xref: /reactos/sdk/lib/3rdparty/zlib/deflate.c (revision 5100859e)
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49 
50 /* @(#) $Id$ */
51 
52 #include "deflate.h"
53 
54 const char deflate_copyright[] =
55    " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
56 /*
57   If you use the zlib library in a product, an acknowledgment is welcome
58   in the documentation of your product. If for some reason you cannot
59   include such an acknowledgment, I would appreciate that you keep this
60   copyright string in the executable of your product.
61  */
62 
63 /* ===========================================================================
64  *  Function prototypes.
65  */
66 typedef enum {
67     need_more,      /* block not completed, need more input or more output */
68     block_done,     /* block flush performed */
69     finish_started, /* finish started, need only more output at next deflate */
70     finish_done     /* finish done, accept no more input or output */
71 } block_state;
72 
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75 
76 local int deflateStateCheck      OF((z_streamp strm));
77 local void slide_hash     OF((deflate_state *s));
78 local void fill_window    OF((deflate_state *s));
79 local block_state deflate_stored OF((deflate_state *s, int flush));
80 local block_state deflate_fast   OF((deflate_state *s, int flush));
81 #ifndef FASTEST
82 local block_state deflate_slow   OF((deflate_state *s, int flush));
83 #endif
84 local block_state deflate_rle    OF((deflate_state *s, int flush));
85 local block_state deflate_huff   OF((deflate_state *s, int flush));
86 local void lm_init        OF((deflate_state *s));
87 local void putShortMSB    OF((deflate_state *s, uInt b));
88 local void flush_pending  OF((z_streamp strm));
89 local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90 #ifdef ASMV
91 #  pragma message("Assembler code may have bugs -- use at your own risk")
92       void match_init OF((void)); /* asm code initialization */
93       uInt longest_match  OF((deflate_state *s, IPos cur_match));
94 #else
95 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
96 #endif
97 
98 #ifdef ZLIB_DEBUG
99 local  void check_match OF((deflate_state *s, IPos start, IPos match,
100                             int length));
101 #endif
102 
103 /* ===========================================================================
104  * Local data
105  */
106 
107 #define NIL 0
108 /* Tail of hash chains */
109 
110 #ifndef TOO_FAR
111 #  define TOO_FAR 4096
112 #endif
113 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114 
115 /* Values for max_lazy_match, good_match and max_chain_length, depending on
116  * the desired pack level (0..9). The values given below have been tuned to
117  * exclude worst case performance for pathological files. Better values may be
118  * found for specific files.
119  */
120 typedef struct config_s {
121    ush good_length; /* reduce lazy search above this match length */
122    ush max_lazy;    /* do not perform lazy search above this match length */
123    ush nice_length; /* quit search above this match length */
124    ush max_chain;
125    compress_func func;
126 } config;
127 
128 #ifdef FASTEST
129 local const config configuration_table[2] = {
130 /*      good lazy nice chain */
131 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
132 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
133 #else
134 local const config configuration_table[10] = {
135 /*      good lazy nice chain */
136 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
137 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
138 /* 2 */ {4,    5, 16,    8, deflate_fast},
139 /* 3 */ {4,    6, 32,   32, deflate_fast},
140 
141 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
142 /* 5 */ {8,   16, 32,   32, deflate_slow},
143 /* 6 */ {8,   16, 128, 128, deflate_slow},
144 /* 7 */ {8,   32, 128, 256, deflate_slow},
145 /* 8 */ {32, 128, 258, 1024, deflate_slow},
146 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147 #endif
148 
149 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151  * meaning.
152  */
153 
154 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156 
157 /* ===========================================================================
158  * Update a hash value with the given input byte
159  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
160  *    characters, so that a running hash key can be computed from the previous
161  *    key instead of complete recalculation each time.
162  */
163 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164 
165 
166 /* ===========================================================================
167  * Insert string str in the dictionary and set match_head to the previous head
168  * of the hash chain (the most recent string with same hash key). Return
169  * the previous length of the hash chain.
170  * If this file is compiled with -DFASTEST, the compression level is forced
171  * to 1, and no hash chains are maintained.
172  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
173  *    characters and the first MIN_MATCH bytes of str are valid (except for
174  *    the last MIN_MATCH-1 bytes of the input file).
175  */
176 #ifdef FASTEST
177 #define INSERT_STRING(s, str, match_head) \
178    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179     match_head = s->head[s->ins_h], \
180     s->head[s->ins_h] = (Pos)(str))
181 #else
182 #define INSERT_STRING(s, str, match_head) \
183    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185     s->head[s->ins_h] = (Pos)(str))
186 #endif
187 
188 /* ===========================================================================
189  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190  * prev[] will be initialized on the fly.
191  */
192 #define CLEAR_HASH(s) \
193     s->head[s->hash_size-1] = NIL; \
194     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
195 
196 /* ===========================================================================
197  * Slide the hash table when sliding the window down (could be avoided with 32
198  * bit values at the expense of memory usage). We slide even when level == 0 to
199  * keep the hash table consistent if we switch back to level > 0 later.
200  */
201 local void slide_hash(s)
202     deflate_state *s;
203 {
204     unsigned n, m;
205     Posf *p;
206     uInt wsize = s->w_size;
207 
208     n = s->hash_size;
209     p = &s->head[n];
210     do {
211         m = *--p;
212         *p = (Pos)(m >= wsize ? m - wsize : NIL);
213     } while (--n);
214     n = wsize;
215 #ifndef FASTEST
216     p = &s->prev[n];
217     do {
218         m = *--p;
219         *p = (Pos)(m >= wsize ? m - wsize : NIL);
220         /* If n is not on any hash chain, prev[n] is garbage but
221          * its value will never be used.
222          */
223     } while (--n);
224 #endif
225 }
226 
227 /* ========================================================================= */
228 int ZEXPORT deflateInit_(strm, level, version, stream_size)
229     z_streamp strm;
230     int level;
231     const char *version;
232     int stream_size;
233 {
234     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
235                          Z_DEFAULT_STRATEGY, version, stream_size);
236     /* To do: ignore strm->next_in if we use it as window */
237 }
238 
239 /* ========================================================================= */
240 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
241                   version, stream_size)
242     z_streamp strm;
243     int  level;
244     int  method;
245     int  windowBits;
246     int  memLevel;
247     int  strategy;
248     const char *version;
249     int stream_size;
250 {
251     deflate_state *s;
252     int wrap = 1;
253     static const char my_version[] = ZLIB_VERSION;
254 
255     ushf *overlay;
256     /* We overlay pending_buf and d_buf+l_buf. This works since the average
257      * output size for (length,distance) codes is <= 24 bits.
