xref: /386bsd/usr/src/usr.bin/gcc/cc1/loop.c (revision a2142627)
1 /* Move constant computations out of loops.
2    Copyright (C) 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
3 
4 This file is part of GNU CC.
5 
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10 
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING.  If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */
19 
20 
21 /* This is the loop optimization pass of the compiler.
22    It finds invariant computations within loops and moves them
23    to the beginning of the loop.  Then it identifies basic and
24    general induction variables.  Strength reduction is applied to the general
25    induction variables, and induction variable elimination is applied to
26    the basic induction variables.
27 
28    It also finds cases where
29    a register is set within the loop by zero-extending a narrower value
30    and changes these to zero the entire register once before the loop
31    and merely copy the low part within the loop.
32 
33    Most of the complexity is in heuristics to decide when it is worth
34    while to do these things.  */
35 
36 #include <stdio.h>
37 #include "config.h"
38 #include "rtl.h"
39 #include "obstack.h"
40 #include "expr.h"
41 #include "insn-config.h"
42 #include "insn-flags.h"
43 #include "regs.h"
44 #include "hard-reg-set.h"
45 #include "recog.h"
46 #include "flags.h"
47 #include "real.h"
48 #include "loop.h"
49 
50 /* Vector mapping INSN_UIDs to luids.
51    The luids are like uids but increase monotonically always.
52    We use them to see whether a jump comes from outside a given loop.  */
53 
54 int *uid_luid;
55 
56 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
57    number the insn is contained in.  */
58 
59 int *uid_loop_num;
60 
61 /* 1 + largest uid of any insn.  */
62 
63 int max_uid_for_loop;
64 
65 /* 1 + luid of last insn.  */
66 
67 static int max_luid;
68 
69 /* Number of loops detected in current function.  Used as index to the
70    next few tables.  */
71 
72 static int max_loop_num;
73 
74 /* Indexed by loop number, contains the first and last insn of each loop.  */
75 
76 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
77 
78 /* For each loop, gives the containing loop number, -1 if none.  */
79 
80 int *loop_outer_loop;
81 
82 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
83    really a loop (an insn outside the loop branches into it).  */
84 
85 static char *loop_invalid;
86 
87 /* Indexed by loop number, links together all LABEL_REFs which refer to
88    code labels outside the loop.  Used by routines that need to know all
89    loop exits, such as final_biv_value and final_giv_value.
90 
91    This does not include loop exits due to return instructions.  This is
92    because all bivs and givs are pseudos, and hence must be dead after a
93    return, so the presense of a return does not affect any of the
94    optimizations that use this info.  It is simpler to just not include return
95    instructions on this list.  */
96 
97 rtx *loop_number_exit_labels;
98 
99 /* Holds the number of loop iterations.  It is zero if the number could not be
100    calculated.  Must be unsigned since the number of iterations can
101    be as high as 2^wordsize-1.  For loops with a wider iterator, this number
102    will will be zero if the number of loop iterations is too large for an
103    unsigned integer to hold.  */
104 
105 unsigned HOST_WIDE_INT loop_n_iterations;
106 
107 /* Nonzero if there is a subroutine call in the current loop.
108    (unknown_address_altered is also nonzero in this case.)  */
109 
110 static int loop_has_call;
111 
112 /* Nonzero if there is a volatile memory reference in the current
113    loop.  */
114 
115 static int loop_has_volatile;
116 
117 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
118    current loop.  A continue statement will generate a branch to
119    NEXT_INSN (loop_continue).  */
120 
121 static rtx loop_continue;
122 
123 /* Indexed by register number, contains the number of times the reg
124    is set during the loop being scanned.
125    During code motion, a negative value indicates a reg that has been
126    made a candidate; in particular -2 means that it is an candidate that
127    we know is equal to a constant and -1 means that it is an candidate
128    not known equal to a constant.
129    After code motion, regs moved have 0 (which is accurate now)
130    while the failed candidates have the original number of times set.
131 
132    Therefore, at all times, == 0 indicates an invariant register;
133    < 0 a conditionally invariant one.  */
134 
135 static short *n_times_set;
136 
137 /* Original value of n_times_set; same except that this value
138    is not set negative for a reg whose sets have been made candidates
139    and not set to 0 for a reg that is moved.  */
140 
141 static short *n_times_used;
142 
143 /* Index by register number, 1 indicates that the register
144    cannot be moved or strength reduced.  */
145 
146 static char *may_not_optimize;
147 
148 /* Nonzero means reg N has already been moved out of one loop.
149    This reduces the desire to move it out of another.  */
150 
151 static char *moved_once;
152 
153 /* Array of MEMs that are stored in this loop. If there are too many to fit
154    here, we just turn on unknown_address_altered.  */
155 
156 #define NUM_STORES 20
157 static rtx loop_store_mems[NUM_STORES];
158 
159 /* Index of first available slot in above array.  */
160 static int loop_store_mems_idx;
161 
162 /* Nonzero if we don't know what MEMs were changed in the current loop.
163    This happens if the loop contains a call (in which case `loop_has_call'
164    will also be set) or if we store into more than NUM_STORES MEMs.  */
165 
166 static int unknown_address_altered;
167 
168 /* Count of movable (i.e. invariant) instructions discovered in the loop.  */
169 static int num_movables;
170 
171 /* Count of memory write instructions discovered in the loop.  */
172 static int num_mem_sets;
173 
174 /* Number of loops contained within the current one, including itself.  */
175 static int loops_enclosed;
176 
177 /* Bound on pseudo register number before loop optimization.
178    A pseudo has valid regscan info if its number is < max_reg_before_loop.  */
179 int max_reg_before_loop;
180 
181 /* This obstack is used in product_cheap_p to allocate its rtl.  It
182    may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
183    If we used the same obstack that it did, we would be deallocating
184    that array.  */
185 
186 static struct obstack temp_obstack;
187 
188 /* This is where the pointer to the obstack being used for RTL is stored.  */
189 
190 extern struct obstack *rtl_obstack;
191 
192 #define obstack_chunk_alloc xmalloc
193 #define obstack_chunk_free free
194 
195 extern char *oballoc ();
196 
197 /* During the analysis of a loop, a chain of `struct movable's
198    is made to record all the movable insns found.
199    Then the entire chain can be scanned to decide which to move.  */
200 
201 struct movable
202 {
203   rtx insn;			/* A movable insn */
204   rtx set_src;			/* The expression this reg is set from. */
205   rtx set_dest;			/* The destination of this SET. */
206   rtx dependencies;		/* When INSN is libcall, this is an EXPR_LIST
207 				   of any registers used within the LIBCALL. */
208   int consec;			/* Number of consecutive following insns
209 				   that must be moved with this one.  */
210   int regno;			/* The register it sets */
211   short lifetime;		/* lifetime of that register;
212 				   may be adjusted when matching movables
213 				   that load the same value are found.  */
214   short savings;		/* Number of insns we can move for this reg,
215 				   including other movables that force this
216 				   or match this one.  */
217   unsigned int cond : 1;	/* 1 if only conditionally movable */
218   unsigned int force : 1;	/* 1 means MUST move this insn */
219   unsigned int global : 1;	/* 1 means reg is live outside this loop */
220 		/* If PARTIAL is 1, GLOBAL means something different:
221 		   that the reg is live outside the range from where it is set
222 		   to the following label.  */
223   unsigned int done : 1;	/* 1 inhibits further processing of this */
224 
225   unsigned int partial : 1;	/* 1 means this reg is used for zero-extending.
226 				   In particular, moving it does not make it
227 				   invariant.  */
228   unsigned int move_insn : 1;	/* 1 means that we call emit_move_insn to
229 				   load SRC, rather than copying INSN.  */
230   unsigned int is_equiv : 1;	/* 1 means a REG_EQUIV is present on INSN. */
231   enum machine_mode savemode;   /* Nonzero means it is a mode for a low part
232 				   that we should avoid changing when clearing
233 				   the rest of the reg.  */
234   struct movable *match;	/* First entry for same value */
235   struct movable *forces;	/* An insn that must be moved if this is */
236   struct movable *next;
237 };
238 
239 FILE *loop_dump_stream;
240 
241 /* Forward declarations.  */
242 
243 static void find_and_verify_loops ();
244 static void mark_loop_jump ();
245 static void prescan_loop ();
246 static int reg_in_basic_block_p ();
247 static int consec_sets_invariant_p ();
248 static rtx libcall_other_reg ();
249 static int labels_in_range_p ();
250 static void count_loop_regs_set ();
251 static void note_addr_stored ();
252 static int loop_reg_used_before_p ();
253 static void scan_loop ();
254 static void replace_call_address ();
255 static rtx skip_consec_insns ();
256 static int libcall_benefit ();
257 static void ignore_some_movables ();
258 static void force_movables ();
259 static void combine_movables ();
260 static int rtx_equal_for_loop_p ();
261 static void move_movables ();
262 static void strength_reduce ();
263 static int valid_initial_value_p ();
264 static void find_mem_givs ();
265 static void record_biv ();
266 static void check_final_value ();
267 static void record_giv ();
268 static void update_giv_derive ();
269 static int basic_induction_var ();
270 static rtx simplify_giv_expr ();
271 static int general_induction_var ();
272 static int consec_sets_giv ();
273 static int check_dbra_loop ();
274 static rtx express_from ();
275 static int combine_givs_p ();
276 static void combine_givs ();
277 static int product_cheap_p ();
278 static int maybe_eliminate_biv ();
279 static int maybe_eliminate_biv_1 ();
280 static int last_use_this_basic_block ();
281 static void record_initial ();
282 static void update_reg_last_use ();
283 
284 /* Relative gain of eliminating various kinds of operations.  */
285 int add_cost;
286 #if 0
287 int shift_cost;
288 int mult_cost;
289 #endif
290 
291 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
292    copy the value of the strength reduced giv to its original register.  */
293 int copy_cost;
294 
295 void
init_loop()296 init_loop ()
297 {
298   char *free_point = (char *) oballoc (1);
299   rtx reg = gen_rtx (REG, word_mode, 0);
300   rtx pow2 = GEN_INT (32);
301   rtx lea;
302   int i;
303 
304   add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
305 
306   /* We multiply by 2 to reconcile the difference in scale between
307      these two ways of computing costs.  Otherwise the cost of a copy
308      will be far less than the cost of an add.  */
309 
310   copy_cost = 2 * 2;
311 
312   /* Free the objects we just allocated.  */
313   obfree (free_point);
314 
315   /* Initialize the obstack used for rtl in product_cheap_p.  */
316   gcc_obstack_init (&temp_obstack);
317 }
318 
319 /* Entry point of this file.  Perform loop optimization
320    on the current function.  F is the first insn of the function
321    and DUMPFILE is a stream for output of a trace of actions taken
322    (or 0 if none should be output).  */
323 
324 void
loop_optimize(f,dumpfile)325 loop_optimize (f, dumpfile)
326      /* f is the first instruction of a chain of insns for one function */
327      rtx f;
328      FILE *dumpfile;
329 {
330   register rtx insn;
331   register int i;
332   rtx end;
333   rtx last_insn;
334 
335   loop_dump_stream = dumpfile;
336 
337   init_recog_no_volatile ();
338   init_alias_analysis ();
339 
340   max_reg_before_loop = max_reg_num ();
341 
342   moved_once = (char *) alloca (max_reg_before_loop);
343   bzero (moved_once, max_reg_before_loop);
344 
345   regs_may_share = 0;
346 
347   /* Count the number of loops. */
348 
349   max_loop_num = 0;
350   for (insn = f; insn; insn = NEXT_INSN (insn))
351     {
352       if (GET_CODE (insn) == NOTE
353 	  && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
354 	max_loop_num++;
355     }
356 
357   /* Don't waste time if no loops.  */
358   if (max_loop_num == 0)
359     return;
360 
361   /* Get size to use for tables indexed by uids.
362      Leave some space for labels allocated by find_and_verify_loops.  */
363   max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
364 
365   uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
366   uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
367 
368   bzero (uid_luid, max_uid_for_loop * sizeof (int));
369   bzero (uid_loop_num, max_uid_for_loop * sizeof (int));
370 
371   /* Allocate tables for recording each loop.  We set each entry, so they need
372      not be zeroed.  */
373   loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
374   loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
375   loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
376   loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
377   loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
378 
379   /* Find and process each loop.
380      First, find them, and record them in order of their beginnings.  */
381   find_and_verify_loops (f);
382 
383   /* Now find all register lifetimes.  This must be done after
384      find_and_verify_loops, because it might reorder the insns in the
385      function.  */
386   reg_scan (f, max_reg_num (), 1);
387 
388   /* See if we went too far.  */
389   if (get_max_uid () > max_uid_for_loop)
390     abort ();
391 
392   /* Compute the mapping from uids to luids.
393      LUIDs are numbers assigned to insns, like uids,
394      except that luids increase monotonically through the code.
395      Don't assign luids to line-number NOTEs, so that the distance in luids
396      between two insns is not affected by -g.  */
397 
398   for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
399     {
400       last_insn = insn;
401       if (GET_CODE (insn) != NOTE
402 	  || NOTE_LINE_NUMBER (insn) <= 0)
403 	uid_luid[INSN_UID (insn)] = ++i;
404       else
405 	/* Give a line number note the same luid as preceding insn.  */
406 	uid_luid[INSN_UID (insn)] = i;
407     }
408 
409   max_luid = i + 1;
410 
411   /* Don't leave gaps in uid_luid for insns that have been
412      deleted.  It is possible that the first or last insn
413      using some register has been deleted by cross-jumping.
414      Make sure that uid_luid for that former insn's uid
415      points to the general area where that insn used to be.  */
416   for (i = 0; i < max_uid_for_loop; i++)
417     {
418       uid_luid[0] = uid_luid[i];
419       if (uid_luid[0] != 0)
420 	break;
421     }
422   for (i = 0; i < max_uid_for_loop; i++)
423     if (uid_luid[i] == 0)
424       uid_luid[i] = uid_luid[i - 1];
425 
426   /* Create a mapping from loops to BLOCK tree nodes.  */
427   if (flag_unroll_loops && write_symbols != NO_DEBUG)
428     find_loop_tree_blocks ();
429 
430   /* Now scan the loops, last ones first, since this means inner ones are done
431      before outer ones.  */
432   for (i = max_loop_num-1; i >= 0; i--)
433     if (! loop_invalid[i] && loop_number_loop_ends[i])
434       scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
435 		 max_reg_num ());
436 
437   /* If debugging and unrolling loops, we must replicate the tree nodes
438      corresponding to the blocks inside the loop, so that the original one
439      to one mapping will remain.  */
440   if (flag_unroll_loops && write_symbols != NO_DEBUG)
441     unroll_block_trees ();
442 }
443 
444 /* Optimize one loop whose start is LOOP_START and end is END.
