xref: /386bsd/usr/src/usr.bin/gcc/cc1/global.c (revision a2142627)
1 /* Allocate registers for pseudo-registers that span basic blocks.
2    Copyright (C) 1987, 1988, 1991 Free Software Foundation, Inc.
3 
4 This file is part of GNU CC.
5 
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10 
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING.  If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */
19 
20 
21 #include <stdio.h>
22 #include "config.h"
23 #include "rtl.h"
24 #include "flags.h"
25 #include "basic-block.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "insn-config.h"
29 #include "output.h"
30 
31 /* This pass of the compiler performs global register allocation.
32    It assigns hard register numbers to all the pseudo registers
33    that were not handled in local_alloc.  Assignments are recorded
34    in the vector reg_renumber, not by changing the rtl code.
35    (Such changes are made by final).  The entry point is
36    the function global_alloc.
37 
38    After allocation is complete, the reload pass is run as a subroutine
39    of this pass, so that when a pseudo reg loses its hard reg due to
40    spilling it is possible to make a second attempt to find a hard
41    reg for it.  The reload pass is independent in other respects
42    and it is run even when stupid register allocation is in use.
43 
44    1. count the pseudo-registers still needing allocation
45    and assign allocation-numbers (allocnos) to them.
46    Set up tables reg_allocno and allocno_reg to map
47    reg numbers to allocnos and vice versa.
48    max_allocno gets the number of allocnos in use.
49 
50    2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
51    Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
52    for conflicts between allocnos and explicit hard register use
53    (which includes use of pseudo-registers allocated by local_alloc).
54 
55    3. for each basic block
56     walk forward through the block, recording which
57     unallocated registers and which hardware registers are live.
58     Build the conflict matrix between the unallocated registers
59     and another of unallocated registers versus hardware registers.
60     Also record the preferred hardware registers
61     for each unallocated one.
62 
63    4. Sort a table of the allocnos into order of
64    desirability of the variables.
65 
66    5. Allocate the variables in that order; each if possible into
67    a preferred register, else into another register.  */
68 
69 /* Number of pseudo-registers still requiring allocation
70    (not allocated by local_allocate).  */
71 
72 static int max_allocno;
73 
74 /* Indexed by (pseudo) reg number, gives the allocno, or -1
75    for pseudo registers already allocated by local_allocate.  */
76 
77 static int *reg_allocno;
78 
79 /* Indexed by allocno, gives the reg number.  */
80 
81 static int *allocno_reg;
82 
83 /* A vector of the integers from 0 to max_allocno-1,
84    sorted in the order of first-to-be-allocated first.  */
85 
86 static int *allocno_order;
87 
88 /* Indexed by an allocno, gives the number of consecutive
89    hard registers needed by that pseudo reg.  */
90 
91 static int *allocno_size;
92 
93 /* Indexed by (pseudo) reg number, gives the number of another
94    lower-numbered pseudo reg which can share a hard reg with this pseudo
95    *even if the two pseudos would otherwise appear to conflict*.  */
96 
97 static int *reg_may_share;
98 
99 /* Define the number of bits in each element of `conflicts' and what
100    type that element has.  We use the largest integer format on the
101    host machine.  */
102 
103 #define INT_BITS HOST_BITS_PER_WIDE_INT
104 #define INT_TYPE HOST_WIDE_INT
105 
106 /* max_allocno by max_allocno array of bits,
107    recording whether two allocno's conflict (can't go in the same
108    hardware register).
109 
110    `conflicts' is not symmetric; a conflict between allocno's i and j
111    is recorded either in element i,j or in element j,i.  */
112 
113 static INT_TYPE *conflicts;
114 
115 /* Number of ints require to hold max_allocno bits.
116    This is the length of a row in `conflicts'.  */
117 
118 static int allocno_row_words;
119 
120 /* Two macros to test or store 1 in an element of `conflicts'.  */
121 
122 #define CONFLICTP(I, J) \
123  (conflicts[(I) * allocno_row_words + (J) / INT_BITS]	\
124   & ((INT_TYPE) 1 << ((J) % INT_BITS)))
125 
126 #define SET_CONFLICT(I, J) \
127  (conflicts[(I) * allocno_row_words + (J) / INT_BITS]	\
128   |= ((INT_TYPE) 1 << ((J) % INT_BITS)))
129 
130 /* Set of hard regs currently live (during scan of all insns).  */
131 
132 static HARD_REG_SET hard_regs_live;
133 
134 /* Indexed by N, set of hard regs conflicting with allocno N.  */
135 
136 static HARD_REG_SET *hard_reg_conflicts;
137 
138 /* Indexed by N, set of hard regs preferred by allocno N.
139    This is used to make allocnos go into regs that are copied to or from them,
140    when possible, to reduce register shuffling.  */
141 
142 static HARD_REG_SET *hard_reg_preferences;
143 
144 /* Similar, but just counts register preferences made in simple copy
145    operations, rather than arithmetic.  These are given priority because
146    we can always eliminate an insn by using these, but using a register
147    in the above list won't always eliminate an insn.  */
148 
149 static HARD_REG_SET *hard_reg_copy_preferences;
150 
151 /* Similar to hard_reg_preferences, but includes bits for subsequent
152    registers when an allocno is multi-word.  The above variable is used for
153    allocation while this is used to build reg_someone_prefers, below.  */
154 
155 static HARD_REG_SET *hard_reg_full_preferences;
156 
157 /* Indexed by N, set of hard registers that some later allocno has a
158    preference for.  */
159 
160 static HARD_REG_SET *regs_someone_prefers;
161 
162 /* Set of registers that global-alloc isn't supposed to use.  */
163 
164 static HARD_REG_SET no_global_alloc_regs;
165 
166 /* Set of registers used so far.  */
167 
168 static HARD_REG_SET regs_used_so_far;
169 
170 /* Number of calls crossed by each allocno.  */
171 
172 static int *allocno_calls_crossed;
173 
174 /* Number of refs (weighted) to each allocno.  */
175 
176 static int *allocno_n_refs;
177 
178 /* Guess at live length of each allocno.
179    This is actually the max of the live lengths of the regs.  */
180 
181 static int *allocno_live_length;
182 
183 /* Number of refs (weighted) to each hard reg, as used by local alloc.
184    It is zero for a reg that contains global pseudos or is explicitly used.  */
185 
186 static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
187 
188 /* Guess at live length of each hard reg, as used by local alloc.
189    This is actually the sum of the live lengths of the specific regs.  */
190 
191 static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
192 
193 /* Test a bit in TABLE, a vector of HARD_REG_SETs,
194    for vector element I, and hard register number J.  */
195 
196 #define REGBITP(TABLE, I, J)     TEST_HARD_REG_BIT (TABLE[I], J)
197 
198 /* Set to 1 a bit in a vector of HARD_REG_SETs.  Works like REGBITP.  */
199 
200 #define SET_REGBIT(TABLE, I, J)  SET_HARD_REG_BIT (TABLE[I], J)
201 
202 /* Bit mask for allocnos live at current point in the scan.  */
203 
204 static INT_TYPE *allocnos_live;
205 
206 /* Test, set or clear bit number I in allocnos_live,
207    a bit vector indexed by allocno.  */
208 
209 #define ALLOCNO_LIVE_P(I) \
210   (allocnos_live[(I) / INT_BITS] & ((INT_TYPE) 1 << ((I) % INT_BITS)))
211 
212 #define SET_ALLOCNO_LIVE(I) \
213   (allocnos_live[(I) / INT_BITS] |= ((INT_TYPE) 1 << ((I) % INT_BITS)))
214 
215 #define CLEAR_ALLOCNO_LIVE(I) \
216   (allocnos_live[(I) / INT_BITS] &= ~((INT_TYPE) 1 << ((I) % INT_BITS)))
217 
218 /* This is turned off because it doesn't work right for DImode.
