->u3.e1.EndOfAllocation = 0; 1015 1016 // 1017 // Assume we will free as many pages as the allocation was 1018 // 1019 FreePages = NumberOfPages; 1020 1021 // 1022 // Peek one page past the end of the allocation 1023 // 1024 PointerPte++; 1025 1026 // 1027 // Guard against going past initial nonpaged pool 1028 // 1029 if (MiGetPfnEntryIndex(Pfn1) == MiEndOfInitialPoolFrame) 1030 { 1031 // 1032 // This page is on the outskirts of initial nonpaged pool, so ignore it 1033 // 1034 Pfn1 = NULL; 1035 } 1036 else 1037 { 1038 /* Sanity check */ 1039 ASSERT((ULONG_PTR)StartingVa + NumberOfPages <= (ULONG_PTR)MmNonPagedPoolEnd); 1040 1041 /* Check if protected pool is enabled */ 1042 if (MmProtectFreedNonPagedPool) 1043 { 1044 /* The freed block will be merged, it must be made accessible */ 1045 MiUnProtectFreeNonPagedPool(MiPteToAddress(PointerPte), 0); 1046 } 1047 1048 // 1049 // Otherwise, our entire allocation must've fit within the initial non 1050 // paged pool, or the expansion nonpaged pool, so get the PFN entry of 1051 // the next allocation 1052 // 1053 if (PointerPte->u.Hard.Valid == 1) 1054 { 1055 // 1056 // It's either expansion or initial: get the PFN entry 1057 // 1058 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 1059 } 1060 else 1061 { 1062 // 1063 // This means we've reached the guard page that protects the end of 1064 // the expansion nonpaged pool 1065 // 1066 Pfn1 = NULL; 1067 } 1068 1069 } 1070 1071 // 1072 // Check if this allocation actually exists 1073 // 1074 if ((Pfn1) && (Pfn1->u3.e1.StartOfAllocation == 0)) 1075 { 1076 // 1077 // It doesn't, so we should actually locate a free entry descriptor 1078 // 1079 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)StartingVa + 1080 (NumberOfPages << PAGE_SHIFT)); 1081 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE); 1082 ASSERT(FreeEntry->Owner == FreeEntry); 1083 1084 /* Consume this entry's pages */ 1085 FreePages += FreeEntry->Size; 1086 1087 /* Remove the item from the list, depending if pool is protected */ 1088 if (MmProtectFreedNonPagedPool) 1089 MiProtectedPoolRemoveEntryList(&FreeEntry->List); 1090 else 1091 RemoveEntryList(&FreeEntry->List); 1092 } 1093 1094 // 1095 // Now get the official free entry we'll create for the caller's allocation 1096 // 1097 FreeEntry = StartingVa; 1098 1099 // 1100 // Check if the our allocation is the very first page 1101 // 1102 if (MiGetPfnEntryIndex(StartPfn) == MiStartOfInitialPoolFrame) 1103 { 1104 // 1105 // Then we can't do anything or we'll risk underflowing 1106 // 1107 Pfn1 = NULL; 1108 } 1109 else 1110 { 1111 // 1112 // Otherwise, get the PTE for the page right before our allocation 1113 // 1114 PointerPte -= NumberOfPages + 1; 1115 1116 /* Check if protected pool is enabled */ 1117 if (MmProtectFreedNonPagedPool) 1118 { 1119 /* The freed block will be merged, it must be made accessible */ 1120 MiUnProtectFreeNonPagedPool(MiPteToAddress(PointerPte), 0); 1121 } 1122 1123 /* Check if this is valid pool, or a guard page */ 1124 if (PointerPte->u.Hard.Valid == 1) 1125 { 1126 // 1127 // It's either expansion or initial nonpaged pool, get the PFN entry 1128 // 1129 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber); 1130 } 1131 else 1132 { 1133 // 1134 // We must've reached the guard page, so don't risk touching it 1135 // 1136 Pfn1 = NULL; 1137 } 1138 } 1139 1140 // 1141 // Check if there is a valid PFN entry for the page before the allocation 1142 // and then check if this page was actually the end of an allocation. 