xref: /386bsd/usr/src/usr.bin/diff/regex.c (revision a2142627)
1 /* Extended regular expression matching and search library,
2    version 0.11.
3    (Implements POSIX draft P10003.2/D11.2, except for
4    internationalization features.)
5 
6    Copyright (C) 1993 Free Software Foundation, Inc.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2, or (at your option)
11    any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */
21 
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24   #pragma alloca
25 #endif
26 
27 #define _GNU_SOURCE
28 
29 /* We need this for `regex.h', and perhaps for the Emacs include files.  */
30 #include <sys/types.h>
31 
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35 
36 /* The `emacs' switch turns on certain matching commands
37    that make sense only in Emacs. */
38 #ifdef emacs
39 
40 #include "lisp.h"
41 #include "buffer.h"
42 #include "syntax.h"
43 
44 /* Emacs uses `NULL' as a predicate.  */
45 #undef NULL
46 
47 #else  /* not emacs */
48 
49 /* We used to test for `BSTRING' here, but only GCC and Emacs define
50    `BSTRING', as far as I know, and neither of them use this code.  */
51 #if HAVE_STRING_H || STDC_HEADERS
52 #include <string.h>
53 #ifndef bcmp
54 #define bcmp(s1, s2, n)	memcmp ((s1), (s2), (n))
55 #endif
56 #ifndef bcopy
57 #define bcopy(s, d, n)	memcpy ((d), (s), (n))
58 #endif
59 #ifndef bzero
60 #define bzero(s, n)	memset ((s), 0, (n))
61 #endif
62 #else
63 #include <strings.h>
64 #endif
65 
66 #ifdef STDC_HEADERS
67 #include <stdlib.h>
68 #else
69 char *malloc ();
70 char *realloc ();
71 #endif
72 
73 
74 /* Define the syntax stuff for \<, \>, etc.  */
75 
76 /* This must be nonzero for the wordchar and notwordchar pattern
77    commands in re_match_2.  */
78 #ifndef Sword
79 #define Sword 1
80 #endif
81 
82 #ifdef SYNTAX_TABLE
83 
84 extern char *re_syntax_table;
85 
86 #else /* not SYNTAX_TABLE */
87 
88 /* How many characters in the character set.  */
89 #define CHAR_SET_SIZE 256
90 
91 static char re_syntax_table[CHAR_SET_SIZE];
92 
93 static void
init_syntax_once()94 init_syntax_once ()
95 {
96    register int c;
97    static int done = 0;
98 
99    if (done)
100      return;
101 
102    bzero (re_syntax_table, sizeof re_syntax_table);
103 
104    for (c = 'a'; c <= 'z'; c++)
105      re_syntax_table[c] = Sword;
106 
107    for (c = 'A'; c <= 'Z'; c++)
108      re_syntax_table[c] = Sword;
109 
110    for (c = '0'; c <= '9'; c++)
111      re_syntax_table[c] = Sword;
112 
113    re_syntax_table['_'] = Sword;
114 
115    done = 1;
116 }
117 
118 #endif /* not SYNTAX_TABLE */
119 
120 #define SYNTAX(c) re_syntax_table[c]
121 
122 #endif /* not emacs */
123 
124 /* Get the interface, including the syntax bits.  */
125 #include "regex.h"
126 
127 /* isalpha etc. are used for the character classes.  */
128 #include <ctype.h>
129 
130 #ifndef isascii
131 #define isascii(c) 1
132 #endif
133 
134 #ifdef isblank
135 #define ISBLANK(c) (isascii (c) && isblank (c))
136 #else
137 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
138 #endif
139 #ifdef isgraph
140 #define ISGRAPH(c) (isascii (c) && isgraph (c))
141 #else
142 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
143 #endif
144 
145 #define ISPRINT(c) (isascii (c) && isprint (c))
146 #define ISDIGIT(c) (isascii (c) && isdigit (c))
147 #define ISALNUM(c) (isascii (c) && isalnum (c))
148 #define ISALPHA(c) (isascii (c) && isalpha (c))
149 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
150 #define ISLOWER(c) (isascii (c) && islower (c))
151 #define ISPUNCT(c) (isascii (c) && ispunct (c))
152 #define ISSPACE(c) (isascii (c) && isspace (c))
153 #define ISUPPER(c) (isascii (c) && isupper (c))
154 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
155 
156 #ifndef NULL
157 #define NULL 0
158 #endif
159 
160 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
161    since ours (we hope) works properly with all combinations of
162    machines, compilers, `char' and `unsigned char' argument types.
163    (Per Bothner suggested the basic approach.)  */
164 #undef SIGN_EXTEND_CHAR
165 #if __STDC__
166 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
167 #else  /* not __STDC__ */
168 /* As in Harbison and Steele.  */
169 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
170 #endif
171 
172 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
173    use `alloca' instead of `malloc'.  This is because using malloc in
174    re_search* or re_match* could cause memory leaks when C-g is used in
175    Emacs; also, malloc is slower and causes storage fragmentation.  On
176    the other hand, malloc is more portable, and easier to debug.
177 
178    Because we sometimes use alloca, some routines have to be macros,
179    not functions -- `alloca'-allocated space disappears at the end of the
180    function it is called in.  */
181 
182 #ifdef REGEX_MALLOC
183 
184 #define REGEX_ALLOCATE malloc
185 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
186 
187 #else /* not REGEX_MALLOC  */
188 
189 /* Emacs already defines alloca, sometimes.  */
190 #ifndef alloca
191 
192 /* Make alloca work the best possible way.  */
193 #ifdef __GNUC__
194 #define alloca __builtin_alloca
195 #else /* not __GNUC__ */
196 #if HAVE_ALLOCA_H
197 #include <alloca.h>
198 #else /* not __GNUC__ or HAVE_ALLOCA_H */
199 #ifndef _AIX /* Already did AIX, up at the top.  */
200 char *alloca ();
201 #endif /* not _AIX */
202 #endif /* not HAVE_ALLOCA_H */
203 #endif /* not __GNUC__ */
204 
205 #endif /* not alloca */
206 
207 #define REGEX_ALLOCATE alloca
208 
209 /* Assumes a `char *destination' variable.  */
210 #define REGEX_REALLOCATE(source, osize, nsize)				\
211   (destination = (char *) alloca (nsize),				\
212    bcopy (source, destination, osize),					\
213    destination)
214 
215 #endif /* not REGEX_MALLOC */
216 
217 
218 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
219    `string1' or just past its end.  This works if PTR is NULL, which is
220    a good thing.  */
221 #define FIRST_STRING_P(ptr) 					\
222   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
223 
224 /* (Re)Allocate N items of type T using malloc, or fail.  */
225 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
226 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
227 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
228 
229 #define BYTEWIDTH 8 /* In bits.  */
230 
231 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
232 
233 #define MAX(a, b) ((a) > (b) ? (a) : (b))
234 #define MIN(a, b) ((a) < (b) ? (a) : (b))
235 
236 typedef char boolean;
237 #define false 0
238 #define true 1
239 
240 /* These are the command codes that appear in compiled regular
241    expressions.  Some opcodes are followed by argument bytes.  A
242    command code can specify any interpretation whatsoever for its
243    arguments.  Zero bytes may appear in the compiled regular expression.
244 
245    The value of `exactn' is needed in search.c (search_buffer) in Emacs.
246    So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
247    `exactn' we use here must also be 1.  */
248 
249 typedef enum
250 {
251   no_op = 0,
252 
253         /* Followed by one byte giving n, then by n literal bytes.  */
254   exactn = 1,
255 
256         /* Matches any (more or less) character.  */
257   anychar,
258 
259         /* Matches any one char belonging to specified set.  First
260            following byte is number of bitmap bytes.  Then come bytes
261            for a bitmap saying which chars are in.  Bits in each byte
262            are ordered low-bit-first.  A character is in the set if its
263            bit is 1.  A character too large to have a bit in the map is
264            automatically not in the set.  */
265   charset,
266 
267         /* Same parameters as charset, but match any character that is
268            not one of those specified.  */
269   charset_not,
270 
271         /* Start remembering the text that is matched, for storing in a
272            register.  Followed by one byte with the register number, in
273            the range 0 to one less than the pattern buffer's re_nsub
274            field.  Then followed by one byte with the number of groups
275            inner to this one.  (This last has to be part of the
276            start_memory only because we need it in the on_failure_jump
277            of re_match_2.)  */
278   start_memory,
279 
280         /* Stop remembering the text that is matched and store it in a
281            memory register.  Followed by one byte with the register
282            number, in the range 0 to one less than `re_nsub' in the
283            pattern buffer, and one byte with the number of inner groups,
284            just like `start_memory'.  (We need the number of inner
285            groups here because we don't have any easy way of finding the
286            corresponding start_memory when we're at a stop_memory.)  */
287   stop_memory,
288 
289         /* Match a duplicate of something remembered. Followed by one
290            byte containing the register number.  */
291   duplicate,
292 
293         /* Fail unless at beginning of line.  */
294   begline,
295 
296         /* Fail unless at end of line.  */
297   endline,
298 
299         /* Succeeds if at beginning of buffer (if emacs) or at beginning
300            of string to be matched (if not).  */
301   begbuf,
302 
303         /* Analogously, for end of buffer/string.  */
304   endbuf,
305 
306         /* Followed by two byte relative address to which to jump.  */
307   jump,
308 
309 	/* Same as jump, but marks the end of an alternative.  */
310   jump_past_alt,
311 
312         /* Followed by two-byte relative address of place to resume at
313            in case of failure.  */
314   on_failure_jump,
315 
316         /* Like on_failure_jump, but pushes a placeholder instead of the
317            current string position when executed.  */
318   on_failure_keep_string_jump,
319 
320         /* Throw away latest failure point and then jump to following
321            two-byte relative address.  */
322   pop_failure_jump,
323 
324         /* Change to pop_failure_jump if know won't have to backtrack to
325            match; otherwise change to jump.  This is used to jump
326            back to the beginning of a repeat.  If what follows this jump
327            clearly won't match what the repeat does, such that we can be
328            sure that there is no use backtracking out of repetitions
329            already matched, then we change it to a pop_failure_jump.
330            Followed by two-byte address.  */
331   maybe_pop_jump,
332 
333         /* Jump to following two-byte address, and push a dummy failure
334            point. This failure point will be thrown away if an attempt
335            is made to use it for a failure.  A `+' construct makes this
336            before the first repeat.  Also used as an intermediary kind
337            of jump when compiling an alternative.  */
338   dummy_failure_jump,
339 
340 	/* Push a dummy failure point and continue.  Used at the end of
341 	   alternatives.  */
342   push_dummy_failure,
343 
344         /* Followed by two-byte relative address and two-byte number n.
345            After matching N times, jump to the address upon failure.  */
346   succeed_n,
347 
348         /* Followed by two-byte relative address, and two-byte number n.
349            Jump to the address N times, then fail.  */
350   jump_n,
351 
352         /* Set the following two-byte relative address to the
353            subsequent two-byte number.  The address *includes* the two
354            bytes of number.  */
355   set_number_at,
356 
357   wordchar,	/* Matches any word-constituent character.  */
358   notwordchar,	/* Matches any char that is not a word-constituent.  */
359 
360   wordbeg,	/* Succeeds if at word beginning.  */
361   wordend,	/* Succeeds if at word end.  */
362 
363   wordbound,	/* Succeeds if at a word boundary.  */
364   notwordbound	/* Succeeds if not at a word boundary.  */
365 
366 #ifdef emacs
367   ,before_dot,	/* Succeeds if before point.  */
368   at_dot,	/* Succeeds if at point.  */
369   after_dot,	/* Succeeds if after point.  */
370 
371 	/* Matches any character whose syntax is specified.  Followed by
372            a byte which contains a syntax code, e.g., Sword.  */
373   syntaxspec,
374 
375 	/* Matches any character whose syntax is not that specified.  */
376   notsyntaxspec
377 #endif /* emacs */
378 } re_opcode_t;
379 
380 /* Common operations on the compiled pattern.  */
381 
382 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
383 
384 #define STORE_NUMBER(destination, number)				\
385   do {									\
386     (destination)[0] = (number) & 0377;					\
387     (destination)[1] = (number) >> 8;					\
388   } while (0)
389 
390 /* Same as STORE_NUMBER, except increment DESTINATION to
391    the byte after where the number is stored.  Therefore, DESTINATION
392    must be an lvalue.  */
393 
394 #define STORE_NUMBER_AND_INCR(destination, number)			\
395   do {									\
396     STORE_NUMBER (destination, number);					\
397     (destination) += 2;							\
398   } while (0)
399 
400 /* Put into DESTINATION a number stored in two contiguous bytes starting
401    at SOURCE.  */
402 
403 #define EXTRACT_NUMBER(destination, source)				\
404   do {									\
405     (destination) = *(source) & 0377;					\
406     (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
407   } while (0)
408 
409 #ifdef DEBUG
410 static void
extract_number(dest,source)411 extract_number (dest, source)
412     int *dest;
413     unsigned char *source;
414 {
415   int temp = SIGN_EXTEND_CHAR (*(source + 1));
416   *dest = *source & 0377;
417   *dest += temp << 8;
418 }
419 
420 #ifndef EXTRACT_MACROS /* To debug the macros.  */
421 #undef EXTRACT_NUMBER
422 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
423 #endif /* not EXTRACT_MACROS */
424 
425 #endif /* DEBUG */
426 
427 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
428    SOURCE must be an lvalue.  */
429 
430 #define EXTRACT_NUMBER_AND_INCR(destination, source)			\
431   do {									\
432     EXTRACT_NUMBER (destination, source);				\
433     (source) += 2; 							\
434   } while (0)
435 
436 #ifdef DEBUG
437 static void
extract_number_and_incr(destination,source)438 extract_number_and_incr (destination, source)
439     int *destination;
440     unsigned char **source;
441 {
442   extract_number (destination, *source);
443   *source += 2;
444 }
445 
446 #ifndef EXTRACT_MACROS
447 #undef EXTRACT_NUMBER_AND_INCR
448 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
449   extract_number_and_incr (&dest, &src)
450 #endif /* not EXTRACT_MACROS */
451 
452 #endif /* DEBUG */
453 
454 /* If DEBUG is defined, Regex prints many voluminous messages about what
455    it is doing (if the variable `debug' is nonzero).  If linked with the
456    main program in `iregex.c', you can enter patterns and strings
457    interactively.  And if linked with the main program in `main.c' and
458    the other test files, you can run the already-written tests.  */
459 
460 #ifdef DEBUG
461 
462 /* We use standard I/O for debugging.  */
463 #include <stdio.h>
464 
465 /* It is useful to test things that ``must'' be true when debugging.  */
466 #include <assert.h>
467 
468 static int debug = 0;
469 
470 #define DEBUG_STATEMENT(e) e
471 #define DEBUG_PRINT1(x) if (debug) printf (x)
472 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
473 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
474 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
475 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 				\
476   if (debug) print_partial_compiled_pattern (s, e)
477 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
478   if (debug) print_double_string (w, s1, sz1, s2, sz2)
479 
480 
481 extern void printchar ();
482 
483 /* Print the fastmap in human-readable form.  */
484 
485 void
print_fastmap(fastmap)486 print_fastmap (fastmap)
487     char *fastmap;
488 {
489   unsigned was_a_range = 0;
490   unsigned i = 0;
491 
492   while (i < (1 << BYTEWIDTH))
493     {
494       if (fastmap[i++])
495 	{
496 	  was_a_range = 0;
497           printchar (i - 1);
498           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
499             {
500               was_a_range = 1;
501               i++;
502             }
503 	  if (was_a_range)
504             {
505               printf ("-");
506               printchar (i - 1);
507             }
508         }
509     }
510   putchar ('\n');
511 }
512 
513 
514 /* Print a compiled pattern string in human-readable form, starting at
515    the START pointer into it and ending just before the pointer END.  */
516 
517 void
print_partial_compiled_pattern(start,end)518 print_partial_compiled_pattern (start, end)
519     unsigned char *start;
520     unsigned char *end;
521 {
522   int mcnt, mcnt2;
523   unsigned char *p = start;
524   unsigned char *pend = end;
525 
526   if (start == NULL)
527     {
528       printf ("(null)\n");
529       return;
530     }
531 
532   /* Loop over pattern commands.  */
533   while (p < pend)
534     {
535       switch ((re_opcode_t) *p++)
536 	{
537         case no_op:
538           printf ("/no_op");
539           break;
540 
541 	case exactn:
542 	  mcnt = *p++;
543           printf ("/exactn/%d", mcnt);
544           do
545 	    {
546               putchar ('/');
547 	      printchar (*p++);
548             }
549           while (--mcnt);
550           break;
551 
552 	case start_memory:
553           mcnt = *p++;
554           printf ("/start_memory/%d/%d", mcnt, *p++);
555           break;
556 
557 	case stop_memory:
558           mcnt = *p++;
559 	  printf ("/stop_memory/%d/%d", mcnt, *p++);
560           break;
561 
562 	case duplicate:
563 	  printf ("/duplicate/%d", *p++);
564 	  break;
565 
566 	case anychar:
567 	  printf ("/anychar");
568 	  break;
569 
570 	case charset:
571         case charset_not:
572           {
573             register int c;
574 
575             printf ("/charset%s",
576 	            (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
577 
578             assert (p + *p < pend);
579 
580             for (c = 0; c < *p; c++)
581               {
582                 unsigned bit;
583                 unsigned char map_byte = p[1 + c];
584 
585                 putchar ('/');
586 
587 		for (bit = 0; bit < BYTEWIDTH; bit++)
588                   if (map_byte & (1 << bit))
589                     printchar (c * BYTEWIDTH + bit);
590               }
591 	    p += 1 + *p;
592 	    break;
593 	  }
594 
595 	case begline:
596 	  printf ("/begline");
597           break;
598 
599 	case endline:
600           printf ("/endline");
601           break;
602 
603 	case on_failure_jump:
604           extract_number_and_incr (&mcnt, &p);
605   	  printf ("/on_failure_jump/0/%d", mcnt);
606           break;
607 
608 	case on_failure_keep_string_jump:
609           extract_number_and_incr (&mcnt, &p);
610   	  printf ("/on_failure_keep_string_jump/0/%d", mcnt);
611           break;
612 
613 	case dummy_failure_jump:
614           extract_number_and_incr (&mcnt, &p);
615   	  printf ("/dummy_failure_jump/0/%d", mcnt);
616           break;
617 
618 	case push_dummy_failure:
619           printf ("/push_dummy_failure");
620           break;
621 
622         case maybe_pop_jump:
623           extract_number_and_incr (&mcnt, &p);
624   	  printf ("/maybe_pop_jump/0/%d", mcnt);
625 	  break;
626 
627         case pop_failure_jump:
628 	  extract_number_and_incr (&mcnt, &p);
629   	  printf ("/pop_failure_jump/0/%d", mcnt);
630 	  break;
631 
632         case jump_past_alt:
633 	  extract_number_and_incr (&mcnt, &p);
634   	  printf ("/jump_past_alt/0/%d", mcnt);
635 	  break;
636 
637         case jump:
638 	  extract_number_and_incr (&mcnt, &p);
639   	  printf ("/jump/0/%d", mcnt);
640 	  break;
641 
642         case succeed_n:
643           extract_number_and_incr (&mcnt, &p);
644           extract_number_and_incr (&mcnt2, &p);
645  	  printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
646           break;
647 
648         case jump_n:
649           extract_number_and_incr (&mcnt, &p);
650           extract_number_and_incr (&mcnt2, &p);
651  	  printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
652           break;
653 
654         case set_number_at:
655           extract_number_and_incr (&mcnt, &p);
656           extract_number_and_incr (&mcnt2, &p);
657  	  printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
658           break;
659 
660         case wordbound:
661 	  printf ("/wordbound");
662 	  break;
663 
664 	case notwordbound:
665 	  printf ("/notwordbound");
666           break;
667 
668 	case wordbeg:
669 	  printf ("/wordbeg");
670 	  break;
671 
672 	case wordend:
673 	  printf ("/wordend");
674 
675 #ifdef emacs
676 	case before_dot:
677 	  printf ("/before_dot");
678           break;
679 
680 	case at_dot:
681 	  printf ("/at_dot");
682           break;
683 
684 	case after_dot:
685 	  printf ("/after_dot");
686           break;
687 
688 	case syntaxspec:
689           printf ("/syntaxspec");
690 	  mcnt = *p++;
691 	  printf ("/%d", mcnt);
692           break;
693 
694 	case notsyntaxspec:
695           printf ("/notsyntaxspec");
696 	  mcnt = *p++;
697 	  printf ("/%d", mcnt);
698 	  break;
699 #endif /* emacs */
700 
701 	case wordchar:
702 	  printf ("/wordchar");
703           break;
704 
705 	case notwordchar:
706 	  printf ("/notwordchar");
707           break;
708 
709 	case begbuf:
710 	  printf ("/begbuf");
711           break;
712 
713 	case endbuf:
714 	  printf ("/endbuf");
715           break;
716 
717         default:
718           printf ("?%d", *(p-1));
719 	}
720     }
721   printf ("/\n");
722 }
723 
724 
725 void
print_compiled_pattern(bufp)726 print_compiled_pattern (bufp)
727     struct re_pattern_buffer *bufp;
728 {
729   unsigned char *buffer = bufp->buffer;
730 
731   print_partial_compiled_pattern (buffer, buffer + bufp->used);
732   printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
733 
734   if (bufp->fastmap_accurate && bufp->fastmap)
735     {
736       printf ("fastmap: ");
737       print_fastmap (bufp->fastmap);
738     }
739 
740   printf ("re_nsub: %d\t", bufp->re_nsub);
741   printf ("regs_alloc: %d\t", bufp->regs_allocated);
742   printf ("can_be_null: %d\t", bufp->can_be_null);
743   printf ("newline_anchor: %d\n", bufp->newline_anchor);
744   printf ("no_sub: %d\t", bufp->no_sub);
745   printf ("not_bol: %d\t", bufp->not_bol);
746   printf ("not_eol: %d\t", bufp->not_eol);
747   printf ("syntax: %d\n", bufp->syntax);
748   /* Perhaps we should print the translate table?  */
749 }
750 
751 
752 void
print_double_string(where,string1,size1,string2,size2)753 print_double_string (where, string1, size1, string2, size2)
754     const char *where;
755     const char *string1;
756     const char *string2;
757     int size1;
758     int size2;
759 {
760   unsigned this_char;
761 
762   if (where == NULL)
763     printf ("(null)");
764   else
765     {
766       if (FIRST_STRING_P (where))
767         {
768           for (this_char = where - string1; this_char < size1; this_char++)
769             printchar (string1[this_char]);
770 
771           where = string2;
772         }
773 
774       for (this_char = where - string2; this_char < size2; this_char++)
775         printchar (string2[this_char]);
776     }
777 }
778 
779 #else /* not DEBUG */
780 
781 #undef assert
782 #define assert(e)
783 
784 #define DEBUG_STATEMENT(e)
785 #define DEBUG_PRINT1(x)
786 #define DEBUG_PRINT2(x1, x2)
787 #define DEBUG_PRINT3(x1, x2, x3)
788 #define DEBUG_PRINT4(x1, x2, x3, x4)
789 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
790 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
791 
792 #endif /* not DEBUG */
793 
794 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
795    also be assigned to arbitrarily: each pattern buffer stores its own
796    syntax, so it can be changed between regex compilations.  */
797 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
798 
799 
800 /* Specify the precise syntax of regexps for compilation.  This provides
801    for compatibility for various utilities which historically have
802    different, incompatible syntaxes.