219    (And it is only used for DImode, so the other cases are worthless.)
220    The problem is that it isn't true that there is NO possibility of conflict;
221    only that there is no conflict if the two pseudos get the exact same regs.
222    If they were allocated with a partial overlap, there would be a conflict.
223    We can't safely turn off the conflict unless we have another way to
224    prevent the partial overlap.
225 
226    Idea: change hard_reg_conflicts so that instead of recording which
227    hard regs the allocno may not overlap, it records where the allocno
228    may not start.  Change both where it is used and where it is updated.
229    Then there is a way to record that (reg:DI 108) may start at 10
230    but not at 9 or 11.  There is still the question of how to record
231    this semi-conflict between two pseudos.  */
232 #if 0
233 /* Reg pairs for which conflict after the current insn
234    is inhibited by a REG_NO_CONFLICT note.
235    If the table gets full, we ignore any other notes--that is conservative.  */
236 #define NUM_NO_CONFLICT_PAIRS 4
237 /* Number of pairs in use in this insn.  */
238 int n_no_conflict_pairs;
239 static struct { int allocno1, allocno2;}
240   no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
241 #endif /* 0 */
242 
243 /* Record all regs that are set in any one insn.
244    Communication from mark_reg_{store,clobber} and global_conflicts.  */
245 
246 static rtx *regs_set;
247 static int n_regs_set;
248 
249 /* All register that can be eliminated.  */
250 
251 static HARD_REG_SET eliminable_regset;
252 
253 static int allocno_compare ();
254 static void mark_reg_store ();
255 static void mark_reg_clobber ();
256 static void mark_reg_conflicts ();
257 static void mark_reg_live_nc ();
258 static void mark_reg_death ();
259 static void dump_conflicts ();
260 void dump_global_regs ();
261 static void find_reg ();
262 static void global_conflicts ();
263 static void expand_preferences ();
264 static void prune_preferences ();
265 static void record_conflicts ();
266 static void set_preference ();
267 
268 /* Perform allocation of pseudo-registers not allocated by local_alloc.
269    FILE is a file to output debugging information on,
270    or zero if such output is not desired.
271 
272    Return value is nonzero if reload failed
273    and we must not do any more for this function.  */
274 
275 int
global_alloc(file)276 global_alloc (file)
277      FILE *file;
278 {
279 #ifdef ELIMINABLE_REGS
280   static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
281 #endif
282   register int i;
283   rtx x;
284 
285   max_allocno = 0;
286 
287   /* A machine may have certain hard registers that
288      are safe to use only within a basic block.  */
289 
290   CLEAR_HARD_REG_SET (no_global_alloc_regs);
291 #ifdef OVERLAPPING_REGNO_P
292   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
293     if (OVERLAPPING_REGNO_P (i))
294       SET_HARD_REG_BIT (no_global_alloc_regs, i);
295 #endif
296 
297   /* Build the regset of all eliminable registers and show we can't use those
298      that we already know won't be eliminated.  */
299 #ifdef ELIMINABLE_REGS
300   for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
301     {
302       SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
303 
304       if (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
305 	  || (eliminables[i].from == FRAME_POINTER_REGNUM
306 	      && (! flag_omit_frame_pointer || FRAME_POINTER_REQUIRED)))
307 	SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
308     }
309 #else
310   SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
311 
312   /* If we know we will definitely not be eliminating the frame pointer,
313      don't allocate it.  */
314   if (! flag_omit_frame_pointer || FRAME_POINTER_REQUIRED)
315     SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
316 #endif
317 
318   /* Track which registers have already been used.  Start with registers
319      explicitly in the rtl, then registers allocated by local register
320      allocation.  */
321 
322   CLEAR_HARD_REG_SET (regs_used_so_far);
323 #ifdef LEAF_REGISTERS
324   /* If we are doing the leaf function optimization, and this is a leaf
325      function, it means that the registers that take work to save are those
326      that need a register window.  So prefer the ones that can be used in
327      a leaf function.  */
328   {
329     char *cheap_regs;
330     static char leaf_regs[] = LEAF_REGISTERS;
331 
332     if (only_leaf_regs_used () && leaf_function_p ())
333       cheap_regs = leaf_regs;
334     else
335       cheap_regs = call_used_regs;
336     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
337       if (regs_ever_live[i] || cheap_regs[i])
338 	SET_HARD_REG_BIT (regs_used_so_far, i);
339   }
340 #else
341   /* We consider registers that do not have to be saved over calls as if
342      they were already used since there is no cost in using them.  */
343   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
344     if (regs_ever_live[i] || call_used_regs[i])
345       SET_HARD_REG_BIT (regs_used_so_far, i);
346 #endif
347 
348   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
349     if (reg_renumber[i] >= 0)
350       SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
351 
352   /* Establish mappings from register number to allocation number
353      and vice versa.  In the process, count the allocnos.  */
354 
355   reg_allocno = (int *) alloca (max_regno * sizeof (int));
356 
357   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
358     reg_allocno[i] = -1;
359 
360   /* Initialize the shared-hard-reg mapping
361      from the list of pairs that may share.  */
362   reg_may_share = (int *) alloca (max_regno * sizeof (int));
363   bzero (reg_may_share, max_regno * sizeof (int));
364   for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
365     {
366       int r1 = REGNO (XEXP (x, 0));
367       int r2 = REGNO (XEXP (XEXP (x, 1), 0));
368       if (r1 > r2)
369 	reg_may_share[r1] = r2;
370       else
371 	reg_may_share[r2] = r1;
372     }
373 
374   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
375     /* Note that reg_live_length[i] < 0 indicates a "constant" reg
376        that we are supposed to refrain from putting in a hard reg.
