xref: /386bsd/usr/src/lib/libc/db/hash/hash_page.c (revision a2142627)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Margo Seltzer.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)hash_page.c	8.1 (Berkeley) 6/6/93";
39 #endif /* LIBC_SCCS and not lint */
40 
41 /*
42  * PACKAGE:  hashing
43  *
44  * DESCRIPTION:
45  *	Page manipulation for hashing package.
46  *
47  * ROUTINES:
48  *
49  * External
50  *	__get_page
51  *	__add_ovflpage
52  * Internal
53  *	overflow_page
54  *	open_temp
55  */
56 
57 #include <sys/types.h>
58 
59 #include <errno.h>
60 #include <fcntl.h>
61 #include <signal.h>
62 #include <stdio.h>
63 #include <stdlib.h>
64 #include <string.h>
65 #include <unistd.h>
66 #ifdef DEBUG
67 #include <assert.h>
68 #endif
69 
70 #include <db.h>
71 #include "hash.h"
72 #include "page.h"
73 #include "extern.h"
74 
75 static u_long	*fetch_bitmap __P((HTAB *, int));
76 static u_long	 first_free __P((u_long));
77 static int	 open_temp __P((HTAB *));
78 static u_short	 overflow_page __P((HTAB *));
79 static void	 putpair __P((char *, const DBT *, const DBT *));
80 static void	 squeeze_key __P((u_short *, const DBT *, const DBT *));
81 static int	 ugly_split
82 		    __P((HTAB *, u_int, BUFHEAD *, BUFHEAD *, int, int));
83 
84 #define	PAGE_INIT(P) { \
85 	((u_short *)(P))[0] = 0; \
86 	((u_short *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_short); \
87 	((u_short *)(P))[2] = hashp->BSIZE; \
88 }
89 
90 /*
91  * This is called AFTER we have verified that there is room on the page for
92  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
93  * stuff on.
94  */
95 static void
putpair(p,key,val)96 putpair(p, key, val)
97 	char *p;
98 	const DBT *key, *val;
99 {
100 	register u_short *bp, n, off;
101 
102 	bp = (u_short *)p;
103 
104 	/* Enter the key first. */
105 	n = bp[0];
106 
107 	off = OFFSET(bp) - key->size;
108 	memmove(p + off, key->data, key->size);
109 	bp[++n] = off;
110 
111 	/* Now the data. */
112 	off -= val->size;
113 	memmove(p + off, val->data, val->size);
114 	bp[++n] = off;
115 
116 	/* Adjust page info. */
117 	bp[0] = n;
118 	bp[n + 1] = off - ((n + 3) * sizeof(u_short));
119 	bp[n + 2] = off;
120 }
121 
122 /*
123  * Returns:
124  *	 0 OK
125  *	-1 error
126  */
127 extern int
128 __delpair(hashp, bufp, ndx)
129 	HTAB *hashp;
130 	BUFHEAD *bufp;
131 	register int ndx;
132 {
133 	register u_short *bp, newoff;
134 	register int n;
135 	u_short pairlen;
136 
137 	bp = (u_short *)bufp->page;
138 	n = bp[0];
139 
140 	if (bp[ndx + 1] < REAL_KEY)
141 		return (__big_delete(hashp, bufp));
142 	if (ndx != 1)
143 		newoff = bp[ndx - 1];
144 	else
145 		newoff = hashp->BSIZE;
146 	pairlen = newoff - bp[ndx + 1];
147 
148 	if (ndx != (n - 1)) {
149 		/* Hard Case -- need to shuffle keys */
150 		register int i;
151 		register char *src = bufp->page + (int)OFFSET(bp);
152 		register char *dst = src + (int)pairlen;
153 		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
154 
155 		/* Now adjust the pointers */
156 		for (i = ndx + 2; i <= n; i += 2) {
157 			if (bp[i + 1] == OVFLPAGE) {
158 				bp[i - 2] = bp[i];
159 				bp[i - 1] = bp[i + 1];
160 			} else {
161 				bp[i - 2] = bp[i] + pairlen;
162 				bp[i - 1] = bp[i + 1] + pairlen;
163 			}
164 		}
165 	}
166 	/* Finally adjust the page data */
167 	bp[n] = OFFSET(bp) + pairlen;
168 	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_short);
169 	bp[0] = n - 2;
170 	hashp->NKEYS--;
171 
172 	bufp->flags |= BUF_MOD;
173 	return (0);
174 }
175 /*
176  * Returns:
177  *	 0 ==> OK
178  *	-1 ==> Error
179  */
180 extern int
181 __split_page(hashp, obucket, nbucket)
182 	HTAB *hashp;
183 	u_int obucket, nbucket;
184 {
185 	register BUFHEAD *new_bufp, *old_bufp;
186 	register u_short *ino;
187 	register char *np;
188 	DBT key, val;
189 	int n, ndx, retval;
