xref: /386bsd/usr/local/lib/emacs/19.25/lisp/byte-opt.el (revision a2142627)
1;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
2
3;;; Copyright (c) 1991, 1994 Free Software Foundation, Inc.
4
5;; Author: Jamie Zawinski <jwz@lucid.com>
6;;	Hallvard Furuseth <hbf@ulrik.uio.no>
7;; Keywords: internal
8
9;; This file is part of GNU Emacs.
10
11;; GNU Emacs is free software; you can redistribute it and/or modify
12;; it under the terms of the GNU General Public License as published by
13;; the Free Software Foundation; either version 2, or (at your option)
14;; any later version.
15
16;; GNU Emacs is distributed in the hope that it will be useful,
17;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19;; GNU General Public License for more details.
20
21;; You should have received a copy of the GNU General Public License
22;; along with GNU Emacs; see the file COPYING.  If not, write to
23;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24
25;;; Commentary:
26
27;;; ========================================================================
28;;; "No matter how hard you try, you can't make a racehorse out of a pig.
29;;; you can, however, make a faster pig."
30;;;
31;;; Or, to put it another way, the emacs byte compiler is a VW Bug.  This code
32;;; makes it be a VW Bug with fuel injection and a turbocharger...  You're
33;;; still not going to make it go faster than 70 mph, but it might be easier
34;;; to get it there.
35;;;
36
37;;; TO DO:
38;;;
39;;; (apply '(lambda (x &rest y) ...) 1 (foo))
40;;;
41;;; collapse common subexpressions
42;;;
43;;; maintain a list of functions known not to access any global variables
44;;; (actually, give them a 'dynamically-safe property) and then
45;;;   (let ( v1 v2 ... vM vN ) <...dynamically-safe...> )  ==>
46;;;   (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
47;;; by recursing on this, we might be able to eliminate the entire let.
48;;; However certain variables should never have their bindings optimized
49;;; away, because they affect everything.
50;;;   (put 'debug-on-error 'binding-is-magic t)
51;;;   (put 'debug-on-abort 'binding-is-magic t)
52;;;   (put 'inhibit-quit 'binding-is-magic t)
53;;;   (put 'quit-flag 'binding-is-magic t)
54;;; others?
55;;;
56;;; Simple defsubsts often produce forms like
57;;;    (let ((v1 (f1)) (v2 (f2)) ...)
58;;;       (FN v1 v2 ...))
59;;; It would be nice if we could optimize this to
60;;;    (FN (f1) (f2) ...)
61;;; but we can't unless FN is dynamically-safe (it might be dynamically
62;;; referring to the bindings that the lambda arglist established.)
63;;; One of the uncountable lossages introduced by dynamic scope...
64;;;
65;;; Maybe there should be a control-structure that says "turn on
66;;; fast-and-loose type-assumptive optimizations here."  Then when
67;;; we see a form like (car foo) we can from then on assume that
68;;; the variable foo is of type cons, and optimize based on that.
69;;; But, this won't win much because of (you guessed it) dynamic
70;;; scope.  Anything down the stack could change the value.
71;;;
72;;; It would be nice if redundant sequences could be factored out as well,
73;;; when they are known to have no side-effects:
74;;;   (list (+ a b c) (+ a b c))   -->  a b add c add dup list-2
75;;; but beware of traps like
76;;;   (cons (list x y) (list x y))
77;;;
78;;; Tail-recursion elimination is not really possible in Emacs Lisp.
79;;; Tail-recursion elimination is almost always impossible when all variables
80;;; have dynamic scope, but given that the "return" byteop requires the
81;;; binding stack to be empty (rather than emptying it itself), there can be
82;;; no truly tail-recursive Emacs Lisp functions that take any arguments or
83;;; make any bindings.
84;;;
85;;; Here is an example of an Emacs Lisp function which could safely be
86;;; byte-compiled tail-recursively:
87;;;
88;;;  (defun tail-map (fn list)
89;;;    (cond (list
90;;;           (funcall fn (car list))
91;;;           (tail-map fn (cdr list)))))
92;;;
93;;; However, if there was even a single let-binding around the COND,
94;;; it could not be byte-compiled, because there would be an "unbind"
95;;; byte-op between the final "call" and "return."  Adding a
96;;; Bunbind_all byteop would fix this.
97;;;
98;;;   (defun foo (x y z) ... (foo a b c))
99;;;   ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
100;;;   ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
101;;;   ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
102;;;
103;;; this also can be considered tail recursion:
104;;;
105;;;   ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
106;;; could generalize this by doing the optimization
107;;;   (goto X) ... X: (return)  -->  (return)
108;;;
109;;; But this doesn't solve all of the problems: although by doing tail-
110;;; recursion elimination in this way, the call-stack does not grow, the
111;;; binding-stack would grow with each recursive step, and would eventually
112;;; overflow.  I don't believe there is any way around this without lexical
113;;; scope.
114;;;
115;;; Wouldn't it be nice if Emacs Lisp had lexical scope.
116;;;
117;;; Idea: the form (lexical-scope) in a file means that the file may be
118;;; compiled lexically.  This proclamation is file-local.  Then, within
119;;; that file, "let" would establish lexical bindings, and "let-dynamic"
120;;; would do things the old way.  (Or we could use CL "declare" forms.)
121;;; We'd have to notice defvars and defconsts, since those variables should
122;;; always be dynamic, and attempting to do a lexical binding of them
123;;; should simply do a dynamic binding instead.
124;;; But!  We need to know about variables that were not necessarily defvarred
125;;; in the file being compiled (doing a boundp check isn't good enough.)
126;;; Fdefvar() would have to be modified to add something to the plist.
127;;;
128;;; A major disadvantage of this scheme is that the interpreter and compiler
129;;; would have different semantics for files compiled with (dynamic-scope).
130;;; Since this would be a file-local optimization, there would be no way to
131;;; modify the interpreter to obey this (unless the loader was hacked
132;;; in some grody way, but that's a really bad idea.)
133;;;
134;;; Really the Right Thing is to make lexical scope the default across
135;;; the board, in the interpreter and compiler, and just FIX all of
136;;; the code that relies on dynamic scope of non-defvarred variables.
137
138;;; Code:
139
140(defun byte-compile-log-lap-1 (format &rest args)
141  (if (aref byte-code-vector 0)
142      (error "The old version of the disassembler is loaded.  Reload new-bytecomp as well."))
143  (byte-compile-log-1
144   (apply 'format format
145     (let (c a)
146       (mapcar '(lambda (arg)
147		  (if (not (consp arg))
148		      (if (and (symbolp arg)
149			       (string-match "^byte-" (symbol-name arg)))
150			  (intern (substring (symbol-name arg) 5))
151			arg)
152		    (if (integerp (setq c (car arg)))
153			(error "non-symbolic byte-op %s" c))
154		    (if (eq c 'TAG)
155			(setq c arg)
156		      (setq a (cond ((memq c byte-goto-ops)
157				     (car (cdr (cdr arg))))
158				    ((memq c byte-constref-ops)
159				     (car (cdr arg)))
160				    (t (cdr arg))))
161		      (setq c (symbol-name c))
162		      (if (string-match "^byte-." c)
163			  (setq c (intern (substring c 5)))))
164		    (if (eq c 'constant) (setq c 'const))
165		    (if (and (eq (cdr arg) 0)
166			     (not (memq c '(unbind call const))))
167			c
168		      (format "(%s %s)" c a))))
169	       args)))))
170
171(defmacro byte-compile-log-lap (format-string &rest args)
172  (list 'and
173	'(memq byte-optimize-log '(t byte))
174	(cons 'byte-compile-log-lap-1
175	      (cons format-string args))))
176
177
178;;; byte-compile optimizers to support inlining
179
180(put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
181
182(defun byte-optimize-inline-handler (form)
183  "byte-optimize-handler for the `inline' special-form."
184  (cons 'progn
185	(mapcar
186	 '(lambda (sexp)
187	    (let ((fn (car-safe sexp)))
188	      (if (and (symbolp fn)
189		    (or (cdr (assq fn byte-compile-function-environment))
190		      (and (fboundp fn)
191			(not (or (cdr (assq fn byte-compile-macro-environment))
192				 (and (consp (setq fn (symbol-function fn)))
193				      (eq (car fn) 'macro))
194				 (subrp fn))))))
195		  (byte-compile-inline-expand sexp)
196		sexp)))
197	 (cdr form))))
198
199
200;; Splice the given lap code into the current instruction stream.
201;; If it has any labels in it, you're responsible for making sure there
202;; are no collisions, and that byte-compile-tag-number is reasonable
203;; after this is spliced in.  The provided list is destroyed.
204(defun byte-inline-lapcode (lap)
205  (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
206
207
208(defun byte-compile-inline-expand (form)
209  (let* ((name (car form))
210	 (fn (or (cdr (assq name byte-compile-function-environment))
211		 (and (fboundp name) (symbol-function name)))))
212    (if (null fn)
213	(progn
214	  (byte-compile-warn "attempt to inline %s before it was defined" name)
215	  form)
216      ;; else
217      (if (and (consp fn) (eq (car fn) 'autoload))
218	  (load (nth 1 fn)))
219      (if (and (consp fn) (eq (car fn) 'autoload))
220	  (error "file \"%s\" didn't define \"%s\"" (nth 1 fn) name))
221      (if (symbolp fn)
222	  (byte-compile-inline-expand (cons fn (cdr form)))
223	(if (byte-code-function-p fn)
224	    (cons (list 'lambda (aref fn 0)
225			(list 'byte-code (aref fn 1) (aref fn 2) (aref fn 3)))
226		  (cdr form))
227	  (if (not (eq (car fn) 'lambda)) (error "%s is not a lambda" name))
228	  (cons fn (cdr form)))))))
229
230;;; ((lambda ...) ...)