803 
804    The argument SYNTAX is a bit mask comprised of the various bits
805    defined in regex.h.  We return the old syntax.  */
806 
807 reg_syntax_t
re_set_syntax(syntax)808 re_set_syntax (syntax)
809     reg_syntax_t syntax;
810 {
811   reg_syntax_t ret = re_syntax_options;
812 
813   re_syntax_options = syntax;
814   return ret;
815 }
816 
817 /* This table gives an error message for each of the error codes listed
818    in regex.h.  Obviously the order here has to be same as there.  */
819 
820 static const char *re_error_msg[] =
821   { NULL,					/* REG_NOERROR */
822     "No match",					/* REG_NOMATCH */
823     "Invalid regular expression",		/* REG_BADPAT */
824     "Invalid collation character",		/* REG_ECOLLATE */
825     "Invalid character class name",		/* REG_ECTYPE */
826     "Trailing backslash",			/* REG_EESCAPE */
827     "Invalid back reference",			/* REG_ESUBREG */
828     "Unmatched [ or [^",			/* REG_EBRACK */
829     "Unmatched ( or \\(",			/* REG_EPAREN */
830     "Unmatched \\{",				/* REG_EBRACE */
831     "Invalid content of \\{\\}",		/* REG_BADBR */
832     "Invalid range end",			/* REG_ERANGE */
833     "Memory exhausted",				/* REG_ESPACE */
834     "Invalid preceding regular expression",	/* REG_BADRPT */
835     "Premature end of regular expression",	/* REG_EEND */
836     "Regular expression too big",		/* REG_ESIZE */
837     "Unmatched ) or \\)",			/* REG_ERPAREN */
838   };
839 
840 /* Subroutine declarations and macros for regex_compile.  */
841 
842 static void store_op1 (), store_op2 ();
843 static void insert_op1 (), insert_op2 ();
844 static boolean at_begline_loc_p (), at_endline_loc_p ();
845 static boolean group_in_compile_stack ();
846 static reg_errcode_t compile_range ();
847 
848 /* Fetch the next character in the uncompiled pattern---translating it
849    if necessary.  Also cast from a signed character in the constant
850    string passed to us by the user to an unsigned char that we can use
851    as an array index (in, e.g., `translate').  */
852 #define PATFETCH(c)							\
853   do {if (p == pend) return REG_EEND;					\
854     c = (unsigned char) *p++;						\
855     if (translate) c = translate[c]; 					\
856   } while (0)
857 
858 /* Fetch the next character in the uncompiled pattern, with no
859    translation.  */
860 #define PATFETCH_RAW(c)							\
861   do {if (p == pend) return REG_EEND;					\
862     c = (unsigned char) *p++; 						\
863   } while (0)
864 
865 /* Go backwards one character in the pattern.  */
866 #define PATUNFETCH p--
867 
868 
869 /* If `translate' is non-null, return translate[D], else just D.  We
870    cast the subscript to translate because some data is declared as
871    `char *', to avoid warnings when a string constant is passed.  But
872    when we use a character as a subscript we must make it unsigned.  */
873 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
874 
875 
876 /* Macros for outputting the compiled pattern into `buffer'.  */
877 
878 /* If the buffer isn't allocated when it comes in, use this.  */
879 #define INIT_BUF_SIZE  32
880 
881 /* Make sure we have at least N more bytes of space in buffer.  */
882 #define GET_BUFFER_SPACE(n)						\
883     while (b - bufp->buffer + (n) > bufp->allocated)			\
884       EXTEND_BUFFER ()
885 
886 /* Make sure we have one more byte of buffer space and then add C to it.  */
887 #define BUF_PUSH(c)							\
888   do {									\
889     GET_BUFFER_SPACE (1);						\
890     *b++ = (unsigned char) (c);						\
891   } while (0)
892 
893 
894 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
895 #define BUF_PUSH_2(c1, c2)						\
896   do {									\
897     GET_BUFFER_SPACE (2);						\
898     *b++ = (unsigned char) (c1);					\
899     *b++ = (unsigned char) (c2);					\
900   } while (0)
901 
902 
903 /* As with BUF_PUSH_2, except for three bytes.  */
904 #define BUF_PUSH_3(c1, c2, c3)						\
905   do {									\
906     GET_BUFFER_SPACE (3);						\
907     *b++ = (unsigned char) (c1);					\
908     *b++ = (unsigned char) (c2);					\
909     *b++ = (unsigned char) (c3);					\
910   } while (0)
911 
912 
913 /* Store a jump with opcode OP at LOC to location TO.  We store a
914    relative address offset by the three bytes the jump itself occupies.  */
915 #define STORE_JUMP(op, loc, to) \
916   store_op1 (op, loc, (to) - (loc) - 3)
917 
918 /* Likewise, for a two-argument jump.  */
919 #define STORE_JUMP2(op, loc, to, arg) \
920   store_op2 (op, loc, (to) - (loc) - 3, arg)
921 
922 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
923 #define INSERT_JUMP(op, loc, to) \
924   insert_op1 (op, loc, (to) - (loc) - 3, b)
925 
926 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
927 #define INSERT_JUMP2(op, loc, to, arg) \
928   insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
929 
930 
931 /* This is not an arbitrary limit: the arguments which represent offsets
932    into the pattern are two bytes long.  So if 2^16 bytes turns out to
933    be too small, many things would have to change.  */
934 #define MAX_BUF_SIZE (1L << 16)
935 
936 
937 /* Extend the buffer by twice its current size via realloc and
938    reset the pointers that pointed into the old block to point to the
939    correct places in the new one.  If extending the buffer results in it
940    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
941 #define EXTEND_BUFFER()							\
942   do { 									\
943     unsigned char *old_buffer = bufp->buffer;				\
944     if (bufp->allocated == MAX_BUF_SIZE) 				\
945       return REG_ESIZE;							\
946     bufp->allocated <<= 1;						\
947     if (bufp->allocated > MAX_BUF_SIZE)					\
948       bufp->allocated = MAX_BUF_SIZE; 					\
949     bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
950     if (bufp->buffer == NULL)						\
951       return REG_ESPACE;						\
952     /* If the buffer moved, move all the pointers into it.  */		\
953     if (old_buffer != bufp->buffer)					\
954       {									\
955         b = (b - old_buffer) + bufp->buffer;				\
956         begalt = (begalt - old_buffer) + bufp->buffer;			\
957         if (fixup_alt_jump)						\
958           fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
959         if (laststart)							\
960           laststart = (laststart - old_buffer) + bufp->buffer;		\
961         if (pending_exact)						\
962           pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
963       }									\
964   } while (0)
965 
966 
967 /* Since we have one byte reserved for the register number argument to
968    {start,stop}_memory, the maximum number of groups we can report
969    things about is what fits in that byte.  */
970 #define MAX_REGNUM 255
971 
972 /* But patterns can have more than `MAX_REGNUM' registers.  We just
973    ignore the excess.  */
974 typedef unsigned regnum_t;
975 
976 
977 /* Macros for the compile stack.  */
978 
979 /* Since offsets can go either forwards or backwards, this type needs to
980    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
981 typedef int pattern_offset_t;
982 
983 typedef struct
984 {
985   pattern_offset_t begalt_offset;
986   pattern_offset_t fixup_alt_jump;
987   pattern_offset_t inner_group_offset;
988   pattern_offset_t laststart_offset;
989   regnum_t regnum;
990 } compile_stack_elt_t;
991 
992 
993 typedef struct
994 {
995   compile_stack_elt_t *stack;
996   unsigned size;
997   unsigned avail;			/* Offset of next open position.  */
998 } compile_stack_type;
999 
1000 
1001 #define INIT_COMPILE_STACK_SIZE 32
1002 
1003 #define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
1004 #define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
1005 
1006 /* The next available element.  */
1007 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1008 
1009 
1010 /* Set the bit for character C in a list.  */
1011 #define SET_LIST_BIT(c)                               \
1012   (b[((unsigned char) (c)) / BYTEWIDTH]               \
1013    |= 1 << (((unsigned char) c) % BYTEWIDTH))
1014 
1015 
1016 /* Get the next unsigned number in the uncompiled pattern.  */
1017 #define GET_UNSIGNED_NUMBER(num) 					\
1018   { if (p != pend)							\
1019      {									\
1020        PATFETCH (c); 							\
1021        while (ISDIGIT (c)) 						\
1022          { 								\
1023            if (num < 0)							\
1024               num = 0;							\
1025            num = num * 10 + c - '0'; 					\
1026            if (p == pend) 						\
1027               break; 							\
1028            PATFETCH (c);						\
1029          } 								\
1030        } 								\
1031     }
1032 
1033 #define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
1034 
1035 #define IS_CHAR_CLASS(string)						\
1036    (STREQ (string, "alpha") || STREQ (string, "upper")			\
1037     || STREQ (string, "lower") || STREQ (string, "digit")		\
1038     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
1039     || STREQ (string, "space") || STREQ (string, "print")		\
1040     || STREQ (string, "punct") || STREQ (string, "graph")		\
1041     || STREQ (string, "cntrl") || STREQ (string, "blank"))
1042 
1043 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1044    Returns one of error codes defined in `regex.h', or zero for success.
1045 
1046    Assumes the `allocated' (and perhaps `buffer') and `translate'
1047    fields are set in BUFP on entry.
1048 
1049    If it succeeds, results are put in BUFP (if it returns an error, the
1050    contents of BUFP are undefined):
1051      `buffer' is the compiled pattern;
1052      `syntax' is set to SYNTAX;
1053      `used' is set to the length of the compiled pattern;
1054      `fastmap_accurate' is zero;
1055      `re_nsub' is the number of subexpressions in PATTERN;
1056      `not_bol' and `not_eol' are zero;
1057 
1058    The `fastmap' and `newline_anchor' fields are neither
1059    examined nor set.  */
1060 
1061 static reg_errcode_t
regex_compile(pattern,size,syntax,bufp)1062 regex_compile (pattern, size, syntax, bufp)
1063      const char *pattern;
1064      int size;
1065      reg_syntax_t syntax;
1066      struct re_pattern_buffer *bufp;
1067 {
1068   /* We fetch characters from PATTERN here.  Even though PATTERN is
1069      `char *' (i.e., signed), we declare these variables as unsigned, so
1070      they can be reliably used as array indices.  */
1071   register unsigned char c, c1;
1072 
1073   /* A random tempory spot in PATTERN.  */
1074   const char *p1;
1075 
1076   /* Points to the end of the buffer, where we should append.  */
1077   register unsigned char *b;
1078 
1079   /* Keeps track of unclosed groups.  */
1080   compile_stack_type compile_stack;
1081 
1082   /* Points to the current (ending) position in the pattern.  */
1083   const char *p = pattern;
1084   const char *pend = pattern + size;
1085 
1086   /* How to translate the characters in the pattern.  */
1087   char *translate = bufp->translate;
1088 
1089   /* Address of the count-byte of the most recently inserted `exactn'
1090      command.  This makes it possible to tell if a new exact-match
1091      character can be added to that command or if the character requires
1092      a new `exactn' command.  */
1093   unsigned char *pending_exact = 0;
1094 
1095   /* Address of start of the most recently finished expression.
1096      This tells, e.g., postfix * where to find the start of its
1097      operand.  Reset at the beginning of groups and alternatives.  */
1098   unsigned char *laststart = 0;
1099 
1100   /* Address of beginning of regexp, or inside of last group.  */
1101   unsigned char *begalt;
1102 
1103   /* Place in the uncompiled pattern (i.e., the {) to
1104      which to go back if the interval is invalid.  */
1105   const char *beg_interval;
1106 
1107   /* Address of the place where a forward jump should go to the end of
1108      the containing expression.  Each alternative of an `or' -- except the
1109      last -- ends with a forward jump of this sort.  */
1110   unsigned char *fixup_alt_jump = 0;
1111 
1112   /* Counts open-groups as they are encountered.  Remembered for the
1113      matching close-group on the compile stack, so the same register
1114      number is put in the stop_memory as the start_memory.  */
1115   regnum_t regnum = 0;
1116 
1117 #ifdef DEBUG
1118   DEBUG_PRINT1 ("\nCompiling pattern: ");
1119   if (debug)
1120     {
1121       unsigned debug_count;
1122 
1123       for (debug_count = 0; debug_count < size; debug_count++)
1124         printchar (pattern[debug_count]);
1125       putchar ('\n');
1126     }
1127 #endif /* DEBUG */
1128 
1129   /* Initialize the compile stack.  */
1130   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1131   if (compile_stack.stack == NULL)
1132     return REG_ESPACE;
1133 
1134   compile_stack.size = INIT_COMPILE_STACK_SIZE;
1135   compile_stack.avail = 0;
1136 
1137   /* Initialize the pattern buffer.  */
1138   bufp->syntax = syntax;
1139   bufp->fastmap_accurate = 0;
1140   bufp->not_bol = bufp->not_eol = 0;
1141 
1142   /* Set `used' to zero, so that if we return an error, the pattern
1143      printer (for debugging) will think there's no pattern.  We reset it
1144      at the end.  */
1145   bufp->used = 0;
1146 
1147   /* Always count groups, whether or not bufp->no_sub is set.  */
1148   bufp->re_nsub = 0;
1149 
1150 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1151   /* Initialize the syntax table.  */
1152    init_syntax_once ();
1153 #endif
1154 
1155   if (bufp->allocated == 0)
1156     {
1157       if (bufp->buffer)
1158 	{ /* If zero allocated, but buffer is non-null, try to realloc
1159              enough space.  This loses if buffer's address is bogus, but
1160              that is the user's responsibility.  */
1161           RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1162         }
1163       else
1164         { /* Caller did not allocate a buffer.  Do it for them.  */
1165           bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1166         }
1167       if (!bufp->buffer) return REG_ESPACE;
1168 
1169       bufp->allocated = INIT_BUF_SIZE;
1170     }
1171 
1172   begalt = b = bufp->buffer;
1173 
1174   /* Loop through the uncompiled pattern until we're at the end.  */
1175   while (p != pend)
1176     {
1177       PATFETCH (c);
1178 
1179       switch (c)
1180         {
1181         case '^':
1182           {
1183             if (   /* If at start of pattern, it's an operator.  */
1184                    p == pattern + 1
1185                    /* If context independent, it's an operator.  */
1186                 || syntax & RE_CONTEXT_INDEP_ANCHORS
1187                    /* Otherwise, depends on what's come before.  */
1188                 || at_begline_loc_p (pattern, p, syntax))
1189               BUF_PUSH (begline);
1190             else
1191               goto normal_char;
1192           }
1193           break;
1194 
1195 
1196         case '$':
1197           {
1198             if (   /* If at end of pattern, it's an operator.  */
1199                    p == pend
1200                    /* If context independent, it's an operator.  */
1201                 || syntax & RE_CONTEXT_INDEP_ANCHORS
1202                    /* Otherwise, depends on what's next.  */
1203                 || at_endline_loc_p (p, pend, syntax))
1204                BUF_PUSH (endline);
1205              else
1206                goto normal_char;
1207            }
1208            break;
1209 
1210 
1211 	case '+':
1212         case '?':
1213           if ((syntax & RE_BK_PLUS_QM)
1214               || (syntax & RE_LIMITED_OPS))
1215             goto normal_char;
1216         handle_plus:
1217         case '*':
1218           /* If there is no previous pattern... */
1219           if (!laststart)
1220             {
1221               if (syntax & RE_CONTEXT_INVALID_OPS)
1222                 return REG_BADRPT;
1223               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1224                 goto normal_char;
1225             }
1226 
1227           {
1228             /* Are we optimizing this jump?  */
1229             boolean keep_string_p = false;
1230 
1231             /* 1 means zero (many) matches is allowed.  */
1232             char zero_times_ok = 0, many_times_ok = 0;
1233 
1234             /* If there is a sequence of repetition chars, collapse it
1235                down to just one (the right one).  We can't combine
1236                interval operators with these because of, e.g., `a{2}*',
1237                which should only match an even number of `a's.  */
1238 
1239             for (;;)
1240               {
1241                 zero_times_ok |= c != '+';
1242                 many_times_ok |= c != '?';
1243 
1244                 if (p == pend)
1245                   break;
1246 
1247                 PATFETCH (c);
1248 
1249                 if (c == '*'
1250                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1251                   ;
1252 
1253                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
1254                   {
1255                     if (p == pend) return REG_EESCAPE;
1256 
1257                     PATFETCH (c1);
1258                     if (!(c1 == '+' || c1 == '?'))
