xref: /reactos/sdk/lib/crt/math/i386/aulldvrm_asm.s (revision 3e1f4074)
1/*
2 * COPYRIGHT:         See COPYING in the top level directory
3 * PROJECT:           ReactOS kernel
4 * PURPOSE:           Run-Time Library
5 * FILE:              lib/sdk/crt/math/i386/aulldvrm_asm.s
6 * PROGRAMER:         Alex Ionescu (alex@relsoft.net)
7 *
8 * Copyright (C) 2002 Michael Ringgaard.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the project nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES// LOSS OF USE, DATA, OR PROFITS// OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37#include <asm.inc>
38
39PUBLIC __aulldvrm
40
41/* FUNCTIONS ***************************************************************/
42.code
43
44__aulldvrm:
45
46// ulldvrm - unsigned long divide and remainder
47//
48// Purpose:
49//       Does a unsigned long divide and remainder of the arguments.  Arguments
50//       are not changed.
51//
52// Entry:
53//       Arguments are passed on the stack:
54//               1st pushed: divisor (QWORD)
55//               2nd pushed: dividend (QWORD)
56//
57// Exit:
58//       EDX:EAX contains the quotient (dividend/divisor)
59//       EBX:ECX contains the remainder (divided % divisor)
60//       NOTE: this routine removes the parameters from the stack.
61//
62// Uses:
63//       ECX
64//
65        push    esi
66
67// Set up the local stack and save the index registers.  When this is done
68// the stack frame will look as follows (assuming that the expression a/b will
69// generate a call to aulldvrm(a, b)):
70//
71//               -----------------
72//               |               |
73//               |---------------|
74//               |               |
75//               |--divisor (b)--|
76//               |               |
77//               |---------------|
78//               |               |
79//               |--dividend (a)-|
80//               |               |
81//               |---------------|
82//               | return addr** |
83//               |---------------|
84//       ESP---->|      ESI      |
85//               -----------------
86//
87
88#undef DVNDLO
89#undef DVNDHI
90#undef DVSRLO
91#undef DVSRHI
92#define DVNDLO  [esp + 8]       // stack address of dividend (a)
93#define DVNDHI  [esp + 12]       // stack address of dividend (a)
94#define DVSRLO  [esp + 16]      // stack address of divisor (b)
95#define DVSRHI  [esp + 20]      // stack address of divisor (b)
96
97//
98// Now do the divide.  First look to see if the divisor is less than 4194304K.
99// If so, then we can use a simple algorithm with word divides, otherwise
100// things get a little more complex.
101//
102
103        mov     eax,DVSRHI // check to see if divisor < 4194304K
104        or      eax,eax
105        jnz     short .L1        // nope, gotta do this the hard way
106        mov     ecx,DVSRLO // load divisor
107        mov     eax,DVNDHI // load high word of dividend
108        xor     edx,edx
109        div     ecx             // get high order bits of quotient
110        mov     ebx,eax         // save high bits of quotient
111        mov     eax,DVNDLO // edx:eax <- remainder:lo word of dividend
112        div     ecx             // get low order bits of quotient
113        mov     esi,eax         // ebx:esi <- quotient
114
115//
116// Now we need to do a multiply so that we can compute the remainder.
117//
118        mov     eax,ebx         // set up high word of quotient
119        mul     dword ptr DVSRLO // HIWORD(QUOT) * DVSR
120        mov     ecx,eax         // save the result in ecx
121        mov     eax,esi         // set up low word of quotient
122        mul     dword ptr DVSRLO // LOWORD(QUOT) * DVSR
123        add     edx,ecx         // EDX:EAX = QUOT * DVSR
124        jmp     short .L2        // complete remainder calculation
125
126//
127// Here we do it the hard way.  Remember, eax contains DVSRHI
128//
129
130.L1:
131        mov     ecx,eax         // ecx:ebx <- divisor
132        mov     ebx,DVSRLO
133        mov     edx,DVNDHI // edx:eax <- dividend
134        mov     eax,DVNDLO
135.L3:
136        shr     ecx,1           // shift divisor right one bit// hi bit <- 0
137        rcr     ebx,1
138        shr     edx,1           // shift dividend right one bit// hi bit <- 0
139        rcr     eax,1
140        or      ecx,ecx
141        jnz     short .L3        // loop until divisor < 4194304K
142        div     ebx             // now divide, ignore remainder
143        mov     esi,eax         // save quotient
144
145//
146// We may be off by one, so to check, we will multiply the quotient
147// by the divisor and check the result against the orignal dividend
148// Note that we must also check for overflow, which can occur if the
149// dividend is close to 2**64 and the quotient is off by 1.
150//
151
152        mul     dword ptr DVSRHI // QUOT * DVSRHI
153        mov     ecx,eax
154        mov     eax,DVSRLO
155        mul     esi             // QUOT * DVSRLO
156        add     edx,ecx         // EDX:EAX = QUOT * DVSR
157        jc      short .L4        // carry means Quotient is off by 1
158
159//
160// do long compare here between original dividend and the result of the
161// multiply in edx:eax.  If original is larger or equal, we are ok, otherwise
162// subtract one (1) from the quotient.
163//
164
165        cmp     edx,DVNDHI // compare hi words of result and original
166        ja      short .L4        // if result > original, do subtract
167        jb      short .L5        // if result < original, we are ok
168        cmp     eax,DVNDLO // hi words are equal, compare lo words
169        jbe     short .L5        // if less or equal we are ok, else subtract
170.L4:
171        dec     esi             // subtract 1 from quotient
172        sub     eax,DVSRLO // subtract divisor from result
173        sbb     edx,DVSRHI
174.L5:
175        xor     ebx,ebx         // ebx:esi <- quotient
176
177.L2:
178//
179// Calculate remainder by subtracting the result from the original dividend.
180// Since the result is already in a register, we will do the subtract in the
181// opposite direction and negate the result.
182//
183
184        sub     eax,DVNDLO // subtract dividend from result
185        sbb     edx,DVNDHI
186        neg     edx             // otherwise, negate the result
187        neg     eax
188        sbb     edx,0
189
190//
191// Now we need to get the quotient into edx:eax and the remainder into ebx:ecx.
192//
193        mov     ecx,edx
194        mov     edx,ebx
195        mov     ebx,ecx
196        mov     ecx,eax
197        mov     eax,esi
198//
199// Just the cleanup left to do.  edx:eax contains the quotient.
200// Restore the saved registers and return.
201//
202
203        pop     esi
204
205        ret     16
206
207END
208