377        -2 means do make an allocno but don't allocate it.  */
378     if (reg_n_refs[i] != 0 && reg_renumber[i] < 0 && reg_live_length[i] != -1
379 	/* Don't allocate pseudos that cross calls,
380 	   if this function receives a nonlocal goto.  */
381 	&& (! current_function_has_nonlocal_label
382 	    || reg_n_calls_crossed[i] == 0))
383       {
384 	if (reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
385 	  reg_allocno[i] = reg_allocno[reg_may_share[i]];
386 	else
387 	  reg_allocno[i] = max_allocno++;
388 	if (reg_live_length[i] == 0)
389 	  abort ();
390       }
391     else
392       reg_allocno[i] = -1;
393 
394   allocno_reg = (int *) alloca (max_allocno * sizeof (int));
395   allocno_size = (int *) alloca (max_allocno * sizeof (int));
396   allocno_calls_crossed = (int *) alloca (max_allocno * sizeof (int));
397   allocno_n_refs = (int *) alloca (max_allocno * sizeof (int));
398   allocno_live_length = (int *) alloca (max_allocno * sizeof (int));
399   bzero (allocno_size, max_allocno * sizeof (int));
400   bzero (allocno_calls_crossed, max_allocno * sizeof (int));
401   bzero (allocno_n_refs, max_allocno * sizeof (int));
402   bzero (allocno_live_length, max_allocno * sizeof (int));
403 
404   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
405     if (reg_allocno[i] >= 0)
406       {
407 	int allocno = reg_allocno[i];
408 	allocno_reg[allocno] = i;
409 	allocno_size[allocno] = PSEUDO_REGNO_SIZE (i);
410 	allocno_calls_crossed[allocno] += reg_n_calls_crossed[i];
411 	allocno_n_refs[allocno] += reg_n_refs[i];
412 	if (allocno_live_length[allocno] < reg_live_length[i])
413 	  allocno_live_length[allocno] = reg_live_length[i];
414       }
415 
416   /* Calculate amount of usage of each hard reg by pseudos
417      allocated by local-alloc.  This is to see if we want to
418      override it.  */
419   bzero (local_reg_live_length, sizeof local_reg_live_length);
420   bzero (local_reg_n_refs, sizeof local_reg_n_refs);
421   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
422     if (reg_allocno[i] < 0 && reg_renumber[i] >= 0)
423       {
424 	int regno = reg_renumber[i];
425 	int endregno = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
426 	int j;
427 
428 	for (j = regno; j < endregno; j++)
429 	  {
430 	    local_reg_n_refs[j] += reg_n_refs[i];
431 	    local_reg_live_length[j] += reg_live_length[i];
432 	  }
433       }
434 
435   /* We can't override local-alloc for a reg used not just by local-alloc.  */
436   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
437     if (regs_ever_live[i])
438       local_reg_n_refs[i] = 0;
439 
440   /* Allocate the space for the conflict and preference tables and
441      initialize them.  */
442 
443   hard_reg_conflicts
444     = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
445   bzero (hard_reg_conflicts, max_allocno * sizeof (HARD_REG_SET));
446 
447   hard_reg_preferences
448     = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
449   bzero (hard_reg_preferences, max_allocno * sizeof (HARD_REG_SET));
450 
451   hard_reg_copy_preferences
452     = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
453   bzero (hard_reg_copy_preferences, max_allocno * sizeof (HARD_REG_SET));
454 
455   hard_reg_full_preferences
456     = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
457   bzero (hard_reg_full_preferences, max_allocno * sizeof (HARD_REG_SET));
458 
459   regs_someone_prefers
460     = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
461   bzero (regs_someone_prefers, max_allocno * sizeof (HARD_REG_SET));
462 
463   allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
464 
465   conflicts = (INT_TYPE *) alloca (max_allocno * allocno_row_words
466 				   * sizeof (INT_TYPE));
467   bzero (conflicts, max_allocno * allocno_row_words
468 	 * sizeof (INT_TYPE));
469 
470   allocnos_live = (INT_TYPE *) alloca (allocno_row_words * sizeof (INT_TYPE));
471 
472   /* If there is work to be done (at least one reg to allocate),
473      perform global conflict analysis and allocate the regs.  */
474 
475   if (max_allocno > 0)
476     {
477       /* Scan all the insns and compute the conflicts among allocnos
478 	 and between allocnos and hard regs.  */
479 
480       global_conflicts ();
481 
482       /* Eliminate conflicts between pseudos and eliminable registers.  If
483 	 the register is not eliminated, the pseudo won't really be able to
484 	 live in the eliminable register, so the conflict doesn't matter.
485 	 If we do eliminate the register, the conflict will no longer exist.
486 	 So in either case, we can ignore the conflict.  Likewise for
487 	 preferences.  */
488 
489       for (i = 0; i < max_allocno; i++)
490 	{
491 	  AND_COMPL_HARD_REG_SET (hard_reg_conflicts[i], eliminable_regset);
492 	  AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[i],
493 				  eliminable_regset);
494 	  AND_COMPL_HARD_REG_SET (hard_reg_preferences[i], eliminable_regset);
495 	}
496 
497       /* Try to expand the preferences by merging them between allocnos.  */
498 
499       expand_preferences ();
500 
501       /* Determine the order to allocate the remaining pseudo registers.  */
502 
503       allocno_order = (int *) alloca (max_allocno * sizeof (int));
504       for (i = 0; i < max_allocno; i++)
505 	allocno_order[i] = i;
506 
507       /* Default the size to 1, since allocno_compare uses it to divide by.
508 	 Also convert allocno_live_length of zero to -1.  A length of zero
509 	 can occur when all the registers for that allocno have reg_live_length
510 	 equal to -2.  In this case, we want to make an allocno, but not
511 	 allocate it.  So avoid the divide-by-zero and set it to a low
512 	 priority.  */
513 
514       for (i = 0; i < max_allocno; i++)
515 	{
516 	  if (allocno_size[i] == 0)
517 	    allocno_size[i] = 1;
518 	  if (allocno_live_length[i] == 0)
519 	    allocno_live_length[i] = -1;
520 	}
521 
522       qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
523 
524       prune_preferences ();
525 
526       if (file)
527 	dump_conflicts (file);
528 
529       /* Try allocating them, one by one, in that order,
530 	 except for parameters marked with reg_live_length[regno] == -2.  */
531 
532       for (i = 0; i < max_allocno; i++)
533 	if (reg_live_length[allocno_reg[allocno_order[i]]] >= 0)
534 	  {
535 	    /* If we have more than one register class,
536 	       first try allocating in the class that is cheapest
537 	       for this pseudo-reg.  If that fails, try any reg.  */
538 	    if (N_REG_CLASSES > 1)
539 	      {
540 		find_reg (allocno_order[i], HARD_CONST (0), 0, 0, 0);
541 		if (reg_renumber[allocno_reg[allocno_order[i]]] >= 0)
542 		  continue;
543 	      }
544 	    if (reg_alternate_class (allocno_reg[allocno_order[i]]) != NO_REGS)
545 	      find_reg (allocno_order[i], HARD_CONST (0), 1, 0, 0);
546 	  }
547     }
548 
549   /* Do the reloads now while the allocno data still exist, so that we can
550      try to assign new hard regs to any pseudo regs that are spilled.  */
551 
552 #if 0 /* We need to eliminate regs even if there is no rtl code,
553 	 for the sake of debugging information.  */
554   if (n_basic_blocks > 0)
555 #endif
556     return reload (get_insns (), 1, file);
557 }
558 
559 /* Sort predicate for ordering the allocnos.
560    Returns -1 (1) if *v1 should be allocated before (after) *v2.  */
561 
562 static int
allocno_compare(v1,v2)563 allocno_compare (v1, v2)
564      int *v1, *v2;
565 {
566   /* Note that the quotient will never be bigger than
567      the value of floor_log2 times the maximum number of
568      times a register can occur in one insn (surely less than 100).
569      Multiplying this by 10000 can't overflow.  */
570   register int pri1
571     = (((double) (floor_log2 (allocno_n_refs[*v1]) * allocno_n_refs[*v1])
572 	/ (allocno_live_length[*v1] * allocno_size[*v1]))
573        * 10000);
574   register int pri2
575     = (((double) (floor_log2 (allocno_n_refs[*v2]) * allocno_n_refs[*v2])
576 	/ (allocno_live_length[*v2] * allocno_size[*v2]))
577        * 10000);
578   if (pri2 - pri1)
579     return pri2 - pri1;
580 
581   /* If regs are equally good, sort by allocno,
582      so that the results of qsort leave nothing to chance.  */
583   return *v1 - *v2;
584 }
585 
586 /* Scan the rtl code and record all conflicts and register preferences in the
587    conflict matrices and preference tables.  */
588 
589 static void
global_conflicts()590 global_conflicts ()
591 {
592   register int b, i;
593   register rtx insn;
594   short *block_start_allocnos;
595 
596   /* Make a vector that mark_reg_{store,clobber} will store in.  */
597   regs_set = (rtx *) alloca (max_parallel * sizeof (rtx) * 2);
598 
599   block_start_allocnos = (short *) alloca (max_allocno * sizeof (short));
600 
601   for (b = 0; b < n_basic_blocks; b++)
602     {
603       bzero (allocnos_live, allocno_row_words * sizeof (INT_TYPE));
604 
605       /* Initialize table of registers currently live
606 	 to the state at the beginning of this basic block.
607 	 This also marks the conflicts among them.
608 
609 	 For pseudo-regs, there is only one bit for each one
610 	 no matter how many hard regs it occupies.
611 	 This is ok; we know the size from PSEUDO_REGNO_SIZE.
612 	 For explicit hard regs, we cannot know the size that way
613 	 since one hard reg can be used with various sizes.