231;;;
232(defun byte-compile-unfold-lambda (form &optional name)
233  (or name (setq name "anonymous lambda"))
234  (let ((lambda (car form))
235	(values (cdr form)))
236    (if (byte-code-function-p lambda)
237	(setq lambda (list 'lambda (aref lambda 0)
238			   (list 'byte-code (aref lambda 1)
239				 (aref lambda 2) (aref lambda 3)))))
240    (let ((arglist (nth 1 lambda))
241	  (body (cdr (cdr lambda)))
242	  optionalp restp
243	  bindings)
244      (if (and (stringp (car body)) (cdr body))
245	  (setq body (cdr body)))
246      (if (and (consp (car body)) (eq 'interactive (car (car body))))
247	  (setq body (cdr body)))
248      (while arglist
249	(cond ((eq (car arglist) '&optional)
250	       ;; ok, I'll let this slide because funcall_lambda() does...
251	       ;; (if optionalp (error "multiple &optional keywords in %s" name))
252	       (if restp (error "&optional found after &rest in %s" name))
253	       (if (null (cdr arglist))
254		   (error "nothing after &optional in %s" name))
255	       (setq optionalp t))
256	      ((eq (car arglist) '&rest)
257	       ;; ...but it is by no stretch of the imagination a reasonable
258	       ;; thing that funcall_lambda() allows (&rest x y) and
259	       ;; (&rest x &optional y) in arglists.
260	       (if (null (cdr arglist))
261		   (error "nothing after &rest in %s" name))
262	       (if (cdr (cdr arglist))
263		   (error "multiple vars after &rest in %s" name))
264	       (setq restp t))
265	      (restp
266	       (setq bindings (cons (list (car arglist)
267					  (and values (cons 'list values)))
268				    bindings)
269		     values nil))
270	      ((and (not optionalp) (null values))
271	       (byte-compile-warn "attempt to open-code %s with too few arguments" name)
272	       (setq arglist nil values 'too-few))
273	      (t
274	       (setq bindings (cons (list (car arglist) (car values))
275				    bindings)
276		     values (cdr values))))
277	(setq arglist (cdr arglist)))
278      (if values
279	  (progn
280	    (or (eq values 'too-few)
281		(byte-compile-warn
282		 "attempt to open-code %s with too many arguments" name))
283	    form)
284	(let ((newform
285	       (if bindings
286		   (cons 'let (cons (nreverse bindings) body))
287		 (cons 'progn body))))
288	  (byte-compile-log "  %s\t==>\t%s" form newform)
289	  newform)))))
290
291
292;;; implementing source-level optimizers
293
294(defun byte-optimize-form-code-walker (form for-effect)
295  ;;
296  ;; For normal function calls, We can just mapcar the optimizer the cdr.  But
297  ;; we need to have special knowledge of the syntax of the special forms
298  ;; like let and defun (that's why they're special forms :-).  (Actually,
299  ;; the important aspect is that they are subrs that don't evaluate all of
300  ;; their args.)
301  ;;
302  (let ((fn (car-safe form))
303	tmp)
304    (cond ((not (consp form))
305	   (if (not (and for-effect
306			 (or byte-compile-delete-errors
307			     (not (symbolp form))
308			     (eq form t))))
309	     form))
310	  ((eq fn 'quote)
311	   (if (cdr (cdr form))
312	       (byte-compile-warn "malformed quote form: %s"
313				  (prin1-to-string form)))
314	   ;; map (quote nil) to nil to simplify optimizer logic.
315	   ;; map quoted constants to nil if for-effect (just because).
316	   (and (nth 1 form)
317		(not for-effect)
318		form))
319	  ((or (byte-code-function-p fn)
320	       (eq 'lambda (car-safe fn)))
321	   (byte-compile-unfold-lambda form))
322	  ((memq fn '(let let*))
323	   ;; recursively enter the optimizer for the bindings and body
324	   ;; of a let or let*.  This for depth-firstness: forms that
325	   ;; are more deeply nested are optimized first.
326	   (cons fn
327	     (cons
328	      (mapcar '(lambda (binding)
329			 (if (symbolp binding)
330			     binding
331			   (if (cdr (cdr binding))
332			       (byte-compile-warn "malformed let binding: %s"
333						  (prin1-to-string binding)))
334			   (list (car binding)
335				 (byte-optimize-form (nth 1 binding) nil))))
336		      (nth 1 form))
337	      (byte-optimize-body (cdr (cdr form)) for-effect))))
338	  ((eq fn 'cond)
339	   (cons fn
340		 (mapcar '(lambda (clause)
341			    (if (consp clause)
342				(cons
343				 (byte-optimize-form (car clause) nil)
344				 (byte-optimize-body (cdr clause) for-effect))
345			      (byte-compile-warn "malformed cond form: %s"
346						 (prin1-to-string clause))
347			      clause))
348			 (cdr form))))
349	  ((eq fn 'progn)
350	   ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
351	   (if (cdr (cdr form))
352	       (progn
353		 (setq tmp (byte-optimize-body (cdr form) for-effect))
354		 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
355	     (byte-optimize-form (nth 1 form) for-effect)))
356	  ((eq fn 'prog1)
357	   (if (cdr (cdr form))
358	       (cons 'prog1
359		     (cons (byte-optimize-form (nth 1 form) for-effect)
360			   (byte-optimize-body (cdr (cdr form)) t)))
361	     (byte-optimize-form (nth 1 form) for-effect)))
362	  ((eq fn 'prog2)
363	   (cons 'prog2
364	     (cons (byte-optimize-form (nth 1 form) t)
365	       (cons (byte-optimize-form (nth 2 form) for-effect)
366		     (byte-optimize-body (cdr (cdr (cdr form))) t)))))
367
368	  ((memq fn '(save-excursion save-restriction))
369	   ;; those subrs which have an implicit progn; it's not quite good
370	   ;; enough to treat these like normal function calls.
371	   ;; This can turn (save-excursion ...) into (save-excursion) which
372	   ;; will be optimized away in the lap-optimize pass.
373	   (cons fn (byte-optimize-body (cdr form) for-effect)))
374
375	  ((eq fn 'with-output-to-temp-buffer)
376	   ;; this is just like the above, except for the first argument.
377	   (cons fn
378	     (cons
379	      (byte-optimize-form (nth 1 form) nil)
380	      (byte-optimize-body (cdr (cdr form)) for-effect))))
381
382	  ((eq fn 'if)
383	   (cons fn
384	     (cons (byte-optimize-form (nth 1 form) nil)
385	       (cons
386		(byte-optimize-form (nth 2 form) for-effect)
387		(byte-optimize-body (nthcdr 3 form) for-effect)))))
388
389	  ((memq fn '(and or))  ; remember, and/or are control structures.
390	   ;; take forms off the back until we can't any more.
391	   ;; In the future it could conceivably be a problem that the
392	   ;; subexpressions of these forms are optimized in the reverse
393	   ;; order, but it's ok for now.
394	   (if for-effect
395	       (let ((backwards (reverse (cdr form))))
396		 (while (and backwards
397			     (null (setcar backwards
398					   (byte-optimize-form (car backwards)
399							       for-effect))))
400		   (setq backwards (cdr backwards)))
401		 (if (and (cdr form) (null backwards))
402		     (byte-compile-log
403		      "  all subforms of %s called for effect; deleted" form))
404		 (and backwards
405		      (cons fn (nreverse backwards))))
406	     (cons fn (mapcar 'byte-optimize-form (cdr form)))))
407
408	  ((eq fn 'interactive)
409	   (byte-compile-warn "misplaced interactive spec: %s"
410			      (prin1-to-string form))
411	   nil)
412
413	  ((memq fn '(defun defmacro function
414		      condition-case save-window-excursion))
415	   ;; These forms are compiled as constants or by breaking out
416	   ;; all the subexpressions and compiling them separately.
417	   form)
418
419	  ((eq fn 'unwind-protect)
420	   ;; the "protected" part of an unwind-protect is compiled (and thus
421	   ;; optimized) as a top-level form, so don't do it here.  But the
422	   ;; non-protected part has the same for-effect status as the
423	   ;; unwind-protect itself.  (The protected part is always for effect,
424	   ;; but that isn't handled properly yet.)
425	   (cons fn
426		 (cons (byte-optimize-form (nth 1 form) for-effect)
427		       (cdr (cdr form)))))
428
429	  ((eq fn 'catch)
430	   ;; the body of a catch is compiled (and thus optimized) as a
431	   ;; top-level form, so don't do it here.  The tag is never
432	   ;; for-effect.  The body should have the same for-effect status
433	   ;; as the catch form itself, but that isn't handled properly yet.
434	   (cons fn
435		 (cons (byte-optimize-form (nth 1 form) nil)
436		       (cdr (cdr form)))))
437
438	  ;; If optimization is on, this is the only place that macros are
439	  ;; expanded.  If optimization is off, then macroexpansion happens
440	  ;; in byte-compile-form.  Otherwise, the macros are already expanded
441	  ;; by the time that is reached.
442	  ((not (eq form
443		    (setq form (macroexpand form
444					    byte-compile-macro-environment))))
445	   (byte-optimize-form form for-effect))
446
447	  ((not (symbolp fn))
448	   (or (eq 'mocklisp (car-safe fn)) ; ha!