258      */
259 
260     if (version == Z_NULL || version[0] != my_version[0] ||
261         stream_size != sizeof(z_stream)) {
262         return Z_VERSION_ERROR;
263     }
264     if (strm == Z_NULL) return Z_STREAM_ERROR;
265 
266     strm->msg = Z_NULL;
267     if (strm->zalloc == (alloc_func)0) {
268 #ifdef Z_SOLO
269         return Z_STREAM_ERROR;
270 #else
271         strm->zalloc = zcalloc;
272         strm->opaque = (voidpf)0;
273 #endif
274     }
275     if (strm->zfree == (free_func)0)
276 #ifdef Z_SOLO
277         return Z_STREAM_ERROR;
278 #else
279         strm->zfree = zcfree;
280 #endif
281 
282 #ifdef FASTEST
283     if (level != 0) level = 1;
284 #else
285     if (level == Z_DEFAULT_COMPRESSION) level = 6;
286 #endif
287 
288     if (windowBits < 0) { /* suppress zlib wrapper */
289         wrap = 0;
290         windowBits = -windowBits;
291     }
292 #ifdef GZIP
293     else if (windowBits > 15) {
294         wrap = 2;       /* write gzip wrapper instead */
295         windowBits -= 16;
296     }
297 #endif
298     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
299         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
300         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
301         return Z_STREAM_ERROR;
302     }
303     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
304     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
305     if (s == Z_NULL) return Z_MEM_ERROR;
306     strm->state = (struct internal_state FAR *)s;
307     s->strm = strm;
308     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
309 
310     s->wrap = wrap;
311     s->gzhead = Z_NULL;
312     s->w_bits = (uInt)windowBits;
313     s->w_size = 1 << s->w_bits;
314     s->w_mask = s->w_size - 1;
315 
316     s->hash_bits = (uInt)memLevel + 7;
317     s->hash_size = 1 << s->hash_bits;
318     s->hash_mask = s->hash_size - 1;
319     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
320 
321     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
322     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
323     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
324 
325     s->high_water = 0;      /* nothing written to s->window yet */
326 
327     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
328 
329     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
330     s->pending_buf = (uchf *) overlay;
331     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
332 
333     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
334         s->pending_buf == Z_NULL) {
335         s->status = FINISH_STATE;
336         strm->msg = ERR_MSG(Z_MEM_ERROR);
337         deflateEnd (strm);
338         return Z_MEM_ERROR;
339     }
340     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
341     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
342 
343     s->level = level;
344     s->strategy = strategy;
345     s->method = (Byte)method;
346 
347     return deflateReset(strm);
348 }
349 
350 /* =========================================================================
351  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
352  */
353 local int deflateStateCheck (strm)
354     z_streamp strm;
355 {
356     deflate_state *s;
357     if (strm == Z_NULL ||
358         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
359         return 1;
360     s = strm->state;
361     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
362 #ifdef GZIP
363                                            s->status != GZIP_STATE &&
364 #endif
365                                            s->status != EXTRA_STATE &&
366                                            s->status != NAME_STATE &&
367                                            s->status != COMMENT_STATE &&
368                                            s->status != HCRC_STATE &&
369                                            s->status != BUSY_STATE &&
370                                            s->status != FINISH_STATE))
371         return 1;
372     return 0;
373 }
374 
375 /* ========================================================================= */
376 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
377     z_streamp strm;
378     const Bytef *dictionary;
379     uInt  dictLength;
380 {
381     deflate_state *s;
382     uInt str, n;
383     int wrap;
384     unsigned avail;
385     z_const unsigned char *next;
386 
387     if (deflateStateCheck(strm) || dictionary == Z_NULL)
388         return Z_STREAM_ERROR;
389     s = strm->state;
390     wrap = s->wrap;
391     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
392         return Z_STREAM_ERROR;
393 
394     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
395     if (wrap == 1)
396         strm->adler = adler32(strm->adler, dictionary, dictLength);
397     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
398 
399     /* if dictionary would fill window, just replace the history */
400     if (dictLength >= s->w_size) {
401         if (wrap == 0) {            /* already empty otherwise */
402             CLEAR_HASH(s);
403             s->strstart = 0;
404             s->block_start = 0L;
405             s->insert = 0;
406         }
407         dictionary += dictLength - s->w_size;  /* use the tail */
408         dictLength = s->w_size;
409     }
410 
411     /* insert dictionary into window and hash */
412     avail = strm->avail_in;
413     next = strm->next_in;
414     strm->avail_in = dictLength;
415     strm->next_in = (z_const Bytef *)dictionary;
416     fill_window(s);
417     while (s->lookahead >= MIN_MATCH) {
418         str = s->strstart;
419         n = s->lookahead - (MIN_MATCH-1);
420         do {
421             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
422 #ifndef FASTEST
423             s->prev[str & s->w_mask] = s->head[s->ins_h];
424 #endif
425             s->head[s->ins_h] = (Pos)str;
426             str++;
427         } while (--n);
428         s->strstart = str;
429         s->lookahead = MIN_MATCH-1;
430         fill_window(s);
431     }
432     s->strstart += s->lookahead;
433     s->block_start = (long)s->strstart;
434     s->insert = s->lookahead;
435     s->lookahead = 0;
436     s->match_length = s->prev_length = MIN_MATCH-1;
437     s->match_available = 0;
438     strm->next_in = next;
439     strm->avail_in = avail;
440     s->wrap = wrap;
441     return Z_OK;
442 }
443 
444 /* ========================================================================= */
445 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
446     z_streamp strm;
447     Bytef *dictionary;
448     uInt  *dictLength;
449 {
450     deflate_state *s;
451     uInt len;
452 
453     if (deflateStateCheck(strm))
454         return Z_STREAM_ERROR;
455     s = strm->state;
456     len = s->strstart + s->lookahead;
457     if (len > s->w_size)
458         len = s->w_size;
459     if (dictionary != Z_NULL && len)
460         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
461     if (dictLength != Z_NULL)
462         *dictLength = len;
463     return Z_OK;
464 }
465 
466 /* ========================================================================= */
467 int ZEXPORT deflateResetKeep (strm)
468     z_streamp strm;
469 {
470     deflate_state *s;
471 
472     if (deflateStateCheck(strm)) {
473         return Z_STREAM_ERROR;
474     }
475 
476     strm->total_in = strm->total_out = 0;
477     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
478     strm->data_type = Z_UNKNOWN;
479 
480     s = (deflate_state *)strm->state;
481     s->pending = 0;
482     s->pending_out = s->pending_buf;
483 
484     if (s->wrap < 0) {
485         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
486     }
487     s->status =
488 #ifdef GZIP
489         s->wrap == 2 ? GZIP_STATE :
490 #endif
491         s->wrap ? INIT_STATE : BUSY_STATE;
492     strm->adler =
493 #ifdef GZIP
494         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
495 #endif
496         adler32(0L, Z_NULL, 0);
497     s->last_flush = Z_NO_FLUSH;
498 
499     _tr_init(s);
500 
501     return Z_OK;
502 }
503 
504 /* ========================================================================= */
505 int ZEXPORT deflateReset (strm)
506     z_streamp strm;
507 {
508     int ret;
509 
510     ret = deflateResetKeep(strm);
511     if (ret == Z_OK)
512         lm_init(strm->state);
513     return ret;
514 }
515 
516 /* ========================================================================= */
517 int ZEXPORT deflateSetHeader (strm, head)
518     z_streamp strm;
519     gz_headerp head;
520 {
521     if (deflateStateCheck(strm) || strm->state->wrap != 2)
522         return Z_STREAM_ERROR;
523     strm->state->gzhead = head;
524     return Z_OK;
525 }
526 
527 /* ========================================================================= */
528 int ZEXPORT deflatePending (strm, pending, bits)
529     unsigned *pending;
530     int *bits;
531     z_streamp strm;
532 {
533     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
534     if (pending != Z_NULL)
535         *pending = strm->state->pending;
536     if (bits != Z_NULL)
537         *bits = strm->state->bi_valid;
538     return Z_OK;
539 }
540 
541 /* ========================================================================= */
542 int ZEXPORT deflatePrime (strm, bits, value)
543     z_streamp strm;
544     int bits;
545     int value;
546 {
547     deflate_state *s;
548     int put;
549 
550     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
551     s = strm->state;
552     if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
553         return Z_BUF_ERROR;
554     do {
555         put = Buf_size - s->bi_valid;
556         if (put > bits)
557             put = bits;
558         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
559         s->bi_valid += put;
560         _tr_flush_bits(s);
561         value >>= put;
562         bits -= put;
563     } while (bits);
564     return Z_OK;
565 }
566 
567 /* ========================================================================= */
568 int ZEXPORT deflateParams(strm, level, strategy)
569     z_streamp strm;
570     int level;
571     int strategy;
572 {
573     deflate_state *s;
574     compress_func func;
575 
576     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
577     s = strm->state;
578 
579 #ifdef FASTEST
580     if (level != 0) level = 1;
581 #else
582     if (level == Z_DEFAULT_COMPRESSION) level = 6;
583 #endif
584     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
585         return Z_STREAM_ERROR;
586     }
587     func = configuration_table[s->level].func;
588 
589     if ((strategy != s->strategy || func != configuration_table[level].func) &&
590         s->high_water) {
591         /* Flush the last buffer: */
592         int err = deflate(strm, Z_BLOCK);
593         if (err == Z_STREAM_ERROR)
594             return err;
595         if (strm->avail_out == 0)
596             return Z_BUF_ERROR;
597     }
598     if (s->level != level) {
599         if (s->level == 0 && s->matches != 0) {
600             if (s->matches == 1)
601                 slide_hash(s);
602             else
603                 CLEAR_HASH(s);
604             s->matches = 0;
605         }
606         s->level = level;
607         s->max_lazy_match   = configuration_table[level].max_lazy;
608         s->good_match       = configuration_table[level].good_length;
609         s->nice_match       = configuration_table[level].nice_length;
610         s->max_chain_length = configuration_table[level].max_chain;
611     }
612     s->strategy = strategy;
613     return Z_OK;
614 }
615 
616 /* ========================================================================= */
617 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
618     z_streamp strm;
619     int good_length;
620     int max_lazy;
621     int nice_length;
622     int max_chain;
623 {
624     deflate_state *s;
625 
626     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
627     s = strm->state;
628     s->good_match = (uInt)good_length;
629     s->max_lazy_match = (uInt)max_lazy;
630     s->nice_match = nice_length;
631     s->max_chain_length = (uInt)max_chain;
632     return Z_OK;
633 }
634 
635 /* =========================================================================
636  * For the default windowBits of 15 and memLevel of 8, this function returns
637  * a close to exact, as well as small, upper bound on the compressed size.