445    LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
446    NOTE_INSN_LOOP_END.  */
447 
448 /* ??? Could also move memory writes out of loops if the destination address
449    is invariant, the source is invariant, the memory write is not volatile,
450    and if we can prove that no read inside the loop can read this address
451    before the write occurs.  If there is a read of this address after the
452    write, then we can also mark the memory read as invariant.  */
453 
454 static void
scan_loop(loop_start,end,nregs)455 scan_loop (loop_start, end, nregs)
456      rtx loop_start, end;
457      int nregs;
458 {
459   register int i;
460   register rtx p;
461   /* 1 if we are scanning insns that could be executed zero times.  */
462   int maybe_never = 0;
463   /* 1 if we are scanning insns that might never be executed
464      due to a subroutine call which might exit before they are reached.  */
465   int call_passed = 0;
466   /* For a rotated loop that is entered near the bottom,
467      this is the label at the top.  Otherwise it is zero.  */
468   rtx loop_top = 0;
469   /* Jump insn that enters the loop, or 0 if control drops in.  */
470   rtx loop_entry_jump = 0;
471   /* Place in the loop where control enters.  */
472   rtx scan_start;
473   /* Number of insns in the loop.  */
474   int insn_count;
475   int in_libcall = 0;
476   int tem;
477   rtx temp;
478   /* The SET from an insn, if it is the only SET in the insn.  */
479   rtx set, set1;
480   /* Chain describing insns movable in current loop.  */
481   struct movable *movables = 0;
482   /* Last element in `movables' -- so we can add elements at the end.  */
483   struct movable *last_movable = 0;
484   /* Ratio of extra register life span we can justify
485      for saving an instruction.  More if loop doesn't call subroutines
486      since in that case saving an insn makes more difference
487      and more registers are available.  */
488   int threshold;
489   /* If we have calls, contains the insn in which a register was used
490      if it was used exactly once; contains const0_rtx if it was used more
491      than once.  */
492   rtx *reg_single_usage = 0;
493 
494   n_times_set = (short *) alloca (nregs * sizeof (short));
495   n_times_used = (short *) alloca (nregs * sizeof (short));
496   may_not_optimize = (char *) alloca (nregs);
497 
498   /* Determine whether this loop starts with a jump down to a test at
499      the end.  This will occur for a small number of loops with a test
500      that is too complex to duplicate in front of the loop.
501 
502      We search for the first insn or label in the loop, skipping NOTEs.
503      However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
504      (because we might have a loop executed only once that contains a
505      loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
506      (in case we have a degenerate loop).
507 
508      Note that if we mistakenly think that a loop is entered at the top
509      when, in fact, it is entered at the exit test, the only effect will be
510      slightly poorer optimization.  Making the opposite error can generate
511      incorrect code.  Since very few loops now start with a jump to the
512      exit test, the code here to detect that case is very conservative.  */
513 
514   for (p = NEXT_INSN (loop_start);
515        p != end
516 	 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
517 	 && (GET_CODE (p) != NOTE
518 	     || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
519 		 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
520        p = NEXT_INSN (p))
521     ;
522 
523   scan_start = p;
524 
525   /* Set up variables describing this loop.  */
526   prescan_loop (loop_start, end);
527   threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
528 
529   /* If loop has a jump before the first label,
530      the true entry is the target of that jump.
531      Start scan from there.
532      But record in LOOP_TOP the place where the end-test jumps
533      back to so we can scan that after the end of the loop.  */
534   if (GET_CODE (p) == JUMP_INSN)
535     {
536       loop_entry_jump = p;
537 
538       /* Loop entry must be unconditional jump (and not a RETURN)  */
539       if (simplejump_p (p)
540 	  && JUMP_LABEL (p) != 0
541 	  /* Check to see whether the jump actually
542 	     jumps out of the loop (meaning it's no loop).
543 	     This case can happen for things like
544 	     do {..} while (0).  If this label was generated previously
545 	     by loop, we can't tell anything about it and have to reject
546 	     the loop.  */
547 	  && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
548 	  && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
549 	  && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
550 	{
551 	  loop_top = next_label (scan_start);
552 	  scan_start = JUMP_LABEL (p);
553 	}
554     }
555 
556   /* If SCAN_START was an insn created by loop, we don't know its luid
557      as required by loop_reg_used_before_p.  So skip such loops.  (This
558      test may never be true, but it's best to play it safe.)
559 
560      Also, skip loops where we do not start scanning at a label.  This
561      test also rejects loops starting with a JUMP_INSN that failed the
562      test above.  */
563 
564   if (INSN_UID (scan_start) >= max_uid_for_loop
565       || GET_CODE (scan_start) != CODE_LABEL)
566     {
567       if (loop_dump_stream)
568 	fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
569 		 INSN_UID (loop_start), INSN_UID (end));
570       return;
571     }
572 
573   /* Count number of times each reg is set during this loop.
574      Set may_not_optimize[I] if it is not safe to move out
575      the setting of register I.  If this loop has calls, set
576      reg_single_usage[I].  */
577 
578   bzero (n_times_set, nregs * sizeof (short));
579   bzero (may_not_optimize, nregs);
580 
581   if (loop_has_call)
582     {
583       reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
584       bzero (reg_single_usage, nregs * sizeof (rtx));
585     }
586 
587   count_loop_regs_set (loop_top ? loop_top : loop_start, end,
588 		       may_not_optimize, reg_single_usage, &insn_count, nregs);
589 
590   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
591     may_not_optimize[i] = 1, n_times_set[i] = 1;
592   bcopy (n_times_set, n_times_used, nregs * sizeof (short));
593 
594   if (loop_dump_stream)
595     {
596       fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
597 	       INSN_UID (loop_start), INSN_UID (end), insn_count);
598       if (loop_continue)
599 	fprintf (loop_dump_stream, "Continue at insn %d.\n",
600 		 INSN_UID (loop_continue));
601     }
602 
603   /* Scan through the loop finding insns that are safe to move.
604      Set n_times_set negative for the reg being set, so that
605      this reg will be considered invariant for subsequent insns.
606      We consider whether subsequent insns use the reg
607      in deciding whether it is worth actually moving.
608 
609      MAYBE_NEVER is nonzero if we have passed a conditional jump insn
610      and therefore it is possible that the insns we are scanning
611      would never be executed.  At such times, we must make sure
612      that it is safe to execute the insn once instead of zero times.
613      When MAYBE_NEVER is 0, all insns will be executed at least once
614      so that is not a problem.  */
615 
616   p = scan_start;
617   while (1)
618     {
619       p = NEXT_INSN (p);
620       /* At end of a straight-in loop, we are done.
621 	 At end of a loop entered at the bottom, scan the top.  */
622       if (p == scan_start)
623 	break;
624       if (p == end)
625 	{
626 	  if (loop_top != 0)
627 	    p = NEXT_INSN (loop_top);
628 	  else
629 	    break;
630 	  if (p == scan_start)
631 	    break;
632 	}
633 
634       if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
635 	  && find_reg_note (p, REG_LIBCALL, NULL_RTX))
636 	in_libcall = 1;
637       else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
638 	       && find_reg_note (p, REG_RETVAL, NULL_RTX))
639 	in_libcall = 0;
640 
641       if (GET_CODE (p) == INSN
642 	  && (set = single_set (p))
643 	  && GET_CODE (SET_DEST (set)) == REG
644 	  && ! may_not_optimize[REGNO (SET_DEST (set))])
645 	{
646 	  int tem1 = 0;
647 	  int tem2 = 0;
648 	  int move_insn = 0;
649 	  rtx src = SET_SRC (set);
650 	  rtx dependencies = 0;
651 
652 	  /* Figure out what to use as a source of this insn.  If a REG_EQUIV
653 	     note is given or if a REG_EQUAL note with a constant operand is
654 	     specified, use it as the source and mark that we should move
655 	     this insn by calling emit_move_insn rather that duplicating the
656 	     insn.
657 
658 	     Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
659 	     is present.  */
660 	  temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
661 	  if (temp)
662 	    src = XEXP (temp, 0), move_insn = 1;
663 	  else
664 	    {
665 	      temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
666 	      if (temp && CONSTANT_P (XEXP (temp, 0)))
667 		src = XEXP (temp, 0), move_insn = 1;
668 	      if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
669 		{
670 		  src = XEXP (temp, 0);
671 		  /* A libcall block can use regs that don't appear in
672 		     the equivalent expression.  To move the libcall,
673 		     we must move those regs too.  */
674 		  dependencies = libcall_other_reg (p, src);
675 		}
676 	    }
677 
678 	  /* Don't try to optimize a register that was made
679 	     by loop-optimization for an inner loop.
680 	     We don't know its life-span, so we can't compute the benefit.  */
681 	  if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
682 	    ;
683 	  /* In order to move a register, we need to have one of three cases:
684 	     (1) it is used only in the same basic block as the set
685 	     (2) it is not a user variable and it is not used in the
686 	         exit test (this can cause the variable to be used
687 		 before it is set just like a user-variable).
688 	     (3) the set is guaranteed to be executed once the loop starts,
689 	         and the reg is not used until after that.  */
690 	  else if (! ((! maybe_never
691 		       && ! loop_reg_used_before_p (set, p, loop_start,
692 						    scan_start, end))
693 		      || (! REG_USERVAR_P (SET_DEST (PATTERN (p)))
694 			  && ! REG_LOOP_TEST_P (SET_DEST (PATTERN (p))))
695 		      || reg_in_basic_block_p (p, SET_DEST (PATTERN (p)))))
696 	    ;
697 	  else if ((tem = invariant_p (src))
698 		   && (dependencies == 0
699 		       || (tem2 = invariant_p (dependencies)) != 0)
700 		   && (n_times_set[REGNO (SET_DEST (set))] == 1
701 		       || (tem1
702 			   = consec_sets_invariant_p (SET_DEST (set),
703 						      n_times_set[REGNO (SET_DEST (set))],
704 						      p)))
705 		   /* If the insn can cause a trap (such as divide by zero),
706 		      can't move it unless it's guaranteed to be executed
707 		      once loop is entered.  Even a function call might
708 		      prevent the trap insn from being reached
709 		      (since it might exit!)  */
710 		   && ! ((maybe_never || call_passed)
711 			 && may_trap_p (src)))
712 	    {
713 	      register struct movable *m;
714 	      register int regno = REGNO (SET_DEST (set));
715 
716 	      /* A potential lossage is where we have a case where two insns
717 		 can be combined as long as they are both in the loop, but
718 		 we move one of them outside the loop.  For large loops,
719 		 this can lose.  The most common case of this is the address
720 		 of a function being called.
721 
722 		 Therefore, if this register is marked as being used exactly
723 		 once if we are in a loop with calls (a "large loop"), see if
724 		 we can replace the usage of this register with the source
725 		 of this SET.  If we can, delete this insn.
726 
727 		 Don't do this if P has a REG_RETVAL note or if we have
728 		 SMALL_REGISTER_CLASSES and SET_SRC is a hard register.  */
729 
730 	      if (reg_single_usage && reg_single_usage[regno] != 0
731 		  && reg_single_usage[regno] != const0_rtx
732 		  && regno_first_uid[regno] == INSN_UID (p)
733 		  && (regno_last_uid[regno]
734 		      == INSN_UID (reg_single_usage[regno]))
735 		  && n_times_set[REGNO (SET_DEST (set))] == 1
736 		  && ! side_effects_p (SET_SRC (set))
737 		  && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
738 #ifdef SMALL_REGISTER_CLASSES
739 		  && ! (GET_CODE (SET_SRC (set)) == REG
740 			&& REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
741 #endif
742 		  /* This test is not redundant; SET_SRC (set) might be
743 		     a call-clobbered register and the life of REGNO
744 		     might span a call.  */
745 		  && ! modified_between_p (SET_SRC (set), p,
746 					  reg_single_usage[regno])
747 		  && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
748 					   reg_single_usage[regno]))
749 		{
750 		  /* Replace any usage in a REG_EQUAL note.  */
751 		  REG_NOTES (reg_single_usage[regno])
752 		    = replace_rtx (REG_NOTES (reg_single_usage[regno]),
753 				   SET_DEST (set), SET_SRC (set));
754 
755 		  PUT_CODE (p, NOTE);
756 		  NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
757 		  NOTE_SOURCE_FILE (p) = 0;
758 		  n_times_set[regno] = 0;
759 		  continue;
760 		}
761 
762 	      m = (struct movable *) alloca (sizeof (struct movable));
763 	      m->next = 0;
764 	      m->insn = p;
765 	      m->set_src = src;
766 	      m->dependencies = dependencies;
767 	      m->set_dest = SET_DEST (set);
768 	      m->force = 0;
769 	      m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
770 	      m->done = 0;
771 	      m->forces = 0;
772 	      m->partial = 0;
773 	      m->move_insn = move_insn;
774 	      m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
775 	      m->savemode = VOIDmode;
776 	      m->regno = regno;
777 	      /* Set M->cond if either invariant_p or consec_sets_invariant_p
778 		 returned 2 (only conditionally invariant).  */
779 	      m->cond = ((tem | tem1 | tem2) > 1);
780 	      m->global = (uid_luid[regno_last_uid[regno]] > INSN_LUID (end)
781 			   || uid_luid[regno_first_uid[regno]] < INSN_LUID (loop_start));
782 	      m->match = 0;
783 	      m->lifetime = (uid_luid[regno_last_uid[regno]]
784 			     - uid_luid[regno_first_uid[regno]]);
785 	      m->savings = n_times_used[regno];
786 	      if (find_reg_note (p, REG_RETVAL, NULL_RTX))
787 		m->savings += libcall_benefit (p);
788 	      n_times_set[regno] = move_insn ? -2 : -1;
789 	      /* Add M to the end of the chain MOVABLES.  */
790 	      if (movables == 0)
791 		movables = m;
792 	      else
793 		last_movable->next = m;
794 	      last_movable = m;
795 
796 	      if (m->consec > 0)
797 		{
798 		  /* Skip this insn, not checking REG_LIBCALL notes.  */
799 		  p = NEXT_INSN (p);
800 		  /* Skip the consecutive insns, if there are any.  */
801 		  p = skip_consec_insns (p, m->consec);
802 		  /* Back up to the last insn of the consecutive group.  */
803 		  p = prev_nonnote_insn (p);
804 
805 		  /* We must now reset m->move_insn, m->is_equiv, and possibly
806 		     m->set_src to correspond to the effects of all the
807 		     insns.  */
808 		  temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
809 		  if (temp)
810 		    m->set_src = XEXP (temp, 0), m->move_insn = 1;
811 		  else
812 		    {
813 		      temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
814 		      if (temp && CONSTANT_P (XEXP (temp, 0)))
815 			m->set_src = XEXP (temp, 0), m->move_insn = 1;
816 		      else
817 			m->move_insn = 0;
818 
819 		    }
820 		  m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
821 		}
822 	    }
823 	  /* If this register is always set within a STRICT_LOW_PART
824 	     or set to zero, then its high bytes are constant.
825 	     So clear them outside the loop and within the loop
826 	     just load the low bytes.
827 	     We must check that the machine has an instruction to do so.
828 	     Also, if the value loaded into the register
829 	     depends on the same register, this cannot be done.  */
830 	  else if (SET_SRC (set) == const0_rtx
831 		   && GET_CODE (NEXT_INSN (p)) == INSN
832 		   && (set1 = single_set (NEXT_INSN (p)))
833 		   && GET_CODE (set1) == SET
834 		   && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
835 		   && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
836 		   && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
837 		       == SET_DEST (set))
838 		   && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
839 	    {
840 	      register int regno = REGNO (SET_DEST (set));
841 	      if (n_times_set[regno] == 2)
842 		{
843 		  register struct movable *m;
844 		  m = (struct movable *) alloca (sizeof (struct movable));
845 		  m->next = 0;
846 		  m->insn = p;
847 		  m->set_dest = SET_DEST (set);
848 		  m->dependencies = 0;
849 		  m->force = 0;
850 		  m->consec = 0;
851 		  m->done = 0;
852 		  m->forces = 0;
853 		  m->move_insn = 0;
854 		  m->partial = 1;
855 		  /* If the insn may not be executed on some cycles,
856 		     we can't clear the whole reg; clear just high part.
857 		     Not even if the reg is used only within this loop.
858 		     Consider this:
859 		     while (1)
860 		       while (s != t) {
861 		         if (foo ()) x = *s;
862 			 use (x);
863 		       }
864 		     Clearing x before the inner loop could clobber a value
865 		     being saved from the last time around the outer loop.
866 		     However, if the reg is not used outside this loop
867 		     and all uses of the register are in the same
868 		     basic block as the store, there is no problem.