449	       (byte-compile-warn "%s is a malformed function"
450				  (prin1-to-string fn)))
451	   form)
452
453	  ((and for-effect (setq tmp (get fn 'side-effect-free))
454		(or byte-compile-delete-errors
455		    (eq tmp 'error-free)
456		    (progn
457		      (byte-compile-warn "%s called for effect"
458					 (prin1-to-string form))
459		      nil)))
460	   (byte-compile-log "  %s called for effect; deleted" fn)
461	   ;; appending a nil here might not be necessary, but it can't hurt.
462	   (byte-optimize-form
463	    (cons 'progn (append (cdr form) '(nil))) t))
464
465	  (t
466	   ;; Otherwise, no args can be considered to be for-effect,
467	   ;; even if the called function is for-effect, because we
468	   ;; don't know anything about that function.
469	   (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
470
471
472(defun byte-optimize-form (form &optional for-effect)
473  "The source-level pass of the optimizer."
474  ;;
475  ;; First, optimize all sub-forms of this one.
476  (setq form (byte-optimize-form-code-walker form for-effect))
477  ;;
478  ;; after optimizing all subforms, optimize this form until it doesn't
479  ;; optimize any further.  This means that some forms will be passed through
480  ;; the optimizer many times, but that's necessary to make the for-effect
481  ;; processing do as much as possible.
482  ;;
483  (let (opt new)
484    (if (and (consp form)
485	     (symbolp (car form))
486	     (or (and for-effect
487		      ;; we don't have any of these yet, but we might.
488		      (setq opt (get (car form) 'byte-for-effect-optimizer)))
489		 (setq opt (get (car form) 'byte-optimizer)))
490	     (not (eq form (setq new (funcall opt form)))))
491	(progn
492;;	  (if (equal form new) (error "bogus optimizer -- %s" opt))
493	  (byte-compile-log "  %s\t==>\t%s" form new)
494	  (setq new (byte-optimize-form new for-effect))
495	  new)
496      form)))
497
498
499(defun byte-optimize-body (forms all-for-effect)
500  ;; optimize the cdr of a progn or implicit progn; all forms is a list of
501  ;; forms, all but the last of which are optimized with the assumption that
502  ;; they are being called for effect.  the last is for-effect as well if
503  ;; all-for-effect is true.  returns a new list of forms.
504  (let ((rest forms)
505	(result nil)
506	fe new)
507    (while rest
508      (setq fe (or all-for-effect (cdr rest)))
509      (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
510      (if (or new (not fe))
511	  (setq result (cons new result)))
512      (setq rest (cdr rest)))
513    (nreverse result)))
514
515
516;;; some source-level optimizers
517;;;
518;;; when writing optimizers, be VERY careful that the optimizer returns
519;;; something not EQ to its argument if and ONLY if it has made a change.
520;;; This implies that you cannot simply destructively modify the list;
521;;; you must return something not EQ to it if you make an optimization.
522;;;
523;;; It is now safe to optimize code such that it introduces new bindings.
524
525;; I'd like this to be a defsubst, but let's not be self-referential...
526(defmacro byte-compile-trueconstp (form)
527  ;; Returns non-nil if FORM is a non-nil constant.
528  (` (cond ((consp (, form)) (eq (car (, form)) 'quote))
529	   ((not (symbolp (, form))))
530	   ((eq (, form) t)))))
531
532;; If the function is being called with constant numeric args,
533;; evaluate as much as possible at compile-time.  This optimizer
534;; assumes that the function is associative, like + or *.
535(defun byte-optimize-associative-math (form)
536  (let ((args nil)
537	(constants nil)
538	(rest (cdr form)))
539    (while rest
540      (if (numberp (car rest))
541	  (setq constants (cons (car rest) constants))
542	  (setq args (cons (car rest) args)))
543      (setq rest (cdr rest)))
544    (if (cdr constants)
545	(if args
546	    (list (car form)
547		  (apply (car form) constants)
548		  (if (cdr args)
549		      (cons (car form) (nreverse args))
550		      (car args)))
551	    (apply (car form) constants))
552	form)))
553
554;; If the function is being called with constant numeric args,
555;; evaluate as much as possible at compile-time.  This optimizer
556;; assumes that the function is nonassociative, like - or /.
557(defun byte-optimize-nonassociative-math (form)
558  (if (or (not (numberp (car (cdr form))))
559	  (not (numberp (car (cdr (cdr form))))))
560      form
561    (let ((constant (car (cdr form)))
562	  (rest (cdr (cdr form))))
563      (while (numberp (car rest))
564	(setq constant (funcall (car form) constant (car rest))
565	      rest (cdr rest)))
566      (if rest
567	  (cons (car form) (cons constant rest))
568	  constant))))
569
570;;(defun byte-optimize-associative-two-args-math (form)
571;;  (setq form (byte-optimize-associative-math form))
572;;  (if (consp form)
573;;      (byte-optimize-two-args-left form)
574;;      form))
575
576;;(defun byte-optimize-nonassociative-two-args-math (form)
577;;  (setq form (byte-optimize-nonassociative-math form))
578;;  (if (consp form)
579;;      (byte-optimize-two-args-right form)
580;;      form))
581
582(defun byte-optimize-delay-constants-math (form start fun)
583  ;; Merge all FORM's constants from number START, call FUN on them
584  ;; and put the result at the end.
585  (let ((rest (nthcdr (1- start) form)))
586    (while (cdr (setq rest (cdr rest)))
587      (if (numberp (car rest))
588	  (let (constants)
589	    (setq form (copy-sequence form)
590		  rest (nthcdr (1- start) form))
591	    (while (setq rest (cdr rest))
592	      (cond ((numberp (car rest))
593		     (setq constants (cons (car rest) constants))
594		     (setcar rest nil))))
595	    (setq form (nconc (delq nil form)
596			      (list (apply fun (nreverse constants))))))))
597    form))
598
599(defun byte-optimize-plus (form)
600  (setq form (byte-optimize-delay-constants-math form 1 '+))
601  (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
602  ;;(setq form (byte-optimize-associative-two-args-math form))
603  (cond ((null (cdr form))
604	 (condition-case ()
605	     (eval form)
606	   (error form)))
607;;; It is not safe to delete the function entirely
608;;; (actually, it would be safe if we know the sole arg
609;;; is not a marker).
610;;	((null (cdr (cdr form))) (nth 1 form))
611	(t form)))
612
613(defun byte-optimize-minus (form)
614  ;; Put constants at the end, except the last constant.
615  (setq form (byte-optimize-delay-constants-math form 2 '+))
616  ;; Now only first and last element can be a number.
617  (let ((last (car (reverse (nthcdr 3 form)))))
618    (cond ((eq 0 last)
619	   ;; (- x y ... 0)  --> (- x y ...)
620	   (setq form (copy-sequence form))
621	   (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
622	  ;; If form is (- CONST foo... CONST), merge first and last.
623	  ((and (numberp (nth 1 form))
624		(numberp last))
625	   (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
626			     (delq last (copy-sequence (nthcdr 3 form))))))))
627;;; It is not safe to delete the function entirely
628;;; (actually, it would be safe if we know the sole arg
629;;; is not a marker).
630;;;  (if (eq (nth 2 form) 0)
631;;;      (nth 1 form)			; (- x 0)  -->  x
632    (byte-optimize-predicate
633     (if (and (null (cdr (cdr (cdr form))))
634	      (eq (nth 1 form) 0))	; (- 0 x)  -->  (- x)
635	 (cons (car form) (cdr (cdr form)))
636       form))
637;;;    )
638  )
639
640(defun byte-optimize-multiply (form)
641  (setq form (byte-optimize-delay-constants-math form 1 '*))
642  ;; If there is a constant in FORM, it is now the last element.
643  (cond ((null (cdr form)) 1)
644;;; It is not safe to delete the function entirely
645;;; (actually, it would be safe if we know the sole arg
646;;; is not a marker or if it appears in other arithmetic).
647;;;	((null (cdr (cdr form))) (nth 1 form))
648	((let ((last (car (reverse form))))
649	   (cond ((eq 0 last)  (list 'progn (cdr form)))
650		 ((eq 1 last)  (delq 1 (copy-sequence form)))
651		 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
652		 ((and (eq 2 last)
653		       (memq t (mapcar 'symbolp (cdr form))))
654		  (prog1 (setq form (delq 2 (copy-sequence form)))
655		    (while (not (symbolp (car (setq form (cdr form))))))
656		    (setcar form (list '+ (car form) (car form)))))
657		 (form))))))
658
659(defsubst byte-compile-butlast (form)
660  (nreverse (cdr (reverse form))))
661
662(defun byte-optimize-divide (form)
663  (setq form (byte-optimize-delay-constants-math form 2 '*))
664  (let ((last (car (reverse (cdr (cdr form))))))
665    (if (numberp last)
666	(cond ((= (length form) 3)
667	       ;; Don't shrink to less than two arguments--would get an error.
668	       nil)
669	      ((= last 1)
670	       (setq form (byte-compile-butlast form)))
671	      ((numberp (nth 1 form))
672	       (setq form (cons (car form)
673				(cons (/ (nth 1 form) last)
674				      (byte-compile-butlast (cdr (cdr form)))))
675		     last nil))))
676    (cond
677;;;	  ((null (cdr (cdr form)))
678;;;	   (nth 1 form))
679	  ((eq (nth 1 form) 0)
680	   (append '(progn) (cdr (cdr form)) '(0)))
681	  ((eq last -1)
682	   (list '- (if (nthcdr 3 form)
683			(byte-compile-butlast form)
684		      (nth 1 form))))
685	  (form))))
686
687(defun byte-optimize-logmumble (form)
688  (setq form (byte-optimize-delay-constants-math form 1 (car form)))
689  (byte-optimize-predicate
690   (cond ((memq 0 form)
691	  (setq form (if (eq (car form) 'logand)
692			 (cons 'progn (cdr form))
693		       (delq 0 (copy-sequence form)))))
694	 ((and (eq (car-safe form) 'logior)
695	       (memq -1 form))
696	  (delq -1 (copy-sequence form)))
697	 (form))))
698
699
700(defun byte-optimize-binary-predicate (form)
701  (if (byte-compile-constp (nth 1 form))
702      (if (byte-compile-constp (nth 2 form))
703	  (condition-case ()
704	      (list 'quote (eval form))
705	    (error form))
706	;; This can enable some lapcode optimizations.