638  * They are coded as constants here for a reason--if the #define's are
639  * changed, then this function needs to be changed as well.  The return
640  * value for 15 and 8 only works for those exact settings.
641  *
642  * For any setting other than those defaults for windowBits and memLevel,
643  * the value returned is a conservative worst case for the maximum expansion
644  * resulting from using fixed blocks instead of stored blocks, which deflate
645  * can emit on compressed data for some combinations of the parameters.
646  *
647  * This function could be more sophisticated to provide closer upper bounds for
648  * every combination of windowBits and memLevel.  But even the conservative
649  * upper bound of about 14% expansion does not seem onerous for output buffer
650  * allocation.
651  */
652 uLong ZEXPORT deflateBound(strm, sourceLen)
653     z_streamp strm;
654     uLong sourceLen;
655 {
656     deflate_state *s;
657     uLong complen, wraplen;
658 
659     /* conservative upper bound for compressed data */
660     complen = sourceLen +
661               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
662 
663     /* if can't get parameters, return conservative bound plus zlib wrapper */
664     if (deflateStateCheck(strm))
665         return complen + 6;
666 
667     /* compute wrapper length */
668     s = strm->state;
669     switch (s->wrap) {
670     case 0:                                 /* raw deflate */
671         wraplen = 0;
672         break;
673     case 1:                                 /* zlib wrapper */
674         wraplen = 6 + (s->strstart ? 4 : 0);
675         break;
676 #ifdef GZIP
677     case 2:                                 /* gzip wrapper */
678         wraplen = 18;
679         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
680             Bytef *str;
681             if (s->gzhead->extra != Z_NULL)
682                 wraplen += 2 + s->gzhead->extra_len;
683             str = s->gzhead->name;
684             if (str != Z_NULL)
685                 do {
686                     wraplen++;
687                 } while (*str++);
688             str = s->gzhead->comment;
689             if (str != Z_NULL)
690                 do {
691                     wraplen++;
692                 } while (*str++);
693             if (s->gzhead->hcrc)
694                 wraplen += 2;
695         }
696         break;
697 #endif
698     default:                                /* for compiler happiness */
699         wraplen = 6;
700     }
701 
702     /* if not default parameters, return conservative bound */
703     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
704         return complen + wraplen;
705 
706     /* default settings: return tight bound for that case */
707     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
708            (sourceLen >> 25) + 13 - 6 + wraplen;
709 }
710 
711 /* =========================================================================
712  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
713  * IN assertion: the stream state is correct and there is enough room in
714  * pending_buf.
715  */
716 local void putShortMSB (s, b)
717     deflate_state *s;
718     uInt b;
719 {
720     put_byte(s, (Byte)(b >> 8));
721     put_byte(s, (Byte)(b & 0xff));
722 }
723 
724 /* =========================================================================
725  * Flush as much pending output as possible. All deflate() output, except for
726  * some deflate_stored() output, goes through this function so some
727  * applications may wish to modify it to avoid allocating a large
728  * strm->next_out buffer and copying into it. (See also read_buf()).
729  */
730 local void flush_pending(strm)
731     z_streamp strm;
732 {
733     unsigned len;
734     deflate_state *s = strm->state;
735 
736     _tr_flush_bits(s);
737     len = s->pending;
738     if (len > strm->avail_out) len = strm->avail_out;
739     if (len == 0) return;
740 
741     zmemcpy(strm->next_out, s->pending_out, len);
742     strm->next_out  += len;
743     s->pending_out  += len;
744     strm->total_out += len;
745     strm->avail_out -= len;
746     s->pending      -= len;
747     if (s->pending == 0) {
748         s->pending_out = s->pending_buf;
749     }
750 }
751 
752 /* ===========================================================================
753  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
754  */
755 #define HCRC_UPDATE(beg) \
756     do { \
757         if (s->gzhead->hcrc && s->pending > (beg)) \
758             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
759                                 s->pending - (beg)); \
760     } while (0)
761 
762 /* ========================================================================= */
763 int ZEXPORT deflate (strm, flush)
764     z_streamp strm;
765     int flush;
766 {
767     int old_flush; /* value of flush param for previous deflate call */
768     deflate_state *s;
769 
770     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
771         return Z_STREAM_ERROR;
772     }
773     s = strm->state;
774 
775     if (strm->next_out == Z_NULL ||
776         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
777         (s->status == FINISH_STATE && flush != Z_FINISH)) {
778         ERR_RETURN(strm, Z_STREAM_ERROR);
779     }
780     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
781 
782     old_flush = s->last_flush;
783     s->last_flush = flush;
784 
785     /* Flush as much pending output as possible */
786     if (s->pending != 0) {
787         flush_pending(strm);
788         if (strm->avail_out == 0) {
789             /* Since avail_out is 0, deflate will be called again with
790              * more output space, but possibly with both pending and
791              * avail_in equal to zero. There won't be anything to do,
792              * but this is not an error situation so make sure we
793              * return OK instead of BUF_ERROR at next call of deflate:
794              */
795             s->last_flush = -1;
796             return Z_OK;
797         }
798 
799     /* Make sure there is something to do and avoid duplicate consecutive
800      * flushes. For repeated and useless calls with Z_FINISH, we keep
801      * returning Z_STREAM_END instead of Z_BUF_ERROR.
802      */
803     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
804                flush != Z_FINISH) {
805         ERR_RETURN(strm, Z_BUF_ERROR);
806     }
807 
808     /* User must not provide more input after the first FINISH: */
809     if (s->status == FINISH_STATE && strm->avail_in != 0) {
810         ERR_RETURN(strm, Z_BUF_ERROR);
811     }
812 
813     /* Write the header */
814     if (s->status == INIT_STATE) {
815         /* zlib header */
816         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
817         uInt level_flags;
818 
819         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
820             level_flags = 0;
821         else if (s->level < 6)
822             level_flags = 1;
823         else if (s->level == 6)
824             level_flags = 2;
825         else
826             level_flags = 3;
827         header |= (level_flags << 6);
828         if (s->strstart != 0) header |= PRESET_DICT;
829         header += 31 - (header % 31);
830 
831         putShortMSB(s, header);
832 
833         /* Save the adler32 of the preset dictionary: */
834         if (s->strstart != 0) {
835             putShortMSB(s, (uInt)(strm->adler >> 16));
836             putShortMSB(s, (uInt)(strm->adler & 0xffff));
837         }
838         strm->adler = adler32(0L, Z_NULL, 0);
839         s->status = BUSY_STATE;
840 
841         /* Compression must start with an empty pending buffer */
842         flush_pending(strm);
843         if (s->pending != 0) {
844             s->last_flush = -1;
845             return Z_OK;
846         }
847     }
848 #ifdef GZIP
849     if (s->status == GZIP_STATE) {
850         /* gzip header */
851         strm->adler = crc32(0L, Z_NULL, 0);
852         put_byte(s, 31);
853         put_byte(s, 139);
854         put_byte(s, 8);
855         if (s->gzhead == Z_NULL) {
856             put_byte(s, 0);
857             put_byte(s, 0);
858             put_byte(s, 0);
859             put_byte(s, 0);
860             put_byte(s, 0);
861             put_byte(s, s->level == 9 ? 2 :
862                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
863                       4 : 0));
864             put_byte(s, OS_CODE);
865             s->status = BUSY_STATE;
866 
867             /* Compression must start with an empty pending buffer */
868             flush_pending(strm);
869             if (s->pending != 0) {
870                 s->last_flush = -1;
871                 return Z_OK;
872             }
873         }
874         else {
875             put_byte(s, (s->gzhead->text ? 1 : 0) +
876                      (s->gzhead->hcrc ? 2 : 0) +
877                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
878                      (s->gzhead->name == Z_NULL ? 0 : 8) +
879                      (s->gzhead->comment == Z_NULL ? 0 : 16)
880                      );
881             put_byte(s, (Byte)(s->gzhead->time & 0xff));
882             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
883             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
884             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
885             put_byte(s, s->level == 9 ? 2 :
886                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
887                       4 : 0));
888             put_byte(s, s->gzhead->os & 0xff);
889             if (s->gzhead->extra != Z_NULL) {
890                 put_byte(s, s->gzhead->extra_len & 0xff);
891                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
892             }
893             if (s->gzhead->hcrc)
894                 strm->adler = crc32(strm->adler, s->pending_buf,
895                                     s->pending);
896             s->gzindex = 0;
897             s->status = EXTRA_STATE;
898         }
899     }
900     if (s->status == EXTRA_STATE) {
901         if (s->gzhead->extra != Z_NULL) {
902             ulg beg = s->pending;   /* start of bytes to update crc */