1259                       {
1260                         PATUNFETCH;
1261                         PATUNFETCH;
1262                         break;
1263                       }
1264 
1265                     c = c1;
1266                   }
1267                 else
1268                   {
1269                     PATUNFETCH;
1270                     break;
1271                   }
1272 
1273                 /* If we get here, we found another repeat character.  */
1274                }
1275 
1276             /* Star, etc. applied to an empty pattern is equivalent
1277                to an empty pattern.  */
1278             if (!laststart)
1279               break;
1280 
1281             /* Now we know whether or not zero matches is allowed
1282                and also whether or not two or more matches is allowed.  */
1283             if (many_times_ok)
1284               { /* More than one repetition is allowed, so put in at the
1285                    end a backward relative jump from `b' to before the next
1286                    jump we're going to put in below (which jumps from
1287                    laststart to after this jump).
1288 
1289                    But if we are at the `*' in the exact sequence `.*\n',
1290                    insert an unconditional jump backwards to the .,
1291                    instead of the beginning of the loop.  This way we only
1292                    push a failure point once, instead of every time
1293                    through the loop.  */
1294                 assert (p - 1 > pattern);
1295 
1296                 /* Allocate the space for the jump.  */
1297                 GET_BUFFER_SPACE (3);
1298 
1299                 /* We know we are not at the first character of the pattern,
1300                    because laststart was nonzero.  And we've already
1301                    incremented `p', by the way, to be the character after
1302                    the `*'.  Do we have to do something analogous here
1303                    for null bytes, because of RE_DOT_NOT_NULL?  */
1304                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1305                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1306                     && !(syntax & RE_DOT_NEWLINE))
1307                   { /* We have .*\n.  */
1308                     STORE_JUMP (jump, b, laststart);
1309                     keep_string_p = true;
1310                   }
1311                 else
1312                   /* Anything else.  */
1313                   STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1314 
1315                 /* We've added more stuff to the buffer.  */
1316                 b += 3;
1317               }
1318 
1319             /* On failure, jump from laststart to b + 3, which will be the
1320                end of the buffer after this jump is inserted.  */
1321             GET_BUFFER_SPACE (3);
1322             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1323                                        : on_failure_jump,
1324                          laststart, b + 3);
1325             pending_exact = 0;
1326             b += 3;
1327 
1328             if (!zero_times_ok)
1329               {
1330                 /* At least one repetition is required, so insert a
1331                    `dummy_failure_jump' before the initial
1332                    `on_failure_jump' instruction of the loop. This
1333                    effects a skip over that instruction the first time
1334                    we hit that loop.  */
1335                 GET_BUFFER_SPACE (3);
1336                 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1337                 b += 3;
1338               }
1339             }
1340 	  break;
1341 
1342 
1343 	case '.':
1344           laststart = b;
1345           BUF_PUSH (anychar);
1346           break;
1347 
1348 
1349         case '[':
1350           {
1351             boolean had_char_class = false;
1352 
1353             if (p == pend) return REG_EBRACK;
1354 
1355             /* Ensure that we have enough space to push a charset: the
1356                opcode, the length count, and the bitset; 34 bytes in all.  */
1357 	    GET_BUFFER_SPACE (34);
1358 
1359             laststart = b;
1360 
1361             /* We test `*p == '^' twice, instead of using an if
1362                statement, so we only need one BUF_PUSH.  */
1363             BUF_PUSH (*p == '^' ? charset_not : charset);
1364             if (*p == '^')
1365               p++;
1366 
1367             /* Remember the first position in the bracket expression.  */
1368             p1 = p;
1369 
1370             /* Push the number of bytes in the bitmap.  */
1371             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1372 
1373             /* Clear the whole map.  */
1374             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1375 
1376             /* charset_not matches newline according to a syntax bit.  */
1377             if ((re_opcode_t) b[-2] == charset_not
1378                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1379               SET_LIST_BIT ('\n');
1380 
1381             /* Read in characters and ranges, setting map bits.  */
1382             for (;;)
1383               {
1384                 if (p == pend) return REG_EBRACK;
1385 
1386                 PATFETCH (c);
1387 
1388                 /* \ might escape characters inside [...] and [^...].  */
1389                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1390                   {
1391                     if (p == pend) return REG_EESCAPE;
1392 
1393                     PATFETCH (c1);
1394                     SET_LIST_BIT (c1);
1395                     continue;
1396                   }
1397 
1398                 /* Could be the end of the bracket expression.  If it's
1399                    not (i.e., when the bracket expression is `[]' so
1400                    far), the ']' character bit gets set way below.  */
1401                 if (c == ']' && p != p1 + 1)
1402                   break;
1403 
1404                 /* Look ahead to see if it's a range when the last thing
1405                    was a character class.  */
1406                 if (had_char_class && c == '-' && *p != ']')
1407                   return REG_ERANGE;
1408 
1409                 /* Look ahead to see if it's a range when the last thing
1410                    was a character: if this is a hyphen not at the
1411                    beginning or the end of a list, then it's the range
1412                    operator.  */
1413                 if (c == '-'
1414                     && !(p - 2 >= pattern && p[-2] == '[')
1415                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1416                     && *p != ']')
1417                   {
1418                     reg_errcode_t ret
1419                       = compile_range (&p, pend, translate, syntax, b);
1420                     if (ret != REG_NOERROR) return ret;
1421                   }
1422 
1423                 else if (p[0] == '-' && p[1] != ']')
1424                   { /* This handles ranges made up of characters only.  */
1425                     reg_errcode_t ret;
1426 
1427 		    /* Move past the `-'.  */
1428                     PATFETCH (c1);
1429 
1430                     ret = compile_range (&p, pend, translate, syntax, b);
1431                     if (ret != REG_NOERROR) return ret;
1432                   }
1433 
1434                 /* See if we're at the beginning of a possible character
1435                    class.  */
1436 
1437                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1438                   { /* Leave room for the null.  */
1439                     char str[CHAR_CLASS_MAX_LENGTH + 1];
1440 
1441                     PATFETCH (c);
1442                     c1 = 0;
1443 
1444                     /* If pattern is `[[:'.  */
1445                     if (p == pend) return REG_EBRACK;
1446 
1447                     for (;;)
1448                       {
1449                         PATFETCH (c);
1450                         if (c == ':' || c == ']' || p == pend
1451                             || c1 == CHAR_CLASS_MAX_LENGTH)
1452                           break;
1453                         str[c1++] = c;
1454                       }
1455                     str[c1] = '\0';
1456 
1457                     /* If isn't a word bracketed by `[:' and:`]':
1458                        undo the ending character, the letters, and leave
1459                        the leading `:' and `[' (but set bits for them).  */
1460                     if (c == ':' && *p == ']')
1461                       {
1462                         int ch;
1463                         boolean is_alnum = STREQ (str, "alnum");
1464                         boolean is_alpha = STREQ (str, "alpha");
1465                         boolean is_blank = STREQ (str, "blank");
1466                         boolean is_cntrl = STREQ (str, "cntrl");
1467                         boolean is_digit = STREQ (str, "digit");
1468                         boolean is_graph = STREQ (str, "graph");
1469                         boolean is_lower = STREQ (str, "lower");
1470                         boolean is_print = STREQ (str, "print");
1471                         boolean is_punct = STREQ (str, "punct");
1472                         boolean is_space = STREQ (str, "space");
1473                         boolean is_upper = STREQ (str, "upper");
1474                         boolean is_xdigit = STREQ (str, "xdigit");
1475 
1476                         if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1477 
1478                         /* Throw away the ] at the end of the character
1479                            class.  */
1480                         PATFETCH (c);
1481 
1482                         if (p == pend) return REG_EBRACK;
1483 
1484                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1485                           {
1486                             if (   (is_alnum  && ISALNUM (ch))
1487                                 || (is_alpha  && ISALPHA (ch))
1488                                 || (is_blank  && ISBLANK (ch))
1489                                 || (is_cntrl  && ISCNTRL (ch))
1490                                 || (is_digit  && ISDIGIT (ch))
1491                                 || (is_graph  && ISGRAPH (ch))
1492                                 || (is_lower  && ISLOWER (ch))
1493                                 || (is_print  && ISPRINT (ch))
1494                                 || (is_punct  && ISPUNCT (ch))
1495                                 || (is_space  && ISSPACE (ch))
1496                                 || (is_upper  && ISUPPER (ch))
1497                                 || (is_xdigit && ISXDIGIT (ch)))
1498                             SET_LIST_BIT (ch);
1499                           }
1500                         had_char_class = true;
1501                       }
1502                     else
1503                       {
1504                         c1++;
1505                         while (c1--)
1506                           PATUNFETCH;
1507                         SET_LIST_BIT ('[');
1508                         SET_LIST_BIT (':');
1509                         had_char_class = false;
1510                       }
1511                   }
1512                 else
1513                   {
1514                     had_char_class = false;
1515                     SET_LIST_BIT (c);
1516                   }
1517               }
1518 
1519             /* Discard any (non)matching list bytes that are all 0 at the
1520                end of the map.  Decrease the map-length byte too.  */
1521             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1522               b[-1]--;
1523             b += b[-1];
1524           }
1525           break;
1526 
1527 
1528 	case '(':
1529           if (syntax & RE_NO_BK_PARENS)
1530             goto handle_open;
1531           else
1532             goto normal_char;
1533 
1534 
1535         case ')':
1536           if (syntax & RE_NO_BK_PARENS)
1537             goto handle_close;
1538           else
1539             goto normal_char;
1540 
1541 
1542         case '\n':
1543           if (syntax & RE_NEWLINE_ALT)
1544             goto handle_alt;
1545           else
1546             goto normal_char;
1547 
1548 
1549 	case '|':
1550           if (syntax & RE_NO_BK_VBAR)
1551             goto handle_alt;
1552           else
1553             goto normal_char;
1554 
1555 
1556         case '{':
1557            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1558              goto handle_interval;
1559            else
1560              goto normal_char;
1561 
1562 
1563         case '\\':
1564           if (p == pend) return REG_EESCAPE;
1565 
1566           /* Do not translate the character after the \, so that we can
1567              distinguish, e.g., \B from \b, even if we normally would
1568              translate, e.g., B to b.  */
1569           PATFETCH_RAW (c);
1570 
1571           switch (c)
1572             {
1573             case '(':
1574               if (syntax & RE_NO_BK_PARENS)
1575                 goto normal_backslash;
1576 
1577             handle_open:
1578               bufp->re_nsub++;
1579               regnum++;
1580 
1581               if (COMPILE_STACK_FULL)
1582                 {
1583                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
1584                             compile_stack_elt_t);
1585                   if (compile_stack.stack == NULL) return REG_ESPACE;
1586 
1587                   compile_stack.size <<= 1;
1588                 }
1589 
1590               /* These are the values to restore when we hit end of this
1591                  group.  They are all relative offsets, so that if the
1592                  whole pattern moves because of realloc, they will still
1593                  be valid.  */
1594               COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1595               COMPILE_STACK_TOP.fixup_alt_jump
1596                 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1597               COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1598               COMPILE_STACK_TOP.regnum = regnum;
1599 
1600               /* We will eventually replace the 0 with the number of
1601                  groups inner to this one.  But do not push a
1602                  start_memory for groups beyond the last one we can
1603                  represent in the compiled pattern.  */
1604               if (regnum <= MAX_REGNUM)
1605                 {
1606                   COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1607                   BUF_PUSH_3 (start_memory, regnum, 0);
1608                 }
1609 
1610               compile_stack.avail++;
1611 
1612               fixup_alt_jump = 0;
1613               laststart = 0;
1614               begalt = b;
1615               break;
1616 
1617 
1618             case ')':
1619               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
1620 
1621               if (COMPILE_STACK_EMPTY)
1622                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1623                   goto normal_backslash;
1624                 else
1625                   return REG_ERPAREN;
1626 
1627             handle_close:
1628               if (fixup_alt_jump)
1629                 { /* Push a dummy failure point at the end of the
1630                      alternative for a possible future
1631                      `pop_failure_jump' to pop.  See comments at
1632                      `push_dummy_failure' in `re_match_2'.  */
1633                   BUF_PUSH (push_dummy_failure);
1634 
1635                   /* We allocated space for this jump when we assigned
1636                      to `fixup_alt_jump', in the `handle_alt' case below.  */
1637                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
1638                 }
1639 
1640               /* See similar code for backslashed left paren above.  */
1641               if (COMPILE_STACK_EMPTY)
1642                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1643                   goto normal_char;
1644                 else
1645                   return REG_ERPAREN;
1646 
1647               /* Since we just checked for an empty stack above, this
1648                  ``can't happen''.  */
1649               assert (compile_stack.avail != 0);
1650               {
1651                 /* We don't just want to restore into `regnum', because
1652                    later groups should continue to be numbered higher,
1653                    as in `(ab)c(de)' -- the second group is #2.  */
1654                 regnum_t this_group_regnum;
1655 
1656                 compile_stack.avail--;
1657                 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1658                 fixup_alt_jump
1659                   = COMPILE_STACK_TOP.fixup_alt_jump
1660                     ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1661                     : 0;
1662                 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1663                 this_group_regnum = COMPILE_STACK_TOP.regnum;
1664 
1665                 /* We're at the end of the group, so now we know how many
1666                    groups were inside this one.  */
1667                 if (this_group_regnum <= MAX_REGNUM)
1668                   {
1669                     unsigned char *inner_group_loc
1670                       = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1671 
1672                     *inner_group_loc = regnum - this_group_regnum;
1673                     BUF_PUSH_3 (stop_memory, this_group_regnum,
1674                                 regnum - this_group_regnum);
1675                   }
1676               }
1677               break;
1678 
1679 
1680             case '|':					/* `\|'.  */
1681               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1682                 goto normal_backslash;
1683             handle_alt:
1684               if (syntax & RE_LIMITED_OPS)
1685                 goto normal_char;
1686 
1687               /* Insert before the previous alternative a jump which
1688                  jumps to this alternative if the former fails.  */
1689               GET_BUFFER_SPACE (3);
1690               INSERT_JUMP (on_failure_jump, begalt, b + 6);
1691               pending_exact = 0;
1692               b += 3;
1693 
1694               /* The alternative before this one has a jump after it
1695                  which gets executed if it gets matched.  Adjust that
1696                  jump so it will jump to this alternative's analogous
1697                  jump (put in below, which in turn will jump to the next
1698                  (if any) alternative's such jump, etc.).  The last such
1699                  jump jumps to the correct final destination.  A picture:
1700                           _____ _____
1701                           |   | |   |
1702                           |   v |   v
1703                          a | b   | c
1704 
1705                  If we are at `b', then fixup_alt_jump right now points to a
1706                  three-byte space after `a'.  We'll put in the jump, set
1707                  fixup_alt_jump to right after `b', and leave behind three
1708                  bytes which we'll fill in when we get to after `c'.  */
1709 
1710               if (fixup_alt_jump)
1711                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1712 
1713               /* Mark and leave space for a jump after this alternative,
1714                  to be filled in later either by next alternative or
1715                  when know we're at the end of a series of alternatives.  */
1716               fixup_alt_jump = b;
1717               GET_BUFFER_SPACE (3);
1718               b += 3;
1719 
1720               laststart = 0;
1721               begalt = b;
1722               break;
1723 
1724 
1725             case '{':
1726               /* If \{ is a literal.  */
1727               if (!(syntax & RE_INTERVALS)
1728                      /* If we're at `\{' and it's not the open-interval
1729                         operator.  */
1730                   || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1731                   || (p - 2 == pattern  &&  p == pend))
1732                 goto normal_backslash;
1733 
1734             handle_interval:
1735               {
1736                 /* If got here, then the syntax allows intervals.  */
1737 
1738                 /* At least (most) this many matches must be made.  */
1739                 int lower_bound = -1, upper_bound = -1;
1740 
1741                 beg_interval = p - 1;
1742 
1743                 if (p == pend)
1744                   {
1745                     if (syntax & RE_NO_BK_BRACES)
1746                       goto unfetch_interval;
1747                     else
1748                       return REG_EBRACE;
1749                   }
1750 
1751                 GET_UNSIGNED_NUMBER (lower_bound);
1752 
1753                 if (c == ',')
1754                   {
1755                     GET_UNSIGNED_NUMBER (upper_bound);
1756                     if (upper_bound < 0) upper_bound = RE_DUP_MAX;
1757                   }
1758                 else
1759                   /* Interval such as `{1}' => match exactly once. */
1760                   upper_bound = lower_bound;
1761 
1762                 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1763                     || lower_bound > upper_bound)
1764                   {
1765                     if (syntax & RE_NO_BK_BRACES)
1766                       goto unfetch_interval;
1767                     else
1768                       return REG_BADBR;
1769                   }
1770 
1771                 if (!(syntax & RE_NO_BK_BRACES))
1772                   {
1773                     if (c != '\\') return REG_EBRACE;
1774 
1775                     PATFETCH (c);
1776                   }
1777 
1778                 if (c != '}')
1779                   {
1780                     if (syntax & RE_NO_BK_BRACES)
1781                       goto unfetch_interval;
1782                     else
1783                       return REG_BADBR;
1784                   }
1785 
1786                 /* We just parsed a valid interval.  */
1787 
1788                 /* If it's invalid to have no preceding re.  */
1789                 if (!laststart)
1790                   {
1791                     if (syntax & RE_CONTEXT_INVALID_OPS)
1792                       return REG_BADRPT;
1793                     else if (syntax & RE_CONTEXT_INDEP_OPS)
1794                       laststart = b;
1795                     else
1796                       goto unfetch_interval;
1797                   }
1798 
1799                 /* If the upper bound is zero, don't want to succeed at
1800                    all; jump from `laststart' to `b + 3', which will be
1801                    the end of the buffer after we insert the jump.  */
1802                  if (upper_bound == 0)
1803                    {
1804                      GET_BUFFER_SPACE (3);
1805                      INSERT_JUMP (jump, laststart, b + 3);
1806                      b += 3;
1807                    }
1808 
1809                  /* Otherwise, we have a nontrivial interval.  When
1810                     we're all done, the pattern will look like:
1811                       set_number_at <jump count> <upper bound>
1812                       set_number_at <succeed_n count> <lower bound>
1813                       succeed_n <after jump addr> <succed_n count>
1814                       <body of loop>
1815                       jump_n <succeed_n addr> <jump count>
1816                     (The upper bound and `jump_n' are omitted if
1817                     `upper_bound' is 1, though.)  */
1818                  else
1819                    { /* If the upper bound is > 1, we need to insert
1820                         more at the end of the loop.  */
1821                      unsigned nbytes = 10 + (upper_bound > 1) * 10;
1822 
1823                      GET_BUFFER_SPACE (nbytes);
1824 
1825                      /* Initialize lower bound of the `succeed_n', even
1826                         though it will be set during matching by its
1827                         attendant `set_number_at' (inserted next),
1828                         because `re_compile_fastmap' needs to know.
1829                         Jump to the `jump_n' we might insert below.  */
1830                      INSERT_JUMP2 (succeed_n, laststart,
1831                                    b + 5 + (upper_bound > 1) * 5,
1832                                    lower_bound);
1833                      b += 5;
1834 
1835                      /* Code to initialize the lower bound.  Insert
1836                         before the `succeed_n'.  The `5' is the last two
1837                         bytes of this `set_number_at', plus 3 bytes of
1838                         the following `succeed_n'.  */
1839                      insert_op2 (set_number_at, laststart, 5, lower_bound, b);
1840                      b += 5;
1841 
1842                      if (upper_bound > 1)
1843                        { /* More than one repetition is allowed, so
1844                             append a backward jump to the `succeed_n'
1845                             that starts this interval.
1846 
1847                             When we've reached this during matching,
1848                             we'll have matched the interval once, so
1849                             jump back only `upper_bound - 1' times.  */
1850                          STORE_JUMP2 (jump_n, b, laststart + 5,
1851                                       upper_bound - 1);
1852                          b += 5;
1853 
1854                          /* The location we want to set is the second
1855                             parameter of the `jump_n'; that is `b-2' as
1856                             an absolute address.  `laststart' will be
1857                             the `set_number_at' we're about to insert;
1858                             `laststart+3' the number to set, the source
1859                             for the relative address.  But we are
1860                             inserting into the middle of the pattern --
1861                             so everything is getting moved up by 5.