190 	u_short copyto, diff, off, moved;
191 	char *op;
192 
193 	copyto = (u_short)hashp->BSIZE;
194 	off = (u_short)hashp->BSIZE;
195 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
196 	if (old_bufp == NULL)
197 		return (-1);
198 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
199 	if (new_bufp == NULL)
200 		return (-1);
201 
202 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
203 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
204 
205 	ino = (u_short *)(op = old_bufp->page);
206 	np = new_bufp->page;
207 
208 	moved = 0;
209 
210 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
211 		if (ino[n + 1] < REAL_KEY) {
212 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
213 			    (int)copyto, (int)moved);
214 			old_bufp->flags &= ~BUF_PIN;
215 			new_bufp->flags &= ~BUF_PIN;
216 			return (retval);
217 
218 		}
219 		key.data = (u_char *)op + ino[n];
220 		key.size = off - ino[n];
221 
222 		if (__call_hash(hashp, key.data, key.size) == obucket) {
223 			/* Don't switch page */
224 			diff = copyto - off;
225 			if (diff) {
226 				copyto = ino[n + 1] + diff;
227 				memmove(op + copyto, op + ino[n + 1],
228 				    off - ino[n + 1]);
229 				ino[ndx] = copyto + ino[n] - ino[n + 1];
230 				ino[ndx + 1] = copyto;
231 			} else
232 				copyto = ino[n + 1];
233 			ndx += 2;
234 		} else {
235 			/* Switch page */
236 			val.data = (u_char *)op + ino[n + 1];
237 			val.size = ino[n] - ino[n + 1];
238 			putpair(np, &key, &val);
239 			moved += 2;
240 		}
241 
242 		off = ino[n + 1];
243 	}
244 
245 	/* Now clean up the page */
246 	ino[0] -= moved;
247 	FREESPACE(ino) = copyto - sizeof(u_short) * (ino[0] + 3);
248 	OFFSET(ino) = copyto;
249 
250 #ifdef DEBUG3
251 	(void)fprintf(stderr, "split %d/%d\n",
252 	    ((u_short *)np)[0] / 2,
253 	    ((u_short *)op)[0] / 2);
254 #endif
255 	/* unpin both pages */
256 	old_bufp->flags &= ~BUF_PIN;
257 	new_bufp->flags &= ~BUF_PIN;
258 	return (0);
259 }
260 
261 /*
262  * Called when we encounter an overflow or big key/data page during split
263  * handling.  This is special cased since we have to begin checking whether
264  * the key/data pairs fit on their respective pages and because we may need
265  * overflow pages for both the old and new pages.
266  *
267  * The first page might be a page with regular key/data pairs in which case
268  * we have a regular overflow condition and just need to go on to the next
269  * page or it might be a big key/data pair in which case we need to fix the
270  * big key/data pair.
271  *
272  * Returns:
273  *	 0 ==> success
274  *	-1 ==> failure
275  */
276 static int
ugly_split(hashp,obucket,old_bufp,new_bufp,copyto,moved)277 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
278 	HTAB *hashp;
279 	u_int obucket;	/* Same as __split_page. */
280 	BUFHEAD *old_bufp, *new_bufp;
281 	int copyto;	/* First byte on page which contains key/data values. */
282 	int moved;	/* Number of pairs moved to new page. */
283 {
284 	register BUFHEAD *bufp;	/* Buffer header for ino */
285 	register u_short *ino;	/* Page keys come off of */
286 	register u_short *np;	/* New page */
287 	register u_short *op;	/* Page keys go on to if they aren't moving */
288 
289 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
290 	DBT key, val;
291 	SPLIT_RETURN ret;
292 	u_short n, off, ov_addr, scopyto;
293 	char *cino;		/* Character value of ino */
294 
295 	bufp = old_bufp;
296 	ino = (u_short *)old_bufp->page;
297 	np = (u_short *)new_bufp->page;
298 	op = (u_short *)old_bufp->page;
299 	last_bfp = NULL;
300 	scopyto = (u_short)copyto;	/* ANSI */
301 
302 	n = ino[0] - 1;
303 	while (n < ino[0]) {
304 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
305 			/*
306 			 * Ov_addr gets set before reaching this point; there's
307 			 * always an overflow page before a big key/data page.