614 	 Therefore, we must require that all the hard regs
615 	 implicitly live as part of a multi-word hard reg
616 	 are explicitly marked in basic_block_live_at_start.  */
617 
618       {
619 	register int offset;
620 	REGSET_ELT_TYPE bit;
621 	register regset old = basic_block_live_at_start[b];
622 	int ax = 0;
623 
624 #ifdef HARD_REG_SET
625 	hard_regs_live = old[0];
626 #else
627 	COPY_HARD_REG_SET (hard_regs_live, old);
628 #endif
629 	for (offset = 0, i = 0; offset < regset_size; offset++)
630 	  if (old[offset] == 0)
631 	    i += REGSET_ELT_BITS;
632 	  else
633 	    for (bit = 1; bit; bit <<= 1, i++)
634 	      {
635 		if (i >= max_regno)
636 		  break;
637 		if (old[offset] & bit)
638 		  {
639 		    register int a = reg_allocno[i];
640 		    if (a >= 0)
641 		      {
642 			SET_ALLOCNO_LIVE (a);
643 			block_start_allocnos[ax++] = a;
644 		      }
645 		    else if ((a = reg_renumber[i]) >= 0)
646 		      mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i));
647 		  }
648 	      }
649 
650 	/* Record that each allocno now live conflicts with each other
651 	   allocno now live, and with each hard reg now live.  */
652 
653 	record_conflicts (block_start_allocnos, ax);
654       }
655 
656       insn = basic_block_head[b];
657 
658       /* Scan the code of this basic block, noting which allocnos
659 	 and hard regs are born or die.  When one is born,
660 	 record a conflict with all others currently live.  */
661 
662       while (1)
663 	{
664 	  register RTX_CODE code = GET_CODE (insn);
665 	  register rtx link;
666 
667 	  /* Make regs_set an empty set.  */
668 
669 	  n_regs_set = 0;
670 
671 	  if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
672 	    {
673 	      int i = 0;
674 
675 #if 0
676 	      for (link = REG_NOTES (insn);
677 		   link && i < NUM_NO_CONFLICT_PAIRS;
678 		   link = XEXP (link, 1))
679 		if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
680 		  {
681 		    no_conflict_pairs[i].allocno1
682 		      = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
683 		    no_conflict_pairs[i].allocno2
684 		      = reg_allocno[REGNO (XEXP (link, 0))];
685 		    i++;
686 		  }
687 #endif /* 0 */
688 
689 	      /* Mark any registers clobbered by INSN as live,
690 		 so they conflict with the inputs.  */
691 
692 	      note_stores (PATTERN (insn), mark_reg_clobber);
693 
694 	      /* Mark any registers dead after INSN as dead now.  */
695 
696 	      for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
697 		if (REG_NOTE_KIND (link) == REG_DEAD)
698 		  mark_reg_death (XEXP (link, 0));
699 
700 	      /* Mark any registers set in INSN as live,
701 		 and mark them as conflicting with all other live regs.
702 		 Clobbers are processed again, so they conflict with
703 		 the registers that are set.  */
704 
705 	      note_stores (PATTERN (insn), mark_reg_store);
706 
707 #ifdef AUTO_INC_DEC
708 	      for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
709 		if (REG_NOTE_KIND (link) == REG_INC)
710 		  mark_reg_store (XEXP (link, 0), NULL_RTX);
711 #endif
712 
713 	      /* If INSN has multiple outputs, then any reg that dies here
714 		 and is used inside of an output
715 		 must conflict with the other outputs.  */
716 
717 	      if (GET_CODE (PATTERN (insn)) == PARALLEL && !single_set (insn))
718 		for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
719 		  if (REG_NOTE_KIND (link) == REG_DEAD)
720 		    {
721 		      int used_in_output = 0;
722 		      int i;
723 		      rtx reg = XEXP (link, 0);
724 
725 		      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
726 			{
727 			  rtx set = XVECEXP (PATTERN (insn), 0, i);
728 			  if (GET_CODE (set) == SET
729 			      && GET_CODE (SET_DEST (set)) != REG
730 			      && !rtx_equal_p (reg, SET_DEST (set))
731 			      && reg_overlap_mentioned_p (reg, SET_DEST (set)))
732 			    used_in_output = 1;
733 			}
734 		      if (used_in_output)
735 			mark_reg_conflicts (reg);
736 		    }
737 
738 	      /* Mark any registers set in INSN and then never used.  */
739 
740 	      while (n_regs_set > 0)
741 		if (find_regno_note (insn, REG_UNUSED,
742 				     REGNO (regs_set[--n_regs_set])))
743 		  mark_reg_death (regs_set[n_regs_set]);
744 	    }
745 
746 	  if (insn == basic_block_end[b])
747 	    break;
748 	  insn = NEXT_INSN (insn);
749 	}
750     }
751 }
752 /* Expand the preference information by looking for cases where one allocno
753    dies in an insn that sets an allocno.  If those two allocnos don't conflict,
754    merge any preferences between those allocnos.  */
755 
756 static void
expand_preferences()757 expand_preferences ()
758 {
759   rtx insn;
760   rtx link;
761   rtx set;
762 
763   /* We only try to handle the most common cases here.  Most of the cases
764      where this wins are reg-reg copies.  */
765 
766   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
767     if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
768 	&& (set = single_set (insn)) != 0
769 	&& GET_CODE (SET_DEST (set)) == REG
770 	&& reg_allocno[REGNO (SET_DEST (set))] >= 0)
771       for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
772 	if (REG_NOTE_KIND (link) == REG_DEAD
773 	    && GET_CODE (XEXP (link, 0)) == REG
774 	    && reg_allocno[REGNO (XEXP (link, 0))] >= 0
775 	    && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
776 			    reg_allocno[REGNO (XEXP (link, 0))])
777 	    && ! CONFLICTP (reg_allocno[REGNO (XEXP (link, 0))],
778 			    reg_allocno[REGNO (SET_DEST (set))]))
779 	  {
780 	    int a1 = reg_allocno[REGNO (SET_DEST (set))];
781 	    int a2 = reg_allocno[REGNO (XEXP (link, 0))];
782 
783 	    if (XEXP (link, 0) == SET_SRC (set))
784 	      {
785 		IOR_HARD_REG_SET (hard_reg_copy_preferences[a1],
786 				  hard_reg_copy_preferences[a2]);
787 		IOR_HARD_REG_SET (hard_reg_copy_preferences[a2],
788 				  hard_reg_copy_preferences[a1]);
789 	      }
790 
791 	    IOR_HARD_REG_SET (hard_reg_preferences[a1],
792 			      hard_reg_preferences[a2]);
793 	    IOR_HARD_REG_SET (hard_reg_preferences[a2],
794 			      hard_reg_preferences[a1]);
795 	    IOR_HARD_REG_SET (hard_reg_full_preferences[a1],
796 			      hard_reg_full_preferences[a2]);
797 	    IOR_HARD_REG_SET (hard_reg_full_preferences[a2],
798 			      hard_reg_full_preferences[a1]);
799 	  }
800 }
801 
802 /* Prune the preferences for global registers to exclude registers that cannot
803    be used.
804 
805    Compute `regs_someone_prefers', which is a bitmask of the hard registers
806    that are preferred by conflicting registers of lower priority.  If possible,
807    we will avoid using these registers.  */
808 
809 static void
prune_preferences()810 prune_preferences ()
811 {
812   int i, j;
813   int allocno;
814 
815   /* Scan least most important to most important.