1862                             Conclusion: (b - 2) - (laststart + 3) + 5,
1863                             i.e., b - laststart.
1864 
1865                             We insert this at the beginning of the loop
1866                             so that if we fail during matching, we'll
1867                             reinitialize the bounds.  */
1868                          insert_op2 (set_number_at, laststart, b - laststart,
1869                                      upper_bound - 1, b);
1870                          b += 5;
1871                        }
1872                    }
1873                 pending_exact = 0;
1874                 beg_interval = NULL;
1875               }
1876               break;
1877 
1878             unfetch_interval:
1879               /* If an invalid interval, match the characters as literals.  */
1880                assert (beg_interval);
1881                p = beg_interval;
1882                beg_interval = NULL;
1883 
1884                /* normal_char and normal_backslash need `c'.  */
1885                PATFETCH (c);
1886 
1887                if (!(syntax & RE_NO_BK_BRACES))
1888                  {
1889                    if (p > pattern  &&  p[-1] == '\\')
1890                      goto normal_backslash;
1891                  }
1892                goto normal_char;
1893 
1894 #ifdef emacs
1895             /* There is no way to specify the before_dot and after_dot
1896                operators.  rms says this is ok.  --karl  */
1897             case '=':
1898               BUF_PUSH (at_dot);
1899               break;
1900 
1901             case 's':
1902               laststart = b;
1903               PATFETCH (c);
1904               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
1905               break;
1906 
1907             case 'S':
1908               laststart = b;
1909               PATFETCH (c);
1910               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
1911               break;
1912 #endif /* emacs */
1913 
1914 
1915             case 'w':
1916               laststart = b;
1917               BUF_PUSH (wordchar);
1918               break;
1919 
1920 
1921             case 'W':
1922               laststart = b;
1923               BUF_PUSH (notwordchar);
1924               break;
1925 
1926 
1927             case '<':
1928               BUF_PUSH (wordbeg);
1929               break;
1930 
1931             case '>':
1932               BUF_PUSH (wordend);
1933               break;
1934 
1935             case 'b':
1936               BUF_PUSH (wordbound);
1937               break;
1938 
1939             case 'B':
1940               BUF_PUSH (notwordbound);
1941               break;
1942 
1943             case '`':
1944               BUF_PUSH (begbuf);
1945               break;
1946 
1947             case '\'':
1948               BUF_PUSH (endbuf);
1949               break;
1950 
1951             case '1': case '2': case '3': case '4': case '5':
1952             case '6': case '7': case '8': case '9':
1953               if (syntax & RE_NO_BK_REFS)
1954                 goto normal_char;
1955 
1956               c1 = c - '0';
1957 
1958               if (c1 > regnum)
1959                 return REG_ESUBREG;
1960 
1961               /* Can't back reference to a subexpression if inside of it.  */
1962               if (group_in_compile_stack (compile_stack, c1))
1963                 goto normal_char;
1964 
1965               laststart = b;
1966               BUF_PUSH_2 (duplicate, c1);
1967               break;
1968 
1969 
1970             case '+':
1971             case '?':
1972               if (syntax & RE_BK_PLUS_QM)
1973                 goto handle_plus;
1974               else
1975                 goto normal_backslash;
1976 
1977             default:
1978             normal_backslash:
1979               /* You might think it would be useful for \ to mean
1980                  not to translate; but if we don't translate it
1981                  it will never match anything.  */
1982               c = TRANSLATE (c);
1983               goto normal_char;
1984             }
1985           break;
1986 
1987 
1988 	default:
1989         /* Expects the character in `c'.  */
1990 	normal_char:
1991 	      /* If no exactn currently being built.  */
1992           if (!pending_exact
1993 
1994               /* If last exactn not at current position.  */
1995               || pending_exact + *pending_exact + 1 != b
1996 
1997               /* We have only one byte following the exactn for the count.  */
1998 	      || *pending_exact == (1 << BYTEWIDTH) - 1
1999 
2000               /* If followed by a repetition operator.  */
2001               || *p == '*' || *p == '^'
2002 	      || ((syntax & RE_BK_PLUS_QM)
2003 		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2004 		  : (*p == '+' || *p == '?'))
2005 	      || ((syntax & RE_INTERVALS)
2006                   && ((syntax & RE_NO_BK_BRACES)
2007 		      ? *p == '{'
2008                       : (p[0] == '\\' && p[1] == '{'))))
2009 	    {
2010 	      /* Start building a new exactn.  */
2011 
2012               laststart = b;
2013 
2014 	      BUF_PUSH_2 (exactn, 0);
2015 	      pending_exact = b - 1;
2016             }
2017 
2018 	  BUF_PUSH (c);
2019           (*pending_exact)++;
2020 	  break;
2021         } /* switch (c) */
2022     } /* while p != pend */
2023 
2024 
2025   /* Through the pattern now.  */
2026 
2027   if (fixup_alt_jump)
2028     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2029 
2030   if (!COMPILE_STACK_EMPTY)
2031     return REG_EPAREN;
2032 
2033   free (compile_stack.stack);
2034 
2035   /* We have succeeded; set the length of the buffer.  */
2036   bufp->used = b - bufp->buffer;
2037 
2038 #ifdef DEBUG
2039   if (debug)
2040     {
2041       DEBUG_PRINT1 ("\nCompiled pattern: ");
2042       print_compiled_pattern (bufp);
2043     }
2044 #endif /* DEBUG */
2045 
2046   return REG_NOERROR;
2047 } /* regex_compile */
2048 
2049 /* Subroutines for `regex_compile'.  */
2050 
2051 /* Store OP at LOC followed by two-byte integer parameter ARG.  */
2052 
2053 static void
store_op1(op,loc,arg)2054 store_op1 (op, loc, arg)
2055     re_opcode_t op;
2056     unsigned char *loc;
2057     int arg;
2058 {
2059   *loc = (unsigned char) op;
2060   STORE_NUMBER (loc + 1, arg);
2061 }
2062 
2063 
2064 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
2065 
2066 static void
store_op2(op,loc,arg1,arg2)2067 store_op2 (op, loc, arg1, arg2)
2068     re_opcode_t op;
2069     unsigned char *loc;
2070     int arg1, arg2;
2071 {
2072   *loc = (unsigned char) op;
2073   STORE_NUMBER (loc + 1, arg1);
2074   STORE_NUMBER (loc + 3, arg2);
2075 }
2076 
2077 
2078 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2079    for OP followed by two-byte integer parameter ARG.  */
2080 
2081 static void
insert_op1(op,loc,arg,end)2082 insert_op1 (op, loc, arg, end)
2083     re_opcode_t op;
2084     unsigned char *loc;
2085     int arg;
2086     unsigned char *end;
2087 {
2088   register unsigned char *pfrom = end;
2089   register unsigned char *pto = end + 3;
2090 
2091   while (pfrom != loc)
2092     *--pto = *--pfrom;
2093 
2094   store_op1 (op, loc, arg);
2095 }
2096 
2097 
2098 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
2099 
2100 static void
insert_op2(op,loc,arg1,arg2,end)2101 insert_op2 (op, loc, arg1, arg2, end)
2102     re_opcode_t op;
2103     unsigned char *loc;
2104     int arg1, arg2;
2105     unsigned char *end;
2106 {
2107   register unsigned char *pfrom = end;
2108   register unsigned char *pto = end + 5;
2109 
2110   while (pfrom != loc)
2111     *--pto = *--pfrom;
2112 
2113   store_op2 (op, loc, arg1, arg2);
2114 }
2115 
2116 
2117 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
2118    after an alternative or a begin-subexpression.  We assume there is at
2119    least one character before the ^.  */
2120 
2121 static boolean
at_begline_loc_p(pattern,p,syntax)2122 at_begline_loc_p (pattern, p, syntax)
2123     const char *pattern, *p;
2124     reg_syntax_t syntax;
2125 {
2126   const char *prev = p - 2;
2127   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2128 
2129   return
2130        /* After a subexpression?  */
2131        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2132        /* After an alternative?  */
2133     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2134 }
2135 
2136 
2137 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
2138    at least one character after the $, i.e., `P < PEND'.  */
2139 
2140 static boolean
at_endline_loc_p(p,pend,syntax)2141 at_endline_loc_p (p, pend, syntax)
2142     const char *p, *pend;
2143     int syntax;
2144 {
2145   const char *next = p;
2146   boolean next_backslash = *next == '\\';
2147   const char *next_next = p + 1 < pend ? p + 1 : NULL;
2148 
2149   return
2150        /* Before a subexpression?  */
2151        (syntax & RE_NO_BK_PARENS ? *next == ')'
2152         : next_backslash && next_next && *next_next == ')')
2153        /* Before an alternative?  */
2154     || (syntax & RE_NO_BK_VBAR ? *next == '|'
2155         : next_backslash && next_next && *next_next == '|');
2156 }
2157 
2158 
2159 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2160    false if it's not.  */
2161 
2162 static boolean
group_in_compile_stack(compile_stack,regnum)2163 group_in_compile_stack (compile_stack, regnum)
2164     compile_stack_type compile_stack;
2165     regnum_t regnum;
2166 {
2167   int this_element;
2168 
2169   for (this_element = compile_stack.avail - 1;
2170        this_element >= 0;
2171        this_element--)
2172     if (compile_stack.stack[this_element].regnum == regnum)
2173       return true;
2174 
2175   return false;
2176 }
2177 
2178 
2179 /* Read the ending character of a range (in a bracket expression) from the
2180    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
2181    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
2182    Then we set the translation of all bits between the starting and
2183    ending characters (inclusive) in the compiled pattern B.
2184 
2185    Return an error code.
2186 
2187    We use these short variable names so we can use the same macros as
2188    `regex_compile' itself.  */
2189 
2190 static reg_errcode_t
compile_range(p_ptr,pend,translate,syntax,b)2191 compile_range (p_ptr, pend, translate, syntax, b)
2192     const char **p_ptr, *pend;
2193     char *translate;
2194     reg_syntax_t syntax;
2195     unsigned char *b;
2196 {
2197   unsigned this_char;
2198 
2199   const char *p = *p_ptr;
2200   int range_start, range_end;
2201 
2202   if (p == pend)
2203     return REG_ERANGE;
2204 
2205   /* Even though the pattern is a signed `char *', we need to fetch
2206      with unsigned char *'s; if the high bit of the pattern character
2207      is set, the range endpoints will be negative if we fetch using a
2208      signed char *.
2209 
2210      We also want to fetch the endpoints without translating them; the
2211      appropriate translation is done in the bit-setting loop below.  */
2212   range_start = ((unsigned char *) p)[-2];
2213   range_end   = ((unsigned char *) p)[0];
2214 
2215   /* Have to increment the pointer into the pattern string, so the
2216      caller isn't still at the ending character.  */
2217   (*p_ptr)++;
2218 
2219   /* If the start is after the end, the range is empty.  */
2220   if (range_start > range_end)
2221     return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2222 
2223   /* Here we see why `this_char' has to be larger than an `unsigned
2224      char' -- the range is inclusive, so if `range_end' == 0xff
2225      (assuming 8-bit characters), we would otherwise go into an infinite
2226      loop, since all characters <= 0xff.  */
2227   for (this_char = range_start; this_char <= range_end; this_char++)
2228     {
2229       SET_LIST_BIT (TRANSLATE (this_char));
2230     }
2231 
2232   return REG_NOERROR;
2233 }
2234 
2235 /* Failure stack declarations and macros; both re_compile_fastmap and
2236    re_match_2 use a failure stack.  These have to be macros because of
2237    REGEX_ALLOCATE.  */
2238 
2239 
2240 /* Number of failure points for which to initially allocate space
2241    when matching.  If this number is exceeded, we allocate more
2242    space, so it is not a hard limit.  */
2243 #ifndef INIT_FAILURE_ALLOC
2244 #define INIT_FAILURE_ALLOC 5
2245 #endif
2246 
2247 /* Roughly the maximum number of failure points on the stack.  Would be
2248    exactly that if always used MAX_FAILURE_SPACE each time we failed.
2249    This is a variable only so users of regex can assign to it; we never
2250    change it ourselves.  */
2251 int re_max_failures = 2000;
2252 
2253 typedef const unsigned char *fail_stack_elt_t;
2254 
2255 typedef struct
2256 {
2257   fail_stack_elt_t *stack;
2258   unsigned size;
2259   unsigned avail;			/* Offset of next open position.  */
2260 } fail_stack_type;
2261 
2262 #define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
2263 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2264 #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
2265 #define FAIL_STACK_TOP()       (fail_stack.stack[fail_stack.avail])
2266 
2267 
2268 /* Initialize `fail_stack'.  Do `return -2' if the alloc fails.  */
2269 
2270 #define INIT_FAIL_STACK()						\
2271   do {									\
2272     fail_stack.stack = (fail_stack_elt_t *)				\
2273       REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t));	\
2274 									\
2275     if (fail_stack.stack == NULL)					\
2276       return -2;							\
2277 									\
2278     fail_stack.size = INIT_FAILURE_ALLOC;				\
2279     fail_stack.avail = 0;						\
2280   } while (0)
2281 
2282 
2283 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2284 
2285    Return 1 if succeeds, and 0 if either ran out of memory
2286    allocating space for it or it was already too large.
2287 
2288    REGEX_REALLOCATE requires `destination' be declared.   */
2289 
2290 #define DOUBLE_FAIL_STACK(fail_stack)					\
2291   ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS		\
2292    ? 0									\
2293    : ((fail_stack).stack = (fail_stack_elt_t *)				\
2294         REGEX_REALLOCATE ((fail_stack).stack, 				\
2295           (fail_stack).size * sizeof (fail_stack_elt_t),		\
2296           ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
2297 									\
2298       (fail_stack).stack == NULL					\
2299       ? 0								\
2300       : ((fail_stack).size <<= 1, 					\
2301          1)))
2302 
2303 
2304 /* Push PATTERN_OP on FAIL_STACK.
2305 
2306    Return 1 if was able to do so and 0 if ran out of memory allocating
2307    space to do so.  */
2308 #define PUSH_PATTERN_OP(pattern_op, fail_stack)				\
2309   ((FAIL_STACK_FULL ()							\
2310     && !DOUBLE_FAIL_STACK (fail_stack))					\
2311     ? 0									\
2312     : ((fail_stack).stack[(fail_stack).avail++] = pattern_op,		\
2313        1))
2314 
2315 /* This pushes an item onto the failure stack.  Must be a four-byte
2316    value.  Assumes the variable `fail_stack'.  Probably should only
2317    be called from within `PUSH_FAILURE_POINT'.  */
2318 #define PUSH_FAILURE_ITEM(item)						\
2319   fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2320 
2321 /* The complement operation.  Assumes `fail_stack' is nonempty.  */
2322 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2323 
2324 /* Used to omit pushing failure point id's when we're not debugging.  */
2325 #ifdef DEBUG
2326 #define DEBUG_PUSH PUSH_FAILURE_ITEM
2327 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2328 #else
2329 #define DEBUG_PUSH(item)
2330 #define DEBUG_POP(item_addr)
2331 #endif
2332 
2333 
2334 /* Push the information about the state we will need
2335    if we ever fail back to it.
2336 
2337    Requires variables fail_stack, regstart, regend, reg_info, and
2338    num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
2339    declared.
2340 
2341    Does `return FAILURE_CODE' if runs out of memory.  */
2342 
2343 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
2344   do {									\
2345     char *destination;							\
2346     /* Must be int, so when we don't save any registers, the arithmetic	\
2347        of 0 + -1 isn't done as unsigned.  */				\
2348     int this_reg;							\
2349     									\
2350     DEBUG_STATEMENT (failure_id++);					\
2351     DEBUG_STATEMENT (nfailure_points_pushed++);				\
2352     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
2353     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
2354     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
2355 									\
2356     DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
2357     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
2358 									\
2359     /* Ensure we have enough space allocated for what we will push.  */	\
2360     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
2361       {									\
2362         if (!DOUBLE_FAIL_STACK (fail_stack))			\
2363           return failure_code;						\
2364 									\
2365         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
2366 		       (fail_stack).size);				\
2367         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2368       }									\
2369 									\
2370     /* Push the info, starting with the registers.  */			\
2371     DEBUG_PRINT1 ("\n");						\
2372 									\
2373     for (this_reg = lowest_active_reg; this_reg <= highest_active_reg;	\
2374          this_reg++)							\
2375       {									\
2376 	DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);			\
2377         DEBUG_STATEMENT (num_regs_pushed++);				\
2378 									\
2379 	DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);		\
2380         PUSH_FAILURE_ITEM (regstart[this_reg]);				\
2381                                                                         \
2382 	DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
2383         PUSH_FAILURE_ITEM (regend[this_reg]);				\
2384 									\
2385 	DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
2386         DEBUG_PRINT2 (" match_null=%d",					\
2387                       REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
2388         DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
2389         DEBUG_PRINT2 (" matched_something=%d",				\
2390                       MATCHED_SOMETHING (reg_info[this_reg]));		\
2391         DEBUG_PRINT2 (" ever_matched=%d",				\
2392                       EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
2393 	DEBUG_PRINT1 ("\n");						\
2394         PUSH_FAILURE_ITEM (reg_info[this_reg].word);			\
2395       }									\
2396 									\
2397     DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
2398     PUSH_FAILURE_ITEM (lowest_active_reg);				\
2399 									\
2400     DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
2401     PUSH_FAILURE_ITEM (highest_active_reg);				\
2402 									\
2403     DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);		\
2404     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
2405     PUSH_FAILURE_ITEM (pattern_place);					\
2406 									\
2407     DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
2408     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
2409 				 size2);				\
2410     DEBUG_PRINT1 ("'\n");						\
2411     PUSH_FAILURE_ITEM (string_place);					\
2412 									\
2413     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
2414     DEBUG_PUSH (failure_id);						\
2415   } while (0)
2416 
2417 /* This is the number of items that are pushed and popped on the stack
2418    for each register.  */
2419 #define NUM_REG_ITEMS  3
2420 
2421 /* Individual items aside from the registers.  */
2422 #ifdef DEBUG
2423 #define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
2424 #else
2425 #define NUM_NONREG_ITEMS 4
2426 #endif
2427 
2428 /* We push at most this many items on the stack.  */
2429 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2430 
2431 /* We actually push this many items.  */
2432 #define NUM_FAILURE_ITEMS						\
2433   ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS 	\
2434     + NUM_NONREG_ITEMS)
2435 
2436 /* How many items can still be added to the stack without overflowing it.  */
2437 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2438 
2439 
2440 /* Pops what PUSH_FAIL_STACK pushes.