903             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
904             while (s->pending + left > s->pending_buf_size) {
905                 uInt copy = s->pending_buf_size - s->pending;
906                 zmemcpy(s->pending_buf + s->pending,
907                         s->gzhead->extra + s->gzindex, copy);
908                 s->pending = s->pending_buf_size;
909                 HCRC_UPDATE(beg);
910                 s->gzindex += copy;
911                 flush_pending(strm);
912                 if (s->pending != 0) {
913                     s->last_flush = -1;
914                     return Z_OK;
915                 }
916                 beg = 0;
917                 left -= copy;
918             }
919             zmemcpy(s->pending_buf + s->pending,
920                     s->gzhead->extra + s->gzindex, left);
921             s->pending += left;
922             HCRC_UPDATE(beg);
923             s->gzindex = 0;
924         }
925         s->status = NAME_STATE;
926     }
927     if (s->status == NAME_STATE) {
928         if (s->gzhead->name != Z_NULL) {
929             ulg beg = s->pending;   /* start of bytes to update crc */
930             int val;
931             do {
932                 if (s->pending == s->pending_buf_size) {
933                     HCRC_UPDATE(beg);
934                     flush_pending(strm);
935                     if (s->pending != 0) {
936                         s->last_flush = -1;
937                         return Z_OK;
938                     }
939                     beg = 0;
940                 }
941                 val = s->gzhead->name[s->gzindex++];
942                 put_byte(s, val);
943             } while (val != 0);
944             HCRC_UPDATE(beg);
945             s->gzindex = 0;
946         }
947         s->status = COMMENT_STATE;
948     }
949     if (s->status == COMMENT_STATE) {
950         if (s->gzhead->comment != Z_NULL) {
951             ulg beg = s->pending;   /* start of bytes to update crc */
952             int val;
953             do {
954                 if (s->pending == s->pending_buf_size) {
955                     HCRC_UPDATE(beg);
956                     flush_pending(strm);
957                     if (s->pending != 0) {
958                         s->last_flush = -1;
959                         return Z_OK;
960                     }
961                     beg = 0;
962                 }
963                 val = s->gzhead->comment[s->gzindex++];
964                 put_byte(s, val);
965             } while (val != 0);
966             HCRC_UPDATE(beg);
967         }
968         s->status = HCRC_STATE;
969     }
970     if (s->status == HCRC_STATE) {
971         if (s->gzhead->hcrc) {
972             if (s->pending + 2 > s->pending_buf_size) {
973                 flush_pending(strm);
974                 if (s->pending != 0) {
975                     s->last_flush = -1;
976                     return Z_OK;
977                 }
978             }
979             put_byte(s, (Byte)(strm->adler & 0xff));
980             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
981             strm->adler = crc32(0L, Z_NULL, 0);
982         }
983         s->status = BUSY_STATE;
984 
985         /* Compression must start with an empty pending buffer */
986         flush_pending(strm);
987         if (s->pending != 0) {
988             s->last_flush = -1;
989             return Z_OK;
990         }
991     }
992 #endif
993 
994     /* Start a new block or continue the current one.
995      */
996     if (strm->avail_in != 0 || s->lookahead != 0 ||
997         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
998         block_state bstate;
999 
1000         bstate = s->level == 0 ? deflate_stored(s, flush) :
1001                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1002                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1003                  (*(configuration_table[s->level].func))(s, flush);
1004 
1005         if (bstate == finish_started || bstate == finish_done) {
1006             s->status = FINISH_STATE;
1007         }
1008         if (bstate == need_more || bstate == finish_started) {
1009             if (strm->avail_out == 0) {
1010                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1011             }
1012             return Z_OK;
1013             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1014              * of deflate should use the same flush parameter to make sure
1015              * that the flush is complete. So we don't have to output an
1016              * empty block here, this will be done at next call. This also
1017              * ensures that for a very small output buffer, we emit at most
1018              * one empty block.
1019              */
1020         }
1021         if (bstate == block_done) {
1022             if (flush == Z_PARTIAL_FLUSH) {
1023                 _tr_align(s);
1024             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1025                 _tr_stored_block(s, (char*)0, 0L, 0);
1026                 /* For a full flush, this empty block will be recognized
1027                  * as a special marker by inflate_sync().
1028                  */
1029                 if (flush == Z_FULL_FLUSH) {
1030                     CLEAR_HASH(s);             /* forget history */
1031                     if (s->lookahead == 0) {
1032                         s->strstart = 0;
1033                         s->block_start = 0L;
1034                         s->insert = 0;
1035                     }
1036                 }
1037             }
1038             flush_pending(strm);
1039             if (strm->avail_out == 0) {
1040               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1041               return Z_OK;
1042             }
1043         }
1044     }
1045 
1046     if (flush != Z_FINISH) return Z_OK;
1047     if (s->wrap <= 0) return Z_STREAM_END;
1048 
1049     /* Write the trailer */
1050 #ifdef GZIP
1051     if (s->wrap == 2) {
1052         put_byte(s, (Byte)(strm->adler & 0xff));
1053         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1054         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1055         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1056         put_byte(s, (Byte)(strm->total_in & 0xff));
1057         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1058         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1059         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1060     }
1061     else
1062 #endif
1063     {
1064         putShortMSB(s, (uInt)(strm->adler >> 16));
1065         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1066     }
1067     flush_pending(strm);
1068     /* If avail_out is zero, the application will call deflate again
1069      * to flush the rest.
1070      */
1071     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1072     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1073 }
1074 
1075 /* ========================================================================= */
1076 int ZEXPORT deflateEnd (strm)
1077     z_streamp strm;
1078 {
1079     int status;
1080 
1081     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1082 
1083     status = strm->state->status;
1084 
1085     /* Deallocate in reverse order of allocations: */
1086     TRY_FREE(strm, strm->state->pending_buf);
1087     TRY_FREE(strm, strm->state->head);
1088     TRY_FREE(strm, strm->state->prev);
1089     TRY_FREE(strm, strm->state->window);
1090 
1091     ZFREE(strm, strm->state);
1092     strm->state = Z_NULL;
1093 
1094     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1095 }
1096 
1097 /* =========================================================================
1098  * Copy the source state to the destination state.
1099  * To simplify the source, this is not supported for 16-bit MSDOS (which
1100  * doesn't have enough memory anyway to duplicate compression states).
1101  */
1102 int ZEXPORT deflateCopy (dest, source)
1103     z_streamp dest;
1104     z_streamp source;
1105 {
1106 #ifdef MAXSEG_64K
1107     return Z_STREAM_ERROR;
1108 #else
1109     deflate_state *ds;
1110     deflate_state *ss;
1111     ushf *overlay;
1112 
1113 
1114     if (deflateStateCheck(source) || dest == Z_NULL) {
1115         return Z_STREAM_ERROR;
1116     }
1117 
1118     ss = source->state;
1119 
1120     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1121 
1122     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1123     if (ds == Z_NULL) return Z_MEM_ERROR;
1124     dest->state = (struct internal_state FAR *) ds;
1125     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1126     ds->strm = dest;
1127 
1128     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1129     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1130     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1131     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1132     ds->pending_buf = (uchf *) overlay;
1133 
1134     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1135         ds->pending_buf == Z_NULL) {
1136         deflateEnd (dest);
1137         return Z_MEM_ERROR;
1138     }
1139     /* following zmemcpy do not work for 16-bit MSDOS */
1140     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1141     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1142     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1143     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1144 
1145     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1146     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1147     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1148 
1149     ds->l_desc.dyn_tree = ds->dyn_ltree;
1150     ds->d_desc.dyn_tree = ds->dyn_dtree;
1151     ds->bl_desc.dyn_tree = ds->bl_tree;
1152 
1153     return Z_OK;
1154 #endif /* MAXSEG_64K */
1155 }
1156 
1157 /* ===========================================================================
1158  * Read a new buffer from the current input stream, update the adler32
1159  * and total number of bytes read.  All deflate() input goes through
1160  * this function so some applications may wish to modify it to avoid
1161  * allocating a large strm->next_in buffer and copying from it.
1162  * (See also flush_pending()).