816      For each allocno, remove from preferences registers that cannot be used,
817      either because of conflicts or register type.  Then compute all registers
818      preferred by each lower-priority register that conflicts.  */
819 
820   for (i = max_allocno - 1; i >= 0; i--)
821     {
822       HARD_REG_SET temp;
823 
824       allocno = allocno_order[i];
825       COPY_HARD_REG_SET (temp, hard_reg_conflicts[allocno]);
826 
827       if (allocno_calls_crossed[allocno] == 0)
828 	IOR_HARD_REG_SET (temp, fixed_reg_set);
829       else
830 	IOR_HARD_REG_SET (temp,	call_used_reg_set);
831 
832       IOR_COMPL_HARD_REG_SET
833 	(temp,
834 	 reg_class_contents[(int) reg_preferred_class (allocno_reg[allocno])]);
835 
836       AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], temp);
837       AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], temp);
838       AND_COMPL_HARD_REG_SET (hard_reg_full_preferences[allocno], temp);
839 
840       CLEAR_HARD_REG_SET (regs_someone_prefers[allocno]);
841 
842       /* Merge in the preferences of lower-priority registers (they have
843 	 already been pruned).  If we also prefer some of those registers,
844 	 don't exclude them unless we are of a smaller size (in which case
845 	 we want to give the lower-priority allocno the first chance for
846 	 these registers).  */
847       for (j = i + 1; j < max_allocno; j++)
848 	if (CONFLICTP (allocno, allocno_order[j]))
849 	  {
850 	    COPY_HARD_REG_SET (temp,
851 			       hard_reg_full_preferences[allocno_order[j]]);
852 	    if (allocno_size[allocno_order[j]] <= allocno_size[allocno])
853 	      AND_COMPL_HARD_REG_SET (temp,
854 				      hard_reg_full_preferences[allocno]);
855 
856 	    IOR_HARD_REG_SET (regs_someone_prefers[allocno], temp);
857 	  }
858     }
859 }
860 
861 /* Assign a hard register to ALLOCNO; look for one that is the beginning
862    of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
863    The registers marked in PREFREGS are tried first.
864 
865    LOSERS, if non-zero, is a HARD_REG_SET indicating registers that cannot
866    be used for this allocation.
867 
868    If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
869    Otherwise ignore that preferred class and use the alternate class.
870 
871    If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
872    will have to be saved and restored at calls.
873 
874    RETRYING is nonzero if this is called from retry_global_alloc.
875 
876    If we find one, record it in reg_renumber.
877    If not, do nothing.  */
878 
879 static void
find_reg(allocno,losers,alt_regs_p,accept_call_clobbered,retrying)880 find_reg (allocno, losers, alt_regs_p, accept_call_clobbered, retrying)
881      int allocno;
882      HARD_REG_SET losers;
883      int alt_regs_p;
884      int accept_call_clobbered;
885      int retrying;
886 {
887   register int i, best_reg, pass;
888 #ifdef HARD_REG_SET
889   register		/* Declare it register if it's a scalar.  */
890 #endif
891     HARD_REG_SET used, used1, used2;
892 
893   enum reg_class class = (alt_regs_p
894 			  ? reg_alternate_class (allocno_reg[allocno])
895 			  : reg_preferred_class (allocno_reg[allocno]));
896   enum machine_mode mode = PSEUDO_REGNO_MODE (allocno_reg[allocno]);
897 
898   if (accept_call_clobbered)
899     COPY_HARD_REG_SET (used1, call_fixed_reg_set);
900   else if (allocno_calls_crossed[allocno] == 0)
901     COPY_HARD_REG_SET (used1, fixed_reg_set);
902   else
903     COPY_HARD_REG_SET (used1, call_used_reg_set);
904 
905   /* Some registers should not be allocated in global-alloc.  */
906   IOR_HARD_REG_SET (used1, no_global_alloc_regs);
907   if (losers)
908     IOR_HARD_REG_SET (used1, losers);
909 
910   IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
911   COPY_HARD_REG_SET (used2, used1);
912 
913   IOR_HARD_REG_SET (used1, hard_reg_conflicts[allocno]);
914 
915   /* Try each hard reg to see if it fits.  Do this in two passes.
916      In the first pass, skip registers that are preferred by some other pseudo
917      to give it a better chance of getting one of those registers.  Only if
918      we can't get a register when excluding those do we take one of them.
919      However, we never allocate a register for the first time in pass 0.  */
920 
921   COPY_HARD_REG_SET (used, used1);
922   IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
923   IOR_HARD_REG_SET (used, regs_someone_prefers[allocno]);
924 
925   best_reg = -1;
926   for (i = FIRST_PSEUDO_REGISTER, pass = 0;
927        pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
928        pass++)
929     {
930       if (pass == 1)
931 	COPY_HARD_REG_SET (used, used1);
932       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
933 	{
934 #ifdef REG_ALLOC_ORDER
935 	  int regno = reg_alloc_order[i];
936 #else
937 	  int regno = i;
938 #endif
939 	  if (! TEST_HARD_REG_BIT (used, regno)
940 	      && HARD_REGNO_MODE_OK (regno, mode))
941 	    {
942 	      register int j;
943 	      register int lim = regno + HARD_REGNO_NREGS (regno, mode);
944 	      for (j = regno + 1;
945 		   (j < lim
946 		    && ! TEST_HARD_REG_BIT (used, j));
947 		   j++);
948 	      if (j == lim)
949 		{
950 		  best_reg = regno;
951 		  break;
952 		}
953 #ifndef REG_ALLOC_ORDER
954 	      i = j;			/* Skip starting points we know will lose */
955 #endif
956 	    }
957 	  }
958       }
959 
960   /* See if there is a preferred register with the same class as the register
961      we allocated above.  Making this restriction prevents register
962      preferencing from creating worse register allocation.
963 
964      Remove from the preferred registers and conflicting registers.  Note that
965      additional conflicts may have been added after `prune_preferences' was
966      called.
967 
968      First do this for those register with copy preferences, then all
969      preferred registers.  */
970 
971   AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], used);
972   GO_IF_HARD_REG_SUBSET (hard_reg_copy_preferences[allocno],
973 			 reg_class_contents[(int) NO_REGS], no_copy_prefs);
974 
975   if (best_reg >= 0)
976     {
977       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
978 	if (TEST_HARD_REG_BIT (hard_reg_copy_preferences[allocno], i)
979 	    && HARD_REGNO_MODE_OK (i, mode)
980 	    && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
981 		|| reg_class_subset_p (REGNO_REG_CLASS (i),
982 				       REGNO_REG_CLASS (best_reg))
983 		|| reg_class_subset_p (REGNO_REG_CLASS (best_reg),
984 				       REGNO_REG_CLASS (i))))
985 	    {
986 	      register int j;
987 	      register int lim = i + HARD_REGNO_NREGS (i, mode);
988 	      for (j = i + 1;
989 		   (j < lim
990 		    && ! TEST_HARD_REG_BIT (used, j)
991 		    && (REGNO_REG_CLASS (j)
992 		    	== REGNO_REG_CLASS (best_reg + (j - i))
993 			|| reg_class_subset_p (REGNO_REG_CLASS (j),
994 					       REGNO_REG_CLASS (best_reg + (j - i)))
995 			|| reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
996 					       REGNO_REG_CLASS (j))));
997 		   j++);
998 	      if (j == lim)
999 		{
1000 		  best_reg = i;
1001 		  goto no_prefs;
1002 		}
1003 	    }
1004     }
1005  no_copy_prefs:
1006 
1007   AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], used);
1008   GO_IF_HARD_REG_SUBSET (hard_reg_preferences[allocno],
1009 			 reg_class_contents[(int) NO_REGS], no_prefs);
1010 
1011   if (best_reg >= 0)
1012     {
1013       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1014 	if (TEST_HARD_REG_BIT (hard_reg_preferences[allocno], i)
1015 	    && HARD_REGNO_MODE_OK (i, mode)
1016 	    && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1017 		|| reg_class_subset_p (REGNO_REG_CLASS (i),
1018 				       REGNO_REG_CLASS (best_reg))
1019 		|| reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1020 				       REGNO_REG_CLASS (i))))
1021 	    {
1022 	      register int j;
1023 	      register int lim = i + HARD_REGNO_NREGS (i, mode);
1024 	      for (j = i + 1;
1025 		   (j < lim
1026 		    && ! TEST_HARD_REG_BIT (used, j)
1027 		    && (REGNO_REG_CLASS (j)
1028 		    	== REGNO_REG_CLASS (best_reg + (j - i))
1029 			|| reg_class_subset_p (REGNO_REG_CLASS (j),
1030 					       REGNO_REG_CLASS (best_reg + (j - i)))
1031 			|| reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1032 					       REGNO_REG_CLASS (j))));
1033 		   j++);
1034 	      if (j == lim)
1035 		{
1036 		  best_reg = i;
1037 		  break;
1038 		}
1039 	    }
1040     }
1041  no_prefs:
1042 
1043   /* If we haven't succeeded yet, try with caller-saves.