869 
870 		     If this insn was made by loop, we don't know its
871 		     INSN_LUID and hence must make a conservative
872 		     assumption. */
873 		  m->global = (INSN_UID (p) >= max_uid_for_loop
874 			       || (uid_luid[regno_last_uid[regno]]
875 				   > INSN_LUID (end))
876 			       || (uid_luid[regno_first_uid[regno]]
877 				   < INSN_LUID (p))
878 			       || (labels_in_range_p
879 				   (p, uid_luid[regno_first_uid[regno]])));
880 		  if (maybe_never && m->global)
881 		    m->savemode = GET_MODE (SET_SRC (set1));
882 		  else
883 		    m->savemode = VOIDmode;
884 		  m->regno = regno;
885 		  m->cond = 0;
886 		  m->match = 0;
887 		  m->lifetime = (uid_luid[regno_last_uid[regno]]
888 				 - uid_luid[regno_first_uid[regno]]);
889 		  m->savings = 1;
890 		  n_times_set[regno] = -1;
891 		  /* Add M to the end of the chain MOVABLES.  */
892 		  if (movables == 0)
893 		    movables = m;
894 		  else
895 		    last_movable->next = m;
896 		  last_movable = m;
897 		}
898 	    }
899 	}
900       /* Past a call insn, we get to insns which might not be executed
901 	 because the call might exit.  This matters for insns that trap.
902 	 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
903 	 so they don't count.  */
904       else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
905 	call_passed = 1;
906       /* Past a label or a jump, we get to insns for which we
907 	 can't count on whether or how many times they will be
908 	 executed during each iteration.  Therefore, we can
909 	 only move out sets of trivial variables
910 	 (those not used after the loop).  */
911       /* This code appears in three places, once in scan_loop, and twice
912 	 in strength_reduce.  */
913       else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
914 	       /* If we enter the loop in the middle, and scan around to the
915 		  beginning, don't set maybe_never for that.  This must be an
916 		  unconditional jump, otherwise the code at the top of the
917 		  loop might never be executed.  Unconditional jumps are
918 		  followed a by barrier then loop end.  */
919                && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
920 		     && NEXT_INSN (NEXT_INSN (p)) == end
921 		     && simplejump_p (p)))
922 	maybe_never = 1;
923       /* At the virtual top of a converted loop, insns are again known to
924 	 be executed: logically, the loop begins here even though the exit
925 	 code has been duplicated.  */
926       else if (GET_CODE (p) == NOTE
927 	       && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
928 	maybe_never = call_passed = 0;
929     }
930 
931   /* If one movable subsumes another, ignore that other.  */
932 
933   ignore_some_movables (movables);
934 
935   /* For each movable insn, see if the reg that it loads
936      leads when it dies right into another conditionally movable insn.
937      If so, record that the second insn "forces" the first one,
938      since the second can be moved only if the first is.  */
939 
940   force_movables (movables);
941 
942   /* See if there are multiple movable insns that load the same value.
943      If there are, make all but the first point at the first one
944      through the `match' field, and add the priorities of them
945      all together as the priority of the first.  */
946 
947   combine_movables (movables, nregs);
948 
949   /* Now consider each movable insn to decide whether it is worth moving.
950      Store 0 in n_times_set for each reg that is moved.  */
951 
952   move_movables (movables, threshold,
953 		 insn_count, loop_start, end, nregs);
954 
955   /* Now candidates that still are negative are those not moved.
956      Change n_times_set to indicate that those are not actually invariant.  */
957   for (i = 0; i < nregs; i++)
958     if (n_times_set[i] < 0)
959       n_times_set[i] = n_times_used[i];
960 
961   if (flag_strength_reduce)
962     strength_reduce (scan_start, end, loop_top,
963 		     insn_count, loop_start, end);
964 }
965 
966 /* Add elements to *OUTPUT to record all the pseudo-regs
967    mentioned in IN_THIS but not mentioned in NOT_IN_THIS.  */
968 
969 void
record_excess_regs(in_this,not_in_this,output)970 record_excess_regs (in_this, not_in_this, output)
971      rtx in_this, not_in_this;
972      rtx *output;
973 {
974   enum rtx_code code;
975   char *fmt;
976   int i;
977 
978   code = GET_CODE (in_this);
979 
980   switch (code)
981     {
982     case PC:
983     case CC0:
984     case CONST_INT:
985     case CONST_DOUBLE:
986     case CONST:
987     case SYMBOL_REF:
988     case LABEL_REF:
989       return;
990 
991     case REG:
992       if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
993 	  && ! reg_mentioned_p (in_this, not_in_this))
994 	*output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
995       return;
996     }
997 
998   fmt = GET_RTX_FORMAT (code);
999   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1000     {
1001       int j;
1002 
1003       switch (fmt[i])
1004 	{
1005 	case 'E':
1006 	  for (j = 0; j < XVECLEN (in_this, i); j++)
1007 	    record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1008 	  break;
1009 
1010 	case 'e':
1011 	  record_excess_regs (XEXP (in_this, i), not_in_this, output);
1012 	  break;
1013 	}
1014     }
1015 }
1016 
1017 /* Check what regs are referred to in the libcall block ending with INSN,
1018    aside from those mentioned in the equivalent value.
1019    If there are none, return 0.
1020    If there are one or more, return an EXPR_LIST containing all of them.  */
1021 
1022 static rtx
libcall_other_reg(insn,equiv)1023 libcall_other_reg (insn, equiv)
1024      rtx insn, equiv;
1025 {
1026   rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1027   rtx p = XEXP (note, 0);
1028   rtx output = 0;
1029 
1030   /* First, find all the regs used in the libcall block
1031      that are not mentioned as inputs to the result.  */
1032 
1033   while (p != insn)
1034     {
1035       if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1036 	  || GET_CODE (p) == CALL_INSN)
1037 	record_excess_regs (PATTERN (p), equiv, &output);
1038       p = NEXT_INSN (p);
1039     }
1040 
1041   return output;
1042 }
1043 
1044 /* Return 1 if all uses of REG
1045    are between INSN and the end of the basic block.  */
1046 
1047 static int
reg_in_basic_block_p(insn,reg)1048 reg_in_basic_block_p (insn, reg)
1049      rtx insn, reg;
1050 {
1051   int regno = REGNO (reg);
1052   rtx p;
1053 
1054   if (regno_first_uid[regno] != INSN_UID (insn))
1055     return 0;
1056 
1057   /* Search this basic block for the already recorded last use of the reg.  */
1058   for (p = insn; p; p = NEXT_INSN (p))
1059     {
1060       switch (GET_CODE (p))
1061 	{
1062 	case NOTE:
1063 	  break;
1064 
1065 	case INSN:
1066 	case CALL_INSN:
1067 	  /* Ordinary insn: if this is the last use, we win.  */
1068 	  if (regno_last_uid[regno] == INSN_UID (p))
1069 	    return 1;
1070 	  break;
1071 
1072 	case JUMP_INSN:
1073 	  /* Jump insn: if this is the last use, we win.  */
1074 	  if (regno_last_uid[regno] == INSN_UID (p))
1075 	    return 1;
1076 	  /* Otherwise, it's the end of the basic block, so we lose.  */
1077 	  return 0;
1078 
1079 	case CODE_LABEL:
1080 	case BARRIER:
1081 	  /* It's the end of the basic block, so we lose.  */
1082 	  return 0;
1083 	}
1084     }
1085 
1086   /* The "last use" doesn't follow the "first use"??  */
1087   abort ();
1088 }
1089 
1090 /* Compute the benefit of eliminating the insns in the block whose
1091    last insn is LAST.  This may be a group of insns used to compute a
1092    value directly or can contain a library call.  */
1093 
1094 static int
libcall_benefit(last)1095 libcall_benefit (last)
1096      rtx last;
1097 {
1098   rtx insn;
1099   int benefit = 0;
1100 
1101   for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1102        insn != last; insn = NEXT_INSN (insn))
1103     {
1104       if (GET_CODE (insn) == CALL_INSN)
1105 	benefit += 10;		/* Assume at least this many insns in a library
1106 				   routine. */
1107       else if (GET_CODE (insn) == INSN
1108 	       && GET_CODE (PATTERN (insn)) != USE
1109 	       && GET_CODE (PATTERN (insn)) != CLOBBER)
1110 	benefit++;
1111     }
1112 
1113   return benefit;
1114 }
1115 
1116 /* Skip COUNT insns from INSN, counting library calls as 1 insn.  */
1117 
1118 static rtx
skip_consec_insns(insn,count)1119 skip_consec_insns (insn, count)
1120      rtx insn;
1121      int count;
1122 {
1123   for (; count > 0; count--)
1124     {
1125       rtx temp;
1126 
1127       /* If first insn of libcall sequence, skip to end.  */
1128       /* Do this at start of loop, since INSN is guaranteed to
1129 	 be an insn here.  */
1130       if (GET_CODE (insn) != NOTE
1131 	  && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1132 	insn = XEXP (temp, 0);
1133 
1134       do insn = NEXT_INSN (insn);
1135       while (GET_CODE (insn) == NOTE);
1136     }
1137 
1138   return insn;
1139 }
1140 
1141 /* Ignore any movable whose insn falls within a libcall
1142    which is part of another movable.
1143    We make use of the fact that the movable for the libcall value
1144    was made later and so appears later on the chain.  */
1145 
1146 static void
ignore_some_movables(movables)1147 ignore_some_movables (movables)
1148      struct movable *movables;
1149 {
1150   register struct movable *m, *m1;
1151 
1152   for (m = movables; m; m = m->next)
1153     {
1154       /* Is this a movable for the value of a libcall?  */
1155       rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1156       if (note)
1157 	{
1158 	  rtx insn;
1159 	  /* Check for earlier movables inside that range,
1160 	     and mark them invalid.  We cannot use LUIDs here because
1161 	     insns created by loop.c for prior loops don't have LUIDs.
1162 	     Rather than reject all such insns from movables, we just
1163 	     explicitly check each insn in the libcall (since invariant
1164 	     libcalls aren't that common).  */
1165 	  for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1166 	    for (m1 = movables; m1 != m; m1 = m1->next)
1167 	      if (m1->insn == insn)
1168 		m1->done = 1;
1169 	}
1170     }
1171 }
1172 
1173 /* For each movable insn, see if the reg that it loads
1174    leads when it dies right into another conditionally movable insn.
1175    If so, record that the second insn "forces" the first one,
1176    since the second can be moved only if the first is.  */
1177 
1178 static void
force_movables(movables)1179 force_movables (movables)
1180      struct movable *movables;
1181 {
1182   register struct movable *m, *m1;
1183   for (m1 = movables; m1; m1 = m1->next)
1184     /* Omit this if moving just the (SET (REG) 0) of a zero-extend.  */
1185     if (!m1->partial && !m1->done)
1186       {
1187 	int regno = m1->regno;
1188 	for (m = m1->next; m; m = m->next)
1189 	  /* ??? Could this be a bug?  What if CSE caused the
1190 	     register of M1 to be used after this insn?
1191 	     Since CSE does not update regno_last_uid,
1192 	     this insn M->insn might not be where it dies.
1193 	     But very likely this doesn't matter; what matters is
1194 	     that M's reg is computed from M1's reg.  */
1195 	  if (INSN_UID (m->insn) == regno_last_uid[regno]
1196 	      && !m->done)
1197 	    break;
1198 	if (m != 0 && m->set_src == m1->set_dest
1199 	    /* If m->consec, m->set_src isn't valid.  */
1200 	    && m->consec == 0)
1201 	  m = 0;
1202 
1203 	/* Increase the priority of the moving the first insn
1204 	   since it permits the second to be moved as well.  */
1205 	if (m != 0)
1206 	  {
1207 	    m->forces = m1;
1208 	    m1->lifetime += m->lifetime;
1209 	    m1->savings += m1->savings;
1210 	  }
1211       }
1212 }
1213 
1214 /* Find invariant expressions that are equal and can be combined into
1215    one register.  */
1216 
1217 static void
combine_movables(movables,nregs)1218 combine_movables (movables, nregs)
1219      struct movable *movables;
1220      int nregs;
1221 {
1222   register struct movable *m;
1223   char *matched_regs = (char *) alloca (nregs);
1224   enum machine_mode mode;
1225 
1226   /* Regs that are set more than once are not allowed to match
1227      or be matched.  I'm no longer sure why not.  */
1228   /* Perhaps testing m->consec_sets would be more appropriate here?  */
1229 
1230   for (m = movables; m; m = m->next)
1231     if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1232       {
1233 	register struct movable *m1;
1234 	int regno = m->regno;
1235 	rtx reg_note, reg_note1;
1236 
1237 	bzero (matched_regs, nregs);
1238 	matched_regs[regno] = 1;
1239 
1240 	for (m1 = movables; m1; m1 = m1->next)
1241 	  if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1242 	      /* A reg used outside the loop mustn't be eliminated.  */
1243 	      && !m1->global
1244 	      /* A reg used for zero-extending mustn't be eliminated.  */
1245 	      && !m1->partial
1246 	      && (matched_regs[m1->regno]
1247 		  ||
1248 		  (
1249 		   /* Can combine regs with different modes loaded from the
1250 		      same constant only if the modes are the same or
1251 		      if both are integer modes with M wider or the same
1252 		      width as M1.  The check for integer is redundant, but
1253 		      safe, since the only case of differing destination
1254 		      modes with equal sources is when both sources are
1255 		      VOIDmode, i.e., CONST_INT.  */
1256 		   (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1257 		    || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1258 			&& GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1259 			&& (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1260 			    >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1261 		   /* See if the source of M1 says it matches M.  */
1262 		   && ((GET_CODE (m1->set_src) == REG
1263 			&& matched_regs[REGNO (m1->set_src)])
1264 		       || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1265 						movables))))
1266 	      && ((m->dependencies == m1->dependencies)
1267 		  || rtx_equal_p (m->dependencies, m1->dependencies)))
1268 	    {
1269 	      m->lifetime += m1->lifetime;
1270 	      m->savings += m1->savings;
1271 	      m1->done = 1;
1272 	      m1->match = m;
1273 	      matched_regs[m1->regno] = 1;
1274 	    }
1275       }
1276 
1277   /* Now combine the regs used for zero-extension.
1278      This can be done for those not marked `global'
1279      provided their lives don't overlap.  */
1280 
1281   for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1282        mode = GET_MODE_WIDER_MODE (mode))
1283     {
1284       register struct movable *m0 = 0;
1285 
1286       /* Combine all the registers for extension from mode MODE.
1287 	 Don't combine any that are used outside this loop.  */
1288       for (m = movables; m; m = m->next)
1289 	if (m->partial && ! m->global
1290 	    && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1291 	  {
1292 	    register struct movable *m1;
1293 	    int first = uid_luid[regno_first_uid[m->regno]];
1294 	    int last = uid_luid[regno_last_uid[m->regno]];
1295 
1296 	    if (m0 == 0)
1297 	      {
1298 		/* First one: don't check for overlap, just record it.  */
1299 		m0 = m;
1300 		  continue;
1301 	      }
1302 
1303 	    /* Make sure they extend to the same mode.