1163  */
1164 local unsigned read_buf(strm, buf, size)
1165     z_streamp strm;
1166     Bytef *buf;
1167     unsigned size;
1168 {
1169     unsigned len = strm->avail_in;
1170 
1171     if (len > size) len = size;
1172     if (len == 0) return 0;
1173 
1174     strm->avail_in  -= len;
1175 
1176     zmemcpy(buf, strm->next_in, len);
1177     if (strm->state->wrap == 1) {
1178         strm->adler = adler32(strm->adler, buf, len);
1179     }
1180 #ifdef GZIP
1181     else if (strm->state->wrap == 2) {
1182         strm->adler = crc32(strm->adler, buf, len);
1183     }
1184 #endif
1185     strm->next_in  += len;
1186     strm->total_in += len;
1187 
1188     return len;
1189 }
1190 
1191 /* ===========================================================================
1192  * Initialize the "longest match" routines for a new zlib stream
1193  */
1194 local void lm_init (s)
1195     deflate_state *s;
1196 {
1197     s->window_size = (ulg)2L*s->w_size;
1198 
1199     CLEAR_HASH(s);
1200 
1201     /* Set the default configuration parameters:
1202      */
1203     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1204     s->good_match       = configuration_table[s->level].good_length;
1205     s->nice_match       = configuration_table[s->level].nice_length;
1206     s->max_chain_length = configuration_table[s->level].max_chain;
1207 
1208     s->strstart = 0;
1209     s->block_start = 0L;
1210     s->lookahead = 0;
1211     s->insert = 0;
1212     s->match_length = s->prev_length = MIN_MATCH-1;
1213     s->match_available = 0;
1214     s->ins_h = 0;
1215 #ifndef FASTEST
1216 #ifdef ASMV
1217     match_init(); /* initialize the asm code */
1218 #endif
1219 #endif
1220 }
1221 
1222 #ifndef FASTEST
1223 /* ===========================================================================
1224  * Set match_start to the longest match starting at the given string and
1225  * return its length. Matches shorter or equal to prev_length are discarded,
1226  * in which case the result is equal to prev_length and match_start is
1227  * garbage.
1228  * IN assertions: cur_match is the head of the hash chain for the current
1229  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1230  * OUT assertion: the match length is not greater than s->lookahead.
1231  */
1232 #ifndef ASMV
1233 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1234  * match.S. The code will be functionally equivalent.
1235  */
1236 local uInt longest_match(s, cur_match)
1237     deflate_state *s;
1238     IPos cur_match;                             /* current match */
1239 {
1240     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1241     register Bytef *scan = s->window + s->strstart; /* current string */
1242     register Bytef *match;                      /* matched string */
1243     register int len;                           /* length of current match */
1244     int best_len = (int)s->prev_length;         /* best match length so far */
1245     int nice_match = s->nice_match;             /* stop if match long enough */
1246     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1247         s->strstart - (IPos)MAX_DIST(s) : NIL;
1248     /* Stop when cur_match becomes <= limit. To simplify the code,
1249      * we prevent matches with the string of window index 0.
1250      */
1251     Posf *prev = s->prev;
1252     uInt wmask = s->w_mask;
1253 
1254 #ifdef UNALIGNED_OK
1255     /* Compare two bytes at a time. Note: this is not always beneficial.
1256      * Try with and without -DUNALIGNED_OK to check.
1257      */
1258     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1259     register ush scan_start = *(ushf*)scan;
1260     register ush scan_end   = *(ushf*)(scan+best_len-1);
1261 #else
1262     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1263     register Byte scan_end1  = scan[best_len-1];
1264     register Byte scan_end   = scan[best_len];
1265 #endif
1266 
1267     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1268      * It is easy to get rid of this optimization if necessary.
1269      */
1270     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1271 
1272     /* Do not waste too much time if we already have a good match: */
1273     if (s->prev_length >= s->good_match) {
1274         chain_length >>= 2;
1275     }
1276     /* Do not look for matches beyond the end of the input. This is necessary
1277      * to make deflate deterministic.
1278      */
1279     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1280 
1281     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1282 
1283     do {
1284         Assert(cur_match < s->strstart, "no future");
1285         match = s->window + cur_match;
1286 
1287         /* Skip to next match if the match length cannot increase
1288          * or if the match length is less than 2.  Note that the checks below
1289          * for insufficient lookahead only occur occasionally for performance
1290          * reasons.  Therefore uninitialized memory will be accessed, and
1291          * conditional jumps will be made that depend on those values.
1292          * However the length of the match is limited to the lookahead, so
1293          * the output of deflate is not affected by the uninitialized values.
1294          */
1295 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1296         /* This code assumes sizeof(unsigned short) == 2. Do not use
1297          * UNALIGNED_OK if your compiler uses a different size.
1298          */
1299         if (*(ushf*)(match+best_len-1) != scan_end ||
1300             *(ushf*)match != scan_start) continue;
1301 
1302         /* It is not necessary to compare scan[2] and match[2] since they are
1303          * always equal when the other bytes match, given that the hash keys
1304          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1305          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1306          * lookahead only every 4th comparison; the 128th check will be made
1307          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1308          * necessary to put more guard bytes at the end of the window, or
1309          * to check more often for insufficient lookahead.
1310          */
1311         Assert(scan[2] == match[2], "scan[2]?");
1312         scan++, match++;
1313         do {
1314         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1315                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1316                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1317                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1318                  scan < strend);
1319         /* The funny "do {}" generates better code on most compilers */
1320 
1321         /* Here, scan <= window+strstart+257 */
1322         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1323         if (*scan == *match) scan++;
1324 
1325         len = (MAX_MATCH - 1) - (int)(strend-scan);
1326         scan = strend - (MAX_MATCH-1);
1327 
1328 #else /* UNALIGNED_OK */
1329 
1330         if (match[best_len]   != scan_end  ||
1331             match[best_len-1] != scan_end1 ||
1332             *match            != *scan     ||
1333             *++match          != scan[1])      continue;
1334 
1335         /* The check at best_len-1 can be removed because it will be made
1336          * again later. (This heuristic is not always a win.)
1337          * It is not necessary to compare scan[2] and match[2] since they
1338          * are always equal when the other bytes match, given that
1339          * the hash keys are equal and that HASH_BITS >= 8.
1340          */
1341         scan += 2, match++;
1342         Assert(*scan == *match, "match[2]?");
1343 
1344         /* We check for insufficient lookahead only every 8th comparison;
1345          * the 256th check will be made at strstart+258.
1346          */
1347         do {
1348         } while (*++scan == *++match && *++scan == *++match &&
1349                  *++scan == *++match && *++scan == *++match &&
1350                  *++scan == *++match && *++scan == *++match &&
1351                  *++scan == *++match && *++scan == *++match &&
1352                  scan < strend);
1353 
1354         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1355 
1356         len = MAX_MATCH - (int)(strend - scan);
1357         scan = strend - MAX_MATCH;
1358 
1359 #endif /* UNALIGNED_OK */
1360 
1361         if (len > best_len) {
1362             s->match_start = cur_match;
1363             best_len = len;
1364             if (len >= nice_match) break;
1365 #ifdef UNALIGNED_OK
1366             scan_end = *(ushf*)(scan+best_len-1);
1367 #else
1368             scan_end1  = scan[best_len-1];
1369             scan_end   = scan[best_len];
1370 #endif
1371         }
1372     } while ((cur_match = prev[cur_match & wmask]) > limit
1373              && --chain_length != 0);
1374 
1375     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1376     return s->lookahead;
1377 }
1378 #endif /* ASMV */
1379 
1380 #else /* FASTEST */
1381 
1382 /* ---------------------------------------------------------------------------
1383  * Optimized version for FASTEST only
1384  */
1385 local uInt longest_match(s, cur_match)
1386     deflate_state *s;
1387     IPos cur_match;                             /* current match */
1388 {
1389     register Bytef *scan = s->window + s->strstart; /* current string */
1390     register Bytef *match;                       /* matched string */
1391     register int len;                           /* length of current match */
1392     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1393 
1394     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1395      * It is easy to get rid of this optimization if necessary.
1396      */
1397     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1398 
1399     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1400 
1401     Assert(cur_match < s->strstart, "no future");
1402 
1403     match = s->window + cur_match;
1404 
1405     /* Return failure if the match length is less than 2:
1406      */
1407     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1408 
1409     /* The check at best_len-1 can be removed because it will be made
1410      * again later. (This heuristic is not always a win.)
1411      * It is not necessary to compare scan[2] and match[2] since they
1412      * are always equal when the other bytes match, given that
1413      * the hash keys are equal and that HASH_BITS >= 8.
1414      */
1415     scan += 2, match += 2;
1416     Assert(*scan == *match, "match[2]?");
1417 
1418     /* We check for insufficient lookahead only every 8th comparison;
1419      * the 256th check will be made at strstart+258.