1044      We need not check to see if the current function has nonlocal
1045      labels because we don't put any pseudos that are live over calls in
1046      registers in that case.  */
1047 
1048   if (flag_caller_saves && best_reg < 0)
1049     {
1050       /* Did not find a register.  If it would be profitable to
1051 	 allocate a call-clobbered register and save and restore it
1052 	 around calls, do that.  */
1053       if (! accept_call_clobbered
1054 	  && allocno_calls_crossed[allocno] != 0
1055 	  && CALLER_SAVE_PROFITABLE (allocno_n_refs[allocno],
1056 				     allocno_calls_crossed[allocno]))
1057 	{
1058 	  find_reg (allocno, losers, alt_regs_p, 1, retrying);
1059 	  if (reg_renumber[allocno_reg[allocno]] >= 0)
1060 	    {
1061 	      caller_save_needed = 1;
1062 	      return;
1063 	    }
1064 	}
1065     }
1066 
1067   /* If we haven't succeeded yet,
1068      see if some hard reg that conflicts with us
1069      was utilized poorly by local-alloc.
1070      If so, kick out the regs that were put there by local-alloc
1071      so we can use it instead.  */
1072   if (best_reg < 0 && !retrying
1073       /* Let's not bother with multi-reg allocnos.  */
1074       && allocno_size[allocno] == 1)
1075     {
1076       /* Count from the end, to find the least-used ones first.  */
1077       for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1078 	if (local_reg_n_refs[i] != 0
1079 	    /* Don't use a reg no good for this pseudo.  */
1080 	    && ! TEST_HARD_REG_BIT (used2, i)
1081 	    && HARD_REGNO_MODE_OK (i, mode)
1082 	    && ((double) local_reg_n_refs[i] / local_reg_live_length[i]
1083 		< ((double) allocno_n_refs[allocno]
1084 		   / allocno_live_length[allocno])))
1085 	  {
1086 	    /* Hard reg I was used less in total by local regs
1087 	       than it would be used by this one allocno!  */
1088 	    int k;
1089 	    for (k = 0; k < max_regno; k++)
1090 	      if (reg_renumber[k] >= 0)
1091 		{
1092 		  int regno = reg_renumber[k];
1093 		  int endregno
1094 		    = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (k));
1095 
1096 		  if (i >= regno && i < endregno)
1097 		    reg_renumber[k] = -1;
1098 		}
1099 
1100 	    best_reg = i;
1101 	    break;
1102 	  }
1103     }
1104 
1105   /* Did we find a register?  */
1106 
1107   if (best_reg >= 0)
1108     {
1109       register int lim, j;
1110       HARD_REG_SET this_reg;
1111 
1112       /* Yes.  Record it as the hard register of this pseudo-reg.  */
1113       reg_renumber[allocno_reg[allocno]] = best_reg;
1114       /* Also of any pseudo-regs that share with it.  */
1115       if (reg_may_share[allocno_reg[allocno]])
1116 	for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
1117 	  if (reg_allocno[j] == allocno)
1118 	    reg_renumber[j] = best_reg;
1119 
1120       /* Make a set of the hard regs being allocated.  */
1121       CLEAR_HARD_REG_SET (this_reg);
1122       lim = best_reg + HARD_REGNO_NREGS (best_reg, mode);
1123       for (j = best_reg; j < lim; j++)
1124 	{
1125 	  SET_HARD_REG_BIT (this_reg, j);
1126 	  SET_HARD_REG_BIT (regs_used_so_far, j);
1127 	  /* This is no longer a reg used just by local regs.  */
1128 	  local_reg_n_refs[j] = 0;
1129 	}
1130       /* For each other pseudo-reg conflicting with this one,
1131 	 mark it as conflicting with the hard regs this one occupies.  */
1132       lim = allocno;
1133       for (j = 0; j < max_allocno; j++)
1134 	if (CONFLICTP (lim, j) || CONFLICTP (j, lim))
1135 	  {
1136 	    IOR_HARD_REG_SET (hard_reg_conflicts[j], this_reg);
1137 	  }
1138     }
1139 }
1140 
1141 /* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1142    Perhaps it had previously seemed not worth a hard reg,
1143    or perhaps its old hard reg has been commandeered for reloads.
1144    FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1145    they do not appear to be allocated.
1146    If FORBIDDEN_REGS is zero, no regs are forbidden.  */
1147 
1148 void
retry_global_alloc(regno,forbidden_regs)1149 retry_global_alloc (regno, forbidden_regs)
1150      int regno;
1151      HARD_REG_SET forbidden_regs;
1152 {
1153   int allocno = reg_allocno[regno];
1154   if (allocno >= 0)
1155     {
1156       /* If we have more than one register class,
1157 	 first try allocating in the class that is cheapest
1158 	 for this pseudo-reg.  If that fails, try any reg.  */
1159       if (N_REG_CLASSES > 1)
1160 	find_reg (allocno, forbidden_regs, 0, 0, 1);
1161       if (reg_renumber[regno] < 0
1162 	  && reg_alternate_class (regno) != NO_REGS)
1163 	find_reg (allocno, forbidden_regs, 1, 0, 1);
1164 
1165       /* If we found a register, modify the RTL for the register to
1166 	 show the hard register, and mark that register live.  */
1167       if (reg_renumber[regno] >= 0)
1168 	{
1169 	  REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
1170 	  mark_home_live (regno);
1171 	}
1172     }
1173 }
1174 
1175 /* Record a conflict between register REGNO
1176    and everything currently live.
1177    REGNO must not be a pseudo reg that was allocated
1178    by local_alloc; such numbers must be translated through
1179    reg_renumber before calling here.  */
1180 
1181 static void
record_one_conflict(regno)1182 record_one_conflict (regno)
1183      int regno;
1184 {
1185   register int j;
1186 
1187   if (regno < FIRST_PSEUDO_REGISTER)
1188     /* When a hard register becomes live,
1189        record conflicts with live pseudo regs.  */
1190     for (j = 0; j < max_allocno; j++)
1191       {
1192 	if (ALLOCNO_LIVE_P (j))
1193 	  SET_HARD_REG_BIT (hard_reg_conflicts[j], regno);
1194       }
1195   else
1196     /* When a pseudo-register becomes live,
1197        record conflicts first with hard regs,
1198        then with other pseudo regs.  */
1199     {
1200       register int ialloc = reg_allocno[regno];
1201       register int ialloc_prod = ialloc * allocno_row_words;
1202       IOR_HARD_REG_SET (hard_reg_conflicts[ialloc], hard_regs_live);
1203       for (j = allocno_row_words - 1; j >= 0; j--)
1204 	{
1205 #if 0
1206 	  int k;
1207 	  for (k = 0; k < n_no_conflict_pairs; k++)
1208 	    if (! ((j == no_conflict_pairs[k].allocno1
1209 		    && ialloc == no_conflict_pairs[k].allocno2)
1210 		   ||
1211 		   (j == no_conflict_pairs[k].allocno2
1212 		    && ialloc == no_conflict_pairs[k].allocno1)))
1213 #endif /* 0 */
1214 	      conflicts[ialloc_prod + j] |= allocnos_live[j];
1215 	}
1216     }
1217 }
1218 
1219 /* Record all allocnos currently live as conflicting
1220    with each other and with all hard regs currently live.