308 			 */
309 			if (__big_split(hashp, old_bufp,
310 			    new_bufp, bufp, ov_addr, obucket, &ret))
311 				return (-1);
312 			old_bufp = ret.oldp;
313 			if (!old_bufp)
314 				return (-1);
315 			op = (u_short *)old_bufp->page;
316 			new_bufp = ret.newp;
317 			if (!new_bufp)
318 				return (-1);
319 			np = (u_short *)new_bufp->page;
320 			bufp = ret.nextp;
321 			if (!bufp)
322 				return (0);
323 			cino = (char *)bufp->page;
324 			ino = (u_short *)cino;
325 			last_bfp = ret.nextp;
326 		} else if (ino[n + 1] == OVFLPAGE) {
327 			ov_addr = ino[n];
328 			/*
329 			 * Fix up the old page -- the extra 2 are the fields
330 			 * which contained the overflow information.
331 			 */
332 			ino[0] -= (moved + 2);
333 			FREESPACE(ino) =
334 			    scopyto - sizeof(u_short) * (ino[0] + 3);
335 			OFFSET(ino) = scopyto;
336 
337 			bufp = __get_buf(hashp, ov_addr, bufp, 0);
338 			if (!bufp)
339 				return (-1);
340 
341 			ino = (u_short *)bufp->page;
342 			n = 1;
343 			scopyto = hashp->BSIZE;
344 			moved = 0;
345 
346 			if (last_bfp)
347 				__free_ovflpage(hashp, last_bfp);
348 			last_bfp = bufp;
349 		}
350 		/* Move regular sized pairs of there are any */
351 		off = hashp->BSIZE;
352 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
353 			cino = (char *)ino;
354 			key.data = (u_char *)cino + ino[n];
355 			key.size = off - ino[n];
356 			val.data = (u_char *)cino + ino[n + 1];
357 			val.size = ino[n] - ino[n + 1];
358 			off = ino[n + 1];
359 
360 			if (__call_hash(hashp, key.data, key.size) == obucket) {
361 				/* Keep on old page */
362 				if (PAIRFITS(op, (&key), (&val)))
363 					putpair((char *)op, &key, &val);
364 				else {
365 					old_bufp =
366 					    __add_ovflpage(hashp, old_bufp);
367 					if (!old_bufp)
368 						return (-1);
369 					op = (u_short *)old_bufp->page;
370 					putpair((char *)op, &key, &val);
371 				}
372 				old_bufp->flags |= BUF_MOD;
373 			} else {
374 				/* Move to new page */
375 				if (PAIRFITS(np, (&key), (&val)))
376 					putpair((char *)np, &key, &val);
377 				else {
378 					new_bufp =
379 					    __add_ovflpage(hashp, new_bufp);
380 					if (!new_bufp)
381 						return (-1);
382 					np = (u_short *)new_bufp->page;
383 					putpair((char *)np, &key, &val);
384 				}
385 				new_bufp->flags |= BUF_MOD;
386 			}
387 		}
388 	}
389 	if (last_bfp)
390 		__free_ovflpage(hashp, last_bfp);
391 	return (0);
392 }
393 
394 /*
395  * Add the given pair to the page
396  *
397  * Returns:
398  *	0 ==> OK
399  *	1 ==> failure
400  */
401 extern int
402 __addel(hashp, bufp, key, val)
403 	HTAB *hashp;
404 	BUFHEAD *bufp;
405 	const DBT *key, *val;
406 {
407 	register u_short *bp, *sop;
408 	int do_expand;
409 
410 	bp = (u_short *)bufp->page;
411 	do_expand = 0;
412 	while (bp[0] && (bp[bp[0]] < REAL_KEY))
413 		/* Exception case */
414 		if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
415 			/* This is a big-keydata pair */
416 			bufp = __add_ovflpage(hashp, bufp);
417 			if (!bufp)
418 				return (-1);
419 			bp = (u_short *)bufp->page;
420 		} else
421 			/* Try to squeeze key on this page */
422 			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
423 				squeeze_key(bp, key, val);
424 				return (0);
425 			} else {
426 				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
427 				if (!bufp)
428 					return (-1);
429 				bp = (u_short *)bufp->page;
430 			}
431 
432 	if (PAIRFITS(bp, key, val))