1304 	       (Almost always true.)  */
1305 	    if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1306 		continue;
1307 
1308 	    /* We already have one: check for overlap with those
1309 	       already combined together.  */
1310 	    for (m1 = movables; m1 != m; m1 = m1->next)
1311 	      if (m1 == m0 || (m1->partial && m1->match == m0))
1312 		if (! (uid_luid[regno_first_uid[m1->regno]] > last
1313 		       || uid_luid[regno_last_uid[m1->regno]] < first))
1314 		  goto overlap;
1315 
1316 	    /* No overlap: we can combine this with the others.  */
1317 	    m0->lifetime += m->lifetime;
1318 	    m0->savings += m->savings;
1319 	    m->done = 1;
1320 	    m->match = m0;
1321 
1322 	  overlap: ;
1323 	  }
1324     }
1325 }
1326 
1327 /* Return 1 if regs X and Y will become the same if moved.  */
1328 
1329 static int
regs_match_p(x,y,movables)1330 regs_match_p (x, y, movables)
1331      rtx x, y;
1332      struct movable *movables;
1333 {
1334   int xn = REGNO (x);
1335   int yn = REGNO (y);
1336   struct movable *mx, *my;
1337 
1338   for (mx = movables; mx; mx = mx->next)
1339     if (mx->regno == xn)
1340       break;
1341 
1342   for (my = movables; my; my = my->next)
1343     if (my->regno == yn)
1344       break;
1345 
1346   return (mx && my
1347 	  && ((mx->match == my->match && mx->match != 0)
1348 	      || mx->match == my
1349 	      || mx == my->match));
1350 }
1351 
1352 /* Return 1 if X and Y are identical-looking rtx's.
1353    This is the Lisp function EQUAL for rtx arguments.
1354 
1355    If two registers are matching movables or a movable register and an
1356    equivalent constant, consider them equal.  */
1357 
1358 static int
rtx_equal_for_loop_p(x,y,movables)1359 rtx_equal_for_loop_p (x, y, movables)
1360      rtx x, y;
1361      struct movable *movables;
1362 {
1363   register int i;
1364   register int j;
1365   register struct movable *m;
1366   register enum rtx_code code;
1367   register char *fmt;
1368 
1369   if (x == y)
1370     return 1;
1371   if (x == 0 || y == 0)
1372     return 0;
1373 
1374   code = GET_CODE (x);
1375 
1376   /* If we have a register and a constant, they may sometimes be
1377      equal.  */
1378   if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1379       && CONSTANT_P (y))
1380     for (m = movables; m; m = m->next)
1381       if (m->move_insn && m->regno == REGNO (x)
1382 	  && rtx_equal_p (m->set_src, y))
1383 	return 1;
1384 
1385   else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1386 	   && CONSTANT_P (x))
1387     for (m = movables; m; m = m->next)
1388       if (m->move_insn && m->regno == REGNO (y)
1389 	  && rtx_equal_p (m->set_src, x))
1390 	return 1;
1391 
1392   /* Otherwise, rtx's of different codes cannot be equal.  */
1393   if (code != GET_CODE (y))
1394     return 0;
1395 
1396   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1397      (REG:SI x) and (REG:HI x) are NOT equivalent.  */
1398 
1399   if (GET_MODE (x) != GET_MODE (y))
1400     return 0;
1401 
1402   /* These three types of rtx's can be compared nonrecursively.  */
1403   if (code == REG)
1404     return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1405 
1406   if (code == LABEL_REF)
1407     return XEXP (x, 0) == XEXP (y, 0);
1408   if (code == SYMBOL_REF)
1409     return XSTR (x, 0) == XSTR (y, 0);
1410 
1411   /* Compare the elements.  If any pair of corresponding elements
1412      fail to match, return 0 for the whole things.  */
1413 
1414   fmt = GET_RTX_FORMAT (code);
1415   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1416     {
1417       switch (fmt[i])
1418 	{
1419 	case 'w':
1420 	  if (XWINT (x, i) != XWINT (y, i))
1421 	    return 0;
1422 	  break;
1423 
1424 	case 'i':
1425 	  if (XINT (x, i) != XINT (y, i))
1426 	    return 0;
1427 	  break;
1428 
1429 	case 'E':
1430 	  /* Two vectors must have the same length.  */
1431 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1432 	    return 0;
1433 
1434 	  /* And the corresponding elements must match.  */
1435 	  for (j = 0; j < XVECLEN (x, i); j++)
1436 	    if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1437 	      return 0;
1438 	  break;
1439 
1440 	case 'e':
1441 	  if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1442 	    return 0;
1443 	  break;
1444 
1445 	case 's':
1446 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1447 	    return 0;
1448 	  break;
1449 
1450 	case 'u':
1451 	  /* These are just backpointers, so they don't matter.  */
1452 	  break;
1453 
1454 	case '0':
1455 	  break;
1456 
1457 	  /* It is believed that rtx's at this level will never
1458 	     contain anything but integers and other rtx's,
1459 	     except for within LABEL_REFs and SYMBOL_REFs.  */
1460 	default:
1461 	  abort ();
1462 	}
1463     }
1464   return 1;
1465 }
1466 
1467 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1468   insns in INSNS which use thet reference.  */
1469 
1470 static void
add_label_notes(x,insns)1471 add_label_notes (x, insns)
1472      rtx x;
1473      rtx insns;
1474 {
1475   enum rtx_code code = GET_CODE (x);
1476   int i, j;
1477   char *fmt;
1478   rtx insn;
1479 
1480   if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1481     {
1482       rtx next = next_real_insn (XEXP (x, 0));
1483 
1484       /* Don't record labels that refer to dispatch tables.
1485 	 This is not necessary, since the tablejump references the same label.
1486 	 And if we did record them, flow.c would make worse code.  */
1487       if (next == 0
1488 	  || ! (GET_CODE (next) == JUMP_INSN
1489 		&& (GET_CODE (PATTERN (next)) == ADDR_VEC
1490 		    || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1491 	{
1492 	  for (insn = insns; insn; insn = NEXT_INSN (insn))
1493 	    if (reg_mentioned_p (XEXP (x, 0), insn))
1494 	      REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1495 					  REG_NOTES (insn));
1496 	}
1497       return;
1498     }
1499 
1500   fmt = GET_RTX_FORMAT (code);
1501   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1502     {
1503       if (fmt[i] == 'e')
1504 	add_label_notes (XEXP (x, i), insns);
1505       else if (fmt[i] == 'E')
1506 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1507 	  add_label_notes (XVECEXP (x, i, j), insns);
1508     }
1509 }
1510 
1511 /* Scan MOVABLES, and move the insns that deserve to be moved.
1512    If two matching movables are combined, replace one reg with the
1513    other throughout.  */
1514 
1515 static void
move_movables(movables,threshold,insn_count,loop_start,end,nregs)1516 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1517      struct movable *movables;
1518      int threshold;
1519      int insn_count;
1520      rtx loop_start;
1521      rtx end;
1522      int nregs;
1523 {
1524   rtx new_start = 0;
1525   register struct movable *m;
1526   register rtx p;
1527   /* Map of pseudo-register replacements to handle combining
1528      when we move several insns that load the same value
1529      into different pseudo-registers.  */
1530   rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1531   char *already_moved = (char *) alloca (nregs);
1532 
1533   bzero (already_moved, nregs);
1534   bzero (reg_map, nregs * sizeof (rtx));
1535 
1536   num_movables = 0;
1537 
1538   for (m = movables; m; m = m->next)
1539     {
1540       /* Describe this movable insn.  */
1541 
1542       if (loop_dump_stream)
1543 	{
1544 	  fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1545 		   INSN_UID (m->insn), m->regno, m->lifetime);
1546 	  if (m->consec > 0)
1547 	    fprintf (loop_dump_stream, "consec %d, ", m->consec);
1548 	  if (m->cond)
1549 	    fprintf (loop_dump_stream, "cond ");
1550 	  if (m->force)
1551 	    fprintf (loop_dump_stream, "force ");
1552 	  if (m->global)
1553 	    fprintf (loop_dump_stream, "global ");
1554 	  if (m->done)
1555 	    fprintf (loop_dump_stream, "done ");
1556 	  if (m->move_insn)
1557 	    fprintf (loop_dump_stream, "move-insn ");
1558 	  if (m->match)
1559 	    fprintf (loop_dump_stream, "matches %d ",
1560 		     INSN_UID (m->match->insn));
1561 	  if (m->forces)
1562 	    fprintf (loop_dump_stream, "forces %d ",
1563 		     INSN_UID (m->forces->insn));
1564 	}
1565 
1566       /* Count movables.  Value used in heuristics in strength_reduce.  */
1567       num_movables++;
1568 
1569       /* Ignore the insn if it's already done (it matched something else).
1570 	 Otherwise, see if it is now safe to move.  */
1571 
1572       if (!m->done
1573 	  && (! m->cond
1574 	      || (1 == invariant_p (m->set_src)
1575 		  && (m->dependencies == 0
1576 		      || 1 == invariant_p (m->dependencies))
1577 		  && (m->consec == 0
1578 		      || 1 == consec_sets_invariant_p (m->set_dest,
1579 						       m->consec + 1,
1580 						       m->insn))))
1581 	  && (! m->forces || m->forces->done))
1582 	{
1583 	  register int regno;
1584 	  register rtx p;
1585 	  int savings = m->savings;
1586 
1587 	  /* We have an insn that is safe to move.
1588 	     Compute its desirability.  */
1589 
1590 	  p = m->insn;
1591 	  regno = m->regno;
1592 
1593 	  if (loop_dump_stream)
1594 	    fprintf (loop_dump_stream, "savings %d ", savings);
1595 
1596 	  if (moved_once[regno])
1597 	    {
1598 	      insn_count *= 2;
1599 
1600 	      if (loop_dump_stream)
1601 		fprintf (loop_dump_stream, "halved since already moved ");
1602 	    }
1603 
1604 	  /* An insn MUST be moved if we already moved something else
1605 	     which is safe only if this one is moved too: that is,
1606 	     if already_moved[REGNO] is nonzero.  */
1607 
1608 	  /* An insn is desirable to move if the new lifetime of the
1609 	     register is no more than THRESHOLD times the old lifetime.
1610 	     If it's not desirable, it means the loop is so big
1611 	     that moving won't speed things up much,
1612 	     and it is liable to make register usage worse.  */
1613 
1614 	  /* It is also desirable to move if it can be moved at no
1615 	     extra cost because something else was already moved.  */
1616 
1617 	  if (already_moved[regno]
1618 	      || (threshold * savings * m->lifetime) >= insn_count
1619 	      || (m->forces && m->forces->done
1620 		  && n_times_used[m->forces->regno] == 1))
1621 	    {
1622 	      int count;
1623 	      register struct movable *m1;
1624 	      rtx first;
1625 
1626 	      /* Now move the insns that set the reg.  */
1627 
1628 	      if (m->partial && m->match)
1629 		{
1630 		  rtx newpat, i1;
1631 		  rtx r1, r2;
1632 		  /* Find the end of this chain of matching regs.
1633 		     Thus, we load each reg in the chain from that one reg.
1634 		     And that reg is loaded with 0 directly,
1635 		     since it has ->match == 0.  */
1636 		  for (m1 = m; m1->match; m1 = m1->match);
1637 		  newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1638 					  SET_DEST (PATTERN (m1->insn)));
1639 		  i1 = emit_insn_before (newpat, loop_start);
1640 
1641 		  /* Mark the moved, invariant reg as being allowed to
1642 		     share a hard reg with the other matching invariant.  */
1643 		  REG_NOTES (i1) = REG_NOTES (m->insn);
1644 		  r1 = SET_DEST (PATTERN (m->insn));
1645 		  r2 = SET_DEST (PATTERN (m1->insn));
1646 		  regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1647 					    gen_rtx (EXPR_LIST, VOIDmode, r2,
1648 						     regs_may_share));
1649 		  delete_insn (m->insn);
1650 
1651 		  if (new_start == 0)
1652 		    new_start = i1;
1653 
1654 		  if (loop_dump_stream)
1655 		    fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1656 		}
1657 	      /* If we are to re-generate the item being moved with a
1658 		 new move insn, first delete what we have and then emit
1659 		 the move insn before the loop.  */
1660 	      else if (m->move_insn)
1661 		{
1662 		  rtx i1, temp;
1663 
1664 		  for (count = m->consec; count >= 0; count--)
1665 		    {
1666 		      /* If this is the first insn of a library call sequence,
1667 			 skip to the end.  */
1668 		      if (GET_CODE (p) != NOTE
1669 			  && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1670 			p = XEXP (temp, 0);
1671 
1672 		      /* If this is the last insn of a libcall sequence, then
1673 			 delete every insn in the sequence except the last.
1674 			 The last insn is handled in the normal manner.  */
1675 		      if (GET_CODE (p) != NOTE
1676 			  && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1677 			{
1678 			  temp = XEXP (temp, 0);
1679 			  while (temp != p)
1680 			    temp = delete_insn (temp);
1681 			}
1682 
1683 		      p = delete_insn (p);
1684 		    }
1685 
1686 		  start_sequence ();
1687 		  emit_move_insn (m->set_dest, m->set_src);
1688 		  temp = get_insns ();
1689 		  end_sequence ();
1690 
1691 		  add_label_notes (m->set_src, temp);
1692 
1693 		  i1 = emit_insns_before (temp, loop_start);
1694 		  if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1695 		    REG_NOTES (i1)
1696 		      = gen_rtx (EXPR_LIST,
1697 				 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1698 				 m->set_src, REG_NOTES (i1));
1699 
1700 		  if (loop_dump_stream)
1701 		    fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1702 
1703 		  /* The more regs we move, the less we like moving them.  */
1704 		  threshold -= 3;
1705 		}
1706 	      else
1707 		{
1708 		  for (count = m->consec; count >= 0; count--)
1709 		    {
1710 		      rtx i1, temp;
1711 
1712 		      /* If first insn of libcall sequence, skip to end. */
1713 		      /* Do this at start of loop, since p is guaranteed to
1714 			 be an insn here.  */
1715 		      if (GET_CODE (p) != NOTE
1716 			  && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1717 			p = XEXP (temp, 0);
1718 
1719 		      /* If last insn of libcall sequence, move all
1720 			 insns except the last before the loop.  The last
1721 			 insn is handled in the normal manner.  */
1722 		      if (GET_CODE (p) != NOTE
1723 			  && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1724 			{
1725 			  rtx fn_address = 0;
1726 			  rtx fn_reg = 0;
1727 			  rtx fn_address_insn = 0;
1728 
1729 			  first = 0;
1730 			  for (temp = XEXP (temp, 0); temp != p;
1731 			       temp = NEXT_INSN (temp))
1732 			    {
1733 			      rtx body;
1734 			      rtx n;
1735 			      rtx next;
1736 
1737 			      if (GET_CODE (temp) == NOTE)
1738 				continue;
1739 
1740 			      body = PATTERN (temp);
1741 
1742 			      /* Find the next insn after TEMP,
1743 				 not counting USE or NOTE insns.  */
1744 			      for (next = NEXT_INSN (temp); next != p;
1745 				   next = NEXT_INSN (next))
1746 				if (! (GET_CODE (next) == INSN
1747 				       && GET_CODE (PATTERN (next)) == USE)
1748 				    && GET_CODE (next) != NOTE)
1749 				  break;
1750 
1751 			      /* If that is the call, this may be the insn
1752 				 that loads the function address.
1753 
1754 				 Extract the function address from the insn
1755 				 that loads it into a register.
1756 				 If this insn was cse'd, we get incorrect code.
1757 
1758 				 So emit a new move insn that copies the
1759 				 function address into the register that the
1760 				 call insn will use.  flow.c will delete any
1761 				 redundant stores that we have created.  */
1762 			      if (GET_CODE (next) == CALL_INSN
1763 				  && GET_CODE (body) == SET
1764 				  && GET_CODE (SET_DEST (body)) == REG
1765 				  && (n = find_reg_note (temp, REG_EQUAL,
1766 							 NULL_RTX)))
1767 				{
1768 				  fn_reg = SET_SRC (body);
1769 				  if (GET_CODE (fn_reg) != REG)
1770 				    fn_reg = SET_DEST (body);
1771 				  fn_address = XEXP (n, 0);
1772 				  fn_address_insn = temp;
1773 				}
1774 			      /* We have the call insn.