707	(list (car form) (nth 2 form) (nth 1 form)))
708    form))
709
710(defun byte-optimize-predicate (form)
711  (let ((ok t)
712	(rest (cdr form)))
713    (while (and rest ok)
714      (setq ok (byte-compile-constp (car rest))
715	    rest (cdr rest)))
716    (if ok
717	(condition-case ()
718	    (list 'quote (eval form))
719	  (error form))
720	form)))
721
722(defun byte-optimize-identity (form)
723  (if (and (cdr form) (null (cdr (cdr form))))
724      (nth 1 form)
725    (byte-compile-warn "identity called with %d arg%s, but requires 1"
726		       (length (cdr form))
727		       (if (= 1 (length (cdr form))) "" "s"))
728    form))
729
730(put 'identity 'byte-optimizer 'byte-optimize-identity)
731
732(put '+   'byte-optimizer 'byte-optimize-plus)
733(put '*   'byte-optimizer 'byte-optimize-multiply)
734(put '-   'byte-optimizer 'byte-optimize-minus)
735(put '/   'byte-optimizer 'byte-optimize-divide)
736(put 'max 'byte-optimizer 'byte-optimize-associative-math)
737(put 'min 'byte-optimizer 'byte-optimize-associative-math)
738
739(put '=   'byte-optimizer 'byte-optimize-binary-predicate)
740(put 'eq  'byte-optimizer 'byte-optimize-binary-predicate)
741(put 'eql 'byte-optimizer 'byte-optimize-binary-predicate)
742(put 'equal   'byte-optimizer 'byte-optimize-binary-predicate)
743(put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
744(put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
745
746(put '<   'byte-optimizer 'byte-optimize-predicate)
747(put '>   'byte-optimizer 'byte-optimize-predicate)
748(put '<=  'byte-optimizer 'byte-optimize-predicate)
749(put '>=  'byte-optimizer 'byte-optimize-predicate)
750(put '1+  'byte-optimizer 'byte-optimize-predicate)
751(put '1-  'byte-optimizer 'byte-optimize-predicate)
752(put 'not 'byte-optimizer 'byte-optimize-predicate)
753(put 'null  'byte-optimizer 'byte-optimize-predicate)
754(put 'memq  'byte-optimizer 'byte-optimize-predicate)
755(put 'consp 'byte-optimizer 'byte-optimize-predicate)
756(put 'listp 'byte-optimizer 'byte-optimize-predicate)
757(put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
758(put 'stringp 'byte-optimizer 'byte-optimize-predicate)
759(put 'string< 'byte-optimizer 'byte-optimize-predicate)
760(put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
761
762(put 'logand 'byte-optimizer 'byte-optimize-logmumble)
763(put 'logior 'byte-optimizer 'byte-optimize-logmumble)
764(put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
765(put 'lognot 'byte-optimizer 'byte-optimize-predicate)
766
767(put 'car 'byte-optimizer 'byte-optimize-predicate)
768(put 'cdr 'byte-optimizer 'byte-optimize-predicate)
769(put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
770(put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
771
772
773;; I'm not convinced that this is necessary.  Doesn't the optimizer loop
774;; take care of this? - Jamie
775;; I think this may some times be necessary to reduce ie (quote 5) to 5,
776;; so arithmetic optimizers recognize the numeric constant.  - Hallvard
777(put 'quote 'byte-optimizer 'byte-optimize-quote)
778(defun byte-optimize-quote (form)
779  (if (or (consp (nth 1 form))
780	  (and (symbolp (nth 1 form))
781	       (not (memq (nth 1 form) '(nil t)))))
782      form
783    (nth 1 form)))
784
785(defun byte-optimize-zerop (form)
786  (cond ((numberp (nth 1 form))
787	 (eval form))
788	(byte-compile-delete-errors
789	 (list '= (nth 1 form) 0))
790	(form)))
791
792(put 'zerop 'byte-optimizer 'byte-optimize-zerop)
793
794(defun byte-optimize-and (form)
795  ;; Simplify if less than 2 args.
796  ;; if there is a literal nil in the args to `and', throw it and following
797  ;; forms away, and surround the `and' with (progn ... nil).
798  (cond ((null (cdr form)))
799	((memq nil form)
800	 (list 'progn
801	       (byte-optimize-and
802		(prog1 (setq form (copy-sequence form))
803		  (while (nth 1 form)
804		    (setq form (cdr form)))
805		  (setcdr form nil)))
806	       nil))
807	((null (cdr (cdr form)))
808	 (nth 1 form))
809	((byte-optimize-predicate form))))
810
811(defun byte-optimize-or (form)
812  ;; Throw away nil's, and simplify if less than 2 args.
813  ;; If there is a literal non-nil constant in the args to `or', throw away all
814  ;; following forms.
815  (if (memq nil form)
816      (setq form (delq nil (copy-sequence form))))
817  (let ((rest form))
818    (while (cdr (setq rest (cdr rest)))
819      (if (byte-compile-trueconstp (car rest))
820	  (setq form (copy-sequence form)
821		rest (setcdr (memq (car rest) form) nil))))
822    (if (cdr (cdr form))
823	(byte-optimize-predicate form)
824      (nth 1 form))))
825
826(defun byte-optimize-cond (form)
827  ;; if any clauses have a literal nil as their test, throw them away.
828  ;; if any clause has a literal non-nil constant as its test, throw
829  ;; away all following clauses.
830  (let (rest)
831    ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
832    (while (setq rest (assq nil (cdr form)))
833      (setq form (delq rest (copy-sequence form))))
834    (if (memq nil (cdr form))
835	(setq form (delq nil (copy-sequence form))))
836    (setq rest form)
837    (while (setq rest (cdr rest))
838      (cond ((byte-compile-trueconstp (car-safe (car rest)))
839	     (cond ((eq rest (cdr form))
840		    (setq form
841			  (if (cdr (car rest))
842			      (if (cdr (cdr (car rest)))
843				  (cons 'progn (cdr (car rest)))
844				(nth 1 (car rest)))
845			    (car (car rest)))))
846		   ((cdr rest)
847		    (setq form (copy-sequence form))
848		    (setcdr (memq (car rest) form) nil)))
849	     (setq rest nil)))))
850  ;;
851  ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
852  (if (eq 'cond (car-safe form))
853      (let ((clauses (cdr form)))
854	(if (and (consp (car clauses))
855		 (null (cdr (car clauses))))
856	    (list 'or (car (car clauses))
857		  (byte-optimize-cond
858		   (cons (car form) (cdr (cdr form)))))
859	  form))
860    form))
861
862(defun byte-optimize-if (form)
863  ;; (if <true-constant> <then> <else...>) ==> <then>
864  ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
865  ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
866  ;; (if <test> <then> nil) ==> (if <test> <then>)
867  (let ((clause (nth 1 form)))
868    (cond ((byte-compile-trueconstp clause)
869	   (nth 2 form))
870	  ((null clause)
871	   (if (nthcdr 4 form)
872	       (cons 'progn (nthcdr 3 form))
873	     (nth 3 form)))
874	  ((nth 2 form)
875	   (if (equal '(nil) (nthcdr 3 form))
876	       (list 'if clause (nth 2 form))
877	     form))
878	  ((or (nth 3 form) (nthcdr 4 form))
879	   (list 'if (list 'not clause)
880		 (if (nthcdr 4 form)
881		     (cons 'progn (nthcdr 3 form))
882		   (nth 3 form))))
883	  (t
884	   (list 'progn clause nil)))))
885
886(defun byte-optimize-while (form)
887  (if (nth 1 form)
888      form))
889
890(put 'and   'byte-optimizer 'byte-optimize-and)
891(put 'or    'byte-optimizer 'byte-optimize-or)
892(put 'cond  'byte-optimizer 'byte-optimize-cond)
893(put 'if    'byte-optimizer 'byte-optimize-if)
894(put 'while 'byte-optimizer 'byte-optimize-while)
895
896;; byte-compile-negation-optimizer lives in bytecomp.el
897(put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
898(put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
899(put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
900
901
902(defun byte-optimize-funcall (form)
903  ;; (funcall '(lambda ...) ...) ==> ((lambda ...) ...)
904  ;; (funcall 'foo ...) ==> (foo ...)
905  (let ((fn (nth 1 form)))
906    (if (memq (car-safe fn) '(quote function))
907	(cons (nth 1 fn) (cdr (cdr form)))
908	form)))
909
910(defun byte-optimize-apply (form)
911  ;; If the last arg is a literal constant, turn this into a funcall.