2441 
2442    We restore into the parameters, all of which should be lvalues:
2443      STR -- the saved data position.
2444      PAT -- the saved pattern position.
2445      LOW_REG, HIGH_REG -- the highest and lowest active registers.
2446      REGSTART, REGEND -- arrays of string positions.
2447      REG_INFO -- array of information about each subexpression.
2448 
2449    Also assumes the variables `fail_stack' and (if debugging), `bufp',
2450    `pend', `string1', `size1', `string2', and `size2'.  */
2451 
2452 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2453 {									\
2454   DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
2455   int this_reg;								\
2456   const unsigned char *string_temp;					\
2457 									\
2458   assert (!FAIL_STACK_EMPTY ());					\
2459 									\
2460   /* Remove failure points and point to how many regs pushed.  */	\
2461   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
2462   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
2463   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
2464 									\
2465   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
2466 									\
2467   DEBUG_POP (&failure_id);						\
2468   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
2469 									\
2470   /* If the saved string location is NULL, it came from an		\
2471      on_failure_keep_string_jump opcode, and we want to throw away the	\
2472      saved NULL, thus retaining our current position in the string.  */	\
2473   string_temp = POP_FAILURE_ITEM ();					\
2474   if (string_temp != NULL)						\
2475     str = (const char *) string_temp;					\
2476 									\
2477   DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
2478   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
2479   DEBUG_PRINT1 ("'\n");							\
2480 									\
2481   pat = (unsigned char *) POP_FAILURE_ITEM ();				\
2482   DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);			\
2483   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
2484 									\
2485   /* Restore register info.  */						\
2486   high_reg = (unsigned) POP_FAILURE_ITEM ();				\
2487   DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
2488 									\
2489   low_reg = (unsigned) POP_FAILURE_ITEM ();				\
2490   DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
2491 									\
2492   for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
2493     {									\
2494       DEBUG_PRINT2 ("    Popping reg: %d\n", this_reg);			\
2495 									\
2496       reg_info[this_reg].word = POP_FAILURE_ITEM ();			\
2497       DEBUG_PRINT2 ("      info: 0x%x\n", reg_info[this_reg]);		\
2498 									\
2499       regend[this_reg] = (const char *) POP_FAILURE_ITEM ();		\
2500       DEBUG_PRINT2 ("      end: 0x%x\n", regend[this_reg]);		\
2501 									\
2502       regstart[this_reg] = (const char *) POP_FAILURE_ITEM ();		\
2503       DEBUG_PRINT2 ("      start: 0x%x\n", regstart[this_reg]);		\
2504     }									\
2505 									\
2506   DEBUG_STATEMENT (nfailure_points_popped++);				\
2507 } /* POP_FAILURE_POINT */
2508 
2509 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2510    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
2511    characters can start a string that matches the pattern.  This fastmap
2512    is used by re_search to skip quickly over impossible starting points.
2513 
2514    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2515    area as BUFP->fastmap.
2516 
2517    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2518    the pattern buffer.
2519 
2520    Returns 0 if we succeed, -2 if an internal error.   */
2521 
2522 int
re_compile_fastmap(bufp)2523 re_compile_fastmap (bufp)
2524      struct re_pattern_buffer *bufp;
2525 {
2526   int j, k;
2527   fail_stack_type fail_stack;
2528 #ifndef REGEX_MALLOC
2529   char *destination;
2530 #endif
2531   /* We don't push any register information onto the failure stack.  */
2532   unsigned num_regs = 0;
2533 
2534   register char *fastmap = bufp->fastmap;
2535   unsigned char *pattern = bufp->buffer;
2536   unsigned long size = bufp->used;
2537   const unsigned char *p = pattern;
2538   register unsigned char *pend = pattern + size;
2539 
2540   /* Assume that each path through the pattern can be null until
2541      proven otherwise.  We set this false at the bottom of switch
2542      statement, to which we get only if a particular path doesn't
2543      match the empty string.  */
2544   boolean path_can_be_null = true;
2545 
2546   /* We aren't doing a `succeed_n' to begin with.  */
2547   boolean succeed_n_p = false;
2548 
2549   assert (fastmap != NULL && p != NULL);
2550 
2551   INIT_FAIL_STACK ();
2552   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
2553   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
2554   bufp->can_be_null = 0;
2555 
2556   while (p != pend || !FAIL_STACK_EMPTY ())
2557     {
2558       if (p == pend)
2559         {
2560           bufp->can_be_null |= path_can_be_null;
2561 
2562           /* Reset for next path.  */
2563           path_can_be_null = true;
2564 
2565           p = fail_stack.stack[--fail_stack.avail];
2566 	}
2567 
2568       /* We should never be about to go beyond the end of the pattern.  */
2569       assert (p < pend);
2570 
2571 #ifdef SWITCH_ENUM_BUG
2572       switch ((int) ((re_opcode_t) *p++))
2573 #else
2574       switch ((re_opcode_t) *p++)
2575 #endif
2576 	{
2577 
2578         /* I guess the idea here is to simply not bother with a fastmap
2579            if a backreference is used, since it's too hard to figure out
2580            the fastmap for the corresponding group.  Setting
2581            `can_be_null' stops `re_search_2' from using the fastmap, so
2582            that is all we do.  */
2583 	case duplicate:
2584 	  bufp->can_be_null = 1;
2585           return 0;
2586 
2587 
2588       /* Following are the cases which match a character.  These end
2589          with `break'.  */
2590 
2591 	case exactn:
2592           fastmap[p[1]] = 1;
2593 	  break;
2594 
2595 
2596         case charset:
2597           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2598 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2599               fastmap[j] = 1;
2600 	  break;
2601 
2602 
2603 	case charset_not:
2604 	  /* Chars beyond end of map must be allowed.  */
2605 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2606             fastmap[j] = 1;
2607 
2608 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2609 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2610               fastmap[j] = 1;
2611           break;
2612 
2613 
2614 	case wordchar:
2615 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2616 	    if (SYNTAX (j) == Sword)
2617 	      fastmap[j] = 1;
2618 	  break;
2619 
2620 
2621 	case notwordchar:
2622 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2623 	    if (SYNTAX (j) != Sword)
2624 	      fastmap[j] = 1;
2625 	  break;
2626 
2627 
2628         case anychar:
2629           /* `.' matches anything ...  */
2630 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2631             fastmap[j] = 1;
2632 
2633           /* ... except perhaps newline.  */
2634           if (!(bufp->syntax & RE_DOT_NEWLINE))
2635             fastmap['\n'] = 0;
2636 
2637           /* Return if we have already set `can_be_null'; if we have,
2638              then the fastmap is irrelevant.  Something's wrong here.  */
2639 	  else if (bufp->can_be_null)
2640 	    return 0;
2641 
2642           /* Otherwise, have to check alternative paths.  */
2643 	  break;
2644 
2645 
2646 #ifdef emacs
2647         case syntaxspec:
2648 	  k = *p++;
2649 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2650 	    if (SYNTAX (j) == (enum syntaxcode) k)
2651 	      fastmap[j] = 1;
2652 	  break;
2653 
2654 
2655 	case notsyntaxspec:
2656 	  k = *p++;
2657 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2658 	    if (SYNTAX (j) != (enum syntaxcode) k)
2659 	      fastmap[j] = 1;
2660 	  break;
2661 
2662 
2663       /* All cases after this match the empty string.  These end with
2664          `continue'.  */
2665 
2666 
2667 	case before_dot:
2668 	case at_dot:
2669 	case after_dot:
2670           continue;
2671 #endif /* not emacs */
2672 
2673 
2674         case no_op:
2675         case begline:
2676         case endline:
2677 	case begbuf:
2678 	case endbuf:
2679 	case wordbound:
2680 	case notwordbound:
2681 	case wordbeg:
2682 	case wordend:
2683         case push_dummy_failure:
2684           continue;
2685 
2686 
2687 	case jump_n:
2688         case pop_failure_jump:
2689 	case maybe_pop_jump:
2690 	case jump:
2691         case jump_past_alt:
2692 	case dummy_failure_jump:
2693           EXTRACT_NUMBER_AND_INCR (j, p);
2694 	  p += j;
2695 	  if (j > 0)
2696 	    continue;
2697 
2698           /* Jump backward implies we just went through the body of a
2699              loop and matched nothing.  Opcode jumped to should be
2700              `on_failure_jump' or `succeed_n'.  Just treat it like an
2701              ordinary jump.  For a * loop, it has pushed its failure
2702              point already; if so, discard that as redundant.  */
2703           if ((re_opcode_t) *p != on_failure_jump
2704 	      && (re_opcode_t) *p != succeed_n)
2705 	    continue;
2706 
2707           p++;
2708           EXTRACT_NUMBER_AND_INCR (j, p);
2709           p += j;
2710 
2711           /* If what's on the stack is where we are now, pop it.  */
2712           if (!FAIL_STACK_EMPTY ()
2713 	      && fail_stack.stack[fail_stack.avail - 1] == p)
2714             fail_stack.avail--;
2715 
2716           continue;
2717 
2718 
2719         case on_failure_jump:
2720         case on_failure_keep_string_jump:
2721 	handle_on_failure_jump:
2722           EXTRACT_NUMBER_AND_INCR (j, p);
2723 
2724           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2725              end of the pattern.  We don't want to push such a point,
2726              since when we restore it above, entering the switch will
2727              increment `p' past the end of the pattern.  We don't need
2728              to push such a point since we obviously won't find any more
2729              fastmap entries beyond `pend'.  Such a pattern can match
2730              the null string, though.  */
2731           if (p + j < pend)
2732             {
2733               if (!PUSH_PATTERN_OP (p + j, fail_stack))
2734                 return -2;
2735             }
2736           else
2737             bufp->can_be_null = 1;
2738 
2739           if (succeed_n_p)
2740             {
2741               EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
2742               succeed_n_p = false;
2743 	    }
2744 
2745           continue;
2746 
2747 
2748 	case succeed_n:
2749           /* Get to the number of times to succeed.  */
2750           p += 2;
2751 
2752           /* Increment p past the n for when k != 0.  */
2753           EXTRACT_NUMBER_AND_INCR (k, p);
2754           if (k == 0)
2755 	    {
2756               p -= 4;
2757   	      succeed_n_p = true;  /* Spaghetti code alert.  */
2758               goto handle_on_failure_jump;
2759             }
2760           continue;
2761 
2762 
2763 	case set_number_at:
2764           p += 4;
2765           continue;
2766 
2767 
2768 	case start_memory:
2769         case stop_memory:
2770 	  p += 2;
2771 	  continue;
2772 
2773 
2774 	default:
2775           abort (); /* We have listed all the cases.  */
2776         } /* switch *p++ */
2777 
2778       /* Getting here means we have found the possible starting
2779          characters for one path of the pattern -- and that the empty
2780          string does not match.  We need not follow this path further.
2781          Instead, look at the next alternative (remembered on the
2782          stack), or quit if no more.  The test at the top of the loop
2783          does these things.  */
2784       path_can_be_null = false;
2785       p = pend;
2786     } /* while p */
2787 
2788   /* Set `can_be_null' for the last path (also the first path, if the
2789      pattern is empty).  */
2790   bufp->can_be_null |= path_can_be_null;
2791   return 0;
2792 } /* re_compile_fastmap */
2793 
2794 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2795    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
2796    this memory for recording register information.  STARTS and ENDS
2797    must be allocated using the malloc library routine, and must each
2798    be at least NUM_REGS * sizeof (regoff_t) bytes long.
2799 
2800    If NUM_REGS == 0, then subsequent matches should allocate their own
2801    register data.
2802 
2803    Unless this function is called, the first search or match using
2804    PATTERN_BUFFER will allocate its own register data, without
2805    freeing the old data.  */
2806 
2807 void
re_set_registers(bufp,regs,num_regs,starts,ends)2808 re_set_registers (bufp, regs, num_regs, starts, ends)
2809     struct re_pattern_buffer *bufp;
2810     struct re_registers *regs;
2811     unsigned num_regs;
2812     regoff_t *starts, *ends;
2813 {
2814   if (num_regs)
2815     {
2816       bufp->regs_allocated = REGS_REALLOCATE;
2817       regs->num_regs = num_regs;
2818       regs->start = starts;
2819       regs->end = ends;
2820     }
2821   else
2822     {
2823       bufp->regs_allocated = REGS_UNALLOCATED;
2824       regs->num_regs = 0;
2825       regs->start = regs->end = (regoff_t) 0;
2826     }
2827 }
2828 
2829 /* Searching routines.  */
2830 
2831 /* Like re_search_2, below, but only one string is specified, and
2832    doesn't let you say where to stop matching. */
2833 
2834 int
re_search(bufp,string,size,startpos,range,regs)2835 re_search (bufp, string, size, startpos, range, regs)
2836      struct re_pattern_buffer *bufp;
2837      const char *string;
2838      int size, startpos, range;
2839      struct re_registers *regs;
2840 {
2841   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
2842 		      regs, size);
2843 }
2844 
2845 
2846 /* Using the compiled pattern in BUFP->buffer, first tries to match the
2847    virtual concatenation of STRING1 and STRING2, starting first at index
2848    STARTPOS, then at STARTPOS + 1, and so on.
2849 
2850    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2851 
2852    RANGE is how far to scan while trying to match.  RANGE = 0 means try
2853    only at STARTPOS; in general, the last start tried is STARTPOS +
2854    RANGE.
2855 
2856    In REGS, return the indices of the virtual concatenation of STRING1
2857    and STRING2 that matched the entire BUFP->buffer and its contained
2858    subexpressions.
2859 
2860    Do not consider matching one past the index STOP in the virtual
2861    concatenation of STRING1 and STRING2.
2862 
2863    We return either the position in the strings at which the match was
2864    found, -1 if no match, or -2 if error (such as failure
2865    stack overflow).  */
2866 
2867 int
re_search_2(bufp,string1,size1,string2,size2,startpos,range,regs,stop)2868 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2869      struct re_pattern_buffer *bufp;
2870      const char *string1, *string2;
2871      int size1, size2;
2872      int startpos;
2873      int range;
2874      struct re_registers *regs;
2875      int stop;
2876 {
2877   int val;
2878   register char *fastmap = bufp->fastmap;
2879   register char *translate = bufp->translate;
2880   int total_size = size1 + size2;
2881   int endpos = startpos + range;
2882 
2883   /* Check for out-of-range STARTPOS.  */
2884   if (startpos < 0 || startpos > total_size)
2885     return -1;
2886 
2887   /* Fix up RANGE if it might eventually take us outside
2888      the virtual concatenation of STRING1 and STRING2.  */
2889   if (endpos < -1)
2890     range = -1 - startpos;
2891   else if (endpos > total_size)
2892     range = total_size - startpos;
2893 
2894   /* If the search isn't to be a backwards one, don't waste time in a
2895      search for a pattern that must be anchored.  */
2896   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
2897     {
2898       if (startpos > 0)
2899 	return -1;
2900       else
2901 	range = 1;
2902     }
2903 
2904   /* Update the fastmap now if not correct already.  */
2905   if (fastmap && !bufp->fastmap_accurate)
2906     if (re_compile_fastmap (bufp) == -2)
2907       return -2;
2908 
2909   /* Loop through the string, looking for a place to start matching.  */
2910   for (;;)
2911     {
2912       /* If a fastmap is supplied, skip quickly over characters that
2913          cannot be the start of a match.  If the pattern can match the
2914          null string, however, we don't need to skip characters; we want
2915          the first null string.  */
2916       if (fastmap && startpos < total_size && !bufp->can_be_null)
2917 	{
2918 	  if (range > 0)	/* Searching forwards.  */
2919 	    {
2920 	      register const char *d;
2921 	      register int lim = 0;
2922 	      int irange = range;
2923 
2924               if (startpos < size1 && startpos + range >= size1)
2925                 lim = range - (size1 - startpos);
2926 
2927 	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2928 
2929               /* Written out as an if-else to avoid testing `translate'
2930                  inside the loop.  */
2931 	      if (translate)
2932                 while (range > lim
2933                        && !fastmap[(unsigned char) translate[*d++]])
2934                   range--;
2935 	      else
2936                 while (range > lim && !fastmap[(unsigned char) *d++])
2937                   range--;
2938 
2939 	      startpos += irange - range;
2940 	    }
2941 	  else				/* Searching backwards.  */
2942 	    {
2943 	      register char c = (size1 == 0 || startpos >= size1
2944                                  ? string2[startpos - size1]
2945                                  : string1[startpos]);
2946 
2947 	      if (!fastmap[(unsigned char) TRANSLATE (c)])
2948 		goto advance;
2949 	    }
2950 	}
2951 
2952       /* If can't match the null string, and that's all we have left, fail.  */
2953       if (range >= 0 && startpos == total_size && fastmap
2954           && !bufp->can_be_null)
2955 	return -1;
2956 
2957       val = re_match_2 (bufp, string1, size1, string2, size2,
2958 	                startpos, regs, stop);
2959       if (val >= 0)
2960 	return startpos;
2961 
2962       if (val == -2)
2963 	return -2;
2964 
2965     advance:
2966       if (!range)
2967         break;
2968       else if (range > 0)
2969         {
2970           range--;
2971           startpos++;
2972         }
2973       else
2974         {
2975           range++;
2976           startpos--;
2977         }
2978     }
2979   return -1;
2980 } /* re_search_2 */
2981 
2982 /* Declarations and macros for re_match_2.  */
2983 
2984 static int bcmp_translate ();
2985 static boolean alt_match_null_string_p (),
2986                common_op_match_null_string_p (),
2987                group_match_null_string_p ();
2988 
2989 /* Structure for per-register (a.k.a. per-group) information.
2990    This must not be longer than one word, because we push this value
2991    onto the failure stack.  Other register information, such as the
2992    starting and ending positions (which are addresses), and the list of
2993    inner groups (which is a bits list) are maintained in separate
2994    variables.
2995 
2996    We are making a (strictly speaking) nonportable assumption here: that
2997    the compiler will pack our bit fields into something that fits into
2998    the type of `word', i.e., is something that fits into one item on the
2999    failure stack.  */
3000 typedef union
3001 {
3002   fail_stack_elt_t word;
3003   struct
3004   {
3005       /* This field is one if this group can match the empty string,
3006          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
3007 #define MATCH_NULL_UNSET_VALUE 3
3008     unsigned match_null_string_p : 2;
3009     unsigned is_active : 1;
3010     unsigned matched_something : 1;
3011     unsigned ever_matched_something : 1;
3012   } bits;
3013 } register_info_type;
3014 
3015 #define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
3016 #define IS_ACTIVE(R)  ((R).bits.is_active)
3017 #define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
3018 #define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
3019 
3020 
3021 /* Call this when have matched a real character; it sets `matched' flags
3022    for the subexpressions which we are currently inside.  Also records
3023    that those subexprs have matched.  */
3024 #define SET_REGS_MATCHED()						\
3025   do									\
3026     {									\
3027       unsigned r;							\
3028       for (r = lowest_active_reg; r <= highest_active_reg; r++)		\
3029         {								\
3030           MATCHED_SOMETHING (reg_info[r])				\
3031             = EVER_MATCHED_SOMETHING (reg_info[r])			\
3032             = 1;							\
3033         }								\
3034     }									\
3035   while (0)
3036 
3037 
3038 /* This converts PTR, a pointer into one of the search strings `string1'
3039    and `string2' into an offset from the beginning of that string.  */
3040 #define POINTER_TO_OFFSET(ptr)						\
3041   (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3042 
3043 /* Registers are set to a sentinel when they haven't yet matched.  */
3044 #define REG_UNSET_VALUE ((char *) -1)
3045 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3046 
3047 
3048 /* Macros for dealing with the split strings in re_match_2.  */
3049 
3050 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
3051 
3052 /* Call before fetching a character with *d.  This switches over to
3053    string2 if necessary.  */
3054 #define PREFETCH()							\
3055   while (d == dend)						    	\
3056     {									\
3057       /* End of string2 => fail.  */					\
3058       if (dend == end_match_2) 						\
3059         goto fail;							\
3060       /* End of string1 => advance to string2.  */ 			\
3061       d = string2;						        \
3062       dend = end_match_2;						\
3063     }
3064 
3065 
3066 /* Test if at very beginning or at very end of the virtual concatenation
3067    of `string1' and `string2'.  If only one string, it's `string2'.  */
3068 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3069 #define AT_STRINGS_END(d) ((d) == end2)
3070 
3071 
3072 /* Test if D points to a character which is word-constituent.  We have
3073    two special cases to check for: if past the end of string1, look at
3074    the first character in string2; and if before the beginning of
3075    string2, look at the last character in string1.  */
3076 #define WORDCHAR_P(d)							\
3077   (SYNTAX ((d) == end1 ? *string2					\
3078            : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
3079    == Sword)
3080 
3081 /* Test if the character before D and the one at D differ with respect
3082    to being word-constituent.  */
3083 #define AT_WORD_BOUNDARY(d)						\
3084   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
3085    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3086 
3087 
3088 /* Free everything we malloc.  */
3089 #ifdef REGEX_MALLOC
3090 #define FREE_VAR(var) if (var) free (var); var = NULL
3091 #define FREE_VARIABLES()						\
3092   do {									\
3093     FREE_VAR (fail_stack.stack);					\
3094     FREE_VAR (regstart);						\
3095     FREE_VAR (regend);							\
3096     FREE_VAR (old_regstart);						\
3097     FREE_VAR (old_regend);						\
3098     FREE_VAR (best_regstart);						\
3099     FREE_VAR (best_regend);						\
3100     FREE_VAR (reg_info);						\
3101     FREE_VAR (reg_dummy);						\
3102     FREE_VAR (reg_info_dummy);						\
3103   } while (0)
3104 #else /* not REGEX_MALLOC */
3105 /* Some MIPS systems (at least) want this to free alloca'd storage.  */
3106 #define FREE_VARIABLES() alloca (0)
3107 #endif /* not REGEX_MALLOC */
3108 
3109 
3110 /* These values must meet several constraints.  They must not be valid
3111    register values; since we have a limit of 255 registers (because
3112    we use only one byte in the pattern for the register number), we can
3113    use numbers larger than 255.  They must differ by 1, because of
3114    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
3115    be larger than the value for the highest register, so we do not try
3116    to actually save any registers when none are active.  */
3117 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3118 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3119 
3120 /* Matching routines.  */
3121 
3122 #ifndef emacs   /* Emacs never uses this.  */
3123 /* re_match is like re_match_2 except it takes only a single string.  */
3124 
3125 int
re_match(bufp,string,size,pos,regs)3126 re_match (bufp, string, size, pos, regs)
3127      struct re_pattern_buffer *bufp;
3128      const char *string;
3129      int size, pos;
3130      struct re_registers *regs;
3131  {
3132   return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3133 }
3134 #endif /* not emacs */
3135 
3136 
3137 /* re_match_2 matches the compiled pattern in BUFP against the
3138    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3139    and SIZE2, respectively).  We start matching at POS, and stop
3140    matching at STOP.