1775 				 If it uses the register we suspect it might,
1776 				 load it with the correct address directly.  */
1777 			      if (GET_CODE (temp) == CALL_INSN
1778 				  && fn_address != 0
1779 				  && reg_referenced_p (fn_reg, body))
1780 				emit_insn_after (gen_move_insn (fn_reg,
1781 								fn_address),
1782 						 fn_address_insn);
1783 
1784 			      if (GET_CODE (temp) == CALL_INSN)
1785 				i1 = emit_call_insn_before (body, loop_start);
1786 			      else
1787 				i1 = emit_insn_before (body, loop_start);
1788 			      if (first == 0)
1789 				first = i1;
1790 			      if (temp == fn_address_insn)
1791 				fn_address_insn = i1;
1792 			      REG_NOTES (i1) = REG_NOTES (temp);
1793 			      delete_insn (temp);
1794 			    }
1795 			}
1796 		      if (m->savemode != VOIDmode)
1797 			{
1798 			  /* P sets REG to zero; but we should clear only
1799 			     the bits that are not covered by the mode
1800 			     m->savemode.  */
1801 			  rtx reg = m->set_dest;
1802 			  rtx sequence;
1803 			  rtx tem;
1804 
1805 			  start_sequence ();
1806 			  tem = expand_binop
1807 			    (GET_MODE (reg), and_optab, reg,
1808 			     GEN_INT ((((HOST_WIDE_INT) 1
1809 					<< GET_MODE_BITSIZE (m->savemode)))
1810 				      - 1),
1811 			     reg, 1, OPTAB_LIB_WIDEN);
1812 			  if (tem == 0)
1813 			    abort ();
1814 			  if (tem != reg)
1815 			    emit_move_insn (reg, tem);
1816 			  sequence = gen_sequence ();
1817 			  end_sequence ();
1818 			  i1 = emit_insn_before (sequence, loop_start);
1819 			}
1820 		      else if (GET_CODE (p) == CALL_INSN)
1821 			i1 = emit_call_insn_before (PATTERN (p), loop_start);
1822 		      else
1823 			i1 = emit_insn_before (PATTERN (p), loop_start);
1824 
1825 		      REG_NOTES (i1) = REG_NOTES (p);
1826 
1827 		      /* If there is a REG_EQUAL note present whose value is
1828 			 not loop invariant, then delete it, since it may
1829 			 cause problems with later optimization passes.
1830 			 It is possible for cse to create such notes
1831 			 like this as a result of record_jump_cond.  */
1832 
1833 		      if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1834 			  && ! invariant_p (XEXP (temp, 0)))
1835 			remove_note (i1, temp);
1836 
1837 		      if (new_start == 0)
1838 			new_start = i1;
1839 
1840 		      if (loop_dump_stream)
1841 			fprintf (loop_dump_stream, " moved to %d",
1842 				 INSN_UID (i1));
1843 
1844 #if 0
1845 		      /* This isn't needed because REG_NOTES is copied
1846 			 below and is wrong since P might be a PARALLEL.  */
1847 		      if (REG_NOTES (i1) == 0
1848 			  && ! m->partial /* But not if it's a zero-extend clr. */
1849 			  && ! m->global /* and not if used outside the loop
1850 					    (since it might get set outside).  */
1851 			  && CONSTANT_P (SET_SRC (PATTERN (p))))
1852 			REG_NOTES (i1)
1853 			  = gen_rtx (EXPR_LIST, REG_EQUAL,
1854 				     SET_SRC (PATTERN (p)), REG_NOTES (i1));
1855 #endif
1856 
1857 		      /* If library call, now fix the REG_NOTES that contain
1858 			 insn pointers, namely REG_LIBCALL on FIRST
1859 			 and REG_RETVAL on I1.  */
1860 		      if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1861 			{
1862 			  XEXP (temp, 0) = first;
1863 			  temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1864 			  XEXP (temp, 0) = i1;
1865 			}
1866 
1867 		      delete_insn (p);
1868 		      do p = NEXT_INSN (p);
1869 		      while (p && GET_CODE (p) == NOTE);
1870 		    }
1871 
1872 		  /* The more regs we move, the less we like moving them.  */
1873 		  threshold -= 3;
1874 		}
1875 
1876 	      /* Any other movable that loads the same register
1877 		 MUST be moved.  */
1878 	      already_moved[regno] = 1;
1879 
1880 	      /* This reg has been moved out of one loop.  */
1881 	      moved_once[regno] = 1;
1882 
1883 	      /* The reg set here is now invariant.  */
1884 	      if (! m->partial)
1885 		n_times_set[regno] = 0;
1886 
1887 	      m->done = 1;
1888 
1889 	      /* Change the length-of-life info for the register
1890 		 to say it lives at least the full length of this loop.
1891 		 This will help guide optimizations in outer loops.  */
1892 
1893 	      if (uid_luid[regno_first_uid[regno]] > INSN_LUID (loop_start))
1894 		/* This is the old insn before all the moved insns.
1895 		   We can't use the moved insn because it is out of range
1896 		   in uid_luid.  Only the old insns have luids.  */
1897 		regno_first_uid[regno] = INSN_UID (loop_start);
1898 	      if (uid_luid[regno_last_uid[regno]] < INSN_LUID (end))
1899 		regno_last_uid[regno] = INSN_UID (end);
1900 
1901 	      /* Combine with this moved insn any other matching movables.  */
1902 
1903 	      if (! m->partial)
1904 		for (m1 = movables; m1; m1 = m1->next)
1905 		  if (m1->match == m)
1906 		    {
1907 		      rtx temp;
1908 
1909 		      /* Schedule the reg loaded by M1
1910 			 for replacement so that shares the reg of M.
1911 			 If the modes differ (only possible in restricted
1912 			 circumstances, make a SUBREG.  */
1913 		      if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
1914 			reg_map[m1->regno] = m->set_dest;
1915 		      else
1916 			reg_map[m1->regno]
1917 			  = gen_lowpart_common (GET_MODE (m1->set_dest),
1918 						m->set_dest);
1919 
1920 		      /* Get rid of the matching insn
1921 			 and prevent further processing of it.  */
1922 		      m1->done = 1;
1923 
1924 		      /* if library call, delete all insn except last, which
1925 			 is deleted below */
1926 		      if (temp = find_reg_note (m1->insn, REG_RETVAL,
1927 						NULL_RTX))
1928 			{
1929 			  for (temp = XEXP (temp, 0); temp != m1->insn;
1930 			       temp = NEXT_INSN (temp))
1931 			    delete_insn (temp);
1932 			}
1933 		      delete_insn (m1->insn);
1934 
1935 		      /* Any other movable that loads the same register
1936 			 MUST be moved.  */
1937 		      already_moved[m1->regno] = 1;
1938 
1939 		      /* The reg merged here is now invariant,
1940 			 if the reg it matches is invariant.  */
1941 		      if (! m->partial)
1942 			n_times_set[m1->regno] = 0;
1943 		    }
1944 	    }
1945 	  else if (loop_dump_stream)
1946 	    fprintf (loop_dump_stream, "not desirable");
1947 	}
1948       else if (loop_dump_stream && !m->match)
1949 	fprintf (loop_dump_stream, "not safe");
1950 
1951       if (loop_dump_stream)
1952 	fprintf (loop_dump_stream, "\n");
1953     }
1954 
1955   if (new_start == 0)
1956     new_start = loop_start;
1957 
1958   /* Go through all the instructions in the loop, making
1959      all the register substitutions scheduled in REG_MAP.  */
1960   for (p = new_start; p != end; p = NEXT_INSN (p))
1961     if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1962 	|| GET_CODE (p) == CALL_INSN)
1963       {
1964 	replace_regs (PATTERN (p), reg_map, nregs, 0);
1965 	replace_regs (REG_NOTES (p), reg_map, nregs, 0);
1966 	INSN_CODE (p) = -1;
1967       }
1968 }
1969 
1970 #if 0
1971 /* Scan X and replace the address of any MEM in it with ADDR.
1972    REG is the address that MEM should have before the replacement.  */
1973 
1974 static void
1975 replace_call_address (x, reg, addr)
1976      rtx x, reg, addr;
1977 {
1978   register enum rtx_code code;
1979   register int i;
1980   register char *fmt;
1981 
1982   if (x == 0)
1983     return;
1984   code = GET_CODE (x);
1985   switch (code)
1986     {
1987     case PC:
1988     case CC0:
1989     case CONST_INT:
1990     case CONST_DOUBLE:
1991     case CONST:
1992     case SYMBOL_REF:
1993     case LABEL_REF:
1994     case REG:
1995       return;
1996 
1997     case SET:
1998       /* Short cut for very common case.  */
1999       replace_call_address (XEXP (x, 1), reg, addr);
2000       return;
2001 
2002     case CALL:
2003       /* Short cut for very common case.  */
2004       replace_call_address (XEXP (x, 0), reg, addr);
2005       return;
2006 
2007     case MEM:
2008       /* If this MEM uses a reg other than the one we expected,
2009 	 something is wrong.  */
2010       if (XEXP (x, 0) != reg)
2011 	abort ();
2012       XEXP (x, 0) = addr;
2013       return;
2014     }
2015 
2016   fmt = GET_RTX_FORMAT (code);
2017   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2018     {
2019       if (fmt[i] == 'e')
2020 	replace_call_address (XEXP (x, i), reg, addr);
2021       if (fmt[i] == 'E')
2022 	{
2023 	  register int j;
2024 	  for (j = 0; j < XVECLEN (x, i); j++)
2025 	    replace_call_address (XVECEXP (x, i, j), reg, addr);
2026 	}
2027     }
2028 }
2029 #endif
2030 
2031 /* Return the number of memory refs to addresses that vary
2032    in the rtx X.  */
2033 
2034 static int
count_nonfixed_reads(x)2035 count_nonfixed_reads (x)
2036      rtx x;
2037 {
2038   register enum rtx_code code;
2039   register int i;
2040   register char *fmt;
2041   int value;
2042 
2043   if (x == 0)
2044     return 0;
2045 
2046   code = GET_CODE (x);
2047   switch (code)
2048     {
2049     case PC:
2050     case CC0:
2051     case CONST_INT:
2052     case CONST_DOUBLE:
2053     case CONST:
2054     case SYMBOL_REF:
2055     case LABEL_REF:
2056     case REG:
2057       return 0;
2058 
2059     case MEM:
2060       return ((invariant_p (XEXP (x, 0)) != 1)
2061 	      + count_nonfixed_reads (XEXP (x, 0)));
2062     }
2063 
2064   value = 0;
2065   fmt = GET_RTX_FORMAT (code);
2066   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2067     {
2068       if (fmt[i] == 'e')
2069 	value += count_nonfixed_reads (XEXP (x, i));
2070       if (fmt[i] == 'E')
2071 	{
2072 	  register int j;
2073 	  for (j = 0; j < XVECLEN (x, i); j++)
2074 	    value += count_nonfixed_reads (XVECEXP (x, i, j));
2075 	}
2076     }
2077   return value;
2078 }
2079 
2080 
2081 #if 0
2082 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2083    Replace it with an instruction to load just the low bytes
2084    if the machine supports such an instruction,
2085    and insert above LOOP_START an instruction to clear the register.  */
2086 
2087 static void
2088 constant_high_bytes (p, loop_start)
2089      rtx p, loop_start;
2090 {
2091   register rtx new;
2092   register int insn_code_number;
2093 
2094   /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2095      to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...).  */
2096 
2097   new = gen_rtx (SET, VOIDmode,
2098 		 gen_rtx (STRICT_LOW_PART, VOIDmode,
2099 			  gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2100 				   SET_DEST (PATTERN (p)),
2101 				   0)),
2102 		 XEXP (SET_SRC (PATTERN (p)), 0));
2103   insn_code_number = recog (new, p);
2104 
2105   if (insn_code_number)
2106     {
2107       register int i;
2108 
2109       /* Clear destination register before the loop.  */
2110       emit_insn_before (gen_rtx (SET, VOIDmode,
2111 				 SET_DEST (PATTERN (p)),
2112 				 const0_rtx),
2113 			loop_start);
2114 
2115       /* Inside the loop, just load the low part.  */
2116       PATTERN (p) = new;
2117     }
2118 }
2119 #endif
2120 
2121 /* Scan a loop setting the variables `unknown_address_altered',
2122    `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2123    and `loop_has_volatile'.
2124    Also, fill in the array `loop_store_mems'.  */
2125 
2126 static void
prescan_loop(start,end)2127 prescan_loop (start, end)
2128      rtx start, end;
2129 {
2130   register int level = 1;
2131   register rtx insn;
2132 
2133   unknown_address_altered = 0;
2134   loop_has_call = 0;
2135   loop_has_volatile = 0;
2136   loop_store_mems_idx = 0;
2137 
2138   num_mem_sets = 0;
2139   loops_enclosed = 1;
2140   loop_continue = 0;
2141 
2142   for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2143        insn = NEXT_INSN (insn))
2144     {
2145       if (GET_CODE (insn) == NOTE)
2146 	{
2147 	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2148 	    {
2149 	      ++level;
2150 	      /* Count number of loops contained in this one.  */
2151 	      loops_enclosed++;
2152 	    }
2153 	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2154 	    {
2155 	      --level;
2156 	      if (level == 0)
2157 		{
2158 		  end = insn;
2159 		  break;
2160 		}
2161 	    }
2162 	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2163 	    {
2164 	      if (level == 1)
2165 		loop_continue = insn;
2166 	    }
2167 	}
2168       else if (GET_CODE (insn) == CALL_INSN)
2169 	{
2170 	  unknown_address_altered = 1;
2171 	  loop_has_call = 1;
2172 	}
2173       else
2174 	{
2175 	  if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2176 	    {
2177 	      if (volatile_refs_p (PATTERN (insn)))
2178 		loop_has_volatile = 1;
2179 
2180 	      note_stores (PATTERN (insn), note_addr_stored);
2181 	    }
2182 	}
2183     }
2184 }
2185 
2186 /* Scan the function looking for loops.  Record the start and end of each loop.
2187    Also mark as invalid loops any loops that contain a setjmp or are branched
2188    to from outside the loop.  */
2189 
2190 static void
find_and_verify_loops(f)2191 find_and_verify_loops (f)
2192      rtx f;
2193 {
2194   rtx insn, label;
2195   int current_loop = -1;
2196   int next_loop = -1;
2197   int loop;
2198 
2199   /* If there are jumps to undefined labels,
2200      treat them as jumps out of any/all loops.
2201      This also avoids writing past end of tables when there are no loops.  */
2202   uid_loop_num[0] = -1;
2203 
2204   /* Find boundaries of loops, mark which loops are contained within
2205      loops, and invalidate loops that have setjmp.  */
2206 
2207   for (insn = f; insn; insn = NEXT_INSN (insn))
2208     {
2209       if (GET_CODE (insn) == NOTE)
2210 	switch (NOTE_LINE_NUMBER (insn))
2211 	  {
2212 	  case NOTE_INSN_LOOP_BEG:
2213 	    loop_number_loop_starts[++next_loop] =  insn;
2214 	    loop_number_loop_ends[next_loop] = 0;
2215 	    loop_outer_loop[next_loop] = current_loop;
2216 	    loop_invalid[next_loop] = 0;
2217 	    loop_number_exit_labels[next_loop] = 0;
2218 	    current_loop = next_loop;
2219 	    break;
2220 
2221 	  case NOTE_INSN_SETJMP:
2222 	    /* In this case, we must invalidate our current loop and any
2223 	       enclosing loop.  */
2224 	    for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2225 	      {
2226 		loop_invalid[loop] = 1;
2227 		if (loop_dump_stream)
2228 		  fprintf (loop_dump_stream,
2229 			   "\nLoop at %d ignored due to setjmp.\n",
2230 			   INSN_UID (loop_number_loop_starts[loop]));
2231 	      }
2232 	    break;
2233 
2234 	  case NOTE_INSN_LOOP_END:
2235 	    if (current_loop == -1)
2236 	      abort ();
2237 
2238 	    loop_number_loop_ends[current_loop] = insn;
2239 	    current_loop = loop_outer_loop[current_loop];
2240 	    break;
2241 
2242 	  }
2243 
2244       /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2245 	 enclosing loop, but this doesn't matter.  */
2246       uid_loop_num[INSN_UID (insn)] = current_loop;
2247     }
2248 
2249   /* Any loop containing a label used in an initializer must be invalidated,
2250      because it can be jumped into from anywhere.  */
2251 
2252   for (label = forced_labels; label; label = XEXP (label, 1))
2253     {
2254       int loop_num;
2255 
2256       for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2257 	   loop_num != -1;
2258 	   loop_num = loop_outer_loop[loop_num])
2259 	loop_invalid[loop_num] = 1;
2260     }
2261 
2262   /* Now scan all insn's in the function.  If any JUMP_INSN branches into a
2263      loop that it is not contained within, that loop is marked invalid.