912  ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
913  (let ((fn (nth 1 form))
914	(last (nth (1- (length form)) form))) ; I think this really is fastest
915    (or (if (or (null last)
916		(eq (car-safe last) 'quote))
917	    (if (listp (nth 1 last))
918		(let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
919		  (nconc (list 'funcall fn) butlast
920			 (mapcar '(lambda (x) (list 'quote x)) (nth 1 last))))
921	      (byte-compile-warn
922	       "last arg to apply can't be a literal atom: %s"
923	       (prin1-to-string last))
924	      nil))
925	form)))
926
927(put 'funcall 'byte-optimizer 'byte-optimize-funcall)
928(put 'apply   'byte-optimizer 'byte-optimize-apply)
929
930
931(put 'let 'byte-optimizer 'byte-optimize-letX)
932(put 'let* 'byte-optimizer 'byte-optimize-letX)
933(defun byte-optimize-letX (form)
934  (cond ((null (nth 1 form))
935	 ;; No bindings
936	 (cons 'progn (cdr (cdr form))))
937	((or (nth 2 form) (nthcdr 3 form))
938	 form)
939	 ;; The body is nil
940	((eq (car form) 'let)
941	 (append '(progn) (mapcar 'car (mapcar 'cdr (nth 1 form))) '(nil)))
942	(t
943	 (let ((binds (reverse (nth 1 form))))
944	   (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
945
946
947(put 'nth 'byte-optimizer 'byte-optimize-nth)
948(defun byte-optimize-nth (form)
949  (if (memq (nth 1 form) '(0 1))
950      (list 'car (if (zerop (nth 1 form))
951		     (nth 2 form)
952		   (list 'cdr (nth 2 form))))
953    (byte-optimize-predicate form)))
954
955(put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
956(defun byte-optimize-nthcdr (form)
957  (let ((count (nth 1 form)))
958    (if (not (memq count '(0 1 2)))
959	(byte-optimize-predicate form)
960      (setq form (nth 2 form))
961      (while (natnump (setq count (1- count)))
962	(setq form (list 'cdr form)))
963      form)))
964
965;;; enumerating those functions which need not be called if the returned
966;;; value is not used.  That is, something like
967;;;    (progn (list (something-with-side-effects) (yow))
968;;;           (foo))
969;;; may safely be turned into
970;;;    (progn (progn (something-with-side-effects) (yow))
971;;;           (foo))
972;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
973
974;;; I wonder if I missed any :-\)
975(let ((side-effect-free-fns
976       '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
977	 assoc assq
978	 boundp buffer-file-name buffer-local-variables buffer-modified-p
979	 buffer-substring
980	 capitalize car-less-than-car car cdr ceiling concat coordinates-in-window-p
981	 copy-marker cos count-lines
982	 default-boundp default-value documentation downcase
983	 elt exp expt fboundp featurep
984	 file-directory-p file-exists-p file-locked-p file-name-absolute-p
985	 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
986	 float floor format
987	 get get-buffer get-buffer-window getenv get-file-buffer
988	 int-to-string
989	 length log log10 logand logb logior lognot logxor lsh
990	 marker-buffer max member memq min mod
991	 next-window nth nthcdr number-to-string
992	 parse-colon-path previous-window
993	 radians-to-degrees rassq regexp-quote reverse round
994	 sin sqrt string< string= string-equal string-lessp string-to-char
995	 string-to-int string-to-number substring symbol-plist
996	 tan upcase user-variable-p vconcat
997	 window-buffer window-dedicated-p window-edges window-height
998	 window-hscroll window-minibuffer-p window-width
999	 zerop))
1000      (side-effect-and-error-free-fns
1001       '(arrayp atom
1002	 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1003	 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
1004	 current-buffer
1005	 dot dot-marker eobp eolp eq eql equal eventp floatp framep
1006	 get-largest-window get-lru-window
1007	 identity ignore integerp integer-or-marker-p interactive-p
1008	 invocation-directory invocation-name
1009	 keymapp list listp
1010	 make-marker mark mark-marker markerp memory-limit minibuffer-window
1011	 mouse-movement-p
1012	 natnump nlistp not null number-or-marker-p numberp
1013	 one-window-p overlayp
1014	 point point-marker point-min point-max processp
1015	 selected-window sequencep stringp subrp symbolp syntax-table-p
1016	 user-full-name user-login-name user-original-login-name
1017	 user-real-login-name user-real-uid user-uid
1018	 vector vectorp
1019	 window-configuration-p window-live-p windowp)))
1020  (while side-effect-free-fns
1021    (put (car side-effect-free-fns) 'side-effect-free t)
1022    (setq side-effect-free-fns (cdr side-effect-free-fns)))
1023  (while side-effect-and-error-free-fns
1024    (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1025    (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1026  nil)
1027
1028
1029(defun byte-compile-splice-in-already-compiled-code (form)
1030  ;; form is (byte-code "..." [...] n)
1031  (if (not (memq byte-optimize '(t lap)))
1032      (byte-compile-normal-call form)
1033    (byte-inline-lapcode
1034     (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1035    (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1036				     byte-compile-maxdepth))
1037    (setq byte-compile-depth (1+ byte-compile-depth))))
1038
1039(put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1040
1041
1042(defconst byte-constref-ops
1043  '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1044
1045;;; This function extracts the bitfields from variable-length opcodes.
1046;;; Originally defined in disass.el (which no longer uses it.)
1047
1048(defun disassemble-offset ()
1049  "Don't call this!"
1050  ;; fetch and return the offset for the current opcode.
1051  ;; return NIL if this opcode has no offset
1052  ;; OP, PTR and BYTES are used and set dynamically
1053  (defvar op)
1054  (defvar ptr)
1055  (defvar bytes)
1056  (cond ((< op byte-nth)
1057	 (let ((tem (logand op 7)))
1058	   (setq op (logand op 248))
1059	   (cond ((eq tem 6)
1060		  (setq ptr (1+ ptr))	;offset in next byte
1061		  (aref bytes ptr))
1062		 ((eq tem 7)
1063		  (setq ptr (1+ ptr))	;offset in next 2 bytes
1064		  (+ (aref bytes ptr)
1065		     (progn (setq ptr (1+ ptr))
1066			    (lsh (aref bytes ptr) 8))))
1067		 (t tem))))		;offset was in opcode
1068	((>= op byte-constant)
1069	 (prog1 (- op byte-constant)	;offset in opcode
1070	   (setq op byte-constant)))
1071	((and (>= op byte-constant2)
1072	      (<= op byte-goto-if-not-nil-else-pop))
1073	 (setq ptr (1+ ptr))		;offset in next 2 bytes
1074	 (+ (aref bytes ptr)
1075	    (progn (setq ptr (1+ ptr))
1076		   (lsh (aref bytes ptr) 8))))
1077	((and (>= op byte-listN)
1078	      (<= op byte-insertN))
1079	 (setq ptr (1+ ptr))		;offset in next byte
1080	 (aref bytes ptr))))
1081
1082
1083;;; This de-compiler is used for inline expansion of compiled functions,
1084;;; and by the disassembler.
1085;;;
1086(defun byte-decompile-bytecode (bytes constvec)
1087  "Turns BYTECODE into lapcode, referring to CONSTVEC."
1088  (let ((byte-compile-constants nil)
1089	(byte-compile-variables nil)
1090	(byte-compile-tag-number 0))
1091    (byte-decompile-bytecode-1 bytes constvec)))
1092
1093;; As byte-decompile-bytecode, but updates
1094;; byte-compile-{constants, variables, tag-number}.
1095;; If the optional 3rd arg is true, then `return' opcodes are replaced
1096;; with `goto's destined for the end of the code.
1097(defun byte-decompile-bytecode-1 (bytes constvec &optional make-splicable)
1098  (let ((length (length bytes))
1099	(ptr 0) optr tag tags op offset
1100	lap tmp
1101	endtag
1102	(retcount 0))
1103    (while (not (= ptr length))
1104      (setq op (aref bytes ptr)
1105	    optr ptr
1106	    offset (disassemble-offset)) ; this does dynamic-scope magic
1107      (setq op (aref byte-code-vector op))
1108      (cond ((memq op byte-goto-ops)
1109	     ;; it's a pc
1110	     (setq offset
1111		   (cdr (or (assq offset tags)
1112			    (car (setq tags
1113				       (cons (cons offset
1114						   (byte-compile-make-tag))
1115					     tags)))))))
1116	    ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1117		   ((memq op byte-constref-ops)))
1118	     (setq tmp (aref constvec offset)
1119		   offset (if (eq op 'byte-constant)
1120			      (byte-compile-get-constant tmp)
1121			    (or (assq tmp byte-compile-variables)
1122				(car (setq byte-compile-variables
1123					   (cons (list tmp)
1124						 byte-compile-variables)))))))
1125	    ((and make-splicable
1126		  (eq op 'byte-return))
1127	     (if (= ptr (1- length))
1128		 (setq op nil)
1129	       (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1130		     op 'byte-goto))))
1131      ;; lap = ( [ (pc . (op . arg)) ]* )
1132      (setq lap (cons (cons optr (cons op (or offset 0)))
1133		      lap))
1134      (setq ptr (1+ ptr)))
1135    ;; take off the dummy nil op that we replaced a trailing "return" with.
1136    (let ((rest lap))
1137      (while rest
1138	(cond ((setq tmp (assq (car (car rest)) tags))
1139	       ;; this addr is jumped to
1140	       (setcdr rest (cons (cons nil (cdr tmp))
1141				  (cdr rest)))
1142	       (setq tags (delq tmp tags))
1143	       (setq rest (cdr rest))))
1144	(setq rest (cdr rest))))
1145    (if tags (error "optimizer error: missed tags %s" tags))
1146    (if (null (car (cdr (car lap))))
1147	(setq lap (cdr lap)))
1148    (if endtag
1149	(setq lap (cons (cons nil endtag) lap)))
1150    ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1151    (mapcar 'cdr (nreverse lap))))
1152
1153
1154;;; peephole optimizer
1155
1156(defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1157
1158(defconst byte-conditional-ops
1159  '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1160    byte-goto-if-not-nil-else-pop))
1161
1162(defconst byte-after-unbind-ops
1163   '(byte-constant byte-dup
1164     byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1165     byte-eq byte-equal byte-not
1166     byte-cons byte-list1 byte-list2	; byte-list3 byte-list4
1167     byte-interactive-p
1168     ;; How about other side-effect-free-ops?  Is it safe to move an
1169     ;; error invocation (such as from nth) out of an unwind-protect?