1420      */
1421     do {
1422     } while (*++scan == *++match && *++scan == *++match &&
1423              *++scan == *++match && *++scan == *++match &&
1424              *++scan == *++match && *++scan == *++match &&
1425              *++scan == *++match && *++scan == *++match &&
1426              scan < strend);
1427 
1428     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1429 
1430     len = MAX_MATCH - (int)(strend - scan);
1431 
1432     if (len < MIN_MATCH) return MIN_MATCH - 1;
1433 
1434     s->match_start = cur_match;
1435     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1436 }
1437 
1438 #endif /* FASTEST */
1439 
1440 #ifdef ZLIB_DEBUG
1441 
1442 #define EQUAL 0
1443 /* result of memcmp for equal strings */
1444 
1445 /* ===========================================================================
1446  * Check that the match at match_start is indeed a match.
1447  */
1448 local void check_match(s, start, match, length)
1449     deflate_state *s;
1450     IPos start, match;
1451     int length;
1452 {
1453     /* check that the match is indeed a match */
1454     if (zmemcmp(s->window + match,
1455                 s->window + start, length) != EQUAL) {
1456         fprintf(stderr, " start %u, match %u, length %d\n",
1457                 start, match, length);
1458         do {
1459             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1460         } while (--length != 0);
1461         z_error("invalid match");
1462     }
1463     if (z_verbose > 1) {
1464         fprintf(stderr,"\\[%d,%d]", start-match, length);
1465         do { putc(s->window[start++], stderr); } while (--length != 0);
1466     }
1467 }
1468 #else
1469 #  define check_match(s, start, match, length)
1470 #endif /* ZLIB_DEBUG */
1471 
1472 /* ===========================================================================
1473  * Fill the window when the lookahead becomes insufficient.
1474  * Updates strstart and lookahead.
1475  *
1476  * IN assertion: lookahead < MIN_LOOKAHEAD
1477  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1478  *    At least one byte has been read, or avail_in == 0; reads are
1479  *    performed for at least two bytes (required for the zip translate_eol
1480  *    option -- not supported here).
1481  */
1482 local void fill_window(s)
1483     deflate_state *s;
1484 {
1485     unsigned n;
1486     unsigned more;    /* Amount of free space at the end of the window. */
1487     uInt wsize = s->w_size;
1488 
1489     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1490 
1491     do {
1492         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1493 
1494         /* Deal with !@#$% 64K limit: */
1495         if (sizeof(int) <= 2) {
1496             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1497                 more = wsize;
1498 
1499             } else if (more == (unsigned)(-1)) {
1500                 /* Very unlikely, but possible on 16 bit machine if
1501                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1502                  */
1503                 more--;
1504             }
1505         }
1506 
1507         /* If the window is almost full and there is insufficient lookahead,
1508          * move the upper half to the lower one to make room in the upper half.
1509          */
1510         if (s->strstart >= wsize+MAX_DIST(s)) {
1511 
1512             zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1513             s->match_start -= wsize;
1514             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1515             s->block_start -= (long) wsize;
1516             slide_hash(s);
1517             more += wsize;
1518         }
1519         if (s->strm->avail_in == 0) break;
1520 
1521         /* If there was no sliding:
1522          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1523          *    more == window_size - lookahead - strstart
1524          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1525          * => more >= window_size - 2*WSIZE + 2
1526          * In the BIG_MEM or MMAP case (not yet supported),
1527          *   window_size == input_size + MIN_LOOKAHEAD  &&
1528          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1529          * Otherwise, window_size == 2*WSIZE so more >= 2.
1530          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1531          */
1532         Assert(more >= 2, "more < 2");
1533 
1534         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1535         s->lookahead += n;
1536 
1537         /* Initialize the hash value now that we have some input: */
1538         if (s->lookahead + s->insert >= MIN_MATCH) {
1539             uInt str = s->strstart - s->insert;
1540             s->ins_h = s->window[str];
1541             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1542 #if MIN_MATCH != 3
1543             Call UPDATE_HASH() MIN_MATCH-3 more times
1544 #endif
1545             while (s->insert) {
1546                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1547 #ifndef FASTEST
1548                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1549 #endif
1550                 s->head[s->ins_h] = (Pos)str;
1551                 str++;
1552                 s->insert--;
1553                 if (s->lookahead + s->insert < MIN_MATCH)
1554                     break;
1555             }
1556         }
1557         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1558          * but this is not important since only literal bytes will be emitted.
1559          */
1560 
1561     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1562 
1563     /* If the WIN_INIT bytes after the end of the current data have never been
1564      * written, then zero those bytes in order to avoid memory check reports of
1565      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1566      * the longest match routines.  Update the high water mark for the next
1567      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1568      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1569      */
1570     if (s->high_water < s->window_size) {
1571         ulg curr = s->strstart + (ulg)(s->lookahead);
1572         ulg init;
1573 
1574         if (s->high_water < curr) {
1575             /* Previous high water mark below current data -- zero WIN_INIT
1576              * bytes or up to end of window, whichever is less.
1577              */
1578             init = s->window_size - curr;
1579             if (init > WIN_INIT)
1580                 init = WIN_INIT;
1581             zmemzero(s->window + curr, (unsigned)init);
1582             s->high_water = curr + init;
1583         }
1584         else if (s->high_water < (ulg)curr + WIN_INIT) {
1585             /* High water mark at or above current data, but below current data
1586              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1587              * to end of window, whichever is less.
1588              */
1589             init = (ulg)curr + WIN_INIT - s->high_water;
1590             if (init > s->window_size - s->high_water)
1591                 init = s->window_size - s->high_water;
1592             zmemzero(s->window + s->high_water, (unsigned)init);
1593             s->high_water += init;
1594         }
1595     }
1596 
1597     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1598            "not enough room for search");
1599 }
1600 
1601 /* ===========================================================================
1602  * Flush the current block, with given end-of-file flag.
1603  * IN assertion: strstart is set to the end of the current match.
1604  */
1605 #define FLUSH_BLOCK_ONLY(s, last) { \
1606    _tr_flush_block(s, (s->block_start >= 0L ? \
1607                    (charf *)&s->window[(unsigned)s->block_start] : \
1608                    (charf *)Z_NULL), \
1609                 (ulg)((long)s->strstart - s->block_start), \
1610                 (last)); \
1611    s->block_start = s->strstart; \
1612    flush_pending(s->strm); \
1613    Tracev((stderr,"[FLUSH]")); \
1614 }
1615 
1616 /* Same but force premature exit if necessary. */
1617 #define FLUSH_BLOCK(s, last) { \
1618    FLUSH_BLOCK_ONLY(s, last); \
1619    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1620 }
1621 
1622 /* Maximum stored block length in deflate format (not including header). */
1623 #define MAX_STORED 65535
1624 
1625 /* Minimum of a and b. */
1626 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1627 
1628 /* ===========================================================================
1629  * Copy without compression as much as possible from the input stream, return
1630  * the current block state.
1631  *
1632  * In case deflateParams() is used to later switch to a non-zero compression
1633  * level, s->matches (otherwise unused when storing) keeps track of the number
1634  * of hash table slides to perform. If s->matches is 1, then one hash table
1635  * slide will be done when switching. If s->matches is 2, the maximum value
1636  * allowed here, then the hash table will be cleared, since two or more slides
1637  * is the same as a clear.
1638  *
1639  * deflate_stored() is written to minimize the number of times an input byte is
1640  * copied. It is most efficient with large input and output buffers, which
1641  * maximizes the opportunites to have a single copy from next_in to next_out.
1642  */
1643 local block_state deflate_stored(s, flush)
1644     deflate_state *s;
1645     int flush;
1646 {
1647     /* Smallest worthy block size when not flushing or finishing. By default
1648      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1649      * large input and output buffers, the stored block size will be larger.
1650      */
1651     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1652 
1653     /* Copy as many min_block or larger stored blocks directly to next_out as
1654      * possible. If flushing, copy the remaining available input to next_out as
1655      * stored blocks, if there is enough space.
1656      */
1657     unsigned len, left, have, last = 0;
1658     unsigned used = s->strm->avail_in;
1659     do {
1660         /* Set len to the maximum size block that we can copy directly with the
1661          * available input data and output space. Set left to how much of that
1662          * would be copied from what's left in the window.