2264      If any INSN or CALL_INSN uses a label's address, then the loop containing
2265      that label is marked invalid, because it could be jumped into from
2266      anywhere.
2267 
2268      Also look for blocks of code ending in an unconditional branch that
2269      exits the loop.  If such a block is surrounded by a conditional
2270      branch around the block, move the block elsewhere (see below) and
2271      invert the jump to point to the code block.  This may eliminate a
2272      label in our loop and will simplify processing by both us and a
2273      possible second cse pass.  */
2274 
2275   for (insn = f; insn; insn = NEXT_INSN (insn))
2276     if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2277       {
2278 	int this_loop_num = uid_loop_num[INSN_UID (insn)];
2279 
2280 	if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2281 	  {
2282 	    rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2283 	    if (note)
2284 	      {
2285 		int loop_num;
2286 
2287 		for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2288 		     loop_num != -1;
2289 		     loop_num = loop_outer_loop[loop_num])
2290 		  loop_invalid[loop_num] = 1;
2291 	      }
2292 	  }
2293 
2294 	if (GET_CODE (insn) != JUMP_INSN)
2295 	  continue;
2296 
2297 	mark_loop_jump (PATTERN (insn), this_loop_num);
2298 
2299 	/* See if this is an unconditional branch outside the loop.  */
2300 	if (this_loop_num != -1
2301 	    && (GET_CODE (PATTERN (insn)) == RETURN
2302 		|| (simplejump_p (insn)
2303 		    && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2304 			!= this_loop_num)))
2305 	    && get_max_uid () < max_uid_for_loop)
2306 	  {
2307 	    rtx p;
2308 	    rtx our_next = next_real_insn (insn);
2309 
2310 	    /* Go backwards until we reach the start of the loop, a label,
2311 	       or a JUMP_INSN.  */
2312 	    for (p = PREV_INSN (insn);
2313 		 GET_CODE (p) != CODE_LABEL
2314 		 && ! (GET_CODE (p) == NOTE
2315 		       && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2316 		 && GET_CODE (p) != JUMP_INSN;
2317 		 p = PREV_INSN (p))
2318 	      ;
2319 
2320 	    /* If we stopped on a JUMP_INSN to the next insn after INSN,
2321 	       we have a block of code to try to move.
2322 
2323 	       We look backward and then forward from the target of INSN
2324 	       to find a BARRIER at the same loop depth as the target.
2325 	       If we find such a BARRIER, we make a new label for the start
2326 	       of the block, invert the jump in P and point it to that label,
2327 	       and move the block of code to the spot we found.  */
2328 
2329 	    if (GET_CODE (p) == JUMP_INSN
2330 		&& JUMP_LABEL (p) != 0
2331 		/* Just ignore jumps to labels that were never emitted.
2332 		   These always indicate compilation errors.  */
2333 		&& INSN_UID (JUMP_LABEL (p)) != 0
2334 		&& condjump_p (p)
2335 		&& ! simplejump_p (p)
2336 		&& next_real_insn (JUMP_LABEL (p)) == our_next)
2337 	      {
2338 		rtx target
2339 		  = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2340 		int target_loop_num = uid_loop_num[INSN_UID (target)];
2341 		rtx loc;
2342 
2343 		for (loc = target; loc; loc = PREV_INSN (loc))
2344 		  if (GET_CODE (loc) == BARRIER
2345 		      && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2346 		    break;
2347 
2348 		if (loc == 0)
2349 		  for (loc = target; loc; loc = NEXT_INSN (loc))
2350 		    if (GET_CODE (loc) == BARRIER
2351 			&& uid_loop_num[INSN_UID (loc)] == target_loop_num)
2352 		      break;
2353 
2354 		if (loc)
2355 		  {
2356 		    rtx cond_label = JUMP_LABEL (p);
2357 		    rtx new_label = get_label_after (p);
2358 
2359 		    /* Ensure our label doesn't go away.  */
2360 		    LABEL_NUSES (cond_label)++;
2361 
2362 		    /* Verify that uid_loop_num is large enough and that
2363 		       we can invert P. */
2364 		   if (invert_jump (p, new_label))
2365 		     {
2366 		       rtx q, r;
2367 
2368 		       /* Include the BARRIER after INSN and copy the
2369 			  block after LOC.  */
2370 		       new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2371 		       reorder_insns (new_label, NEXT_INSN (insn), loc);
2372 
2373 		       /* All those insns are now in TARGET_LOOP_NUM.  */
2374 		       for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2375 			    q = NEXT_INSN (q))
2376 			 uid_loop_num[INSN_UID (q)] = target_loop_num;
2377 
2378 		       /* The label jumped to by INSN is no longer a loop exit.
2379 			  Unless INSN does not have a label (e.g., it is a
2380 			  RETURN insn), search loop_number_exit_labels to find
2381 			  its label_ref, and remove it.  Also turn off
2382 			  LABEL_OUTSIDE_LOOP_P bit.  */
2383 		       if (JUMP_LABEL (insn))
2384 			 {
2385 			   for (q = 0,
2386 				r = loop_number_exit_labels[this_loop_num];
2387 				r; q = r, r = LABEL_NEXTREF (r))
2388 			     if (XEXP (r, 0) == JUMP_LABEL (insn))
2389 			       {
2390 				 LABEL_OUTSIDE_LOOP_P (r) = 0;
2391 				 if (q)
2392 				   LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2393 				 else
2394 				   loop_number_exit_labels[this_loop_num]
2395 				     = LABEL_NEXTREF (r);
2396 				 break;
2397 			       }
2398 
2399 			   /* If we didn't find it, then something is wrong. */
2400 			   if (! r)
2401 			     abort ();
2402 			 }
2403 
2404 		       /* P is now a jump outside the loop, so it must be put
2405 			  in loop_number_exit_labels, and marked as such.
2406 			  The easiest way to do this is to just call
2407 			  mark_loop_jump again for P.  */
2408 		       mark_loop_jump (PATTERN (p), this_loop_num);
2409 
2410 		       /* If INSN now jumps to the insn after it,
2411 			  delete INSN.  */
2412 		       if (JUMP_LABEL (insn) != 0
2413 			   && (next_real_insn (JUMP_LABEL (insn))
2414 			       == next_real_insn (insn)))
2415 			 delete_insn (insn);
2416 		     }
2417 
2418 		    /* Continue the loop after where the conditional
2419 		       branch used to jump, since the only branch insn
2420 		       in the block (if it still remains) is an inter-loop
2421 		       branch and hence needs no processing.  */
2422 		    insn = NEXT_INSN (cond_label);
2423 
2424 		    if (--LABEL_NUSES (cond_label) == 0)
2425 		      delete_insn (cond_label);
2426 		  }
2427 	      }
2428 	  }
2429       }
2430 }
2431 
2432 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2433    loops it is contained in, mark the target loop invalid.
2434 
2435    For speed, we assume that X is part of a pattern of a JUMP_INSN.  */
2436 
2437 static void
mark_loop_jump(x,loop_num)2438 mark_loop_jump (x, loop_num)
2439      rtx x;
2440      int loop_num;
2441 {
2442   int dest_loop;
2443   int outer_loop;
2444   int i;
2445 
2446   switch (GET_CODE (x))
2447     {
2448     case PC:
2449     case USE:
2450     case CLOBBER:
2451     case REG:
2452     case MEM:
2453     case CONST_INT:
2454     case CONST_DOUBLE:
2455     case RETURN:
2456       return;
2457 
2458     case CONST:
2459       /* There could be a label reference in here.  */
2460       mark_loop_jump (XEXP (x, 0), loop_num);
2461       return;
2462 
2463     case PLUS:
2464     case MINUS:
2465     case MULT:
2466     case LSHIFT:
2467       mark_loop_jump (XEXP (x, 0), loop_num);
2468       mark_loop_jump (XEXP (x, 1), loop_num);
2469       return;
2470 
2471     case SIGN_EXTEND:
2472     case ZERO_EXTEND:
2473       mark_loop_jump (XEXP (x, 0), loop_num);
2474       return;
2475 
2476     case LABEL_REF:
2477       dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2478 
2479       /* Link together all labels that branch outside the loop.  This
2480 	 is used by final_[bg]iv_value and the loop unrolling code.  Also
2481 	 mark this LABEL_REF so we know that this branch should predict
2482 	 false.  */
2483 
2484       if (dest_loop != loop_num && loop_num != -1)
2485 	{
2486 	  LABEL_OUTSIDE_LOOP_P (x) = 1;
2487 	  LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2488 	  loop_number_exit_labels[loop_num] = x;
2489 	}
2490 
2491       /* If this is inside a loop, but not in the current loop or one enclosed
2492 	 by it, it invalidates at least one loop.  */
2493 
2494       if (dest_loop == -1)
2495 	return;
2496 
2497       /* We must invalidate every nested loop containing the target of this
2498 	 label, except those that also contain the jump insn.  */
2499 
2500       for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2501 	{
2502 	  /* Stop when we reach a loop that also contains the jump insn.  */
2503 	  for (outer_loop = loop_num; outer_loop != -1;
2504 	       outer_loop = loop_outer_loop[outer_loop])
2505 	    if (dest_loop == outer_loop)
2506 	      return;
2507 
2508 	  /* If we get here, we know we need to invalidate a loop.  */
2509 	  if (loop_dump_stream && ! loop_invalid[dest_loop])
2510 	    fprintf (loop_dump_stream,
2511 		     "\nLoop at %d ignored due to multiple entry points.\n",
2512 		     INSN_UID (loop_number_loop_starts[dest_loop]));
2513 
2514 	  loop_invalid[dest_loop] = 1;
2515 	}
2516       return;
2517 
2518     case SET:
2519       /* If this is not setting pc, ignore.  */
2520       if (SET_DEST (x) == pc_rtx)
2521 	mark_loop_jump (SET_SRC (x), loop_num);
2522       return;
2523 
2524     case IF_THEN_ELSE:
2525       mark_loop_jump (XEXP (x, 1), loop_num);
2526       mark_loop_jump (XEXP (x, 2), loop_num);
2527       return;
2528 
2529     case PARALLEL:
2530     case ADDR_VEC:
2531       for (i = 0; i < XVECLEN (x, 0); i++)
2532 	mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2533       return;
2534 
2535     case ADDR_DIFF_VEC:
2536       for (i = 0; i < XVECLEN (x, 1); i++)
2537 	mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2538       return;
2539 
2540     default:
2541       /* Nothing else should occur in a JUMP_INSN.  */
2542       abort ();
2543     }
2544 }
2545 
2546 /* Return nonzero if there is a label in the range from
2547    insn INSN to and including the insn whose luid is END
2548    INSN must have an assigned luid (i.e., it must not have
2549    been previously created by loop.c).  */
2550 
2551 static int
labels_in_range_p(insn,end)2552 labels_in_range_p (insn, end)
2553      rtx insn;
2554      int end;
2555 {
2556   while (insn && INSN_LUID (insn) <= end)
2557     {
2558       if (GET_CODE (insn) == CODE_LABEL)
2559 	return 1;
2560       insn = NEXT_INSN (insn);
2561     }
2562 
2563   return 0;
2564 }
2565 
2566 /* Record that a memory reference X is being set.  */
2567 
2568 static void
note_addr_stored(x)2569 note_addr_stored (x)
2570      rtx x;
2571 {
2572   register int i;
2573 
2574   if (x == 0 || GET_CODE (x) != MEM)
2575     return;
2576 
2577   /* Count number of memory writes.
2578      This affects heuristics in strength_reduce.  */
2579   num_mem_sets++;
2580 
2581   if (unknown_address_altered)
2582     return;
2583 
2584   for (i = 0; i < loop_store_mems_idx; i++)
2585     if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2586 	&& MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2587       {
2588 	/* We are storing at the same address as previously noted.  Save the
2589 	   wider reference, treating BLKmode as wider.  */
2590 	if (GET_MODE (x) == BLKmode
2591 	    || (GET_MODE_SIZE (GET_MODE (x))
2592 		> GET_MODE_SIZE (GET_MODE (loop_store_mems[i]))))
2593 	  loop_store_mems[i] = x;
2594 	break;
2595       }
2596 
2597   if (i == NUM_STORES)
2598     unknown_address_altered = 1;
2599 
2600   else if (i == loop_store_mems_idx)
2601     loop_store_mems[loop_store_mems_idx++] = x;
2602 }
2603 
2604 /* Return nonzero if the rtx X is invariant over the current loop.
2605 
2606    The value is 2 if we refer to something only conditionally invariant.
2607 
2608    If `unknown_address_altered' is nonzero, no memory ref is invariant.
2609    Otherwise, a memory ref is invariant if it does not conflict with
2610    anything stored in `loop_store_mems'.  */
2611 
2612 int
invariant_p(x)2613 invariant_p (x)
2614      register rtx x;
2615 {
2616   register int i;
2617   register enum rtx_code code;
2618   register char *fmt;
2619   int conditional = 0;
2620 
2621   if (x == 0)
2622     return 1;
2623   code = GET_CODE (x);
2624   switch (code)
2625     {
2626     case CONST_INT:
2627     case CONST_DOUBLE:
2628     case SYMBOL_REF:
2629     case CONST:
2630       return 1;
2631 
2632     case LABEL_REF:
2633       /* A LABEL_REF is normally invariant, however, if we are unrolling
2634 	 loops, and this label is inside the loop, then it isn't invariant.
2635 	 This is because each unrolled copy of the loop body will have
2636 	 a copy of this label.  If this was invariant, then an insn loading
2637 	 the address of this label into a register might get moved outside
2638 	 the loop, and then each loop body would end up using the same label.