1221    ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1222    are currently live.  Their bits are also flagged in allocnos_live.  */
1223 
1224 static void
record_conflicts(allocno_vec,len)1225 record_conflicts (allocno_vec, len)
1226      register short *allocno_vec;
1227      register int len;
1228 {
1229   register int allocno;
1230   register int j;
1231   register int ialloc_prod;
1232 
1233   while (--len >= 0)
1234     {
1235       allocno = allocno_vec[len];
1236       ialloc_prod = allocno * allocno_row_words;
1237       IOR_HARD_REG_SET (hard_reg_conflicts[allocno], hard_regs_live);
1238       for (j = allocno_row_words - 1; j >= 0; j--)
1239 	conflicts[ialloc_prod + j] |= allocnos_live[j];
1240     }
1241 }
1242 
1243 /* Handle the case where REG is set by the insn being scanned,
1244    during the forward scan to accumulate conflicts.
1245    Store a 1 in regs_live or allocnos_live for this register, record how many
1246    consecutive hardware registers it actually needs,
1247    and record a conflict with all other registers already live.
1248 
1249    Note that even if REG does not remain alive after this insn,
1250    we must mark it here as live, to ensure a conflict between
1251    REG and any other regs set in this insn that really do live.
1252    This is because those other regs could be considered after this.
1253 
1254    REG might actually be something other than a register;
1255    if so, we do nothing.
1256 
1257    SETTER is 0 if this register was modified by an auto-increment (i.e.,
1258    a REG_INC note was found for it).
1259 
1260    CLOBBERs are processed here by calling mark_reg_clobber.  */
1261 
1262 static void
mark_reg_store(orig_reg,setter)1263 mark_reg_store (orig_reg, setter)
1264      rtx orig_reg, setter;
1265 {
1266   register int regno;
1267   register rtx reg = orig_reg;
1268 
1269   /* WORD is which word of a multi-register group is being stored.
1270      For the case where the store is actually into a SUBREG of REG.
1271      Except we don't use it; I believe the entire REG needs to be
1272      made live.  */
1273   int word = 0;
1274 
1275   if (GET_CODE (reg) == SUBREG)
1276     {
1277       word = SUBREG_WORD (reg);
1278       reg = SUBREG_REG (reg);
1279     }
1280 
1281   if (GET_CODE (reg) != REG)
1282     return;
1283 
1284   if (setter && GET_CODE (setter) == CLOBBER)
1285     {
1286       /* A clobber of a register should be processed here too.  */
1287       mark_reg_clobber (orig_reg, setter);
1288       return;
1289     }
1290 
1291   regs_set[n_regs_set++] = reg;
1292 
1293   if (setter)
1294     set_preference (reg, SET_SRC (setter));
1295 
1296   regno = REGNO (reg);
1297 
1298   if (reg_renumber[regno] >= 0)
1299     regno = reg_renumber[regno] /* + word */;
1300 
1301   /* Either this is one of the max_allocno pseudo regs not allocated,
1302      or it is or has a hardware reg.  First handle the pseudo-regs.  */
1303   if (regno >= FIRST_PSEUDO_REGISTER)
1304     {
1305       if (reg_allocno[regno] >= 0)
1306 	{
1307 	  SET_ALLOCNO_LIVE (reg_allocno[regno]);
1308 	  record_one_conflict (regno);
1309 	}
1310     }
1311   /* Handle hardware regs (and pseudos allocated to hard regs).  */
1312   else if (! fixed_regs[regno])
1313     {
1314       register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1315       while (regno < last)
1316 	{
1317 	  record_one_conflict (regno);
1318 	  SET_HARD_REG_BIT (hard_regs_live, regno);
1319 	  regno++;
1320 	}
1321     }
1322 }
1323 
1324 /* Like mark_reg_set except notice just CLOBBERs; ignore SETs.  */
1325 
1326 static void
mark_reg_clobber(reg,setter)1327 mark_reg_clobber (reg, setter)
1328      rtx reg, setter;
1329 {
1330   register int regno;
1331 
1332   /* WORD is which word of a multi-register group is being stored.
1333      For the case where the store is actually into a SUBREG of REG.
1334      Except we don't use it; I believe the entire REG needs to be
1335      made live.  */
1336   int word = 0;
1337 
1338   if (GET_CODE (setter) != CLOBBER)
1339     return;
1340 
1341   if (GET_CODE (reg) == SUBREG)
1342     {
1343       word = SUBREG_WORD (reg);
1344       reg = SUBREG_REG (reg);
1345     }
1346 
1347   if (GET_CODE (reg) != REG)
1348     return;
1349 
1350   regs_set[n_regs_set++] = reg;
1351 
1352   regno = REGNO (reg);
1353 
1354   if (reg_renumber[regno] >= 0)
1355     regno = reg_renumber[regno] /* + word */;
1356 
1357   /* Either this is one of the max_allocno pseudo regs not allocated,
1358      or it is or has a hardware reg.  First handle the pseudo-regs.  */
1359   if (regno >= FIRST_PSEUDO_REGISTER)
1360     {
1361       if (reg_allocno[regno] >= 0)
1362 	{
1363 	  SET_ALLOCNO_LIVE (reg_allocno[regno]);
1364 	  record_one_conflict (regno);
1365 	}
1366     }
1367   /* Handle hardware regs (and pseudos allocated to hard regs).  */
1368   else if (! fixed_regs[regno])
1369     {
1370       register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1371       while (regno < last)
1372 	{
1373 	  record_one_conflict (regno);
1374 	  SET_HARD_REG_BIT (hard_regs_live, regno);
1375 	  regno++;
1376 	}
1377     }
1378 }
1379 
1380 /* Record that REG has conflicts with all the regs currently live.
1381    Do not mark REG itself as live.  */
1382 
1383 static void
mark_reg_conflicts(reg)1384 mark_reg_conflicts (reg)
1385      rtx reg;
1386 {
1387   register int regno;
1388 
1389   if (GET_CODE (reg) == SUBREG)
1390     reg = SUBREG_REG (reg);
1391 
1392   if (GET_CODE (reg) != REG)
1393     return;
1394 
1395   regno = REGNO (reg);
1396 
1397   if (reg_renumber[regno] >= 0)
1398     regno = reg_renumber[regno];
1399 
1400   /* Either this is one of the max_allocno pseudo regs not allocated,
1401      or it is or has a hardware reg.  First handle the pseudo-regs.  */
1402   if (regno >= FIRST_PSEUDO_REGISTER)
1403     {
1404       if (reg_allocno[regno] >= 0)
1405 	record_one_conflict (regno);
1406     }
1407   /* Handle hardware regs (and pseudos allocated to hard regs).  */
1408   else if (! fixed_regs[regno])
1409     {
1410       register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1411       while (regno < last)
1412 	{
1413 	  record_one_conflict (regno);
1414 	  regno++;
1415 	}
1416     }
1417 }
1418 
1419 /* Mark REG as being dead (following the insn being scanned now).
1420    Store a 0 in regs_live or allocnos_live for this register.  */
1421 
1422 static void
mark_reg_death(reg)1423 mark_reg_death (reg)
1424      rtx reg;
1425 {
1426   register int regno = REGNO (reg);
1427 
1428   /* For pseudo reg, see if it has been assigned a hardware reg.  */
1429   if (reg_renumber[regno] >= 0)
1430     regno = reg_renumber[regno];
1431 
1432   /* Either this is one of the max_allocno pseudo regs not allocated,
1433      or it is a hardware reg.  First handle the pseudo-regs.  */
1434   if (regno >= FIRST_PSEUDO_REGISTER)
1435     {
1436       if (reg_allocno[regno] >= 0)
1437 	CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
1438     }
1439   /* Handle hardware regs (and pseudos allocated to hard regs).  */
1440   else if (! fixed_regs[regno])
1441     {
1442       /* Pseudo regs already assigned hardware regs are treated
1443 	 almost the same as explicit hardware regs.  */
1444       register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1445       while (regno < last)
1446 	{
1447 	  CLEAR_HARD_REG_BIT (hard_regs_live, regno);
1448 	  regno++;
1449 	}
1450     }
1451 }
1452 
1453 /* Mark hard reg REGNO as currently live, assuming machine mode MODE
1454    for the value stored in it.  MODE determines how many consecutive
1455    registers are actually in use.  Do not record conflicts;
1456    it is assumed that the caller will do that.  */
1457 
1458 static void
mark_reg_live_nc(regno,mode)1459 mark_reg_live_nc (regno, mode)
1460      register int regno;
1461      enum machine_mode mode;
1462 {
1463   register int last = regno + HARD_REGNO_NREGS (regno, mode);
1464   while (regno < last)
1465     {
1466       SET_HARD_REG_BIT (hard_regs_live, regno);
1467       regno++;
1468     }
1469 }
1470 
1471 /* Try to set a preference for an allocno to a hard register.
