xref: /reactos/sdk/lib/crt/math/hypot.c (revision 1de09c47)
1 /* Copyright (C) 1995 DJ Delorie, see COPYING.DJ for details */
2 /*
3  * hypot() function for DJGPP.
4  *
5  * hypot() computes sqrt(x^2 + y^2).  The problem with the obvious
6  * naive implementation is that it might fail for very large or
7  * very small arguments.  For instance, for large x or y the result
8  * might overflow even if the value of the function should not,
9  * because squaring a large number might trigger an overflow.  For
10  * very small numbers, their square might underflow and will be
11  * silently replaced by zero; this won't cause an exception, but might
12  * have an adverse effect on the accuracy of the result.
13  *
14  * This implementation tries to avoid the above pitfals, without
15  * inflicting too much of a performance hit.
16  *
17  */
18 #include <precomp.h>
19 
20 #if (_MSC_VER >= 1920)
21 #pragma function(_hypot)
22 #endif
23 
24 /* Approximate square roots of DBL_MAX and DBL_MIN.  Numbers
25    between these two shouldn't neither overflow nor underflow
26    when squared.  */
27 #define __SQRT_DBL_MAX 1.3e+154
28 #define __SQRT_DBL_MIN 2.3e-162
29 
30 /*
31  * @implemented
32  */
33 double
34 _hypot(double x, double y)
35 {
36   double abig = fabs(x), asmall = fabs(y);
37   double ratio;
38 
39   /* Make abig = max(|x|, |y|), asmall = min(|x|, |y|).  */
40   if (abig < asmall)
41     {
42       double temp = abig;
43 
44       abig = asmall;
45       asmall = temp;
46     }
47 
48   /* Trivial case.  */
49   if (asmall == 0.)
50     return abig;
51 
52   /* Scale the numbers as much as possible by using its ratio.
53      For example, if both ABIG and ASMALL are VERY small, then
54      X^2 + Y^2 might be VERY inaccurate due to loss of
55      significant digits.  Dividing ASMALL by ABIG scales them
56      to a certain degree, so that accuracy is better.  */
57 
58   if ((ratio = asmall / abig) > __SQRT_DBL_MIN && abig < __SQRT_DBL_MAX)
59     return abig * sqrt(1.0 + ratio*ratio);
60   else
61     {
62       /* Slower but safer algorithm due to Moler and Morrison.  Never
63          produces any intermediate result greater than roughly the
64          larger of X and Y.  Should converge to machine-precision
65          accuracy in 3 iterations.  */
66 
67       double r = ratio*ratio, t, s, p = abig, q = asmall;
68 
69       do {
70         t = 4. + r;
71         if (t == 4.)
72           break;
73         s = r / t;
74         p += 2. * s * p;
75         q *= s;
76         r = (q / p) * (q / p);
77       } while (1);
78 
79       return p;
80     }
81 }
82 
83 #ifdef  TEST
84 
85 #include <msvcrt/stdio.h>
86 
87 int
88 main(void)
89 {
90   printf("hypot(3, 4) =\t\t\t %25.17e\n", _hypot(3., 4.));
91   printf("hypot(3*10^150, 4*10^150) =\t %25.17g\n", _hypot(3.e+150, 4.e+150));
92   printf("hypot(3*10^306, 4*10^306) =\t %25.17g\n", _hypot(3.e+306, 4.e+306));
93   printf("hypot(3*10^-320, 4*10^-320) =\t %25.17g\n",_hypot(3.e-320, 4.e-320));
94   printf("hypot(0.7*DBL_MAX, 0.7*DBL_MAX) =%25.17g\n",_hypot(0.7*DBL_MAX, 0.7*DBL_MAX));
95   printf("hypot(DBL_MAX, 1.0) =\t\t %25.17g\n", _hypot(DBL_MAX, 1.0));
96   printf("hypot(1.0, DBL_MAX) =\t\t %25.17g\n", _hypot(1.0, DBL_MAX));
97   printf("hypot(0.0, DBL_MAX) =\t\t %25.17g\n", _hypot(0.0, DBL_MAX));
98 
99   return 0;
100 }
101 
102 #endif
103