1663          */
1664         len = MAX_STORED;       /* maximum deflate stored block length */
1665         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1666         if (s->strm->avail_out < have)          /* need room for header */
1667             break;
1668             /* maximum stored block length that will fit in avail_out: */
1669         have = s->strm->avail_out - have;
1670         left = s->strstart - s->block_start;    /* bytes left in window */
1671         if (len > (ulg)left + s->strm->avail_in)
1672             len = left + s->strm->avail_in;     /* limit len to the input */
1673         if (len > have)
1674             len = have;                         /* limit len to the output */
1675 
1676         /* If the stored block would be less than min_block in length, or if
1677          * unable to copy all of the available input when flushing, then try
1678          * copying to the window and the pending buffer instead. Also don't
1679          * write an empty block when flushing -- deflate() does that.
1680          */
1681         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1682                                 flush == Z_NO_FLUSH ||
1683                                 len != left + s->strm->avail_in))
1684             break;
1685 
1686         /* Make a dummy stored block in pending to get the header bytes,
1687          * including any pending bits. This also updates the debugging counts.
1688          */
1689         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1690         _tr_stored_block(s, (char *)0, 0L, last);
1691 
1692         /* Replace the lengths in the dummy stored block with len. */
1693         s->pending_buf[s->pending - 4] = len;
1694         s->pending_buf[s->pending - 3] = len >> 8;
1695         s->pending_buf[s->pending - 2] = ~len;
1696         s->pending_buf[s->pending - 1] = ~len >> 8;
1697 
1698         /* Write the stored block header bytes. */
1699         flush_pending(s->strm);
1700 
1701 #ifdef ZLIB_DEBUG
1702         /* Update debugging counts for the data about to be copied. */
1703         s->compressed_len += len << 3;
1704         s->bits_sent += len << 3;
1705 #endif
1706 
1707         /* Copy uncompressed bytes from the window to next_out. */
1708         if (left) {
1709             if (left > len)
1710                 left = len;
1711             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1712             s->strm->next_out += left;
1713             s->strm->avail_out -= left;
1714             s->strm->total_out += left;
1715             s->block_start += left;
1716             len -= left;
1717         }
1718 
1719         /* Copy uncompressed bytes directly from next_in to next_out, updating
1720          * the check value.
1721          */
1722         if (len) {
1723             read_buf(s->strm, s->strm->next_out, len);
1724             s->strm->next_out += len;
1725             s->strm->avail_out -= len;
1726             s->strm->total_out += len;
1727         }
1728     } while (last == 0);
1729 
1730     /* Update the sliding window with the last s->w_size bytes of the copied
1731      * data, or append all of the copied data to the existing window if less
1732      * than s->w_size bytes were copied. Also update the number of bytes to
1733      * insert in the hash tables, in the event that deflateParams() switches to
1734      * a non-zero compression level.
1735      */
1736     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1737     if (used) {
1738         /* If any input was used, then no unused input remains in the window,
1739          * therefore s->block_start == s->strstart.
1740          */
1741         if (used >= s->w_size) {    /* supplant the previous history */
1742             s->matches = 2;         /* clear hash */
1743             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1744             s->strstart = s->w_size;
1745         }
1746         else {
1747             if (s->window_size - s->strstart <= used) {
1748                 /* Slide the window down. */
1749                 s->strstart -= s->w_size;
1750                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1751                 if (s->matches < 2)
1752                     s->matches++;   /* add a pending slide_hash() */
1753             }
1754             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1755             s->strstart += used;
1756         }
1757         s->block_start = s->strstart;
1758         s->insert += MIN(used, s->w_size - s->insert);
1759     }
1760     if (s->high_water < s->strstart)
1761         s->high_water = s->strstart;
1762 
1763     /* If the last block was written to next_out, then done. */
1764     if (last)
1765         return finish_done;
1766 
1767     /* If flushing and all input has been consumed, then done. */
1768     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1769         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1770         return block_done;
1771 
1772     /* Fill the window with any remaining input. */
1773     have = s->window_size - s->strstart - 1;
1774     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1775         /* Slide the window down. */
1776         s->block_start -= s->w_size;
1777         s->strstart -= s->w_size;
1778         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1779         if (s->matches < 2)
1780             s->matches++;           /* add a pending slide_hash() */
1781         have += s->w_size;          /* more space now */
1782     }
1783     if (have > s->strm->avail_in)
1784         have = s->strm->avail_in;
1785     if (have) {
1786         read_buf(s->strm, s->window + s->strstart, have);
1787         s->strstart += have;
1788     }
1789     if (s->high_water < s->strstart)
1790         s->high_water = s->strstart;
1791 
1792     /* There was not enough avail_out to write a complete worthy or flushed
1793      * stored block to next_out. Write a stored block to pending instead, if we
1794      * have enough input for a worthy block, or if flushing and there is enough
1795      * room for the remaining input as a stored block in the pending buffer.
1796      */
1797     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1798         /* maximum stored block length that will fit in pending: */
1799     have = MIN(s->pending_buf_size - have, MAX_STORED);
1800     min_block = MIN(have, s->w_size);
1801     left = s->strstart - s->block_start;
1802     if (left >= min_block ||
1803         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1804          s->strm->avail_in == 0 && left <= have)) {
1805         len = MIN(left, have);
1806         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1807                len == left ? 1 : 0;
1808         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1809         s->block_start += len;
1810         flush_pending(s->strm);
1811     }
1812 
1813     /* We've done all we can with the available input and output. */
1814     return last ? finish_started : need_more;
1815 }
1816 
1817 /* ===========================================================================
1818  * Compress as much as possible from the input stream, return the current
1819  * block state.
1820  * This function does not perform lazy evaluation of matches and inserts
1821  * new strings in the dictionary only for unmatched strings or for short
1822  * matches. It is used only for the fast compression options.
1823  */
1824 local block_state deflate_fast(s, flush)
1825     deflate_state *s;
1826     int flush;
1827 {
1828     IPos hash_head;       /* head of the hash chain */
1829     int bflush;           /* set if current block must be flushed */
1830 
1831     for (;;) {
1832         /* Make sure that we always have enough lookahead, except
1833          * at the end of the input file. We need MAX_MATCH bytes
1834          * for the next match, plus MIN_MATCH bytes to insert the
1835          * string following the next match.
1836          */
1837         if (s->lookahead < MIN_LOOKAHEAD) {
1838             fill_window(s);
1839             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1840                 return need_more;
1841             }
1842             if (s->lookahead == 0) break; /* flush the current block */
1843         }
1844 
1845         /* Insert the string window[strstart .. strstart+2] in the
1846          * dictionary, and set hash_head to the head of the hash chain:
1847          */
1848         hash_head = NIL;
1849         if (s->lookahead >= MIN_MATCH) {
1850             INSERT_STRING(s, s->strstart, hash_head);
1851         }
1852 
1853         /* Find the longest match, discarding those <= prev_length.
1854          * At this point we have always match_length < MIN_MATCH
1855          */
1856         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1857             /* To simplify the code, we prevent matches with the string
1858              * of window index 0 (in particular we have to avoid a match
1859              * of the string with itself at the start of the input file).
1860              */
1861             s->match_length = longest_match (s, hash_head);
1862             /* longest_match() sets match_start */
1863         }
1864         if (s->match_length >= MIN_MATCH) {
1865             check_match(s, s->strstart, s->match_start, s->match_length);
1866 
1867             _tr_tally_dist(s, s->strstart - s->match_start,
1868                            s->match_length - MIN_MATCH, bflush);
1869 
1870             s->lookahead -= s->match_length;
1871 
1872             /* Insert new strings in the hash table only if the match length
1873              * is not too large. This saves time but degrades compression.
1874              */
1875 #ifndef FASTEST
1876             if (s->match_length <= s->max_insert_length &&
1877                 s->lookahead >= MIN_MATCH) {
1878                 s->match_length--; /* string at strstart already in table */
1879                 do {
1880                     s->strstart++;
1881                     INSERT_STRING(s, s->strstart, hash_head);
1882                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1883                      * always MIN_MATCH bytes ahead.
1884                      */
1885                 } while (--s->match_length != 0);
1886                 s->strstart++;
1887             } else
1888 #endif
1889             {
1890                 s->strstart += s->match_length;
1891                 s->match_length = 0;
1892                 s->ins_h = s->window[s->strstart];
1893                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1894 #if MIN_MATCH != 3
1895                 Call UPDATE_HASH() MIN_MATCH-3 more times
1896 #endif
1897                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1898                  * matter since it will be recomputed at next deflate call.