1472    We are passed DEST and SRC which are the operands of a SET.  It is known
1473    that SRC is a register.  If SRC or the first operand of SRC is a register,
1474    try to set a preference.  If one of the two is a hard register and the other
1475    is a pseudo-register, mark the preference.
1476 
1477    Note that we are not as aggressive as local-alloc in trying to tie a
1478    pseudo-register to a hard register.  */
1479 
1480 static void
set_preference(dest,src)1481 set_preference (dest, src)
1482      rtx dest, src;
1483 {
1484   int src_regno, dest_regno;
1485   /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1486      to compensate for subregs in SRC or DEST.  */
1487   int offset = 0;
1488   int i;
1489   int copy = 1;
1490 
1491   if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
1492     src = XEXP (src, 0), copy = 0;
1493 
1494   /* Get the reg number for both SRC and DEST.
1495      If neither is a reg, give up.  */
1496 
1497   if (GET_CODE (src) == REG)
1498     src_regno = REGNO (src);
1499   else if (GET_CODE (src) == SUBREG && GET_CODE (SUBREG_REG (src)) == REG)
1500     {
1501       src_regno = REGNO (SUBREG_REG (src));
1502       offset += SUBREG_WORD (src);
1503     }
1504   else
1505     return;
1506 
1507   if (GET_CODE (dest) == REG)
1508     dest_regno = REGNO (dest);
1509   else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG)
1510     {
1511       dest_regno = REGNO (SUBREG_REG (dest));
1512       offset -= SUBREG_WORD (dest);
1513     }
1514   else
1515     return;
1516 
1517   /* Convert either or both to hard reg numbers.  */
1518 
1519   if (reg_renumber[src_regno] >= 0)
1520     src_regno = reg_renumber[src_regno];
1521 
1522   if (reg_renumber[dest_regno] >= 0)
1523     dest_regno = reg_renumber[dest_regno];
1524 
1525   /* Now if one is a hard reg and the other is a global pseudo
1526      then give the other a preference.  */
1527 
1528   if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
1529       && reg_allocno[src_regno] >= 0)
1530     {
1531       dest_regno -= offset;
1532       if (dest_regno >= 0 && dest_regno < FIRST_PSEUDO_REGISTER)
1533 	{
1534 	  if (copy)
1535 	    SET_REGBIT (hard_reg_copy_preferences,
1536 			reg_allocno[src_regno], dest_regno);
1537 
1538 	  SET_REGBIT (hard_reg_preferences,
1539 		      reg_allocno[src_regno], dest_regno);
1540 	  for (i = dest_regno;
1541 	       i < dest_regno + HARD_REGNO_NREGS (dest_regno, GET_MODE (dest));
1542 	       i++)
1543 	    SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
1544 	}
1545     }
1546 
1547   if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
1548       && reg_allocno[dest_regno] >= 0)
1549     {
1550       src_regno += offset;
1551       if (src_regno >= 0 && src_regno < FIRST_PSEUDO_REGISTER)
1552 	{
1553 	  if (copy)
1554 	    SET_REGBIT (hard_reg_copy_preferences,
1555 			reg_allocno[dest_regno], src_regno);
1556 
1557 	  SET_REGBIT (hard_reg_preferences,
1558 		      reg_allocno[dest_regno], src_regno);
1559 	  for (i = src_regno;
1560 	       i < src_regno + HARD_REGNO_NREGS (src_regno, GET_MODE (src));
1561 	       i++)
1562 	    SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
1563 	}
1564     }
1565 }
1566 
1567 /* Indicate that hard register number FROM was eliminated and replaced with
1568    an offset from hard register number TO.  The status of hard registers live
1569    at the start of a basic block is updated by replacing a use of FROM with
1570    a use of TO.  */
1571 
1572 void
mark_elimination(from,to)1573 mark_elimination (from, to)
1574      int from, to;
1575 {
1576   int i;
1577 
1578   for (i = 0; i < n_basic_blocks; i++)
1579     if ((basic_block_live_at_start[i][from / REGSET_ELT_BITS]
1580 	 & ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS))) != 0)
1581       {
1582 	basic_block_live_at_start[i][from / REGSET_ELT_BITS]
1583 	  &= ~ ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS));
1584 	basic_block_live_at_start[i][to / REGSET_ELT_BITS]
1585 	  |= ((REGSET_ELT_TYPE) 1 << (to % REGSET_ELT_BITS));
1586       }
1587 }
1588 
1589 /* Print debugging trace information if -greg switch is given,
1590    showing the information on which the allocation decisions are based.  */
1591 
1592 static void
dump_conflicts(file)1593 dump_conflicts (file)
1594      FILE *file;
1595 {
1596   register int i;
1597   register int has_preferences;
1598   fprintf (file, ";; %d regs to allocate:", max_allocno);
1599   for (i = 0; i < max_allocno; i++)
1600     {
1601       int j;
1602       fprintf (file, " %d", allocno_reg[allocno_order[i]]);
1603       for (j = 0; j < max_regno; j++)
1604 	if (reg_allocno[j] == allocno_order[i]
1605 	    && j != allocno_reg[allocno_order[i]])
1606 	  fprintf (file, "+%d", j);
1607       if (allocno_size[allocno_order[i]] != 1)
1608 	fprintf (file, " (%d)", allocno_size[allocno_order[i]]);
1609     }
1610   fprintf (file, "\n");
1611 
1612   for (i = 0; i < max_allocno; i++)
1613     {
1614       register int j;
1615       fprintf (file, ";; %d conflicts:", allocno_reg[i]);
1616       for (j = 0; j < max_allocno; j++)
1617 	if (CONFLICTP (i, j) || CONFLICTP (j, i))
1618 	  fprintf (file, " %d", allocno_reg[j]);
1619       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1620 	if (TEST_HARD_REG_BIT (hard_reg_conflicts[i], j))
1621 	  fprintf (file, " %d", j);
1622       fprintf (file, "\n");
1623 
1624       has_preferences = 0;
1625       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1626 	if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1627 	  has_preferences = 1;
1628 
1629       if (! has_preferences)
1630 	continue;
1631       fprintf (file, ";; %d preferences:", allocno_reg[i]);
1632       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1633 	if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1634 	  fprintf (file, " %d", j);
1635       fprintf (file, "\n");
1636     }
1637   fprintf (file, "\n");
1638 }
1639 
1640 void
dump_global_regs(file)1641 dump_global_regs (file)
1642      FILE *file;
1643 {
1644   register int i, j;
1645 
1646   fprintf (file, ";; Register dispositions:\n");
1647   for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
1648     if (reg_renumber[i] >= 0)
1649       {
1650 	fprintf (file, "%d in %d  ", i, reg_renumber[i]);
1651         if (++j % 6 == 0)
1652 	  fprintf (file, "\n");
1653       }
1654 
1655   fprintf (file, "\n\n;; Hard regs used: ");
1656   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1657     if (regs_ever_live[i])
1658       fprintf (file, " %d", i);
1659   fprintf (file, "\n\n");
1660 }
1661