1170     "Byte-codes that can be moved past an unbind."))
1171
1172(defconst byte-compile-side-effect-and-error-free-ops
1173  '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1174    byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1175    byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1176    byte-point-min byte-following-char byte-preceding-char
1177    byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1178    byte-current-buffer byte-interactive-p))
1179
1180(defconst byte-compile-side-effect-free-ops
1181  (nconc
1182   '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1183     byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1184     byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1185     byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1186     byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1187     byte-member byte-assq byte-quo byte-rem)
1188   byte-compile-side-effect-and-error-free-ops))
1189
1190;;; This piece of shit is because of the way DEFVAR_BOOL() variables work.
1191;;; Consider the code
1192;;;
1193;;;	(defun foo (flag)
1194;;;	  (let ((old-pop-ups pop-up-windows)
1195;;;		(pop-up-windows flag))
1196;;;	    (cond ((not (eq pop-up-windows old-pop-ups))
1197;;;		   (setq old-pop-ups pop-up-windows)
1198;;;		   ...))))
1199;;;
1200;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1201;;; something else.  But if we optimize
1202;;;
1203;;;	varref flag
1204;;;	varbind pop-up-windows
1205;;;	varref pop-up-windows
1206;;;	not
1207;;; to
1208;;;	varref flag
1209;;;	dup
1210;;;	varbind pop-up-windows
1211;;;	not
1212;;;
1213;;; we break the program, because it will appear that pop-up-windows and
1214;;; old-pop-ups are not EQ when really they are.  So we have to know what
1215;;; the BOOL variables are, and not perform this optimization on them.
1216;;;
1217(defconst byte-boolean-vars
1218  '(abbrev-all-caps abbrevs-changed byte-metering-on
1219    check-protected-fields completion-auto-help completion-ignore-case
1220    cursor-in-echo-area debug-on-next-call debug-on-quit
1221    defining-kbd-macro delete-exited-processes
1222    enable-recursive-minibuffers
1223    highlight-nonselected-windows indent-tabs-mode
1224    insert-default-directory inverse-video load-in-progress
1225    menu-prompting mode-line-inverse-video no-redraw-on-reenter
1226    noninteractive parse-sexp-ignore-comments pop-up-frames
1227    pop-up-windows print-escape-newlines print-escape-newlines
1228    truncate-partial-width-windows visible-bell vms-stmlf-recfm
1229    words-include-escapes x-save-under)
1230  "DEFVAR_BOOL variables.  Giving these any non-nil value sets them to t.
1231If this does not enumerate all DEFVAR_BOOL variables, the byte-optimizer
1232may generate incorrect code.")
1233
1234(defun byte-optimize-lapcode (lap &optional for-effect)
1235  "Simple peephole optimizer.  LAP is both modified and returned."
1236  (let (lap0 off0
1237	lap1 off1
1238	lap2 off2
1239	(keep-going 'first-time)
1240	(add-depth 0)
1241	rest tmp tmp2 tmp3
1242	(side-effect-free (if byte-compile-delete-errors
1243			      byte-compile-side-effect-free-ops
1244			    byte-compile-side-effect-and-error-free-ops)))
1245    (while keep-going
1246      (or (eq keep-going 'first-time)
1247	  (byte-compile-log-lap "  ---- next pass"))
1248      (setq rest lap
1249	    keep-going nil)
1250      (while rest
1251	(setq lap0 (car rest)
1252	      lap1 (nth 1 rest)
1253	      lap2 (nth 2 rest))
1254
1255	;; You may notice that sequences like "dup varset discard" are
1256	;; optimized but sequences like "dup varset TAG1: discard" are not.
1257	;; You may be tempted to change this; resist that temptation.
1258	(cond ;;
1259	      ;; <side-effect-free> pop -->  <deleted>
1260	      ;;  ...including:
1261	      ;; const-X pop   -->  <deleted>
1262	      ;; varref-X pop  -->  <deleted>
1263	      ;; dup pop       -->  <deleted>
1264	      ;;
1265	      ((and (eq 'byte-discard (car lap1))
1266		    (memq (car lap0) side-effect-free))
1267	       (setq keep-going t)
1268	       (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1269	       (setq rest (cdr rest))
1270	       (cond ((= tmp 1)
1271		      (byte-compile-log-lap
1272 		       "  %s discard\t-->\t<deleted>" lap0)
1273		      (setq lap (delq lap0 (delq lap1 lap))))
1274		     ((= tmp 0)
1275		      (byte-compile-log-lap
1276		       "  %s discard\t-->\t<deleted> discard" lap0)
1277		      (setq lap (delq lap0 lap)))
1278		     ((= tmp -1)
1279		      (byte-compile-log-lap
1280		       "  %s discard\t-->\tdiscard discard" lap0)
1281		      (setcar lap0 'byte-discard)
1282		      (setcdr lap0 0))
1283		     ((error "Optimizer error: too much on the stack"))))
1284	      ;;
1285	      ;; goto*-X X:  -->  X:
1286	      ;;
1287	      ((and (memq (car lap0) byte-goto-ops)
1288		    (eq (cdr lap0) lap1))
1289	       (cond ((eq (car lap0) 'byte-goto)
1290		      (setq lap (delq lap0 lap))
1291		      (setq tmp "<deleted>"))
1292		     ((memq (car lap0) byte-goto-always-pop-ops)
1293		      (setcar lap0 (setq tmp 'byte-discard))
1294		      (setcdr lap0 0))
1295		     ((error "Depth conflict at tag %d" (nth 2 lap0))))
1296	       (and (memq byte-optimize-log '(t byte))
1297		    (byte-compile-log "  (goto %s) %s:\t-->\t%s %s:"
1298				      (nth 1 lap1) (nth 1 lap1)
1299				      tmp (nth 1 lap1)))
1300	       (setq keep-going t))
1301	      ;;
1302	      ;; varset-X varref-X  -->  dup varset-X
1303	      ;; varbind-X varref-X  -->  dup varbind-X
1304	      ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1305	      ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1306	      ;; The latter two can enable other optimizations.
1307	      ;;
1308	      ((and (eq 'byte-varref (car lap2))
1309		    (eq (cdr lap1) (cdr lap2))
1310		    (memq (car lap1) '(byte-varset byte-varbind)))
1311	       (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1312			(not (eq (car lap0) 'byte-constant)))
1313		   nil
1314		 (setq keep-going t)
1315		 (if (memq (car lap0) '(byte-constant byte-dup))
1316		     (progn
1317		       (setq tmp (if (or (not tmp)
1318					 (memq (car (cdr lap0)) '(nil t)))
1319				     (cdr lap0)
1320				   (byte-compile-get-constant t)))
1321		       (byte-compile-log-lap "  %s %s %s\t-->\t%s %s %s"
1322					     lap0 lap1 lap2 lap0 lap1
1323					     (cons (car lap0) tmp))
1324		       (setcar lap2 (car lap0))
1325		       (setcdr lap2 tmp))
1326		   (byte-compile-log-lap "  %s %s\t-->\tdup %s" lap1 lap2 lap1)
1327		   (setcar lap2 (car lap1))
1328		   (setcar lap1 'byte-dup)
1329		   (setcdr lap1 0)
1330		   ;; The stack depth gets locally increased, so we will
1331		   ;; increase maxdepth in case depth = maxdepth here.
1332		   ;; This can cause the third argument to byte-code to
1333		   ;; be larger than necessary.
1334		   (setq add-depth 1))))
1335	      ;;
1336	      ;; dup varset-X discard  -->  varset-X
1337	      ;; dup varbind-X discard  -->  varbind-X
1338	      ;; (the varbind variant can emerge from other optimizations)
1339	      ;;
1340	      ((and (eq 'byte-dup (car lap0))
1341		    (eq 'byte-discard (car lap2))
1342		    (memq (car lap1) '(byte-varset byte-varbind)))
1343	       (byte-compile-log-lap "  dup %s discard\t-->\t%s" lap1 lap1)
1344	       (setq keep-going t
1345		     rest (cdr rest))
1346	       (setq lap (delq lap0 (delq lap2 lap))))
1347	      ;;
1348	      ;; not goto-X-if-nil              -->  goto-X-if-non-nil
1349	      ;; not goto-X-if-non-nil          -->  goto-X-if-nil
1350	      ;;
1351	      ;; it is wrong to do the same thing for the -else-pop variants.
1352	      ;;
1353	      ((and (eq 'byte-not (car lap0))
1354		    (or (eq 'byte-goto-if-nil (car lap1))
1355			(eq 'byte-goto-if-not-nil (car lap1))))
1356	       (byte-compile-log-lap "  not %s\t-->\t%s"
1357				     lap1
1358				     (cons
1359				      (if (eq (car lap1) 'byte-goto-if-nil)
1360					  'byte-goto-if-not-nil
1361					'byte-goto-if-nil)
1362				      (cdr lap1)))
1363	       (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1364				'byte-goto-if-not-nil
1365				'byte-goto-if-nil))
1366	       (setq lap (delq lap0 lap))
1367	       (setq keep-going t))
1368	      ;;
1369	      ;; goto-X-if-nil     goto-Y X:  -->  goto-Y-if-non-nil X:
1370	      ;; goto-X-if-non-nil goto-Y X:  -->  goto-Y-if-nil     X:
1371	      ;;
1372	      ;; it is wrong to do the same thing for the -else-pop variants.