3141 
3142    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3143    store offsets for the substring each group matched in REGS.  See the
3144    documentation for exactly how many groups we fill.
3145 
3146    We return -1 if no match, -2 if an internal error (such as the
3147    failure stack overflowing).  Otherwise, we return the length of the
3148    matched substring.  */
3149 
3150 int
re_match_2(bufp,string1,size1,string2,size2,pos,regs,stop)3151 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3152      struct re_pattern_buffer *bufp;
3153      const char *string1, *string2;
3154      int size1, size2;
3155      int pos;
3156      struct re_registers *regs;
3157      int stop;
3158 {
3159   /* General temporaries.  */
3160   int mcnt;
3161   unsigned char *p1;
3162 
3163   /* Just past the end of the corresponding string.  */
3164   const char *end1, *end2;
3165 
3166   /* Pointers into string1 and string2, just past the last characters in
3167      each to consider matching.  */
3168   const char *end_match_1, *end_match_2;
3169 
3170   /* Where we are in the data, and the end of the current string.  */
3171   const char *d, *dend;
3172 
3173   /* Where we are in the pattern, and the end of the pattern.  */
3174   unsigned char *p = bufp->buffer;
3175   register unsigned char *pend = p + bufp->used;
3176 
3177   /* We use this to map every character in the string.  */
3178   char *translate = bufp->translate;
3179 
3180   /* Failure point stack.  Each place that can handle a failure further
3181      down the line pushes a failure point on this stack.  It consists of
3182      restart, regend, and reg_info for all registers corresponding to
3183      the subexpressions we're currently inside, plus the number of such
3184      registers, and, finally, two char *'s.  The first char * is where
3185      to resume scanning the pattern; the second one is where to resume
3186      scanning the strings.  If the latter is zero, the failure point is
3187      a ``dummy''; if a failure happens and the failure point is a dummy,
3188      it gets discarded and the next next one is tried.  */
3189   fail_stack_type fail_stack;
3190 #ifdef DEBUG
3191   static unsigned failure_id = 0;
3192   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3193 #endif
3194 
3195   /* We fill all the registers internally, independent of what we
3196      return, for use in backreferences.  The number here includes
3197      an element for register zero.  */
3198   unsigned num_regs = bufp->re_nsub + 1;
3199 
3200   /* The currently active registers.  */
3201   unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3202   unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3203 
3204   /* Information on the contents of registers. These are pointers into
3205      the input strings; they record just what was matched (on this
3206      attempt) by a subexpression part of the pattern, that is, the
3207      regnum-th regstart pointer points to where in the pattern we began
3208      matching and the regnum-th regend points to right after where we
3209      stopped matching the regnum-th subexpression.  (The zeroth register
3210      keeps track of what the whole pattern matches.)  */
3211   const char **regstart, **regend;
3212 
3213   /* If a group that's operated upon by a repetition operator fails to
3214      match anything, then the register for its start will need to be
3215      restored because it will have been set to wherever in the string we
3216      are when we last see its open-group operator.  Similarly for a
3217      register's end.  */
3218   const char **old_regstart, **old_regend;
3219 
3220   /* The is_active field of reg_info helps us keep track of which (possibly
3221      nested) subexpressions we are currently in. The matched_something
3222      field of reg_info[reg_num] helps us tell whether or not we have
3223      matched any of the pattern so far this time through the reg_num-th
3224      subexpression.  These two fields get reset each time through any
3225      loop their register is in.  */
3226   register_info_type *reg_info;
3227 
3228   /* The following record the register info as found in the above
3229      variables when we find a match better than any we've seen before.
3230      This happens as we backtrack through the failure points, which in
3231      turn happens only if we have not yet matched the entire string. */
3232   unsigned best_regs_set = false;
3233   const char **best_regstart, **best_regend;
3234 
3235   /* Logically, this is `best_regend[0]'.  But we don't want to have to
3236      allocate space for that if we're not allocating space for anything
3237      else (see below).  Also, we never need info about register 0 for
3238      any of the other register vectors, and it seems rather a kludge to
3239      treat `best_regend' differently than the rest.  So we keep track of
3240      the end of the best match so far in a separate variable.  We
3241      initialize this to NULL so that when we backtrack the first time
3242      and need to test it, it's not garbage.  */
3243   const char *match_end = NULL;
3244 
3245   /* Used when we pop values we don't care about.  */
3246   const char **reg_dummy;
3247   register_info_type *reg_info_dummy;
3248 
3249 #ifdef DEBUG
3250   /* Counts the total number of registers pushed.  */
3251   unsigned num_regs_pushed = 0;
3252 #endif
3253 
3254   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3255 
3256   INIT_FAIL_STACK ();
3257 
3258   /* Do not bother to initialize all the register variables if there are
3259      no groups in the pattern, as it takes a fair amount of time.  If
3260      there are groups, we include space for register 0 (the whole
3261      pattern), even though we never use it, since it simplifies the
3262      array indexing.  We should fix this.  */
3263   if (bufp->re_nsub)
3264     {
3265       regstart = REGEX_TALLOC (num_regs, const char *);
3266       regend = REGEX_TALLOC (num_regs, const char *);
3267       old_regstart = REGEX_TALLOC (num_regs, const char *);
3268       old_regend = REGEX_TALLOC (num_regs, const char *);
3269       best_regstart = REGEX_TALLOC (num_regs, const char *);
3270       best_regend = REGEX_TALLOC (num_regs, const char *);
3271       reg_info = REGEX_TALLOC (num_regs, register_info_type);
3272       reg_dummy = REGEX_TALLOC (num_regs, const char *);
3273       reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3274 
3275       if (!(regstart && regend && old_regstart && old_regend && reg_info
3276             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3277         {
3278           FREE_VARIABLES ();
3279           return -2;
3280         }
3281     }
3282 #ifdef REGEX_MALLOC
3283   else
3284     {
3285       /* We must initialize all our variables to NULL, so that
3286          `FREE_VARIABLES' doesn't try to free them.  */
3287       regstart = regend = old_regstart = old_regend = best_regstart
3288         = best_regend = reg_dummy = NULL;
3289       reg_info = reg_info_dummy = (register_info_type *) NULL;
3290     }
3291 #endif /* REGEX_MALLOC */
3292 
3293   /* The starting position is bogus.  */
3294   if (pos < 0 || pos > size1 + size2)
3295     {
3296       FREE_VARIABLES ();
3297       return -1;
3298     }
3299 
3300   /* Initialize subexpression text positions to -1 to mark ones that no
3301      start_memory/stop_memory has been seen for. Also initialize the
3302      register information struct.  */
3303   for (mcnt = 1; mcnt < num_regs; mcnt++)
3304     {
3305       regstart[mcnt] = regend[mcnt]
3306         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3307 
3308       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3309       IS_ACTIVE (reg_info[mcnt]) = 0;
3310       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3311       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3312     }
3313 
3314   /* We move `string1' into `string2' if the latter's empty -- but not if
3315      `string1' is null.  */
3316   if (size2 == 0 && string1 != NULL)
3317     {
3318       string2 = string1;
3319       size2 = size1;
3320       string1 = 0;
3321       size1 = 0;
3322     }
3323   end1 = string1 + size1;
3324   end2 = string2 + size2;
3325 
3326   /* Compute where to stop matching, within the two strings.  */
3327   if (stop <= size1)
3328     {
3329       end_match_1 = string1 + stop;
3330       end_match_2 = string2;
3331     }
3332   else
3333     {
3334       end_match_1 = end1;
3335       end_match_2 = string2 + stop - size1;
3336     }
3337 
3338   /* `p' scans through the pattern as `d' scans through the data.
3339      `dend' is the end of the input string that `d' points within.  `d'
3340      is advanced into the following input string whenever necessary, but
3341      this happens before fetching; therefore, at the beginning of the
3342      loop, `d' can be pointing at the end of a string, but it cannot
3343      equal `string2'.  */
3344   if (size1 > 0 && pos <= size1)
3345     {
3346       d = string1 + pos;
3347       dend = end_match_1;
3348     }
3349   else
3350     {
3351       d = string2 + pos - size1;
3352       dend = end_match_2;
3353     }
3354 
3355   DEBUG_PRINT1 ("The compiled pattern is: ");
3356   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3357   DEBUG_PRINT1 ("The string to match is: `");
3358   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3359   DEBUG_PRINT1 ("'\n");
3360 
3361   /* This loops over pattern commands.  It exits by returning from the
3362      function if the match is complete, or it drops through if the match
3363      fails at this starting point in the input data.  */
3364   for (;;)
3365     {
3366       DEBUG_PRINT2 ("\n0x%x: ", p);
3367 
3368       if (p == pend)
3369 	{ /* End of pattern means we might have succeeded.  */
3370           DEBUG_PRINT1 ("end of pattern ... ");
3371 
3372 	  /* If we haven't matched the entire string, and we want the
3373              longest match, try backtracking.  */
3374           if (d != end_match_2)
3375 	    {
3376               DEBUG_PRINT1 ("backtracking.\n");
3377 
3378               if (!FAIL_STACK_EMPTY ())
3379                 { /* More failure points to try.  */
3380                   boolean same_str_p = (FIRST_STRING_P (match_end)
3381 	        	                == MATCHING_IN_FIRST_STRING);
3382 
3383                   /* If exceeds best match so far, save it.  */
3384                   if (!best_regs_set
3385                       || (same_str_p && d > match_end)
3386                       || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3387                     {
3388                       best_regs_set = true;
3389                       match_end = d;
3390 
3391                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3392 
3393                       for (mcnt = 1; mcnt < num_regs; mcnt++)
3394                         {
3395                           best_regstart[mcnt] = regstart[mcnt];
3396                           best_regend[mcnt] = regend[mcnt];
3397                         }
3398                     }
3399                   goto fail;
3400                 }
3401 
3402               /* If no failure points, don't restore garbage.  */
3403               else if (best_regs_set)
3404                 {
3405   	        restore_best_regs:
3406                   /* Restore best match.  It may happen that `dend ==
3407                      end_match_1' while the restored d is in string2.
3408                      For example, the pattern `x.*y.*z' against the
3409                      strings `x-' and `y-z-', if the two strings are
3410                      not consecutive in memory.  */
3411                   DEBUG_PRINT1 ("Restoring best registers.\n");
3412 
3413                   d = match_end;
3414                   dend = ((d >= string1 && d <= end1)
3415 		           ? end_match_1 : end_match_2);
3416 
3417 		  for (mcnt = 1; mcnt < num_regs; mcnt++)
3418 		    {
3419 		      regstart[mcnt] = best_regstart[mcnt];
3420 		      regend[mcnt] = best_regend[mcnt];
3421 		    }
3422                 }
3423             } /* d != end_match_2 */
3424 
3425           DEBUG_PRINT1 ("Accepting match.\n");
3426 
3427           /* If caller wants register contents data back, do it.  */
3428           if (regs && !bufp->no_sub)
3429 	    {
3430               /* Have the register data arrays been allocated?  */
3431               if (bufp->regs_allocated == REGS_UNALLOCATED)
3432                 { /* No.  So allocate them with malloc.  We need one
3433                      extra element beyond `num_regs' for the `-1' marker
3434                      GNU code uses.  */
3435                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3436                   regs->start = TALLOC (regs->num_regs, regoff_t);
3437                   regs->end = TALLOC (regs->num_regs, regoff_t);
3438                   if (regs->start == NULL || regs->end == NULL)
3439                     return -2;
3440                   bufp->regs_allocated = REGS_REALLOCATE;
3441                 }
3442               else if (bufp->regs_allocated == REGS_REALLOCATE)
3443                 { /* Yes.  If we need more elements than were already
3444                      allocated, reallocate them.  If we need fewer, just
3445                      leave it alone.  */
3446                   if (regs->num_regs < num_regs + 1)
3447                     {
3448                       regs->num_regs = num_regs + 1;
3449                       RETALLOC (regs->start, regs->num_regs, regoff_t);
3450                       RETALLOC (regs->end, regs->num_regs, regoff_t);
3451                       if (regs->start == NULL || regs->end == NULL)
3452                         return -2;
3453                     }
3454                 }
3455               else
3456                 assert (bufp->regs_allocated == REGS_FIXED);
3457 
3458               /* Convert the pointer data in `regstart' and `regend' to
3459                  indices.  Register zero has to be set differently,
3460                  since we haven't kept track of any info for it.  */
3461               if (regs->num_regs > 0)
3462                 {
3463                   regs->start[0] = pos;
3464                   regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3465 			          : d - string2 + size1);
3466                 }
3467 
3468               /* Go through the first `min (num_regs, regs->num_regs)'
3469                  registers, since that is all we initialized.  */
3470 	      for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3471 		{
3472                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3473                     regs->start[mcnt] = regs->end[mcnt] = -1;
3474                   else
3475                     {
3476 		      regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3477                       regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3478                     }
3479 		}
3480 
3481               /* If the regs structure we return has more elements than
3482                  were in the pattern, set the extra elements to -1.  If
3483                  we (re)allocated the registers, this is the case,
3484                  because we always allocate enough to have at least one
3485                  -1 at the end.  */
3486               for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3487                 regs->start[mcnt] = regs->end[mcnt] = -1;
3488 	    } /* regs && !bufp->no_sub */
3489 
3490           FREE_VARIABLES ();
3491           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3492                         nfailure_points_pushed, nfailure_points_popped,
3493                         nfailure_points_pushed - nfailure_points_popped);
3494           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3495 
3496           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3497 			    ? string1
3498 			    : string2 - size1);
3499 
3500           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3501 
3502           return mcnt;
3503         }
3504 
3505       /* Otherwise match next pattern command.  */
3506 #ifdef SWITCH_ENUM_BUG
3507       switch ((int) ((re_opcode_t) *p++))
3508 #else
3509       switch ((re_opcode_t) *p++)
3510 #endif
3511 	{
3512         /* Ignore these.  Used to ignore the n of succeed_n's which
3513            currently have n == 0.  */
3514         case no_op:
3515           DEBUG_PRINT1 ("EXECUTING no_op.\n");
3516           break;
3517 
3518 
3519         /* Match the next n pattern characters exactly.  The following
3520            byte in the pattern defines n, and the n bytes after that
3521            are the characters to match.  */
3522 	case exactn:
3523 	  mcnt = *p++;
3524           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3525 
3526           /* This is written out as an if-else so we don't waste time
3527              testing `translate' inside the loop.  */
3528           if (translate)
3529 	    {
3530 	      do
3531 		{
3532 		  PREFETCH ();
3533 		  if (translate[(unsigned char) *d++] != (char) *p++)
3534                     goto fail;
3535 		}
3536 	      while (--mcnt);
3537 	    }
3538 	  else
3539 	    {
3540 	      do
3541 		{
3542 		  PREFETCH ();
3543 		  if (*d++ != (char) *p++) goto fail;
3544 		}
3545 	      while (--mcnt);
3546 	    }
3547 	  SET_REGS_MATCHED ();
3548           break;
3549 
3550 
3551         /* Match any character except possibly a newline or a null.  */
3552 	case anychar:
3553           DEBUG_PRINT1 ("EXECUTING anychar.\n");
3554 
3555           PREFETCH ();
3556 
3557           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3558               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3559 	    goto fail;
3560 
3561           SET_REGS_MATCHED ();
3562           DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
3563           d++;
3564 	  break;
3565 
3566 
3567 	case charset:
3568 	case charset_not:
3569 	  {
3570 	    register unsigned char c;
3571 	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
3572 
3573             DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3574 
3575 	    PREFETCH ();
3576 	    c = TRANSLATE (*d); /* The character to match.  */
3577 
3578             /* Cast to `unsigned' instead of `unsigned char' in case the
3579                bit list is a full 32 bytes long.  */
3580 	    if (c < (unsigned) (*p * BYTEWIDTH)
3581 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3582 	      not = !not;
3583 
3584 	    p += 1 + *p;
3585 
3586 	    if (!not) goto fail;
3587 
3588 	    SET_REGS_MATCHED ();
3589             d++;
3590 	    break;
3591 	  }
3592 
3593 
3594         /* The beginning of a group is represented by start_memory.
3595            The arguments are the register number in the next byte, and the
3596            number of groups inner to this one in the next.  The text
3597            matched within the group is recorded (in the internal
3598            registers data structure) under the register number.  */
3599         case start_memory:
3600 	  DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3601 
3602           /* Find out if this group can match the empty string.  */
3603 	  p1 = p;		/* To send to group_match_null_string_p.  */
3604 
3605           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3606             REG_MATCH_NULL_STRING_P (reg_info[*p])
3607               = group_match_null_string_p (&p1, pend, reg_info);
3608 
3609           /* Save the position in the string where we were the last time
3610              we were at this open-group operator in case the group is
3611              operated upon by a repetition operator, e.g., with `(a*)*b'
3612              against `ab'; then we want to ignore where we are now in
3613              the string in case this attempt to match fails.  */
3614           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3615                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3616                              : regstart[*p];
3617 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
3618 			 POINTER_TO_OFFSET (old_regstart[*p]));
3619 
3620           regstart[*p] = d;
3621 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3622 
3623           IS_ACTIVE (reg_info[*p]) = 1;
3624           MATCHED_SOMETHING (reg_info[*p]) = 0;
3625 
3626           /* This is the new highest active register.  */
3627           highest_active_reg = *p;
3628 
3629           /* If nothing was active before, this is the new lowest active
3630              register.  */
3631           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3632             lowest_active_reg = *p;
3633 
3634           /* Move past the register number and inner group count.  */
3635           p += 2;
3636           break;
3637 
3638 
3639         /* The stop_memory opcode represents the end of a group.  Its
3640            arguments are the same as start_memory's: the register
3641            number, and the number of inner groups.  */
3642 	case stop_memory:
3643 	  DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3644 
3645           /* We need to save the string position the last time we were at
3646              this close-group operator in case the group is operated
3647              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3648              against `aba'; then we want to ignore where we are now in
3649              the string in case this attempt to match fails.  */
3650           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3651                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
3652 			   : regend[*p];
3653 	  DEBUG_PRINT2 ("      old_regend: %d\n",
3654 			 POINTER_TO_OFFSET (old_regend[*p]));
3655 
3656           regend[*p] = d;
3657 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3658 
3659           /* This register isn't active anymore.  */
3660           IS_ACTIVE (reg_info[*p]) = 0;
3661 
3662           /* If this was the only register active, nothing is active
3663              anymore.  */
3664           if (lowest_active_reg == highest_active_reg)
3665             {
3666               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3667               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3668             }
3669           else
3670             { /* We must scan for the new highest active register, since
3671                  it isn't necessarily one less than now: consider
3672                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
3673                  new highest active register is 1.  */
3674               unsigned char r = *p - 1;
3675               while (r > 0 && !IS_ACTIVE (reg_info[r]))
3676                 r--;
3677 
3678               /* If we end up at register zero, that means that we saved
3679                  the registers as the result of an `on_failure_jump', not
3680                  a `start_memory', and we jumped to past the innermost
3681                  `stop_memory'.  For example, in ((.)*) we save
3682                  registers 1 and 2 as a result of the *, but when we pop
3683                  back to the second ), we are at the stop_memory 1.