433 		putpair(bufp->page, key, val);
434 	else {
435 		do_expand = 1;
436 		bufp = __add_ovflpage(hashp, bufp);
437 		if (!bufp)
438 			return (-1);
439 		sop = (u_short *)bufp->page;
440 
441 		if (PAIRFITS(sop, key, val))
442 			putpair((char *)sop, key, val);
443 		else
444 			if (__big_insert(hashp, bufp, key, val))
445 				return (-1);
446 	}
447 	bufp->flags |= BUF_MOD;
448 	/*
449 	 * If the average number of keys per bucket exceeds the fill factor,
450 	 * expand the table.
451 	 */
452 	hashp->NKEYS++;
453 	if (do_expand ||
454 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
455 		return (__expand_table(hashp));
456 	return (0);
457 }
458 
459 /*
460  *
461  * Returns:
462  *	pointer on success
463  *	NULL on error
464  */
465 extern BUFHEAD *
466 __add_ovflpage(hashp, bufp)
467 	HTAB *hashp;
468 	BUFHEAD *bufp;
469 {
470 	register u_short *sp;
471 	u_short ndx, ovfl_num;
472 #ifdef DEBUG1
473 	int tmp1, tmp2;
474 #endif
475 	sp = (u_short *)bufp->page;
476 
477 	/* Check if we are dynamically determining the fill factor */
478 	if (hashp->FFACTOR == DEF_FFACTOR) {
479 		hashp->FFACTOR = sp[0] >> 1;
480 		if (hashp->FFACTOR < MIN_FFACTOR)
481 			hashp->FFACTOR = MIN_FFACTOR;
482 	}
483 	bufp->flags |= BUF_MOD;
484 	ovfl_num = overflow_page(hashp);
485 #ifdef DEBUG1
486 	tmp1 = bufp->addr;
487 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
488 #endif
489 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
490 		return (NULL);
491 	bufp->ovfl->flags |= BUF_MOD;
492 #ifdef DEBUG1
493 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
494 	    tmp1, tmp2, bufp->ovfl->addr);
495 #endif
496 	ndx = sp[0];
497 	/*
498 	 * Since a pair is allocated on a page only if there's room to add
499 	 * an overflow page, we know that the OVFL information will fit on
500 	 * the page.
501 	 */
502 	sp[ndx + 4] = OFFSET(sp);
503 	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
504 	sp[ndx + 1] = ovfl_num;
505 	sp[ndx + 2] = OVFLPAGE;
506 	sp[0] = ndx + 2;
507 #ifdef HASH_STATISTICS
508 	hash_overflows++;
509 #endif
510 	return (bufp->ovfl);
511 }
512 
513 /*
514  * Returns:
515  *	 0 indicates SUCCESS
516  *	-1 indicates FAILURE
517  */
518 extern int
519 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
520 	HTAB *hashp;
521 	char *p;
522 	u_int bucket;
523 	int is_bucket, is_disk, is_bitmap;
524 {
525 	register int fd, page, size;
526 	int rsize;
527 	u_short *bp;
528 
529 	fd = hashp->fp;
530 	size = hashp->BSIZE;
531 
532 	if ((fd == -1) || !is_disk) {
533 		PAGE_INIT(p);
534 		return (0);
535 	}
536 	if (is_bucket)
537 		page = BUCKET_TO_PAGE(bucket);
538 	else
539 		page = OADDR_TO_PAGE(bucket);
540 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
541 	    ((rsize = read(fd, p, size)) == -1))
542 		return (-1);
543 	bp = (u_short *)p;
544 	if (!rsize)
545 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
546 	else
547 		if (rsize != size) {
548 			errno = EFTYPE;
549 			return (-1);
550 		}
551 	if (!is_bitmap && !bp[0]) {
552 		PAGE_INIT(p);
553 	} else
554 		if (hashp->LORDER != BYTE_ORDER) {
555 			register int i, max;
556 
557 			if (is_bitmap) {
558 				max = hashp->BSIZE >> 2; /* divide by 4 */
559 				for (i = 0; i < max; i++)
560 					BLSWAP(((long *)p)[i]);
561 			} else {
562 				BSSWAP(bp[0]);
563 				max = bp[0] + 2;
564 				for (i = 1; i <= max; i++)
565 					BSSWAP(bp[i]);
566 			}
567 		}
568 	return (0);
569 }
570 
571 /*
572  * Write page p to disk