1373	      ;;
1374	      ((and (or (eq 'byte-goto-if-nil (car lap0))
1375			(eq 'byte-goto-if-not-nil (car lap0)))	; gotoX
1376		    (eq 'byte-goto (car lap1))			; gotoY
1377		    (eq (cdr lap0) lap2))			; TAG X
1378	       (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1379				  'byte-goto-if-not-nil 'byte-goto-if-nil)))
1380		 (byte-compile-log-lap "  %s %s %s:\t-->\t%s %s:"
1381				       lap0 lap1 lap2
1382				       (cons inverse (cdr lap1)) lap2)
1383		 (setq lap (delq lap0 lap))
1384		 (setcar lap1 inverse)
1385		 (setq keep-going t)))
1386	      ;;
1387	      ;; const goto-if-* --> whatever
1388	      ;;
1389	      ((and (eq 'byte-constant (car lap0))
1390		    (memq (car lap1) byte-conditional-ops))
1391	       (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1392			      (eq (car lap1) 'byte-goto-if-nil-else-pop))
1393			  (car (cdr lap0))
1394			(not (car (cdr lap0))))
1395		      (byte-compile-log-lap "  %s %s\t-->\t<deleted>"
1396					    lap0 lap1)
1397		      (setq rest (cdr rest)
1398			    lap (delq lap0 (delq lap1 lap))))
1399		     (t
1400		      (if (memq (car lap1) byte-goto-always-pop-ops)
1401			  (progn
1402			    (byte-compile-log-lap "  %s %s\t-->\t%s"
1403			     lap0 lap1 (cons 'byte-goto (cdr lap1)))
1404			    (setq lap (delq lap0 lap)))
1405			(byte-compile-log-lap "  %s %s\t-->\t%s" lap0 lap1
1406			 (cons 'byte-goto (cdr lap1))))
1407		      (setcar lap1 'byte-goto)))
1408	       (setq keep-going t))
1409	      ;;
1410	      ;; varref-X varref-X  -->  varref-X dup
1411	      ;; varref-X [dup ...] varref-X  -->  varref-X [dup ...] dup
1412	      ;; We don't optimize the const-X variations on this here,
1413	      ;; because that would inhibit some goto optimizations; we
1414	      ;; optimize the const-X case after all other optimizations.
1415	      ;;
1416	      ((and (eq 'byte-varref (car lap0))
1417		    (progn
1418		      (setq tmp (cdr rest))
1419		      (while (eq (car (car tmp)) 'byte-dup)
1420			(setq tmp (cdr tmp)))
1421		      t)
1422		    (eq (cdr lap0) (cdr (car tmp)))
1423		    (eq 'byte-varref (car (car tmp))))
1424	       (if (memq byte-optimize-log '(t byte))
1425		   (let ((str ""))
1426		     (setq tmp2 (cdr rest))
1427		     (while (not (eq tmp tmp2))
1428		       (setq tmp2 (cdr tmp2)
1429			     str (concat str " dup")))
1430		     (byte-compile-log-lap "  %s%s %s\t-->\t%s%s dup"
1431					   lap0 str lap0 lap0 str)))
1432	       (setq keep-going t)
1433	       (setcar (car tmp) 'byte-dup)
1434	       (setcdr (car tmp) 0)
1435	       (setq rest tmp))
1436	      ;;
1437	      ;; TAG1: TAG2: --> TAG1: <deleted>
1438	      ;; (and other references to TAG2 are replaced with TAG1)
1439	      ;;
1440	      ((and (eq (car lap0) 'TAG)
1441		    (eq (car lap1) 'TAG))
1442	       (and (memq byte-optimize-log '(t byte))
1443		    (byte-compile-log "  adjacent tags %d and %d merged"
1444				      (nth 1 lap1) (nth 1 lap0)))
1445	       (setq tmp3 lap)
1446	       (while (setq tmp2 (rassq lap0 tmp3))
1447		 (setcdr tmp2 lap1)
1448		 (setq tmp3 (cdr (memq tmp2 tmp3))))
1449	       (setq lap (delq lap0 lap)
1450		     keep-going t))
1451	      ;;
1452	      ;; unused-TAG: --> <deleted>
1453	      ;;
1454	      ((and (eq 'TAG (car lap0))
1455		    (not (rassq lap0 lap)))
1456	       (and (memq byte-optimize-log '(t byte))
1457		    (byte-compile-log "  unused tag %d removed" (nth 1 lap0)))
1458	       (setq lap (delq lap0 lap)
1459		     keep-going t))
1460	      ;;
1461	      ;; goto   ... --> goto   <delete until TAG or end>
1462	      ;; return ... --> return <delete until TAG or end>
1463	      ;;
1464	      ((and (memq (car lap0) '(byte-goto byte-return))
1465		    (not (memq (car lap1) '(TAG nil))))
1466	       (setq tmp rest)
1467	       (let ((i 0)
1468		     (opt-p (memq byte-optimize-log '(t lap)))
1469		     str deleted)
1470		 (while (and (setq tmp (cdr tmp))
1471			     (not (eq 'TAG (car (car tmp)))))
1472		   (if opt-p (setq deleted (cons (car tmp) deleted)
1473				   str (concat str " %s")
1474				   i (1+ i))))
1475		 (if opt-p
1476		     (let ((tagstr
1477			    (if (eq 'TAG (car (car tmp)))
1478				(format "%d:" (cdr (car tmp)))
1479			      (or (car tmp) ""))))
1480		       (if (< i 6)
1481			   (apply 'byte-compile-log-lap-1
1482				  (concat "  %s" str
1483					  " %s\t-->\t%s <deleted> %s")
1484				  lap0
1485				  (nconc (nreverse deleted)
1486					 (list tagstr lap0 tagstr)))
1487			 (byte-compile-log-lap
1488			  "  %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1489			  lap0 i (if (= i 1) "" "s")
1490			  tagstr lap0 tagstr))))
1491		 (rplacd rest tmp))
1492	       (setq keep-going t))
1493	      ;;
1494	      ;; <safe-op> unbind --> unbind <safe-op>
1495	      ;; (this may enable other optimizations.)
1496	      ;;
1497	      ((and (eq 'byte-unbind (car lap1))
1498		    (memq (car lap0) byte-after-unbind-ops))
1499	       (byte-compile-log-lap "  %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1500	       (setcar rest lap1)
1501	       (setcar (cdr rest) lap0)
1502	       (setq keep-going t))
1503	      ;;
1504	      ;; varbind-X unbind-N         -->  discard unbind-(N-1)
1505	      ;; save-excursion unbind-N    -->  unbind-(N-1)
1506	      ;; save-restriction unbind-N  -->  unbind-(N-1)
1507	      ;;
1508	      ((and (eq 'byte-unbind (car lap1))
1509		    (memq (car lap0) '(byte-varbind byte-save-excursion
1510				       byte-save-restriction))
1511		    (< 0 (cdr lap1)))
1512	       (if (zerop (setcdr lap1 (1- (cdr lap1))))
1513		   (delq lap1 rest))
1514	       (if (eq (car lap0) 'byte-varbind)
1515		   (setcar rest (cons 'byte-discard 0))
1516		 (setq lap (delq lap0 lap)))
1517	       (byte-compile-log-lap "  %s %s\t-->\t%s %s"
1518		 lap0 (cons (car lap1) (1+ (cdr lap1)))
1519		 (if (eq (car lap0) 'byte-varbind)
1520		     (car rest)
1521		   (car (cdr rest)))
1522		 (if (and (/= 0 (cdr lap1))
1523			  (eq (car lap0) 'byte-varbind))
1524		     (car (cdr rest))
1525		   ""))
1526	       (setq keep-going t))
1527	      ;;
1528	      ;; goto*-X ... X: goto-Y  --> goto*-Y
1529	      ;; goto-X ...  X: return  --> return
1530	      ;;
1531	      ((and (memq (car lap0) byte-goto-ops)
1532		    (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1533			  '(byte-goto byte-return)))
1534	       (cond ((and (not (eq tmp lap0))
1535			   (or (eq (car lap0) 'byte-goto)
1536			       (eq (car tmp) 'byte-goto)))
1537		      (byte-compile-log-lap "  %s [%s]\t-->\t%s"
1538					    (car lap0) tmp tmp)
1539		      (if (eq (car tmp) 'byte-return)
1540			  (setcar lap0 'byte-return))
1541		      (setcdr lap0 (cdr tmp))
1542		      (setq keep-going t))))
1543	      ;;
1544	      ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1545	      ;; goto-*-else-pop X ... X: discard --> whatever
1546	      ;;
1547	      ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1548				       byte-goto-if-not-nil-else-pop))
1549		    (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1550			  (eval-when-compile
1551			   (cons 'byte-discard byte-conditional-ops)))
1552		    (not (eq lap0 (car tmp))))
1553	       (setq tmp2 (car tmp))
1554	       (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1555					      byte-goto-if-nil)
1556					     (byte-goto-if-not-nil-else-pop
1557					      byte-goto-if-not-nil))))
1558	       (if (memq (car tmp2) tmp3)
1559		   (progn (setcar lap0 (car tmp2))
1560			  (setcdr lap0 (cdr tmp2))
1561			  (byte-compile-log-lap "  %s-else-pop [%s]\t-->\t%s"
1562						(car lap0) tmp2 lap0))
1563		 ;; Get rid of the -else-pop's and jump one step further.