2639 
2640 	 We don't know the loop bounds here though, so just fail for all
2641 	 labels.  */
2642       if (flag_unroll_loops)
2643 	return 0;
2644       else
2645 	return 1;
2646 
2647     case PC:
2648     case CC0:
2649     case UNSPEC_VOLATILE:
2650       return 0;
2651 
2652     case REG:
2653       /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2654 	 since the reg might be set by initialization within the loop.  */
2655       if (x == frame_pointer_rtx || x == arg_pointer_rtx)
2656 	return 1;
2657       if (loop_has_call
2658 	  && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2659 	return 0;
2660       if (n_times_set[REGNO (x)] < 0)
2661 	return 2;
2662       return n_times_set[REGNO (x)] == 0;
2663 
2664     case MEM:
2665       /* Read-only items (such as constants in a constant pool) are
2666 	 invariant if their address is.  */
2667       if (RTX_UNCHANGING_P (x))
2668 	break;
2669 
2670       /* If we filled the table (or had a subroutine call), any location
2671 	 in memory could have been clobbered.  */
2672       if (unknown_address_altered
2673 	  /* Don't mess with volatile memory references.  */
2674 	  || MEM_VOLATILE_P (x))
2675 	return 0;
2676 
2677       /* See if there is any dependence between a store and this load.  */
2678       for (i = loop_store_mems_idx - 1; i >= 0; i--)
2679 	if (true_dependence (loop_store_mems[i], x))
2680 	  return 0;
2681 
2682       /* It's not invalidated by a store in memory
2683 	 but we must still verify the address is invariant.  */
2684       break;
2685 
2686     case ASM_OPERANDS:
2687       /* Don't mess with insns declared volatile.  */
2688       if (MEM_VOLATILE_P (x))
2689 	return 0;
2690     }
2691 
2692   fmt = GET_RTX_FORMAT (code);
2693   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2694     {
2695       if (fmt[i] == 'e')
2696 	{
2697 	  int tem = invariant_p (XEXP (x, i));
2698 	  if (tem == 0)
2699 	    return 0;
2700 	  if (tem == 2)
2701 	    conditional = 1;
2702 	}
2703       else if (fmt[i] == 'E')
2704 	{
2705 	  register int j;
2706 	  for (j = 0; j < XVECLEN (x, i); j++)
2707 	    {
2708 	      int tem = invariant_p (XVECEXP (x, i, j));
2709 	      if (tem == 0)
2710 		return 0;
2711 	      if (tem == 2)
2712 		conditional = 1;
2713 	    }
2714 
2715 	}
2716     }
2717 
2718   return 1 + conditional;
2719 }
2720 
2721 
2722 /* Return nonzero if all the insns in the loop that set REG
2723    are INSN and the immediately following insns,
2724    and if each of those insns sets REG in an invariant way
2725    (not counting uses of REG in them).
2726 
2727    The value is 2 if some of these insns are only conditionally invariant.
2728 
2729    We assume that INSN itself is the first set of REG
2730    and that its source is invariant.  */
2731 
2732 static int
consec_sets_invariant_p(reg,n_sets,insn)2733 consec_sets_invariant_p (reg, n_sets, insn)
2734      int n_sets;
2735      rtx reg, insn;
2736 {
2737   register rtx p = insn;
2738   register int regno = REGNO (reg);
2739   rtx temp;
2740   /* Number of sets we have to insist on finding after INSN.  */
2741   int count = n_sets - 1;
2742   int old = n_times_set[regno];
2743   int value = 0;
2744   int this;
2745 
2746   /* If N_SETS hit the limit, we can't rely on its value.  */
2747   if (n_sets == 127)
2748     return 0;
2749 
2750   n_times_set[regno] = 0;
2751 
2752   while (count > 0)
2753     {
2754       register enum rtx_code code;
2755       rtx set;
2756 
2757       p = NEXT_INSN (p);
2758       code = GET_CODE (p);
2759 
2760       /* If library call, skip to end of of it.  */
2761       if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2762 	p = XEXP (temp, 0);
2763 
2764       this = 0;
2765       if (code == INSN
2766 	  && (set = single_set (p))
2767 	  && GET_CODE (SET_DEST (set)) == REG
2768 	  && REGNO (SET_DEST (set)) == regno)
2769 	{
2770 	  this = invariant_p (SET_SRC (set));
2771 	  if (this != 0)
2772 	    value |= this;
2773 	  else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2774 	    {
2775 	      /* If this is a libcall, then any invariant REG_EQUAL note is OK.
2776 		 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
2777 		 notes are OK.  */
2778 	      this = (CONSTANT_P (XEXP (temp, 0))
2779 		      || (find_reg_note (p, REG_RETVAL, NULL_RTX)
2780 			  && invariant_p (XEXP (temp, 0))));
2781 	      if (this != 0)
2782 		value |= this;
2783 	    }
2784 	}
2785       if (this != 0)
2786 	count--;
2787       else if (code != NOTE)
2788 	{
2789 	  n_times_set[regno] = old;
2790 	  return 0;
2791 	}
2792     }
2793 
2794   n_times_set[regno] = old;
2795   /* If invariant_p ever returned 2, we return 2.  */
2796   return 1 + (value & 2);
2797 }
2798 
2799 #if 0
2800 /* I don't think this condition is sufficient to allow INSN
2801    to be moved, so we no longer test it.  */
2802 
2803 /* Return 1 if all insns in the basic block of INSN and following INSN
2804    that set REG are invariant according to TABLE.  */
2805 
2806 static int
2807 all_sets_invariant_p (reg, insn, table)
2808      rtx reg, insn;
2809      short *table;
2810 {
2811   register rtx p = insn;
2812   register int regno = REGNO (reg);
2813 
2814   while (1)
2815     {
2816       register enum rtx_code code;
2817       p = NEXT_INSN (p);
2818       code = GET_CODE (p);
2819       if (code == CODE_LABEL || code == JUMP_INSN)
2820 	return 1;
2821       if (code == INSN && GET_CODE (PATTERN (p)) == SET
2822 	  && GET_CODE (SET_DEST (PATTERN (p))) == REG
2823 	  && REGNO (SET_DEST (PATTERN (p))) == regno)
2824 	{
2825 	  if (!invariant_p (SET_SRC (PATTERN (p)), table))
2826 	    return 0;
2827 	}
2828     }
2829 }
2830 #endif /* 0 */
2831 
2832 /* Look at all uses (not sets) of registers in X.  For each, if it is
2833    the single use, set USAGE[REGNO] to INSN; if there was a previous use in
2834    a different insn, set USAGE[REGNO] to const0_rtx.  */
2835 
2836 static void
find_single_use_in_loop(insn,x,usage)2837 find_single_use_in_loop (insn, x, usage)
2838      rtx insn;
2839      rtx x;
2840      rtx *usage;
2841 {
2842   enum rtx_code code = GET_CODE (x);
2843   char *fmt = GET_RTX_FORMAT (code);
2844   int i, j;
2845 
2846   if (code == REG)
2847     usage[REGNO (x)]
2848       = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
2849 	? const0_rtx : insn;
2850 
2851   else if (code == SET)
2852     {
2853       /* Don't count SET_DEST if it is a REG; otherwise count things
2854 	 in SET_DEST because if a register is partially modified, it won't
2855 	 show up as a potential movable so we don't care how USAGE is set
2856 	 for it.  */
2857       if (GET_CODE (SET_DEST (x)) != REG)
2858 	find_single_use_in_loop (insn, SET_DEST (x), usage);
2859       find_single_use_in_loop (insn, SET_SRC (x), usage);
2860     }
2861   else
2862     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2863       {
2864 	if (fmt[i] == 'e' && XEXP (x, i) != 0)
2865 	  find_single_use_in_loop (insn, XEXP (x, i), usage);
2866 	else if (fmt[i] == 'E')
2867 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2868 	    find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
2869       }
2870 }
2871 
2872 /* Increment N_TIMES_SET at the index of each register
2873    that is modified by an insn between FROM and TO.
2874    If the value of an element of N_TIMES_SET becomes 127 or more,
2875    stop incrementing it, to avoid overflow.
2876 
2877    Store in SINGLE_USAGE[I] the single insn in which register I is
2878    used, if it is only used once.  Otherwise, it is set to 0 (for no
2879    uses) or const0_rtx for more than one use.  This parameter may be zero,
2880    in which case this processing is not done.
2881 
2882    Store in *COUNT_PTR the number of actual instruction
2883    in the loop.  We use this to decide what is worth moving out.  */
2884 
2885 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
2886    In that case, it is the insn that last set reg n.  */
2887 
2888 static void
count_loop_regs_set(from,to,may_not_move,single_usage,count_ptr,nregs)2889 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
2890      register rtx from, to;
2891      char *may_not_move;
2892      rtx *single_usage;
2893      int *count_ptr;
2894      int nregs;
2895 {
2896   register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
2897   register rtx insn;
2898   register int count = 0;
2899   register rtx dest;
2900 
2901   bzero (last_set, nregs * sizeof (rtx));
2902   for (insn = from; insn != to; insn = NEXT_INSN (insn))
2903     {
2904       if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2905 	{
2906 	  ++count;
2907 
2908 	  /* If requested, record registers that have exactly one use.  */
2909 	  if (single_usage)
2910 	    {
2911 	      find_single_use_in_loop (insn, PATTERN (insn), single_usage);
2912 
2913 	      /* Include uses in REG_EQUAL notes.  */
2914 	      if (REG_NOTES (insn))
2915 		find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
2916 	    }
2917 
2918 	  if (GET_CODE (PATTERN (insn)) == CLOBBER
2919 	      && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
2920 	    /* Don't move a reg that has an explicit clobber.
2921 	       We might do so sometimes, but it's not worth the pain.  */
2922 	    may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
2923 
2924 	  if (GET_CODE (PATTERN (insn)) == SET
2925 	      || GET_CODE (PATTERN (insn)) == CLOBBER)
2926 	    {
2927 	      dest = SET_DEST (PATTERN (insn));
2928 	      while (GET_CODE (dest) == SUBREG
2929 		     || GET_CODE (dest) == ZERO_EXTRACT
2930 		     || GET_CODE (dest) == SIGN_EXTRACT
2931 		     || GET_CODE (dest) == STRICT_LOW_PART)
2932 		dest = XEXP (dest, 0);
2933 	      if (GET_CODE (dest) == REG)
2934 		{
2935 		  register int regno = REGNO (dest);
2936 		  /* If this is the first setting of this reg
2937 		     in current basic block, and it was set before,
2938 		     it must be set in two basic blocks, so it cannot
2939 		     be moved out of the loop.  */
2940 		  if (n_times_set[regno] > 0 && last_set[regno] == 0)
2941 		    may_not_move[regno] = 1;
2942 		  /* If this is not first setting in current basic block,
2943 		     see if reg was used in between previous one and this.
2944 		     If so, neither one can be moved.  */
2945 		  if (last_set[regno] != 0
2946 		      && reg_used_between_p (dest, last_set[regno], insn))
2947 		    may_not_move[regno] = 1;
2948 		  if (n_times_set[regno] < 127)
2949 		    ++n_times_set[regno];
2950 		  last_set[regno] = insn;
2951 		}
2952 	    }
2953 	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2954 	    {
2955 	      register int i;
2956 	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2957 		{
2958 		  register rtx x = XVECEXP (PATTERN (insn), 0, i);
2959 		  if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
2960 		    /* Don't move a reg that has an explicit clobber.
2961 		       It's not worth the pain to try to do it correctly.  */
2962 		    may_not_move[REGNO (XEXP (x, 0))] = 1;
2963 
2964 		  if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2965 		    {
2966 		      dest = SET_DEST (x);
2967 		      while (GET_CODE (dest) == SUBREG
2968 			     || GET_CODE (dest) == ZERO_EXTRACT
2969 			     || GET_CODE (dest) == SIGN_EXTRACT
2970 			     || GET_CODE (dest) == STRICT_LOW_PART)
2971 			dest = XEXP (dest, 0);
2972 		      if (GET_CODE (dest) == REG)
2973 			{
2974 			  register int regno = REGNO (dest);
2975 			  if (n_times_set[regno] > 0 && last_set[regno] == 0)
2976 			    may_not_move[regno] = 1;
2977 			  if (last_set[regno] != 0
2978 			      && reg_used_between_p (dest, last_set[regno], insn))
2979 			    may_not_move[regno] = 1;
2980 			  if (n_times_set[regno] < 127)
2981 			    ++n_times_set[regno];
2982 			  last_set[regno] = insn;
2983 			}
2984 		    }
2985 		}
2986 	    }
2987 	}
2988       if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
2989 	bzero (last_set, nregs * sizeof (rtx));
2990     }
2991   *count_ptr = count;
2992 }
2993 
2994 /* Given a loop that is bounded by LOOP_START and LOOP_END
2995    and that is entered at SCAN_START,
2996    return 1 if the register set in SET contained in insn INSN is used by
2997    any insn that precedes INSN in cyclic order starting
2998    from the loop entry point.
2999 
3000    We don't want to use INSN_LUID here because if we restrict INSN to those
3001    that have a valid INSN_LUID, it means we cannot move an invariant out
3002    from an inner loop past two loops.  */
3003 
3004 static int
loop_reg_used_before_p(set,insn,loop_start,scan_start,loop_end)3005 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3006      rtx set, insn, loop_start, scan_start, loop_end;
3007 {
3008   rtx reg = SET_DEST (set);
3009   rtx p;
3010 
3011   /* Scan forward checking for register usage.  If we hit INSN, we
3012      are done.  Otherwise, if we hit LOOP_END, wrap around to LOOP_START.  */
3013   for (p = scan_start; p != insn; p = NEXT_INSN (p))
3014     {
3015       if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3016 	  && reg_overlap_mentioned_p (reg, PATTERN (p)))
3017 	return 1;
3018 
3019       if (p == loop_end)
3020 	p = loop_start;
3021     }
3022 
3023   return 0;
3024 }
3025 
3026 /* A "basic induction variable" or biv is a pseudo reg that is set
3027    (within this loop) only by incrementing or decrementing it.  */
3028 /* A "general induction variable" or giv is a pseudo reg whose
3029    value is a linear function of a biv.  */
3030 
3031 /* Bivs are recognized by `basic_induction_var';
3032    Givs by `general_induct_var'.  */
3033 
3034 /* Indexed by register number, indicates whether or not register is an
3035    induction variable, and if so what type.  */
3036 
3037 enum iv_mode *reg_iv_type;
3038 
3039 /* Indexed by register number, contains pointer to `struct induction'
3040    if register is an induction variable.  This holds general info for
3041    all induction variables.  */
3042 
3043 struct induction **reg_iv_info;
3044 
3045 /* Indexed by register number, contains pointer to `struct iv_class'
3046    if register is a basic induction variable.  This holds info describing
3047    the class (a related group) of induction variables that the biv belongs
3048    to.  */
3049 
3050 struct iv_class **reg_biv_class;
3051 
3052 /* The head of a list which links together (via the next field)
3053    every iv class for the current loop.  */
3054 
3055 struct iv_class *loop_iv_list;
3056 
3057 /* Communication with routines called via `note_stores'.  */
3058 
3059 static rtx note_insn;
3060 
3061 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs.  */
3062 
3063 static rtx addr_placeholder;
3064 
3065 /* ??? Unfinished optimizations, and possible future optimizations,
3066    for the strength reduction code.  */
3067 
3068 /* ??? There is one more optimization you might be interested in doing: to
3069    allocate pseudo registers for frequently-accessed memory locations.
3070    If the same memory location is referenced each time around, it might
3071    be possible to copy it into a register before and out after.
3072    This is especially useful when the memory location is a variable which
3073    is in a stack slot because somewhere its address is taken.  If the
3074    loop doesn't contain a function call and the variable isn't volatile,
3075    it is safe to keep the value in a register for the duration of the
3076    loop. One tricky thing is that the copying of the value back from the
3077    register has to be done on all exits from the loop.  You need to check that
3078    all the exits from the loop go to the same place. */
3079 
3080 /* ??? The interaction of biv elimination, and recognition of 'constant'
3081    bivs, may cause problems. */
3082 
3083 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3084    performance problems.
3085 
3086    Perhaps don't eliminate things that can be combined with an addressing
3087    mode.  Find all givs that have the same biv, mult_val, and add_val;
3088    then for each giv, check to see if its only use dies in a following
3089    memory address.  If so, generate a new memory address and check to see
3090    if it is valid.   If it is valid, then store the modified memory address,
3091    otherwise, mark the giv as not done so that it will get its own iv.  */
3092 
3093 /* ??? Could try to optimize branches when it is known that a biv is always
3094    positive.  */
3095 
3096 /* ??? When replace a biv in a compare insn, we should replace with closest
3097    giv so that an optimized branch can still be recognized by the combiner,
3098    e.g. the VAX acb insn.  */
3099 
3100 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3101    was rerun in loop_optimize whenever a register was added or moved.