573  *
574  * Returns:
575  *	 0 ==> OK
576  *	-1 ==>failure
577  */
578 extern int
579 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
580 	HTAB *hashp;
581 	char *p;
582 	u_int bucket;
583 	int is_bucket, is_bitmap;
584 {
585 	register int fd, page, size;
586 	int wsize;
587 
588 	size = hashp->BSIZE;
589 	if ((hashp->fp == -1) && open_temp(hashp))
590 		return (-1);
591 	fd = hashp->fp;
592 
593 	if (hashp->LORDER != BYTE_ORDER) {
594 		register int i;
595 		register int max;
596 
597 		if (is_bitmap) {
598 			max = hashp->BSIZE >> 2;	/* divide by 4 */
599 			for (i = 0; i < max; i++)
600 				BLSWAP(((long *)p)[i]);
601 		} else {
602 			max = ((u_short *)p)[0] + 2;
603 			for (i = 0; i <= max; i++)
604 				BSSWAP(((u_short *)p)[i]);
605 		}
606 	}
607 	if (is_bucket)
608 		page = BUCKET_TO_PAGE(bucket);
609 	else
610 		page = OADDR_TO_PAGE(bucket);
611 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
612 	    ((wsize = write(fd, p, size)) == -1))
613 		/* Errno is set */
614 		return (-1);
615 	if (wsize != size) {
616 		errno = EFTYPE;
617 		return (-1);
618 	}
619 	return (0);
620 }
621 
622 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
623 /*
624  * Initialize a new bitmap page.  Bitmap pages are left in memory
625  * once they are read in.
626  */
627 extern int
628 __init_bitmap(hashp, pnum, nbits, ndx)
629 	HTAB *hashp;
630 	int pnum, nbits, ndx;
631 {
632 	u_long *ip;
633 	int clearbytes, clearints;
634 
635 	if (!(ip = malloc(hashp->BSIZE)))
636 		return (1);
637 	hashp->nmaps++;
638 	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
639 	clearbytes = clearints << INT_TO_BYTE;
640 	(void)memset((char *)ip, 0, clearbytes);
641 	(void)memset(((char *)ip) + clearbytes, 0xFF,
642 	    hashp->BSIZE - clearbytes);
643 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
644 	SETBIT(ip, 0);
645 	hashp->BITMAPS[ndx] = (u_short)pnum;
646 	hashp->mapp[ndx] = ip;
647 	return (0);
648 }
649 
650 static u_long
first_free(map)651 first_free(map)
652 	u_long map;
653 {
654 	register u_long i, mask;
655 
656 	mask = 0x1;
657 	for (i = 0; i < BITS_PER_MAP; i++) {
658 		if (!(mask & map))
659 			return (i);
660 		mask = mask << 1;
661 	}
662 	return (i);
663 }
664 
665 static u_short
overflow_page(hashp)666 overflow_page(hashp)
667 	HTAB *hashp;
668 {
669 	register u_long *freep;
670 	register int max_free, offset, splitnum;
671 	u_short addr;
672 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
673 #ifdef DEBUG2
674 	int tmp1, tmp2;
675 #endif
676 	splitnum = hashp->OVFL_POINT;
677 	max_free = hashp->SPARES[splitnum];
678 
679 	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
680 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
681 
682 	/* Look through all the free maps to find the first free block */
683 	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
684 	for ( i = first_page; i <= free_page; i++ ) {
685 		if (!(freep = (u_long *)hashp->mapp[i]) &&
686 		    !(freep = fetch_bitmap(hashp, i)))
687 			return (NULL);
688 		if (i == free_page)
689 			in_use_bits = free_bit;
690 		else
691 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
692 
693 		if (i == first_page) {
694 			bit = hashp->LAST_FREED &
695 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
696 			j = bit / BITS_PER_MAP;
697 			bit = bit & ~(BITS_PER_MAP - 1);
698 		} else {
699 			bit = 0;
700 			j = 0;
701 		}
702 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
