1 2 /******************************************************************************* 3 MIT License 4 ----------- 5 6 Copyright (c) 2002-2019 Advanced Micro Devices, Inc. 7 8 Permission is hereby granted, free of charge, to any person obtaining a copy 9 of this Software and associated documentaon files (the "Software"), to deal 10 in the Software without restriction, including without limitation the rights 11 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 copies of the Software, and to permit persons to whom the Software is 13 furnished to do so, subject to the following conditions: 14 15 The above copyright notice and this permission notice shall be included in 16 all copies or substantial portions of the Software. 17 18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 21 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 THE SOFTWARE. 25 *******************************************************************************/ 26 27 #include "libm.h" 28 #include "libm_util.h" 29 30 31 /* Given positive argument x, reduce it to the range [-pi/4,pi/4] using 32 extra precision, and return the result in r. 33 Return value "region" tells how many lots of pi/2 were subtracted 34 from x to put it in the range [-pi/4,pi/4], mod 4. */ 35 void __remainder_piby2f(unsigned long long ux, double *r, int *region) 36 { 37 38 39 /* This method simulates multi-precision floating-point 40 arithmetic and is accurate for all 1 <= x < infinity */ 41 #define bitsper 36 42 unsigned long long res[10]; 43 unsigned long long u, carry, mask, mant, nextbits; 44 int first, last, i, rexp, xexp, resexp, ltb, determ, bc; 45 double dx; 46 static const double 47 piby2 = 1.57079632679489655800e+00; /* 0x3ff921fb54442d18 */ 48 static unsigned long long pibits[] = 49 { 50 0LL, 51 5215LL, 13000023176LL, 11362338026LL, 67174558139LL, 52 34819822259LL, 10612056195LL, 67816420731LL, 57840157550LL, 53 19558516809LL, 50025467026LL, 25186875954LL, 18152700886LL 54 }; 55 56 57 xexp = (int)(((ux & EXPBITS_DP64) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64); 58 ux = ((ux & MANTBITS_DP64) | IMPBIT_DP64) >> 29; 59 60 61 /* Now ux is the mantissa bit pattern of x as a long integer */ 62 mask = 1; 63 mask = (mask << bitsper) - 1; 64 65 /* Set first and last to the positions of the first 66 and last chunks of 2/pi that we need */ 67 first = xexp / bitsper; 68 resexp = xexp - first * bitsper; 69 /* 120 is the theoretical maximum number of bits (actually 70 115 for IEEE single precision) that we need to extract 71 from the middle of 2/pi to compute the reduced argument 72 accurately enough for our purposes */ 73 last = first + 120 / bitsper; 74 75 76 /* Do a long multiplication of the bits of 2/pi by the 77 integer mantissa */ 78 #if 0 79 for (i = last; i >= first; i--) 80 { 81 u = pibits[i] * ux + carry; 82 res[i - first] = u & mask; 83 carry = u >> bitsper; 84 } 85 res[last - first + 1] = 0; 86 #else 87 /* Unroll the loop. This is only correct because we know 88 that bitsper is fixed as 36. */ 89 res[4] = 0; 90 u = pibits[last] * ux; 91 res[3] = u & mask; 92 carry = u >> bitsper; 93 u = pibits[last - 1] * ux + carry; 94 res[2] = u & mask; 95 carry = u >> bitsper; 96 u = pibits[last - 2] * ux + carry; 97 res[1] = u & mask; 98 carry = u >> bitsper; 99 u = pibits[first] * ux + carry; 100 res[0] = u & mask; 101 #endif 102 103 104 /* Reconstruct the result */ 105 ltb = (int)((((res[0] << bitsper) | res[1]) 106 >> (bitsper - 1 - resexp)) & 7); 107 108 /* determ says whether the fractional part is >= 0.5 */ 109 determ = ltb & 1; 110 111 i = 1; 112 if (determ) 113 { 114 /* The mantissa is >= 0.5. We want to subtract it 115 from 1.0 by negating all the bits */ 116 *region = ((ltb >> 1) + 1) & 3; 117 mant = 1; 118 mant = ~(res[1]) & ((mant << (bitsper - resexp)) - 1); 119 while (mant < 0x0000000000010000) 120 { 121 i++; 122 mant = (mant << bitsper) | (~(res[i]) & mask); 123 } 124 nextbits = (~(res[i+1]) & mask); 125 } 126 else 127 { 128 *region = (ltb >> 1); 129 mant = 1; 130 mant = res[1] & ((mant << (bitsper - resexp)) - 1); 131 while (mant < 0x0000000000010000) 132 { 133 i++; 134 mant = (mant << bitsper) | res[i]; 135 } 136 nextbits = res[i+1]; 137 } 138 139 140 /* Normalize the mantissa. The shift value 6 here, determined by 141 trial and error, seems to give optimal speed. */ 142 bc = 0; 143 while (mant < 0x0000400000000000) 144 { 145 bc += 6; 146 mant <<= 6; 147 } 148 while (mant < 0x0010000000000000) 149 { 150 bc++; 151 mant <<= 1; 152 } 153 mant |= nextbits >> (bitsper - bc); 154 155 rexp = 52 + resexp - bc - i * bitsper; 156 157 158 /* Put the result exponent rexp onto the mantissa pattern */ 159 u = ((unsigned long long)rexp + EXPBIAS_DP64) << EXPSHIFTBITS_DP64; 160 ux = (mant & MANTBITS_DP64) | u; 161 if (determ) 162 /* If we negated the mantissa we negate x too */ 163 ux |= SIGNBIT_DP64; 164 PUT_BITS_DP64(ux, dx); 165 166 167 /* x is a double precision version of the fractional part of 168 x * 2 / pi. Multiply x by pi/2 in double precision 169 to get the reduced argument r. */ 170 *r = dx * piby2; 171 return; 172 173 } 174