1143 // If it wasn't, then we know for sure it's a free page 1144 // 1145 if ((Pfn1) && (Pfn1->u3.e1.EndOfAllocation == 0)) 1146 { 1147 // 1148 // Get the free entry descriptor for that given page range 1149 // 1150 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)StartingVa - PAGE_SIZE); 1151 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE); 1152 FreeEntry = FreeEntry->Owner; 1153 1154 /* Check if protected pool is enabled */ 1155 if (MmProtectFreedNonPagedPool) 1156 { 1157 /* The freed block will be merged, it must be made accessible */ 1158 MiUnProtectFreeNonPagedPool(FreeEntry, 0); 1159 } 1160 1161 // 1162 // Check if the entry is small enough to be indexed on a free list 1163 // If it is, we'll want to re-insert it, since we're about to 1164 // collapse our pages on top of it, which will change its count 1165 // 1166 if (FreeEntry->Size < (MI_MAX_FREE_PAGE_LISTS - 1)) 1167 { 1168 /* Remove the item from the list, depending if pool is protected */ 1169 if (MmProtectFreedNonPagedPool) 1170 MiProtectedPoolRemoveEntryList(&FreeEntry->List); 1171 else 1172 RemoveEntryList(&FreeEntry->List); 1173 1174 // 1175 // Update its size 1176 // 1177 FreeEntry->Size += FreePages; 1178 1179 // 1180 // And now find the new appropriate list to place it in 1181 // 1182 i = (ULONG)(FreeEntry->Size - 1); 1183 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1; 1184 1185 /* Insert the entry into the free list head, check for prot. pool */ 1186 if (MmProtectFreedNonPagedPool) 1187 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE); 1188 else 1189 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List); 1190 } 1191 else 1192 { 1193 // 1194 // Otherwise, just combine our free pages into this entry 1195 // 1196 FreeEntry->Size += FreePages; 1197 } 1198 } 1199 1200 // 1201 // Check if we were unable to do any compaction, and we'll stick with this 1202 // 1203 if (FreeEntry == StartingVa) 1204 { 1205 // 1206 // Well, now we are a free entry. At worse we just have our newly freed 1207 // pages, at best we have our pages plus whatever entry came after us 1208 // 1209 FreeEntry->Size = FreePages; 1210 1211 // 1212 // Find the appropriate list we should be on 1213 // 1214 i = FreeEntry->Size - 1; 1215 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1; 1216 1217 /* Insert the entry into the free list head, check for prot. pool */ 1218 if (MmProtectFreedNonPagedPool) 1219 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE); 1220 else 1221 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List); 1222 } 1223 1224 // 1225 // Just a sanity check 1226 // 1227 ASSERT(FreePages != 0); 1228 1229 // 1230 // Get all the pages between our allocation and its end. These will all now 1231 // become free page chunks. 1232 // 1233 NextEntry = StartingVa; 1234 LastEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)NextEntry + (FreePages << PAGE_SHIFT)); 1235 do 1236 { 1237 // 1238 // Link back to the parent free entry, and keep going 1239 // 1240 NextEntry->Owner = FreeEntry; 1241 NextEntry->Signature = MM_FREE_POOL_SIGNATURE; 1242 NextEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)NextEntry + PAGE_SIZE); 1243 } while (NextEntry != LastEntry); 1244 1245 /* Is freed non paged pool protected? */ 1246 if (MmProtectFreedNonPagedPool) 1247 { 1248 /* Protect the freed pool! */ 1249 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size); 1250 } 1251 1252 // 1253 // We're done, release the lock and let the caller know how much we freed 1254 // 1255 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql); 1256 return NumberOfPages; 1257 } 1258 1259 1260 BOOLEAN 1261 NTAPI 1262 MiRaisePoolQuota(IN POOL_TYPE PoolType, 1263 IN ULONG CurrentMaxQuota, 1264 OUT PULONG NewMaxQuota) 1265 { 1266 // 1267 // Not implemented 1268 // 1269 UNIMPLEMENTED; 1270 *NewMaxQuota = CurrentMaxQuota + 65536; 1271 return TRUE; 1272 } 1273 1274 NTSTATUS 1275 NTAPI 1276 MiInitializeSessionPool(VOID) 1277 { 1278 PMMPTE PointerPte, LastPte; 1279 PMMPDE PointerPde, LastPde; 1280 PFN_NUMBER PageFrameIndex, PdeCount; 1281 PPOOL_DESCRIPTOR PoolDescriptor; 1282 PMM_SESSION_SPACE SessionGlobal; 1283 PMM_PAGED_POOL_INFO PagedPoolInfo; 1284 NTSTATUS Status; 1285 ULONG Index, PoolSize, BitmapSize; 1286 PAGED_CODE(); 1287 1288 /* Lock session pool */ 1289 SessionGlobal = MmSessionSpace->GlobalVirtualAddress; 1290 