703 			if (freep[j] != ALL_SET)
704 				goto found;
705 	}
706 
707 	/* No Free Page Found */
708 	hashp->LAST_FREED = hashp->SPARES[splitnum];
709 	hashp->SPARES[splitnum]++;
710 	offset = hashp->SPARES[splitnum] -
711 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
712 
713 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
714 	if (offset > SPLITMASK) {
715 		if (++splitnum >= NCACHED) {
716 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
717 			return (NULL);
718 		}
719 		hashp->OVFL_POINT = splitnum;
720 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
721 		hashp->SPARES[splitnum-1]--;
722 		offset = 1;
723 	}
724 
725 	/* Check if we need to allocate a new bitmap page */
726 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
727 		free_page++;
728 		if (free_page >= NCACHED) {
729 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
730 			return (NULL);
731 		}
732 		/*
733 		 * This is tricky.  The 1 indicates that you want the new page
734 		 * allocated with 1 clear bit.  Actually, you are going to
735 		 * allocate 2 pages from this map.  The first is going to be
736 		 * the map page, the second is the overflow page we were
737 		 * looking for.  The init_bitmap routine automatically, sets
738 		 * the first bit of itself to indicate that the bitmap itself
739 		 * is in use.  We would explicitly set the second bit, but
740 		 * don't have to if we tell init_bitmap not to leave it clear
741 		 * in the first place.
742 		 */
743 		if (__init_bitmap(hashp, (int)OADDR_OF(splitnum, offset),
744 		    1, free_page))
745 			return (NULL);
746 		hashp->SPARES[splitnum]++;
747 #ifdef DEBUG2
748 		free_bit = 2;
749 #endif
750 		offset++;
751 		if (offset > SPLITMASK) {
752 			if (++splitnum >= NCACHED) {
753 				(void)write(STDERR_FILENO, OVMSG,
754 				    sizeof(OVMSG) - 1);
755 				return (NULL);
756 			}
757 			hashp->OVFL_POINT = splitnum;
758 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
759 			hashp->SPARES[splitnum-1]--;
760 			offset = 0;
761 		}
762 	} else {
763 		/*
764 		 * Free_bit addresses the last used bit.  Bump it to address
765 		 * the first available bit.
766 		 */
767 		free_bit++;
768 		SETBIT(freep, free_bit);
769 	}
770 
771 	/* Calculate address of the new overflow page */
772 	addr = OADDR_OF(splitnum, offset);
773 #ifdef DEBUG2
774 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
775 	    addr, free_bit, free_page);
776 #endif
777 	return (addr);
778 
779 found:
780 	bit = bit + first_free(freep[j]);
781 	SETBIT(freep, bit);
782 #ifdef DEBUG2
783 	tmp1 = bit;
784 	tmp2 = i;
785 #endif
786 	/*
787 	 * Bits are addressed starting with 0, but overflow pages are addressed
788 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
789 	 * it to convert it to a page number.
790 	 */
791 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
792 	if (bit >= hashp->LAST_FREED)
793 		hashp->LAST_FREED = bit - 1;
794 
795 	/* Calculate the split number for this page */
796 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
797 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
798 	if (offset >= SPLITMASK)
799 		return (NULL);	/* Out of overflow pages */
800 	addr = OADDR_OF(i, offset);
801 #ifdef DEBUG2
802 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
803 	    addr, tmp1, tmp2);
804 #endif
805 
806 	/* Allocate and return the overflow page */
807 	return (addr);
808 }
809 
810 /*
811  * Mark this overflow page as free.