3684                  Thus, nothing is active.  */
3685 	      if (r == 0)
3686                 {
3687                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3688                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3689                 }
3690               else
3691                 highest_active_reg = r;
3692             }
3693 
3694           /* If just failed to match something this time around with a
3695              group that's operated on by a repetition operator, try to
3696              force exit from the ``loop'', and restore the register
3697              information for this group that we had before trying this
3698              last match.  */
3699           if ((!MATCHED_SOMETHING (reg_info[*p])
3700                || (re_opcode_t) p[-3] == start_memory)
3701 	      && (p + 2) < pend)
3702             {
3703               boolean is_a_jump_n = false;
3704 
3705               p1 = p + 2;
3706               mcnt = 0;
3707               switch ((re_opcode_t) *p1++)
3708                 {
3709                   case jump_n:
3710 		    is_a_jump_n = true;
3711                   case pop_failure_jump:
3712 		  case maybe_pop_jump:
3713 		  case jump:
3714 		  case dummy_failure_jump:
3715                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3716 		    if (is_a_jump_n)
3717 		      p1 += 2;
3718                     break;
3719 
3720                   default:
3721                     /* do nothing */ ;
3722                 }
3723 	      p1 += mcnt;
3724 
3725               /* If the next operation is a jump backwards in the pattern
3726 	         to an on_failure_jump right before the start_memory
3727                  corresponding to this stop_memory, exit from the loop
3728                  by forcing a failure after pushing on the stack the
3729                  on_failure_jump's jump in the pattern, and d.  */
3730               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3731                   && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3732 		{
3733                   /* If this group ever matched anything, then restore
3734                      what its registers were before trying this last
3735                      failed match, e.g., with `(a*)*b' against `ab' for
3736                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
3737                      against `aba' for regend[3].
3738 
3739                      Also restore the registers for inner groups for,
3740                      e.g., `((a*)(b*))*' against `aba' (register 3 would
3741                      otherwise get trashed).  */
3742 
3743                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3744 		    {
3745 		      unsigned r;
3746 
3747                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3748 
3749 		      /* Restore this and inner groups' (if any) registers.  */
3750                       for (r = *p; r < *p + *(p + 1); r++)
3751                         {
3752                           regstart[r] = old_regstart[r];
3753 
3754                           /* xx why this test?  */
3755                           if ((int) old_regend[r] >= (int) regstart[r])
3756                             regend[r] = old_regend[r];
3757                         }
3758                     }
3759 		  p1++;
3760                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3761                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3762 
3763                   goto fail;
3764                 }
3765             }
3766 
3767           /* Move past the register number and the inner group count.  */
3768           p += 2;
3769           break;
3770 
3771 
3772 	/* \<digit> has been turned into a `duplicate' command which is
3773            followed by the numeric value of <digit> as the register number.  */
3774         case duplicate:
3775 	  {
3776 	    register const char *d2, *dend2;
3777 	    int regno = *p++;   /* Get which register to match against.  */
3778 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3779 
3780 	    /* Can't back reference a group which we've never matched.  */
3781             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3782               goto fail;
3783 
3784             /* Where in input to try to start matching.  */
3785             d2 = regstart[regno];
3786 
3787             /* Where to stop matching; if both the place to start and
3788                the place to stop matching are in the same string, then
3789                set to the place to stop, otherwise, for now have to use
3790                the end of the first string.  */
3791 
3792             dend2 = ((FIRST_STRING_P (regstart[regno])
3793 		      == FIRST_STRING_P (regend[regno]))
3794 		     ? regend[regno] : end_match_1);
3795 	    for (;;)
3796 	      {
3797 		/* If necessary, advance to next segment in register
3798                    contents.  */
3799 		while (d2 == dend2)
3800 		  {
3801 		    if (dend2 == end_match_2) break;
3802 		    if (dend2 == regend[regno]) break;
3803 
3804                     /* End of string1 => advance to string2. */
3805                     d2 = string2;
3806                     dend2 = regend[regno];
3807 		  }
3808 		/* At end of register contents => success */
3809 		if (d2 == dend2) break;
3810 
3811 		/* If necessary, advance to next segment in data.  */
3812 		PREFETCH ();
3813 
3814 		/* How many characters left in this segment to match.  */
3815 		mcnt = dend - d;
3816 
3817 		/* Want how many consecutive characters we can match in
3818                    one shot, so, if necessary, adjust the count.  */
3819                 if (mcnt > dend2 - d2)
3820 		  mcnt = dend2 - d2;
3821 
3822 		/* Compare that many; failure if mismatch, else move
3823                    past them.  */
3824 		if (translate
3825                     ? bcmp_translate (d, d2, mcnt, translate)
3826                     : bcmp (d, d2, mcnt))
3827 		  goto fail;
3828 		d += mcnt, d2 += mcnt;
3829 	      }
3830 	  }
3831 	  break;
3832 
3833 
3834         /* begline matches the empty string at the beginning of the string
3835            (unless `not_bol' is set in `bufp'), and, if
3836            `newline_anchor' is set, after newlines.  */
3837 	case begline:
3838           DEBUG_PRINT1 ("EXECUTING begline.\n");
3839 
3840           if (AT_STRINGS_BEG (d))
3841             {
3842               if (!bufp->not_bol) break;
3843             }
3844           else if (d[-1] == '\n' && bufp->newline_anchor)
3845             {
3846               break;
3847             }
3848           /* In all other cases, we fail.  */
3849           goto fail;
3850 
3851 
3852         /* endline is the dual of begline.  */
3853 	case endline:
3854           DEBUG_PRINT1 ("EXECUTING endline.\n");
3855 
3856           if (AT_STRINGS_END (d))
3857             {
3858               if (!bufp->not_eol) break;
3859             }
3860 
3861           /* We have to ``prefetch'' the next character.  */
3862           else if ((d == end1 ? *string2 : *d) == '\n'
3863                    && bufp->newline_anchor)
3864             {
3865               break;
3866             }
3867           goto fail;
3868 
3869 
3870 	/* Match at the very beginning of the data.  */
3871         case begbuf:
3872           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3873           if (AT_STRINGS_BEG (d))
3874             break;
3875           goto fail;
3876 
3877 
3878 	/* Match at the very end of the data.  */
3879         case endbuf:
3880           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3881 	  if (AT_STRINGS_END (d))
3882 	    break;
3883           goto fail;
3884 
3885 
3886         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
3887            pushes NULL as the value for the string on the stack.  Then
3888            `pop_failure_point' will keep the current value for the
3889            string, instead of restoring it.  To see why, consider
3890            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
3891            then the . fails against the \n.  But the next thing we want
3892            to do is match the \n against the \n; if we restored the
3893            string value, we would be back at the foo.
3894 
3895            Because this is used only in specific cases, we don't need to
3896            check all the things that `on_failure_jump' does, to make
3897            sure the right things get saved on the stack.  Hence we don't
3898            share its code.  The only reason to push anything on the
3899            stack at all is that otherwise we would have to change
3900            `anychar's code to do something besides goto fail in this
3901            case; that seems worse than this.  */
3902         case on_failure_keep_string_jump:
3903           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
3904 
3905           EXTRACT_NUMBER_AND_INCR (mcnt, p);
3906           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
3907 
3908           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
3909           break;
3910 
3911 
3912 	/* Uses of on_failure_jump:
3913 
3914            Each alternative starts with an on_failure_jump that points
3915            to the beginning of the next alternative.  Each alternative
3916            except the last ends with a jump that in effect jumps past
3917            the rest of the alternatives.  (They really jump to the
3918            ending jump of the following alternative, because tensioning
3919            these jumps is a hassle.)
3920 
3921            Repeats start with an on_failure_jump that points past both
3922            the repetition text and either the following jump or
3923            pop_failure_jump back to this on_failure_jump.  */
3924 	case on_failure_jump:
3925         on_failure:
3926           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3927 
3928           EXTRACT_NUMBER_AND_INCR (mcnt, p);
3929           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
3930 
3931           /* If this on_failure_jump comes right before a group (i.e.,
3932              the original * applied to a group), save the information
3933              for that group and all inner ones, so that if we fail back
3934              to this point, the group's information will be correct.
3935              For example, in \(a*\)*\1, we need the preceding group,
3936              and in \(\(a*\)b*\)\2, we need the inner group.  */
3937 
3938           /* We can't use `p' to check ahead because we push
3939              a failure point to `p + mcnt' after we do this.  */
3940           p1 = p;
3941 
3942           /* We need to skip no_op's before we look for the
3943              start_memory in case this on_failure_jump is happening as
3944              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3945              against aba.  */
3946           while (p1 < pend && (re_opcode_t) *p1 == no_op)
3947             p1++;
3948 
3949           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
3950             {
3951               /* We have a new highest active register now.  This will
3952                  get reset at the start_memory we are about to get to,
3953                  but we will have saved all the registers relevant to
3954                  this repetition op, as described above.  */
3955               highest_active_reg = *(p1 + 1) + *(p1 + 2);
3956               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3957                 lowest_active_reg = *(p1 + 1);
3958             }
3959 
3960           DEBUG_PRINT1 (":\n");
3961           PUSH_FAILURE_POINT (p + mcnt, d, -2);
3962           break;
3963 
3964 
3965         /* A smart repeat ends with `maybe_pop_jump'.
3966 	   We change it to either `pop_failure_jump' or `jump'.  */
3967         case maybe_pop_jump:
3968           EXTRACT_NUMBER_AND_INCR (mcnt, p);
3969           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
3970           {
3971 	    register unsigned char *p2 = p;
3972 
3973             /* Compare the beginning of the repeat with what in the
3974                pattern follows its end. If we can establish that there
3975                is nothing that they would both match, i.e., that we
3976                would have to backtrack because of (as in, e.g., `a*a')
3977                then we can change to pop_failure_jump, because we'll
3978                never have to backtrack.
3979 
3980                This is not true in the case of alternatives: in
3981                `(a|ab)*' we do need to backtrack to the `ab' alternative
3982                (e.g., if the string was `ab').  But instead of trying to
3983                detect that here, the alternative has put on a dummy
3984                failure point which is what we will end up popping.  */
3985 
3986 	    /* Skip over open/close-group commands.  */
3987 	    while (p2 + 2 < pend
3988 		   && ((re_opcode_t) *p2 == stop_memory
3989 		       || (re_opcode_t) *p2 == start_memory))
3990 	      p2 += 3;			/* Skip over args, too.  */
3991 
3992             /* If we're at the end of the pattern, we can change.  */
3993             if (p2 == pend)
3994 	      {
3995 		/* Consider what happens when matching ":\(.*\)"
3996 		   against ":/".  I don't really understand this code
3997 		   yet.  */
3998   	        p[-3] = (unsigned char) pop_failure_jump;
3999                 DEBUG_PRINT1
4000                   ("  End of pattern: change to `pop_failure_jump'.\n");
4001               }
4002 
4003             else if ((re_opcode_t) *p2 == exactn
4004 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4005 	      {
4006 		register unsigned char c
4007                   = *p2 == (unsigned char) endline ? '\n' : p2[2];
4008 		p1 = p + mcnt;
4009 
4010                 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4011                    to the `maybe_finalize_jump' of this case.  Examine what
4012                    follows.  */
4013                 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4014                   {
4015   		    p[-3] = (unsigned char) pop_failure_jump;
4016                     DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4017                                   c, p1[5]);
4018                   }
4019 
4020 		else if ((re_opcode_t) p1[3] == charset
4021 			 || (re_opcode_t) p1[3] == charset_not)
4022 		  {
4023 		    int not = (re_opcode_t) p1[3] == charset_not;
4024 
4025 		    if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4026 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4027 		      not = !not;
4028 
4029                     /* `not' is equal to 1 if c would match, which means
4030                         that we can't change to pop_failure_jump.  */
4031 		    if (!not)
4032                       {
4033   		        p[-3] = (unsigned char) pop_failure_jump;
4034                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4035                       }
4036 		  }
4037 	      }
4038 	  }
4039 	  p -= 2;		/* Point at relative address again.  */
4040 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
4041 	    {
4042 	      p[-1] = (unsigned char) jump;
4043               DEBUG_PRINT1 ("  Match => jump.\n");
4044 	      goto unconditional_jump;
4045 	    }
4046         /* Note fall through.  */
4047 
4048 
4049 	/* The end of a simple repeat has a pop_failure_jump back to
4050            its matching on_failure_jump, where the latter will push a
4051            failure point.  The pop_failure_jump takes off failure
4052            points put on by this pop_failure_jump's matching
4053            on_failure_jump; we got through the pattern to here from the
4054            matching on_failure_jump, so didn't fail.  */
4055         case pop_failure_jump:
4056           {
4057             /* We need to pass separate storage for the lowest and
4058                highest registers, even though we don't care about the
4059                actual values.  Otherwise, we will restore only one
4060                register from the stack, since lowest will == highest in
4061                `pop_failure_point'.  */
4062             unsigned dummy_low_reg, dummy_high_reg;
4063             unsigned char *pdummy;
4064             const char *sdummy;
4065 
4066             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4067             POP_FAILURE_POINT (sdummy, pdummy,
4068                                dummy_low_reg, dummy_high_reg,
4069                                reg_dummy, reg_dummy, reg_info_dummy);
4070           }
4071           /* Note fall through.  */
4072 
4073 
4074         /* Unconditionally jump (without popping any failure points).  */
4075         case jump:
4076 	unconditional_jump:
4077 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
4078           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4079 	  p += mcnt;				/* Do the jump.  */
4080           DEBUG_PRINT2 ("(to 0x%x).\n", p);
4081 	  break;
4082 
4083 
4084         /* We need this opcode so we can detect where alternatives end
4085            in `group_match_null_string_p' et al.  */
4086         case jump_past_alt:
4087           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4088           goto unconditional_jump;
4089 
4090 
4091         /* Normally, the on_failure_jump pushes a failure point, which
4092            then gets popped at pop_failure_jump.  We will end up at
4093            pop_failure_jump, also, and with a pattern of, say, `a+', we
4094            are skipping over the on_failure_jump, so we have to push
4095            something meaningless for pop_failure_jump to pop.  */
4096         case dummy_failure_jump:
4097           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4098           /* It doesn't matter what we push for the string here.  What
4099              the code at `fail' tests is the value for the pattern.  */
4100           PUSH_FAILURE_POINT (0, 0, -2);
4101           goto unconditional_jump;
4102 
4103 
4104         /* At the end of an alternative, we need to push a dummy failure
4105            point in case we are followed by a `pop_failure_jump', because
4106            we don't want the failure point for the alternative to be
4107            popped.  For example, matching `(a|ab)*' against `aab'
4108            requires that we match the `ab' alternative.  */
4109         case push_dummy_failure:
4110           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4111           /* See comments just above at `dummy_failure_jump' about the
4112              two zeroes.  */
4113           PUSH_FAILURE_POINT (0, 0, -2);
4114           break;
4115 
4116         /* Have to succeed matching what follows at least n times.
4117            After that, handle like `on_failure_jump'.  */
4118         case succeed_n:
4119           EXTRACT_NUMBER (mcnt, p + 2);
4120           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4121 
4122           assert (mcnt >= 0);
4123           /* Originally, this is how many times we HAVE to succeed.  */
4124           if (mcnt > 0)
4125             {
4126                mcnt--;
4127 	       p += 2;
4128                STORE_NUMBER_AND_INCR (p, mcnt);
4129                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p, mcnt);
4130             }
4131 	  else if (mcnt == 0)
4132             {
4133               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
4134 	      p[2] = (unsigned char) no_op;
4135               p[3] = (unsigned char) no_op;
4136               goto on_failure;
4137             }
4138           break;
4139 
4140         case jump_n:
4141           EXTRACT_NUMBER (mcnt, p + 2);
4142           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4143 
4144           /* Originally, this is how many times we CAN jump.  */
4145           if (mcnt)
4146             {
4147                mcnt--;
4148                STORE_NUMBER (p + 2, mcnt);
4149 	       goto unconditional_jump;
4150             }
4151           /* If don't have to jump any more, skip over the rest of command.  */
4152 	  else
4153 	    p += 4;
4154           break;
4155 
4156 	case set_number_at:
4157 	  {
4158             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4159 
4160             EXTRACT_NUMBER_AND_INCR (mcnt, p);
4161             p1 = p + mcnt;
4162             EXTRACT_NUMBER_AND_INCR (mcnt, p);
4163             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
4164 	    STORE_NUMBER (p1, mcnt);
4165             break;
4166           }
4167 
4168         case wordbound:
4169           DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4170           if (AT_WORD_BOUNDARY (d))
4171 	    break;
4172           goto fail;
4173 
4174 	case notwordbound:
4175           DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4176 	  if (AT_WORD_BOUNDARY (d))
4177 	    goto fail;
4178           break;
4179 
4180 	case wordbeg:
4181           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4182 	  if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4183 	    break;
4184           goto fail;
4185 
4186 	case wordend:
4187           DEBUG_PRINT1 ("EXECUTING wordend.\n");
4188 	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4189               && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4190 	    break;
4191           goto fail;
4192 
4193 #ifdef emacs
4194 #ifdef emacs19
4195   	case before_dot:
4196           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4197  	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4198   	    goto fail;
4199   	  break;
4200 
4201   	case at_dot:
4202           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4203  	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
4204   	    goto fail;
4205   	  break;
4206 
4207   	case after_dot:
4208           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4209           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4210   	    goto fail;
4211   	  break;
4212 #else /* not emacs19 */
4213 	case at_dot:
4214           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4215 	  if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4216 	    goto fail;
4217 	  break;
4218 #endif /* not emacs19 */
4219 
4220 	case syntaxspec:
4221           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4222 	  mcnt = *p++;
4223 	  goto matchsyntax;
4224 
4225         case wordchar:
4226           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4227 	  mcnt = (int) Sword;
4228         matchsyntax:
4229 	  PREFETCH ();
4230 	  if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4231             goto fail;
4232           SET_REGS_MATCHED ();
4233 	  break;
4234 
4235 	case notsyntaxspec:
4236           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4237 	  mcnt = *p++;
4238 	  goto matchnotsyntax;
4239 
4240         case notwordchar:
4241           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4242 	  mcnt = (int) Sword;
4243         matchnotsyntax:
4244 	  PREFETCH ();
4245 	  if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4246             goto fail;
4247 	  SET_REGS_MATCHED ();
4248           break;
4249 
4250 #else /* not emacs */
4251 	case wordchar:
4252           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4253 	  PREFETCH ();
4254           if (!WORDCHAR_P (d))
4255             goto fail;
4256 	  SET_REGS_MATCHED ();
4257           d++;
4258 	  break;
4259 
4260 	case notwordchar:
4261           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4262 	  PREFETCH ();
4263 	  if (WORDCHAR_P (d))
4264             goto fail;
4265           SET_REGS_MATCHED ();
4266           d++;
4267 	  break;
4268 #endif /* not emacs */
4269 
4270         default:
4271           abort ();
4272 	}
4273       continue;  /* Successfully executed one pattern command; keep going.  */
4274 
4275 
4276     /* We goto here if a matching operation fails. */
4277     fail:
4278       if (!FAIL_STACK_EMPTY ())
4279 	{ /* A restart point is known.  Restore to that state.  */
4280           DEBUG_PRINT1 ("\nFAIL:\n");
4281           POP_FAILURE_POINT (d, p,
4282                              lowest_active_reg, highest_active_reg,
4283                              regstart, regend, reg_info);
4284 
4285           /* If this failure point is a dummy, try the next one.  */
4286           if (!p)
4287 	    goto fail;
4288 
4289           /* If we failed to the end of the pattern, don't examine *p.  */
4290 	  assert (p <= pend);
4291           if (p < pend)
4292             {
4293               boolean is_a_jump_n = false;
4294 
4295               /* If failed to a backwards jump that's part of a repetition
4296                  loop, need to pop this failure point and use the next one.  */
4297               switch ((re_opcode_t) *p)
4298                 {
4299                 case jump_n:
4300                   is_a_jump_n = true;
4301                 case maybe_pop_jump:
4302                 case pop_failure_jump:
4303                 case jump:
4304                   p1 = p + 1;
4305                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4306                   p1 += mcnt;
4307 
4308                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4309                       || (!is_a_jump_n
4310                           && (re_opcode_t) *p1 == on_failure_jump))
4311                     goto fail;
4312                   break;
4313                 default:
4314                   /* do nothing */ ;
4315                 }
4316             }
4317 
4318           if (d >= string1 && d <= end1)
4319 	    dend = end_match_1;
4320         }
4321       else
4322         break;   /* Matching at this starting point really fails.  */
4323     } /* for (;;) */
4324 
4325   if (best_regs_set)
4326     goto restore_best_regs;
4327 
4328   FREE_VARIABLES ();
4329 
4330   return -1;         			/* Failure to match.  */
4331 } /* re_match_2 */
4332 
4333 /* Subroutine definitions for re_match_2.  */
4334 
4335 
4336 /* We are passed P pointing to a register number after a start_memory.