1899                  */
1900             }
1901         } else {
1902             /* No match, output a literal byte */
1903             Tracevv((stderr,"%c", s->window[s->strstart]));
1904             _tr_tally_lit (s, s->window[s->strstart], bflush);
1905             s->lookahead--;
1906             s->strstart++;
1907         }
1908         if (bflush) FLUSH_BLOCK(s, 0);
1909     }
1910     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1911     if (flush == Z_FINISH) {
1912         FLUSH_BLOCK(s, 1);
1913         return finish_done;
1914     }
1915     if (s->last_lit)
1916         FLUSH_BLOCK(s, 0);
1917     return block_done;
1918 }
1919 
1920 #ifndef FASTEST
1921 /* ===========================================================================
1922  * Same as above, but achieves better compression. We use a lazy
1923  * evaluation for matches: a match is finally adopted only if there is
1924  * no better match at the next window position.
1925  */
1926 local block_state deflate_slow(s, flush)
1927     deflate_state *s;
1928     int flush;
1929 {
1930     IPos hash_head;          /* head of hash chain */
1931     int bflush;              /* set if current block must be flushed */
1932 
1933     /* Process the input block. */
1934     for (;;) {
1935         /* Make sure that we always have enough lookahead, except
1936          * at the end of the input file. We need MAX_MATCH bytes
1937          * for the next match, plus MIN_MATCH bytes to insert the
1938          * string following the next match.
1939          */
1940         if (s->lookahead < MIN_LOOKAHEAD) {
1941             fill_window(s);
1942             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1943                 return need_more;
1944             }
1945             if (s->lookahead == 0) break; /* flush the current block */
1946         }
1947 
1948         /* Insert the string window[strstart .. strstart+2] in the
1949          * dictionary, and set hash_head to the head of the hash chain:
1950          */
1951         hash_head = NIL;
1952         if (s->lookahead >= MIN_MATCH) {
1953             INSERT_STRING(s, s->strstart, hash_head);
1954         }
1955 
1956         /* Find the longest match, discarding those <= prev_length.
1957          */
1958         s->prev_length = s->match_length, s->prev_match = s->match_start;
1959         s->match_length = MIN_MATCH-1;
1960 
1961         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1962             s->strstart - hash_head <= MAX_DIST(s)) {
1963             /* To simplify the code, we prevent matches with the string
1964              * of window index 0 (in particular we have to avoid a match
1965              * of the string with itself at the start of the input file).
1966              */
1967             s->match_length = longest_match (s, hash_head);
1968             /* longest_match() sets match_start */
1969 
1970             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1971 #if TOO_FAR <= 32767
1972                 || (s->match_length == MIN_MATCH &&
1973                     s->strstart - s->match_start > TOO_FAR)
1974 #endif
1975                 )) {
1976 
1977                 /* If prev_match is also MIN_MATCH, match_start is garbage
1978                  * but we will ignore the current match anyway.
1979                  */
1980                 s->match_length = MIN_MATCH-1;
1981             }
1982         }
1983         /* If there was a match at the previous step and the current
1984          * match is not better, output the previous match:
1985          */
1986         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1987             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1988             /* Do not insert strings in hash table beyond this. */
1989 
1990             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1991 
1992             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1993                            s->prev_length - MIN_MATCH, bflush);
1994 
1995             /* Insert in hash table all strings up to the end of the match.
1996              * strstart-1 and strstart are already inserted. If there is not
1997              * enough lookahead, the last two strings are not inserted in
1998              * the hash table.
1999              */
2000             s->lookahead -= s->prev_length-1;
2001             s->prev_length -= 2;
2002             do {
2003                 if (++s->strstart <= max_insert) {
2004                     INSERT_STRING(s, s->strstart, hash_head);
2005                 }
2006             } while (--s->prev_length != 0);
2007             s->match_available = 0;
2008             s->match_length = MIN_MATCH-1;
2009             s->strstart++;
2010 
2011             if (bflush) FLUSH_BLOCK(s, 0);
2012 
2013         } else if (s->match_available) {
2014             /* If there was no match at the previous position, output a
2015              * single literal. If there was a match but the current match
2016              * is longer, truncate the previous match to a single literal.
2017              */
2018             Tracevv((stderr,"%c", s->window[s->strstart-1]));
2019             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2020             if (bflush) {
2021                 FLUSH_BLOCK_ONLY(s, 0);
2022             }
2023             s->strstart++;
2024             s->lookahead--;
2025             if (s->strm->avail_out == 0) return need_more;
2026         } else {
2027             /* There is no previous match to compare with, wait for
2028              * the next step to decide.
2029              */
2030             s->match_available = 1;
2031             s->strstart++;
2032             s->lookahead--;
2033         }
2034     }
2035     Assert (flush != Z_NO_FLUSH, "no flush?");
2036     if (s->match_available) {
2037         Tracevv((stderr,"%c", s->window[s->strstart-1]));
2038         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2039         s->match_available = 0;
2040     }
2041     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2042     if (flush == Z_FINISH) {
2043         FLUSH_BLOCK(s, 1);
2044         return finish_done;
2045     }
2046     if (s->last_lit)
2047         FLUSH_BLOCK(s, 0);
2048     return block_done;
2049 }
2050 #endif /* FASTEST */
2051 
2052 /* ===========================================================================
2053  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2054  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2055  * deflate switches away from Z_RLE.)
2056  */
2057 local block_state deflate_rle(s, flush)
2058     deflate_state *s;
2059     int flush;
2060 {
2061     int bflush;             /* set if current block must be flushed */
2062     uInt prev;              /* byte at distance one to match */
2063     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2064 
2065     for (;;) {
2066         /* Make sure that we always have enough lookahead, except
2067          * at the end of the input file. We need MAX_MATCH bytes
2068          * for the longest run, plus one for the unrolled loop.
2069          */
2070         if (s->lookahead <= MAX_MATCH) {
2071             fill_window(s);
2072             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2073                 return need_more;
2074             }
2075             if (s->lookahead == 0) break; /* flush the current block */
2076         }
2077 
2078         /* See how many times the previous byte repeats */
2079         s->match_length = 0;
2080         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2081             scan = s->window + s->strstart - 1;
2082             prev = *scan;
2083             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2084                 strend = s->window + s->strstart + MAX_MATCH;
2085                 do {
2086                 } while (prev == *++scan && prev == *++scan &&
2087                          prev == *++scan && prev == *++scan &&
2088                          prev == *++scan && prev == *++scan &&
2089                          prev == *++scan && prev == *++scan &&
2090                          scan < strend);
2091                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2092                 if (s->match_length > s->lookahead)
2093                     s->match_length = s->lookahead;
2094             }
2095             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2096         }
2097 
2098         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2099         if (s->match_length >= MIN_MATCH) {
2100             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2101 
2102             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2103 
2104             s->lookahead -= s->match_length;
2105             s->strstart += s->match_length;
2106             s->match_length = 0;
2107         } else {
2108             /* No match, output a literal byte */
2109             Tracevv((stderr,"%c", s->window[s->strstart]));
2110             _tr_tally_lit (s, s->window[s->strstart], bflush);
2111             s->lookahead--;
2112             s->strstart++;
2113         }
2114         if (bflush) FLUSH_BLOCK(s, 0);
2115     }
2116     s->insert = 0;
2117     if (flush == Z_FINISH) {
2118         FLUSH_BLOCK(s, 1);
2119         return finish_done;
2120     }
2121     if (s->last_lit)
2122         FLUSH_BLOCK(s, 0);
2123     return block_done;
2124 }
2125 
2126 /* ===========================================================================
2127  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2128  * (It will be regenerated if this run of deflate switches away from Huffman.)
2129  */
2130 local block_state deflate_huff(s, flush)
2131     deflate_state *s;
2132     int flush;
2133 {
2134     int bflush;             /* set if current block must be flushed */
2135 
2136     for (;;) {
2137         /* Make sure that we have a literal to write. */
2138         if (s->lookahead == 0) {
2139             fill_window(s);
2140             if (s->lookahead == 0) {
2141                 if (flush == Z_NO_FLUSH)
2142                     return need_more;
2143                 break;      /* flush the current block */
2144             }
2145         }
2146 
2147         /* Output a literal byte */
2148         s->match_length = 0;
2149         Tracevv((stderr,"%c", s->window[s->strstart]));
2150         _tr_tally_lit (s, s->window[s->strstart], bflush);
2151         s->lookahead--;
2152         s->strstart++;
2153         if (bflush) FLUSH_BLOCK(s, 0);
2154     }
2155     s->insert = 0;
2156     if (flush == Z_FINISH) {
2157         FLUSH_BLOCK(s, 1);
2158         return finish_done;
2159     }
2160     if (s->last_lit)
2161         FLUSH_BLOCK(s, 0);
2162     return block_done;
2163 }
2164