812  */
813 extern void
814 __free_ovflpage(hashp, obufp)
815 	HTAB *hashp;
816 	BUFHEAD *obufp;
817 {
818 	register u_short addr;
819 	u_long *freep;
820 	int bit_address, free_page, free_bit;
821 	u_short ndx;
822 
823 	addr = obufp->addr;
824 #ifdef DEBUG1
825 	(void)fprintf(stderr, "Freeing %d\n", addr);
826 #endif
827 	ndx = (((u_short)addr) >> SPLITSHIFT);
828 	bit_address =
829 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
830 	 if (bit_address < hashp->LAST_FREED)
831 		hashp->LAST_FREED = bit_address;
832 	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
833 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
834 
835 	if (!(freep = hashp->mapp[free_page]))
836 		freep = fetch_bitmap(hashp, free_page);
837 #ifdef DEBUG
838 	/*
839 	 * This had better never happen.  It means we tried to read a bitmap
840 	 * that has already had overflow pages allocated off it, and we
841 	 * failed to read it from the file.
842 	 */
843 	if (!freep)
844 		assert(0);
845 #endif
846 	CLRBIT(freep, free_bit);
847 #ifdef DEBUG2
848 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
849 	    obufp->addr, free_bit, free_page);
850 #endif
851 	__reclaim_buf(hashp, obufp);
852 }
853 
854 /*
855  * Returns:
856  *	 0 success
857  *	-1 failure
858  */
859 static int
open_temp(hashp)860 open_temp(hashp)
861 	HTAB *hashp;
862 {
863 	sigset_t set, oset;
864 	static char namestr[] = "_hashXXXXXX";
865 
866 	/* Block signals; make sure file goes away at process exit. */
867 	(void)sigfillset(&set);
868 	(void)sigprocmask(SIG_BLOCK, &set, &oset);
869 	if ((hashp->fp = mkstemp(namestr)) != -1) {
870 		(void)unlink(namestr);
871 		(void)fcntl(hashp->fp, F_SETFD, 1);
872 	}
873 	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
874 	return (hashp->fp != -1 ? 0 : -1);
875 }
876 
877 /*
878  * We have to know that the key will fit, but the last entry on the page is
879  * an overflow pair, so we need to shift things.
880  */
881 static void
squeeze_key(sp,key,val)882 squeeze_key(sp, key, val)
883 	u_short *sp;
884 	const DBT *key, *val;
885 {
886 	register char *p;
887 	u_short free_space, n, off, pageno;
888 
889 	p = (char *)sp;
890 	n = sp[0];
891 	free_space = FREESPACE(sp);
892 	off = OFFSET(sp);
893 
894 	pageno = sp[n - 1];
895 	off -= key->size;
896 	sp[n - 1] = off;
897 	memmove(p + off, key->data, key->size);
898 	off -= val->size;
899 	sp[n] = off;
900 	memmove(p + off, val->data, val->size);
901 	sp[0] = n + 2;
902 	sp[n + 1] = pageno;
903 	sp[n + 2] = OVFLPAGE;
904 	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
905 	OFFSET(sp) = off;
906 }
907 
908 static u_long *
fetch_bitmap(hashp,ndx)909 fetch_bitmap(hashp, ndx)
910 	HTAB *hashp;
911 	int ndx;
912 {
913 	if (ndx >= hashp->nmaps ||
914 	    !(hashp->mapp[ndx] = malloc(hashp->BSIZE)) ||
915 	    __get_page(hashp, (char *)hashp->mapp[ndx],
916 	    hashp->BITMAPS[ndx], 0, 1, 1))
917 		return (NULL);
918 	return (hashp->mapp[ndx]);
919 }
920 
921 #ifdef DEBUG4
922 int
print_chain(addr)923 print_chain(addr)
924 	int addr;
925 {
926 	BUFHEAD *bufp;
927 	short *bp, oaddr;
928 
929 	(void)fprintf(stderr, "%d ", addr);
930 	bufp = __get_buf(hashp, addr, NULL, 0);
931 	bp = (short *)bufp->page;
932 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
933 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
934 		oaddr = bp[bp[0] - 1];
935 		(void)fprintf(stderr, "%d ", (int)oaddr);
936 		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
937 		bp = (short *)bufp->page;
938 	}
939 	(void)fprintf(stderr, "\n");
940 }
941 #endif
942