4337 
4338    Return true if the pattern up to the corresponding stop_memory can
4339    match the empty string, and false otherwise.
4340 
4341    If we find the matching stop_memory, sets P to point to one past its number.
4342    Otherwise, sets P to an undefined byte less than or equal to END.
4343 
4344    We don't handle duplicates properly (yet).  */
4345 
4346 static boolean
group_match_null_string_p(p,end,reg_info)4347 group_match_null_string_p (p, end, reg_info)
4348     unsigned char **p, *end;
4349     register_info_type *reg_info;
4350 {
4351   int mcnt;
4352   /* Point to after the args to the start_memory.  */
4353   unsigned char *p1 = *p + 2;
4354 
4355   while (p1 < end)
4356     {
4357       /* Skip over opcodes that can match nothing, and return true or
4358 	 false, as appropriate, when we get to one that can't, or to the
4359          matching stop_memory.  */
4360 
4361       switch ((re_opcode_t) *p1)
4362         {
4363         /* Could be either a loop or a series of alternatives.  */
4364         case on_failure_jump:
4365           p1++;
4366           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4367 
4368           /* If the next operation is not a jump backwards in the
4369 	     pattern.  */
4370 
4371 	  if (mcnt >= 0)
4372 	    {
4373               /* Go through the on_failure_jumps of the alternatives,
4374                  seeing if any of the alternatives cannot match nothing.
4375                  The last alternative starts with only a jump,
4376                  whereas the rest start with on_failure_jump and end
4377                  with a jump, e.g., here is the pattern for `a|b|c':
4378 
4379                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4380                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4381                  /exactn/1/c
4382 
4383                  So, we have to first go through the first (n-1)
4384                  alternatives and then deal with the last one separately.  */
4385 
4386 
4387               /* Deal with the first (n-1) alternatives, which start
4388                  with an on_failure_jump (see above) that jumps to right
4389                  past a jump_past_alt.  */
4390 
4391               while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4392                 {
4393                   /* `mcnt' holds how many bytes long the alternative
4394                      is, including the ending `jump_past_alt' and
4395                      its number.  */
4396 
4397                   if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4398 				                      reg_info))
4399                     return false;
4400 
4401                   /* Move to right after this alternative, including the
4402 		     jump_past_alt.  */
4403                   p1 += mcnt;
4404 
4405                   /* Break if it's the beginning of an n-th alternative
4406                      that doesn't begin with an on_failure_jump.  */
4407                   if ((re_opcode_t) *p1 != on_failure_jump)
4408                     break;
4409 
4410 		  /* Still have to check that it's not an n-th
4411 		     alternative that starts with an on_failure_jump.  */
4412 		  p1++;
4413                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4414                   if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4415                     {
4416 		      /* Get to the beginning of the n-th alternative.  */
4417                       p1 -= 3;
4418                       break;
4419                     }
4420                 }
4421 
4422               /* Deal with the last alternative: go back and get number
4423                  of the `jump_past_alt' just before it.  `mcnt' contains
4424                  the length of the alternative.  */
4425               EXTRACT_NUMBER (mcnt, p1 - 2);
4426 
4427               if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4428                 return false;
4429 
4430               p1 += mcnt;	/* Get past the n-th alternative.  */
4431             } /* if mcnt > 0 */
4432           break;
4433 
4434 
4435         case stop_memory:
4436 	  assert (p1[1] == **p);
4437           *p = p1 + 2;
4438           return true;
4439 
4440 
4441         default:
4442           if (!common_op_match_null_string_p (&p1, end, reg_info))
4443             return false;
4444         }
4445     } /* while p1 < end */
4446 
4447   return false;
4448 } /* group_match_null_string_p */
4449 
4450 
4451 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4452    It expects P to be the first byte of a single alternative and END one
4453    byte past the last. The alternative can contain groups.  */
4454 
4455 static boolean
alt_match_null_string_p(p,end,reg_info)4456 alt_match_null_string_p (p, end, reg_info)
4457     unsigned char *p, *end;
4458     register_info_type *reg_info;
4459 {
4460   int mcnt;
4461   unsigned char *p1 = p;
4462 
4463   while (p1 < end)
4464     {
4465       /* Skip over opcodes that can match nothing, and break when we get
4466          to one that can't.  */
4467 
4468       switch ((re_opcode_t) *p1)
4469         {
4470 	/* It's a loop.  */
4471         case on_failure_jump:
4472           p1++;
4473           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4474           p1 += mcnt;
4475           break;
4476 
4477 	default:
4478           if (!common_op_match_null_string_p (&p1, end, reg_info))
4479             return false;
4480         }
4481     }  /* while p1 < end */
4482 
4483   return true;
4484 } /* alt_match_null_string_p */
4485 
4486 
4487 /* Deals with the ops common to group_match_null_string_p and
4488    alt_match_null_string_p.
4489 
4490    Sets P to one after the op and its arguments, if any.  */
4491 
4492 static boolean
common_op_match_null_string_p(p,end,reg_info)4493 common_op_match_null_string_p (p, end, reg_info)
4494     unsigned char **p, *end;
4495     register_info_type *reg_info;
4496 {
4497   int mcnt;
4498   boolean ret;
4499   int reg_no;
4500   unsigned char *p1 = *p;
4501 
4502   switch ((re_opcode_t) *p1++)
4503     {
4504     case no_op:
4505     case begline:
4506     case endline:
4507     case begbuf:
4508     case endbuf:
4509     case wordbeg:
4510     case wordend:
4511     case wordbound:
4512     case notwordbound:
4513 #ifdef emacs
4514     case before_dot:
4515     case at_dot:
4516     case after_dot:
4517 #endif
4518       break;
4519 
4520     case start_memory:
4521       reg_no = *p1;
4522       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4523       ret = group_match_null_string_p (&p1, end, reg_info);
4524 
4525       /* Have to set this here in case we're checking a group which
4526          contains a group and a back reference to it.  */
4527 
4528       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4529         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4530 
4531       if (!ret)
4532         return false;
4533       break;
4534 
4535     /* If this is an optimized succeed_n for zero times, make the jump.  */
4536     case jump:
4537       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4538       if (mcnt >= 0)
4539         p1 += mcnt;
4540       else
4541         return false;
4542       break;
4543 
4544     case succeed_n:
4545       /* Get to the number of times to succeed.  */
4546       p1 += 2;
4547       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4548 
4549       if (mcnt == 0)
4550         {
4551           p1 -= 4;
4552           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4553           p1 += mcnt;
4554         }
4555       else
4556         return false;
4557       break;
4558 
4559     case duplicate:
4560       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4561         return false;
4562       break;
4563 
4564     case set_number_at:
4565       p1 += 4;
4566 
4567     default:
4568       /* All other opcodes mean we cannot match the empty string.  */
4569       return false;
4570   }
4571 
4572   *p = p1;
4573   return true;
4574 } /* common_op_match_null_string_p */
4575 
4576 
4577 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4578    bytes; nonzero otherwise.  */
4579 
4580 static int
bcmp_translate(s1,s2,len,translate)4581 bcmp_translate (s1, s2, len, translate)
4582      unsigned char *s1, *s2;
4583      register int len;
4584      char *translate;
4585 {
4586   register unsigned char *p1 = s1, *p2 = s2;
4587   while (len)
4588     {
4589       if (translate[*p1++] != translate[*p2++]) return 1;
4590       len--;
4591     }
4592   return 0;
4593 }
4594 
4595 /* Entry points for GNU code.  */
4596 
4597 /* re_compile_pattern is the GNU regular expression compiler: it
4598    compiles PATTERN (of length SIZE) and puts the result in BUFP.
4599    Returns 0 if the pattern was valid, otherwise an error string.
4600 
4601    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4602    are set in BUFP on entry.
4603 
4604    We call regex_compile to do the actual compilation.  */
4605 
4606 const char *
re_compile_pattern(pattern,length,bufp)4607 re_compile_pattern (pattern, length, bufp)
4608      const char *pattern;
4609      int length;
4610      struct re_pattern_buffer *bufp;
4611 {
4612   reg_errcode_t ret;
4613 
4614   /* GNU code is written to assume at least RE_NREGS registers will be set
4615      (and at least one extra will be -1).  */
4616   bufp->regs_allocated = REGS_UNALLOCATED;
4617 
4618   /* And GNU code determines whether or not to get register information
4619      by passing null for the REGS argument to re_match, etc., not by
4620      setting no_sub.  */
4621   bufp->no_sub = 0;
4622 
4623   /* Match anchors at newline.  */
4624   bufp->newline_anchor = 1;
4625 
4626   ret = regex_compile (pattern, length, re_syntax_options, bufp);
4627 
4628   return re_error_msg[(int) ret];
4629 }
4630 
4631 /* Entry points compatible with 4.2 BSD regex library.  We don't define
4632    them if this is an Emacs or POSIX compilation.  */
4633 
4634 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4635 
4636 /* BSD has one and only one pattern buffer.  */
4637 static struct re_pattern_buffer re_comp_buf;
4638 
4639 char *
re_comp(s)4640 re_comp (s)
4641     const char *s;
4642 {
4643   reg_errcode_t ret;
4644 
4645   if (!s)
4646     {
4647       if (!re_comp_buf.buffer)
4648 	return "No previous regular expression";
4649       return 0;
4650     }
4651 
4652   if (!re_comp_buf.buffer)
4653     {
4654       re_comp_buf.buffer = (unsigned char *) malloc (200);
4655       if (re_comp_buf.buffer == NULL)
4656         return "Memory exhausted";
4657       re_comp_buf.allocated = 200;
4658 
4659       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4660       if (re_comp_buf.fastmap == NULL)
4661 	return "Memory exhausted";
4662     }
4663 
4664   /* Since `re_exec' always passes NULL for the `regs' argument, we
4665      don't need to initialize the pattern buffer fields which affect it.  */
4666 
4667   /* Match anchors at newlines.  */
4668   re_comp_buf.newline_anchor = 1;
4669 
4670   ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4671 
4672   /* Yes, we're discarding `const' here.  */
4673   return (char *) re_error_msg[(int) ret];
4674 }
4675 
4676 
4677 int
re_exec(s)4678 re_exec (s)
4679     const char *s;
4680 {
4681   const int len = strlen (s);
4682   return
4683     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4684 }
4685 #endif /* not emacs and not _POSIX_SOURCE */
4686 
4687 /* POSIX.2 functions.  Don't define these for Emacs.  */
4688 
4689 #ifndef emacs
4690 
4691 /* regcomp takes a regular expression as a string and compiles it.
4692 
4693    PREG is a regex_t *.  We do not expect any fields to be initialized,
4694    since POSIX says we shouldn't.  Thus, we set
4695 
4696      `buffer' to the compiled pattern;
4697      `used' to the length of the compiled pattern;
4698      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4699        REG_EXTENDED bit in CFLAGS is set; otherwise, to
4700        RE_SYNTAX_POSIX_BASIC;
4701      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4702      `fastmap' and `fastmap_accurate' to zero;
4703      `re_nsub' to the number of subexpressions in PATTERN.
4704 
4705    PATTERN is the address of the pattern string.
4706 
4707    CFLAGS is a series of bits which affect compilation.
4708 
4709      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4710      use POSIX basic syntax.
4711 
4712      If REG_NEWLINE is set, then . and [^...] don't match newline.
4713      Also, regexec will try a match beginning after every newline.
4714 
4715      If REG_ICASE is set, then we considers upper- and lowercase
4716      versions of letters to be equivalent when matching.
4717 
4718      If REG_NOSUB is set, then when PREG is passed to regexec, that
4719      routine will report only success or failure, and nothing about the
4720      registers.
4721 
4722    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
4723    the return codes and their meanings.)  */
4724 
4725 int
regcomp(preg,pattern,cflags)4726 regcomp (preg, pattern, cflags)
4727     regex_t *preg;
4728     const char *pattern;
4729     int cflags;
4730 {
4731   reg_errcode_t ret;
4732   unsigned syntax
4733     = (cflags & REG_EXTENDED) ?
4734       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4735 
4736   /* regex_compile will allocate the space for the compiled pattern.  */
4737   preg->buffer = 0;
4738   preg->allocated = 0;
4739 
4740   /* Don't bother to use a fastmap when searching.  This simplifies the
4741      REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4742      characters after newlines into the fastmap.  This way, we just try
4743      every character.  */
4744   preg->fastmap = 0;
4745 
4746   if (cflags & REG_ICASE)
4747     {
4748       unsigned i;
4749 
4750       preg->translate = (char *) malloc (CHAR_SET_SIZE);
4751       if (preg->translate == NULL)
4752         return (int) REG_ESPACE;
4753 
4754       /* Map uppercase characters to corresponding lowercase ones.  */
4755       for (i = 0; i < CHAR_SET_SIZE; i++)
4756         preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
4757     }
4758   else
4759     preg->translate = NULL;
4760 
4761   /* If REG_NEWLINE is set, newlines are treated differently.  */
4762   if (cflags & REG_NEWLINE)
4763     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
4764       syntax &= ~RE_DOT_NEWLINE;
4765       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4766       /* It also changes the matching behavior.  */
4767       preg->newline_anchor = 1;
4768     }
4769   else
4770     preg->newline_anchor = 0;
4771 
4772   preg->no_sub = !!(cflags & REG_NOSUB);
4773 
4774   /* POSIX says a null character in the pattern terminates it, so we
4775      can use strlen here in compiling the pattern.  */
4776   ret = regex_compile (pattern, strlen (pattern), syntax, preg);
4777 
4778   /* POSIX doesn't distinguish between an unmatched open-group and an
4779      unmatched close-group: both are REG_EPAREN.  */
4780   if (ret == REG_ERPAREN) ret = REG_EPAREN;
4781 
4782   return (int) ret;
4783 }
4784 
4785 
4786 /* regexec searches for a given pattern, specified by PREG, in the
4787    string STRING.
4788 
4789    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4790    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
4791    least NMATCH elements, and we set them to the offsets of the
4792    corresponding matched substrings.
4793 
4794    EFLAGS specifies `execution flags' which affect matching: if
4795    REG_NOTBOL is set, then ^ does not match at the beginning of the
4796    string; if REG_NOTEOL is set, then $ does not match at the end.
4797 
4798    We return 0 if we find a match and REG_NOMATCH if not.  */
4799 
4800 int
regexec(preg,string,nmatch,pmatch,eflags)4801 regexec (preg, string, nmatch, pmatch, eflags)
4802     const regex_t *preg;
4803     const char *string;
4804     size_t nmatch;
4805     regmatch_t pmatch[];
4806     int eflags;
4807 {
4808   int ret;
4809   struct re_registers regs;
4810   regex_t private_preg;
4811   int len = strlen (string);
4812   boolean want_reg_info = !preg->no_sub && nmatch > 0;
4813 
4814   private_preg = *preg;
4815 
4816   private_preg.not_bol = !!(eflags & REG_NOTBOL);
4817   private_preg.not_eol = !!(eflags & REG_NOTEOL);
4818 
4819   /* The user has told us exactly how many registers to return
4820      information about, via `nmatch'.  We have to pass that on to the
4821      matching routines.  */
4822   private_preg.regs_allocated = REGS_FIXED;
4823 
4824   if (want_reg_info)
4825     {
4826       regs.num_regs = nmatch;
4827       regs.start = TALLOC (nmatch, regoff_t);
4828       regs.end = TALLOC (nmatch, regoff_t);
4829       if (regs.start == NULL || regs.end == NULL)
4830         return (int) REG_NOMATCH;
4831     }
4832 
4833   /* Perform the searching operation.  */
4834   ret = re_search (&private_preg, string, len,
4835                    /* start: */ 0, /* range: */ len,
4836                    want_reg_info ? &regs : (struct re_registers *) 0);
4837 
4838   /* Copy the register information to the POSIX structure.  */
4839   if (want_reg_info)
4840     {
4841       if (ret >= 0)
4842         {
4843           unsigned r;
4844 
4845           for (r = 0; r < nmatch; r++)
4846             {
4847               pmatch[r].rm_so = regs.start[r];
4848               pmatch[r].rm_eo = regs.end[r];
4849             }
4850         }
4851 
4852       /* If we needed the temporary register info, free the space now.  */
4853       free (regs.start);
4854       free (regs.end);
4855     }
4856 
4857   /* We want zero return to mean success, unlike `re_search'.  */
4858   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4859 }
4860 
4861 
4862 /* Returns a message corresponding to an error code, ERRCODE, returned
4863    from either regcomp or regexec.   We don't use PREG here.  */
4864 
4865 size_t
regerror(errcode,preg,errbuf,errbuf_size)4866 regerror (errcode, preg, errbuf, errbuf_size)
4867     int errcode;
4868     const regex_t *preg;
4869     char *errbuf;
4870     size_t errbuf_size;
4871 {
4872   const char *msg;
4873   size_t msg_size;
4874 
4875   if (errcode < 0
4876       || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
4877     /* Only error codes returned by the rest of the code should be passed
4878        to this routine.  If we are given anything else, or if other regex
4879        code generates an invalid error code, then the program has a bug.
4880        Dump core so we can fix it.  */
4881     abort ();
4882 
4883   msg_size = strlen (msg) + 1; /* Includes the null.  */
4884 
4885   if (errbuf_size != 0)
4886     {
4887       if (msg_size > errbuf_size)
4888         {
4889           strncpy (errbuf, msg, errbuf_size - 1);
4890           errbuf[errbuf_size - 1] = 0;
4891         }
4892       else
4893         strcpy (errbuf, msg);
4894     }
4895 
4896   return msg_size;
4897 }
4898 
4899 
4900 /* Free dynamically allocated space used by PREG.  */
4901 
4902 void
regfree(preg)4903 regfree (preg)
4904     regex_t *preg;
4905 {
4906   if (preg->buffer != NULL)
4907     free (preg->buffer);
4908   preg->buffer = NULL;
4909 
4910   preg->allocated = 0;
4911   preg->used = 0;
4912 
4913   if (preg->fastmap != NULL)
4914     free (preg->fastmap);
4915   preg->fastmap = NULL;
4916   preg->fastmap_accurate = 0;
4917 
4918   if (preg->translate != NULL)
4919     free (preg->translate);
4920   preg->translate = NULL;
4921 }
4922 
4923 #endif /* not emacs  */
4924 
4925 /*
4926 Local variables:
4927 make-backup-files: t
4928 version-control: t
4929 trim-versions-without-asking: nil
4930 End:
4931 */
4932