1564		 (or (eq 'TAG (car (nth 1 tmp)))
1565		     (setcdr tmp (cons (byte-compile-make-tag)
1566				       (cdr tmp))))
1567		 (byte-compile-log-lap "  %s [%s]\t-->\t%s <skip>"
1568				       (car lap0) tmp2 (nth 1 tmp3))
1569		 (setcar lap0 (nth 1 tmp3))
1570		 (setcdr lap0 (nth 1 tmp)))
1571	       (setq keep-going t))
1572	      ;;
1573	      ;; const goto-X ... X: goto-if-* --> whatever
1574	      ;; const goto-X ... X: discard   --> whatever
1575	      ;;
1576	      ((and (eq (car lap0) 'byte-constant)
1577		    (eq (car lap1) 'byte-goto)
1578		    (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1579			  (eval-when-compile
1580			    (cons 'byte-discard byte-conditional-ops)))
1581		    (not (eq lap1 (car tmp))))
1582	       (setq tmp2 (car tmp))
1583	       (cond ((memq (car tmp2)
1584			    (if (null (car (cdr lap0)))
1585				'(byte-goto-if-nil byte-goto-if-nil-else-pop)
1586			      '(byte-goto-if-not-nil
1587				byte-goto-if-not-nil-else-pop)))
1588		      (byte-compile-log-lap "  %s goto [%s]\t-->\t%s %s"
1589					    lap0 tmp2 lap0 tmp2)
1590		      (setcar lap1 (car tmp2))
1591		      (setcdr lap1 (cdr tmp2))
1592		      ;; Let next step fix the (const,goto-if*) sequence.
1593		      (setq rest (cons nil rest)))
1594		     (t
1595		      ;; Jump one step further
1596		      (byte-compile-log-lap
1597		       "  %s goto [%s]\t-->\t<deleted> goto <skip>"
1598		       lap0 tmp2)
1599		      (or (eq 'TAG (car (nth 1 tmp)))
1600			  (setcdr tmp (cons (byte-compile-make-tag)
1601					    (cdr tmp))))
1602		      (setcdr lap1 (car (cdr tmp)))
1603		      (setq lap (delq lap0 lap))))
1604	       (setq keep-going t))
1605	      ;;
1606	      ;; X: varref-Y    ...     varset-Y goto-X  -->
1607	      ;; X: varref-Y Z: ... dup varset-Y goto-Z
1608	      ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1609	      ;; (This is so usual for while loops that it is worth handling).
1610	      ;;
1611	      ((and (eq (car lap1) 'byte-varset)
1612		    (eq (car lap2) 'byte-goto)
1613		    (not (memq (cdr lap2) rest)) ;Backwards jump
1614		    (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1615			'byte-varref)
1616		    (eq (cdr (car tmp)) (cdr lap1))
1617		    (not (memq (car (cdr lap1)) byte-boolean-vars)))
1618	       ;;(byte-compile-log-lap "  Pulled %s to end of loop" (car tmp))
1619	       (let ((newtag (byte-compile-make-tag)))
1620		 (byte-compile-log-lap
1621		  "  %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1622		  (nth 1 (cdr lap2)) (car tmp)
1623                  lap1 lap2
1624		  (nth 1 (cdr lap2)) (car tmp)
1625		  (nth 1 newtag) 'byte-dup lap1
1626		  (cons 'byte-goto newtag)
1627		  )
1628		 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1629		 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1630	       (setq add-depth 1)
1631	       (setq keep-going t))
1632	      ;;
1633	      ;; goto-X Y: ... X: goto-if*-Y  -->  goto-if-not-*-X+1 Y:
1634	      ;; (This can pull the loop test to the end of the loop)
1635	      ;;
1636	      ((and (eq (car lap0) 'byte-goto)
1637		    (eq (car lap1) 'TAG)
1638		    (eq lap1
1639			(cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1640		    (memq (car (car tmp))
1641			  '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1642				      byte-goto-if-nil-else-pop)))
1643;;	       (byte-compile-log-lap "  %s %s, %s %s  --> moved conditional"
1644;;				     lap0 lap1 (cdr lap0) (car tmp))
1645	       (let ((newtag (byte-compile-make-tag)))
1646		 (byte-compile-log-lap
1647		  "%s %s: ... %s: %s\t-->\t%s ... %s:"
1648		  lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1649		  (cons (cdr (assq (car (car tmp))
1650				   '((byte-goto-if-nil . byte-goto-if-not-nil)
1651				     (byte-goto-if-not-nil . byte-goto-if-nil)
1652				     (byte-goto-if-nil-else-pop .
1653				      byte-goto-if-not-nil-else-pop)
1654				     (byte-goto-if-not-nil-else-pop .
1655				      byte-goto-if-nil-else-pop))))
1656			newtag)
1657
1658		  (nth 1 newtag)
1659		  )
1660		 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1661		 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1662		     ;; We can handle this case but not the -if-not-nil case,
1663		     ;; because we won't know which non-nil constant to push.
1664		   (setcdr rest (cons (cons 'byte-constant
1665					    (byte-compile-get-constant nil))
1666				      (cdr rest))))
1667	       (setcar lap0 (nth 1 (memq (car (car tmp))
1668					 '(byte-goto-if-nil-else-pop
1669					   byte-goto-if-not-nil
1670					   byte-goto-if-nil
1671					   byte-goto-if-not-nil
1672					   byte-goto byte-goto))))
1673	       )
1674	       (setq keep-going t))
1675	      )
1676	(setq rest (cdr rest)))
1677      )
1678    ;; Cleanup stage:
1679    ;; Rebuild byte-compile-constants / byte-compile-variables.
1680    ;; Simple optimizations that would inhibit other optimizations if they
1681    ;; were done in the optimizing loop, and optimizations which there is no
1682    ;;  need to do more than once.
1683    (setq byte-compile-constants nil
1684	  byte-compile-variables nil)
1685    (setq rest lap)
1686    (while rest
1687      (setq lap0 (car rest)
1688	    lap1 (nth 1 rest))
1689      (if (memq (car lap0) byte-constref-ops)
1690	  (if (eq (cdr lap0) 'byte-constant)
1691	      (or (memq (cdr lap0) byte-compile-variables)
1692		  (setq byte-compile-variables (cons (cdr lap0)
1693						     byte-compile-variables)))
1694	    (or (memq (cdr lap0) byte-compile-constants)
1695		(setq byte-compile-constants (cons (cdr lap0)
1696						   byte-compile-constants)))))
1697      (cond (;;
1698	     ;; const-C varset-X const-C  -->  const-C dup varset-X
1699	     ;; const-C varbind-X const-C  -->  const-C dup varbind-X
1700	     ;;
1701	     (and (eq (car lap0) 'byte-constant)
1702		  (eq (car (nth 2 rest)) 'byte-constant)
1703		  (eq (cdr lap0) (car (nth 2 rest)))
1704		  (memq (car lap1) '(byte-varbind byte-varset)))
1705	     (byte-compile-log-lap "  %s %s %s\t-->\t%s dup %s"
1706				   lap0 lap1 lap0 lap0 lap1)
1707	     (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1708	     (setcar (cdr rest) (cons 'byte-dup 0))
1709	     (setq add-depth 1))
1710	    ;;
1711	    ;; const-X  [dup/const-X ...]   -->  const-X  [dup ...] dup
1712	    ;; varref-X [dup/varref-X ...]  -->  varref-X [dup ...] dup
1713	    ;;
1714	    ((memq (car lap0) '(byte-constant byte-varref))
1715	     (setq tmp rest
1716		   tmp2 nil)
1717	     (while (progn
1718		      (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1719		      (and (eq (cdr lap0) (cdr (car tmp)))
1720			   (eq (car lap0) (car (car tmp)))))
1721	       (setcar tmp (cons 'byte-dup 0))
1722	       (setq tmp2 t))
1723	     (if tmp2
1724		 (byte-compile-log-lap
1725		  "  %s [dup/%s]... %s\t-->\t%s dup..." lap0 lap0 lap0)))
1726	    ;;
1727	    ;; unbind-N unbind-M  -->  unbind-(N+M)
1728	    ;;
1729	    ((and (eq 'byte-unbind (car lap0))
1730		  (eq 'byte-unbind (car lap1)))
1731	     (byte-compile-log-lap "  %s %s\t-->\t%s" lap0 lap1
1732				   (cons 'byte-unbind
1733					 (+ (cdr lap0) (cdr lap1))))
1734	     (setq keep-going t)
1735	     (setq lap (delq lap0 lap))
1736	     (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1737	    )
1738      (setq rest (cdr rest)))
1739    (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1740  lap)
1741
1742(provide 'byte-optimize)
1743
1744
1745;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1746;; itself, compile some of its most used recursive functions (at load time).
1747;;
1748(eval-when-compile
1749 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1750     (assq 'byte-code (symbol-function 'byte-optimize-form))
1751     (let ((byte-optimize nil)
1752	   (byte-compile-warnings nil))
1753       (mapcar '(lambda (x)
1754		  (or noninteractive (message "compiling %s..." x))
1755		  (byte-compile x)
1756		  (or noninteractive (message "compiling %s...done" x)))
1757	       '(byte-optimize-form
1758		 byte-optimize-body
1759		 byte-optimize-predicate
1760		 byte-optimize-binary-predicate
1761		 ;; Inserted some more than necessary, to speed it up.
1762		 byte-optimize-form-code-walker
1763		 byte-optimize-lapcode))))
1764 nil)
1765
1766;;; byte-opt.el ends here
1767