xref: /reactos/sdk/lib/crt/math/libm_sse2/acos.c (revision d6eebaa4)
1 
2 /*******************************************************************************
3 MIT License
4 -----------
5 
6 Copyright (c) 2002-2019 Advanced Micro Devices, Inc.
7 
8 Permission is hereby granted, free of charge, to any person obtaining a copy
9 of this Software and associated documentaon files (the "Software"), to deal
10 in the Software without restriction, including without limitation the rights
11 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 copies of the Software, and to permit persons to whom the Software is
13 furnished to do so, subject to the following conditions:
14 
15 The above copyright notice and this permission notice shall be included in
16 all copies or substantial portions of the Software.
17 
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 THE SOFTWARE.
25 *******************************************************************************/
26 
27 #include "libm.h"
28 #include "libm_util.h"
29 
30 #define USE_VAL_WITH_FLAGS
31 #define USE_NAN_WITH_FLAGS
32 #define USE_HANDLE_ERROR
33 #include "libm_inlines.h"
34 #undef USE_NAN_WITH_FLAGS
35 #undef USE_VAL_WITH_FLAGS
36 #undef USE_HANDLE_ERROR
37 
38 #include "libm_errno.h"
39 
40 #ifdef _MSC_VER
41 #pragma function(acos)
42 #endif
43 
44 double FN_PROTOTYPE(acos)(double x)
45 {
46   /* Computes arccos(x).
47      The argument is first reduced by noting that arccos(x)
48      is invalid for abs(x) > 1. For denormal and small
49      arguments arccos(x) = pi/2 to machine accuracy.
50      Remaining argument ranges are handled as follows.
51      For abs(x) <= 0.5 use
52      arccos(x) = pi/2 - arcsin(x)
53      = pi/2 - (x + x^3*R(x^2))
54      where R(x^2) is a rational minimax approximation to
55      (arcsin(x) - x)/x^3.
56      For abs(x) > 0.5 exploit the identity:
57      arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
58      together with the above rational approximation, and
59      reconstruct the terms carefully.
60   */
61 
62   /* Some constants and split constants. */
63 
64   static const double
65     pi         = 3.1415926535897933e+00, /* 0x400921fb54442d18 */
66     piby2      = 1.5707963267948965580e+00, /* 0x3ff921fb54442d18 */
67     piby2_head = 1.5707963267948965580e+00, /* 0x3ff921fb54442d18 */
68     piby2_tail = 6.12323399573676603587e-17; /* 0x3c91a62633145c07 */
69 
70   double u, y, s=0.0, r;
71   int xexp, xnan, transform=0;
72 
73   unsigned long long ux, aux, xneg;
74   GET_BITS_DP64(x, ux);
75   aux = ux & ~SIGNBIT_DP64;
76   xneg = (ux & SIGNBIT_DP64);
77   xnan = (aux > PINFBITPATT_DP64);
78   xexp = (int)((ux & EXPBITS_DP64) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64;
79 
80   /* Special cases */
81 
82   if (xnan)
83     {
84       return _handle_error("acos", OP_ACOS, ux|0x0008000000000000, _DOMAIN,
85                           0, EDOM, x, 0.0, 1);
86     }
87   else if (xexp < -56)
88     { /* y small enough that arccos(x) = pi/2 */
89       return val_with_flags(piby2, AMD_F_INEXACT);
90     }
91   else if (xexp >= 0)
92     { /* abs(x) >= 1.0 */
93       if (x == 1.0)
94         return 0.0;
95       else if (x == -1.0)
96         return val_with_flags(pi, AMD_F_INEXACT);
97       else
98         return _handle_error("acos", OP_ACOS, INDEFBITPATT_DP64, _DOMAIN,
99                             AMD_F_INVALID, EDOM, x, 0.0, 1);
100     }
101 
102   if (xneg) y = -x;
103   else y = x;
104 
105   transform = (xexp >= -1); /* abs(x) >= 0.5 */
106 
107   if (transform)
108     { /* Transform y into the range [0,0.5) */
109       r = 0.5*(1.0 - y);
110       /* VC++ intrinsic call */
111       _mm_store_sd(&s, _mm_sqrt_sd(_mm_setzero_pd(), _mm_load_sd(&r)));
112       y = s;
113     }
114   else
115     r = y*y;
116 
117   /* Use a rational approximation for [0.0, 0.5] */
118 
119   u = r*(0.227485835556935010735943483075 +
120          (-0.445017216867635649900123110649 +
121           (0.275558175256937652532686256258 +
122            (-0.0549989809235685841612020091328 +
123             (0.00109242697235074662306043804220 +
124              0.0000482901920344786991880522822991*r)*r)*r)*r)*r)/
125     (1.36491501334161032038194214209 +
126      (-3.28431505720958658909889444194 +
127       (2.76568859157270989520376345954 +
128        (-0.943639137032492685763471240072 +
129 	0.105869422087204370341222318533*r)*r)*r)*r);
130 
131   if (transform)
132     { /* Reconstruct acos carefully in transformed region */
133       if (xneg) return pi - 2.0*(s+(y*u - piby2_tail));
134       else
135 	{
136 	  double c, s1;
137 	  unsigned long long us;
138 	  GET_BITS_DP64(s, us);
139 	  PUT_BITS_DP64(0xffffffff00000000 & us, s1);
140 	  c = (r-s1*s1)/(s+s1);
141           return 2.0*s1 + (2.0*c+2.0*y*u);
142 	}
143     }
144   else
145     return piby2_head - (x - (piby2_tail - x*u));
146 }
147