KeInitializeGuardedMutex(&SessionGlobal->PagedPoolMutex); 1291 1292 /* Setup a valid pool descriptor */ 1293 PoolDescriptor = &MmSessionSpace->PagedPool; 1294 ExInitializePoolDescriptor(PoolDescriptor, 1295 PagedPoolSession, 1296 0, 1297 0, 1298 &SessionGlobal->PagedPoolMutex); 1299 1300 /* Setup the pool addresses */ 1301 MmSessionSpace->PagedPoolStart = (PVOID)MiSessionPoolStart; 1302 MmSessionSpace->PagedPoolEnd = (PVOID)((ULONG_PTR)MiSessionPoolEnd - 1); 1303 DPRINT1("Session Pool Start: 0x%p End: 0x%p\n", 1304 MmSessionSpace->PagedPoolStart, MmSessionSpace->PagedPoolEnd); 1305 1306 /* Reset all the counters */ 1307 PagedPoolInfo = &MmSessionSpace->PagedPoolInfo; 1308 PagedPoolInfo->PagedPoolCommit = 0; 1309 PagedPoolInfo->PagedPoolHint = 0; 1310 PagedPoolInfo->AllocatedPagedPool = 0; 1311 1312 /* Compute PDE and PTE addresses */ 1313 PointerPde = MiAddressToPde(MmSessionSpace->PagedPoolStart); 1314 PointerPte = MiAddressToPte(MmSessionSpace->PagedPoolStart); 1315 LastPde = MiAddressToPde(MmSessionSpace->PagedPoolEnd); 1316 LastPte = MiAddressToPte(MmSessionSpace->PagedPoolEnd); 1317 1318 /* Write them down */ 1319 MmSessionSpace->PagedPoolBasePde = PointerPde; 1320 PagedPoolInfo->FirstPteForPagedPool = PointerPte; 1321 PagedPoolInfo->LastPteForPagedPool = LastPte; 1322 PagedPoolInfo->NextPdeForPagedPoolExpansion = PointerPde + 1; 1323 1324 /* Zero the PDEs */ 1325 PdeCount = LastPde - PointerPde; 1326 RtlZeroMemory(PointerPde, (PdeCount + 1) * sizeof(MMPTE)); 1327 1328 /* Initialize the PFN for the PDE */ 1329 Status = MiInitializeAndChargePfn(&PageFrameIndex, 1330 PointerPde, 1331 MmSessionSpace->SessionPageDirectoryIndex, 1332 TRUE); 1333 ASSERT(NT_SUCCESS(Status) == TRUE); 1334 1335 /* Initialize the first page table */ 1336 Index = (ULONG_PTR)MmSessionSpace->PagedPoolStart - (ULONG_PTR)MmSessionBase; 1337 Index >>= 22; 1338 #ifndef _M_AMD64 // FIXME 1339 ASSERT(MmSessionSpace->PageTables[Index].u.Long == 0); 1340 MmSessionSpace->PageTables[Index] = *PointerPde; 1341 #endif 1342 1343 /* Bump up counters */ 1344 InterlockedIncrementSizeT(&MmSessionSpace->NonPageablePages); 1345 InterlockedIncrementSizeT(&MmSessionSpace->CommittedPages); 1346 1347 /* Compute the size of the pool in pages, and of the bitmap for it */ 1348 PoolSize = MmSessionPoolSize >> PAGE_SHIFT; 1349 BitmapSize = sizeof(RTL_BITMAP) + ((PoolSize + 31) / 32) * sizeof(ULONG); 1350 1351 /* Allocate and initialize the bitmap to track allocations */ 1352 PagedPoolInfo->PagedPoolAllocationMap = ExAllocatePoolWithTag(NonPagedPool, 1353 BitmapSize, 1354 TAG_MM); 1355 ASSERT(PagedPoolInfo->PagedPoolAllocationMap != NULL); 1356 RtlInitializeBitMap(PagedPoolInfo->PagedPoolAllocationMap, 1357 (PULONG)(PagedPoolInfo->PagedPoolAllocationMap + 1), 1358 PoolSize); 1359 1360 /* Set all bits, but clear the first page table's worth */ 1361 RtlSetAllBits(PagedPoolInfo->PagedPoolAllocationMap); 1362 RtlClearBits(PagedPoolInfo->PagedPoolAllocationMap, 0, PTE_PER_PAGE); 1363 1364 /* Allocate and initialize the bitmap to track free space */ 1365 PagedPoolInfo->EndOfPagedPoolBitmap = ExAllocatePoolWithTag(NonPagedPool, 1366 BitmapSize, 1367 TAG_MM); 1368 ASSERT(PagedPoolInfo->EndOfPagedPoolBitmap != NULL); 1369 RtlInitializeBitMap(PagedPoolInfo->EndOfPagedPoolBitmap, 1370 (PULONG)(PagedPoolInfo->EndOfPagedPoolBitmap + 1), 1371 PoolSize); 1372 1373 /* Clear all the bits and return success */ 1374 RtlClearAllBits(PagedPoolInfo->EndOfPagedPoolBitmap); 1375 return STATUS_SUCCESS; 1376 } 1377 1378 /* PUBLIC FUNCTIONS ***********************************************************/ 1379 1380 /* 1381 * @unimplemented 1382 */ 1383 PVOID 1384 NTAPI 1385 MmAllocateMappingAddress(IN SIZE_T NumberOfBytes, 1386 IN ULONG PoolTag) 1387 { 1388 UNIMPLEMENTED; 1389 return NULL; 1390 } 1391 1392 /* 1393 * @unimplemented 1394 */ 1395 VOID 1396 NTAPI 1397 MmFreeMappingAddress(IN PVOID BaseAddress, 1398 IN ULONG PoolTag) 1399 { 1400 UNIMPLEMENTED; 1401 } 1402 1403 /* EOF */ 1404