3102    Also, some of the optimizations could be a little less conservative.  */
3103 
3104 /* Perform strength reduction and induction variable elimination.  */
3105 
3106 /* Pseudo registers created during this function will be beyond the last
3107    valid index in several tables including n_times_set and regno_last_uid.
3108    This does not cause a problem here, because the added registers cannot be
3109    givs outside of their loop, and hence will never be reconsidered.
3110    But scan_loop must check regnos to make sure they are in bounds.  */
3111 
3112 static void
strength_reduce(scan_start,end,loop_top,insn_count,loop_start,loop_end)3113 strength_reduce (scan_start, end, loop_top, insn_count,
3114 		 loop_start, loop_end)
3115      rtx scan_start;
3116      rtx end;
3117      rtx loop_top;
3118      int insn_count;
3119      rtx loop_start;
3120      rtx loop_end;
3121 {
3122   rtx p;
3123   rtx set;
3124   rtx inc_val;
3125   rtx mult_val;
3126   rtx dest_reg;
3127   /* This is 1 if current insn is not executed at least once for every loop
3128      iteration.  */
3129   int not_every_iteration = 0;
3130   /* This is 1 if current insn may be executed more than once for every
3131      loop iteration.  */
3132   int maybe_multiple = 0;
3133   /* Temporary list pointers for traversing loop_iv_list.  */
3134   struct iv_class *bl, **backbl;
3135   /* Ratio of extra register life span we can justify
3136      for saving an instruction.  More if loop doesn't call subroutines
3137      since in that case saving an insn makes more difference
3138      and more registers are available.  */
3139   /* ??? could set this to last value of threshold in move_movables */
3140   int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3141   /* Map of pseudo-register replacements.  */
3142   rtx *reg_map;
3143   int call_seen;
3144   rtx test;
3145   rtx end_insert_before;
3146 
3147   reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3148 					 * sizeof (enum iv_mode *));
3149   bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3150   reg_iv_info = (struct induction **)
3151     alloca (max_reg_before_loop * sizeof (struct induction *));
3152   bzero ((char *) reg_iv_info, (max_reg_before_loop
3153 				* sizeof (struct induction *)));
3154   reg_biv_class = (struct iv_class **)
3155     alloca (max_reg_before_loop * sizeof (struct iv_class *));
3156   bzero ((char *) reg_biv_class, (max_reg_before_loop
3157 				  * sizeof (struct iv_class *)));
3158 
3159   loop_iv_list = 0;
3160   addr_placeholder = gen_reg_rtx (Pmode);
3161 
3162   /* Save insn immediately after the loop_end.  Insns inserted after loop_end
3163      must be put before this insn, so that they will appear in the right
3164      order (i.e. loop order).
3165 
3166      If loop_end is the end of the current function, then emit a
3167      NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3168      dummy note insn.  */
3169   if (NEXT_INSN (loop_end) != 0)
3170     end_insert_before = NEXT_INSN (loop_end);
3171   else
3172     end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3173 
3174   /* Scan through loop to find all possible bivs.  */
3175 
3176   p = scan_start;
3177   while (1)
3178     {
3179       p = NEXT_INSN (p);
3180       /* At end of a straight-in loop, we are done.
3181 	 At end of a loop entered at the bottom, scan the top.  */
3182       if (p == scan_start)
3183 	break;
3184       if (p == end)
3185 	{
3186 	  if (loop_top != 0)
3187 	    p = NEXT_INSN (loop_top);
3188 	  else
3189 	    break;
3190 	  if (p == scan_start)
3191 	    break;
3192 	}
3193 
3194       if (GET_CODE (p) == INSN
3195 	  && (set = single_set (p))
3196 	  && GET_CODE (SET_DEST (set)) == REG)
3197 	{
3198 	  dest_reg = SET_DEST (set);
3199 	  if (REGNO (dest_reg) < max_reg_before_loop
3200 	      && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3201 	      && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3202 	    {
3203 	      if (basic_induction_var (SET_SRC (set), dest_reg, p,
3204 				      &inc_val, &mult_val))
3205 		{
3206 		  /* It is a possible basic induction variable.
3207 		     Create and initialize an induction structure for it.  */
3208 
3209 		  struct induction *v
3210 		    = (struct induction *) alloca (sizeof (struct induction));
3211 
3212 		  record_biv (v, p, dest_reg, inc_val, mult_val,
3213 			      not_every_iteration, maybe_multiple);
3214 		  reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3215 		}
3216 	      else if (REGNO (dest_reg) < max_reg_before_loop)
3217 		reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3218 	    }
3219 	}
3220 
3221       /* Past CODE_LABEL, we get to insns that may be executed multiple
3222 	 times.  The only way we can be sure that they can't is if every
3223 	 every jump insn between here and the end of the loop either
3224 	 returns, exits the loop, or is a forward jump.  */
3225 
3226       if (GET_CODE (p) == CODE_LABEL)
3227 	{
3228 	  rtx insn = p;
3229 
3230 	  maybe_multiple = 0;
3231 
3232 	  while (1)
3233 	    {
3234 	      insn = NEXT_INSN (insn);
3235 	      if (insn == scan_start)
3236 		break;
3237 	      if (insn == end)
3238 		{
3239 		  if (loop_top != 0)
3240 		    insn = NEXT_INSN (loop_top);
3241 		  else
3242 		    break;
3243 		  if (insn == scan_start)
3244 		    break;
3245 		}
3246 
3247 	      if (GET_CODE (insn) == JUMP_INSN
3248 		  && GET_CODE (PATTERN (insn)) != RETURN
3249 		  && (! condjump_p (insn)
3250 		      || (JUMP_LABEL (insn) != 0
3251 			  && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3252 			      || INSN_UID (insn) >= max_uid_for_loop
3253 			      || (INSN_LUID (JUMP_LABEL (insn))
3254 				  < INSN_LUID (insn))))))
3255 	      {
3256 		maybe_multiple = 1;
3257 		break;
3258 	      }
3259 	    }
3260 	}
3261 
3262       /* Past a label or a jump, we get to insns for which we can't count
3263 	 on whether or how many times they will be executed during each
3264 	 iteration.  */
3265       /* This code appears in three places, once in scan_loop, and twice
3266 	 in strength_reduce.  */
3267       if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3268 	  /* If we enter the loop in the middle, and scan around to the
3269 	     beginning, don't set not_every_iteration for that.
3270 	     This can be any kind of jump, since we want to know if insns
3271 	     will be executed if the loop is executed.  */
3272 	  && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3273 		&& ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3274 		    || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3275 	not_every_iteration = 1;
3276 
3277       /* At the virtual top of a converted loop, insns are again known to
3278 	 be executed each iteration: logically, the loop begins here
3279 	 even though the exit code has been duplicated.  */
3280 
3281       else if (GET_CODE (p) == NOTE
3282 	       && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3283 	not_every_iteration = 0;
3284 
3285       /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3286 	 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3287 	 or not an insn is known to be executed each iteration of the
3288 	 loop, whether or not any iterations are known to occur.
3289 
3290 	 Therefore, if we have just passed a label and have no more labels
3291 	 between here and the test insn of the loop, we know these insns
3292 	 will be executed each iteration.  This can also happen if we
3293 	 have just passed a jump, for example, when there are nested loops.  */
3294 
3295       if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3296 	  && no_labels_between_p (p, loop_end))
3297 	not_every_iteration = 0;
3298     }
3299 
3300   /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3301      Make a sanity check against n_times_set.  */
3302   for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3303     {
3304       if (reg_iv_type[bl->regno] != BASIC_INDUCT
3305 	  /* Above happens if register modified by subreg, etc.  */
3306 	  /* Make sure it is not recognized as a basic induction var: */
3307 	  || n_times_set[bl->regno] != bl->biv_count
3308 	  /* If never incremented, it is invariant that we decided not to
3309 	     move.  So leave it alone.  */
3310 	  || ! bl->incremented)
3311 	{
3312 	  if (loop_dump_stream)
3313 	    fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3314 		     bl->regno,
3315 		     (reg_iv_type[bl->regno] != BASIC_INDUCT
3316 		      ? "not induction variable"
3317 		      : (! bl->incremented ? "never incremented"
3318 			 : "count error")));
3319 
3320 	  reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3321 	  *backbl = bl->next;
3322 	}
3323       else
3324 	{
3325 	  backbl = &bl->next;
3326 
3327 	  if (loop_dump_stream)
3328 	    fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3329 	}
3330     }
3331 
3332   /* Exit if there are no bivs.  */
3333   if (! loop_iv_list)
3334     {
3335       /* Can still unroll the loop anyways, but indicate that there is no
3336 	 strength reduction info available.  */
3337       if (flag_unroll_loops)
3338 	unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3339 
3340       return;
3341     }
3342 
3343   /* Find initial value for each biv by searching backwards from loop_start,
3344      halting at first label.  Also record any test condition.  */
3345 
3346   call_seen = 0;
3347   for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3348     {
3349       note_insn = p;
3350 
3351       if (GET_CODE (p) == CALL_INSN)
3352 	call_seen = 1;
3353 
3354       if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3355 	  || GET_CODE (p) == CALL_INSN)
3356 	note_stores (PATTERN (p), record_initial);
3357 
3358       /* Record any test of a biv that branches around the loop if no store
3359 	 between it and the start of loop.  We only care about tests with
3360 	 constants and registers and only certain of those.  */
3361       if (GET_CODE (p) == JUMP_INSN
3362 	  && JUMP_LABEL (p) != 0
3363 	  && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3364 	  && (test = get_condition_for_loop (p)) != 0
3365 	  && GET_CODE (XEXP (test, 0)) == REG
3366 	  && REGNO (XEXP (test, 0)) < max_reg_before_loop
3367 	  && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3368 	  && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3369 	  && bl->init_insn == 0)
3370 	{
3371 	  /* If an NE test, we have an initial value!  */
3372 	  if (GET_CODE (test) == NE)
3373 	    {
3374 	      bl->init_insn = p;
3375 	      bl->init_set = gen_rtx (SET, VOIDmode,
3376 				      XEXP (test, 0), XEXP (test, 1));
3377 	    }
3378 	  else
3379 	    bl->initial_test = test;
3380 	}
3381     }
3382 
3383   /* Look at the each biv and see if we can say anything better about its
3384      initial value from any initializing insns set up above.  (This is done
3385      in two passes to avoid missing SETs in a PARALLEL.)  */
3386   for (bl = loop_iv_list; bl; bl = bl->next)
3387     {
3388       rtx src;
3389 
3390       if (! bl->init_insn)
3391 	continue;
3392 
3393       src = SET_SRC (bl->init_set);
3394 
3395       if (loop_dump_stream)
3396 	fprintf (loop_dump_stream,
3397 		 "Biv %d initialized at insn %d: initial value ",
3398 		 bl->regno, INSN_UID (bl->init_insn));
3399 
3400       if (valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3401 	{
3402 	  bl->initial_value = src;
3403 
3404 	  if (loop_dump_stream)
3405 	    {
3406 	      if (GET_CODE (src) == CONST_INT)
3407 		fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3408 	      else
3409 		{
3410 		  print_rtl (loop_dump_stream, src);
3411 		  fprintf (loop_dump_stream, "\n");
3412 		}
3413 	    }
3414 	}
3415       else
3416 	{
3417 	  /* Biv initial value is not simple move,
3418 	     so let it keep initial value of "itself".  */
3419 
3420 	  if (loop_dump_stream)
3421 	    fprintf (loop_dump_stream, "is complex\n");
3422 	}
3423     }
3424 
3425   /* Search the loop for general induction variables.  */
3426 
3427   /* A register is a giv if: it is only set once, it is a function of a
3428      biv and a constant (or invariant), and it is not a biv.  */
3429 
3430   not_every_iteration = 0;
3431   p = scan_start;
3432   while (1)
3433     {
3434       p = NEXT_INSN (p);
3435       /* At end of a straight-in loop, we are done.
3436 	 At end of a loop entered at the bottom, scan the top.  */
3437       if (p == scan_start)
3438 	break;
3439       if (p == end)
3440 	{
3441 	  if (loop_top != 0)
3442 	    p = NEXT_INSN (loop_top);
3443 	  else
3444 	    break;
3445 	  if (p == scan_start)
3446 	    break;
3447 	}
3448 
3449       /* Look for a general induction variable in a register.  */
3450       if (GET_CODE (p) == INSN
3451 	  && (set = single_set (p))
3452 	  && GET_CODE (SET_DEST (set)) == REG
3453 	  && ! may_not_optimize[REGNO (SET_DEST (set))])
3454 	{
3455 	  rtx src_reg;
3456 	  rtx add_val;
3457 	  rtx mult_val;
3458 	  int benefit;
3459 	  rtx regnote = 0;
3460 
3461 	  dest_reg = SET_DEST (set);
3462 	  if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3463 	    continue;
3464 
3465 	  if (/* SET_SRC is a giv.  */
3466 	      ((benefit = general_induction_var (SET_SRC (set),
3467 						 &src_reg, &add_val,
3468 						 &mult_val))
3469 	       /* Equivalent expression is a giv. */
3470 	       || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3471 		   && (benefit = general_induction_var (XEXP (regnote, 0),
3472 							&src_reg,
3473 							&add_val, &mult_val))))
3474 	      /* Don't try to handle any regs made by loop optimization.
3475 		 We have nothing on them in regno_first_uid, etc.  */
3476 	      && REGNO (dest_reg) < max_reg_before_loop
3477 	      /* Don't recognize a BASIC_INDUCT_VAR here.  */
3478 	      && dest_reg != src_reg
3479 	      /* This must be the only place where the register is set.  */
3480 	      && (n_times_set[REGNO (dest_reg)] == 1
3481 		  /* or all sets must be consecutive and make a giv. */
3482 		  || (benefit = consec_sets_giv (benefit, p,
3483 						 src_reg, dest_reg,
3484 						 &add_val, &mult_val))))
3485 	    {
3486 	      int count;
3487 	      struct induction *v
3488 		= (struct induction *) alloca (sizeof (struct induction));
3489 	      rtx temp;
3490 
3491 	      /* If this is a library call, increase benefit.  */
3492 	      if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3493 		benefit += libcall_benefit (p);
3494 
3495 	      /* Skip the consecutive insns, if there are any.  */
3496 	      for (count = n_times_set[REGNO (dest_reg)] - 1;
3497 		   count > 0; count--)
3498 		{
3499 		  /* If first insn of libcall sequence, skip to end.
3500 		     Do this at start of loop, since INSN is guaranteed to
3501 		     be an insn here.  */
3502 		  if (GET_CODE (p) != NOTE
3503 		      && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3504 		    p = XEXP (temp, 0);
3505 
3506 		  do p = NEXT_INSN (p);
3507 		  while (GET_CODE (p) == NOTE);
3508 		}
3509 
3510 	      record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3511 			  DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3512 			  loop_end);
3513 
3514 	    }
3515 	}
3516 
3517 #ifndef DONT_REDUCE_ADDR
3518       /* Look for givs which are memory addresses.  */
3519       /* This resulted in worse code on a VAX 8600.  I wonder if it
3520 	 still does.  */
3521       if (GET_CODE (p) == INSN)
3522 	find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3523 		       loop_end);
3524 #endif
3525 
3526       /* Update the status of whether giv can derive other givs.  This can
3527 	 change when we pass a label or an insn that updates a biv.  */
3528       if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3529 	|| GET_CODE (p) == CODE_LABEL)
3530 	update_giv_derive (p);
3531 
3532       /* Past a label or a jump, we get to insns for which we can't count
3533 	 on whether or how many times they will be executed during each
3534 	 iteration.  */
3535       /* This code appears in three places, once in scan_loop, and twice
3536 	 in strength_reduce.  */
3537       if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3538 	  /* If we enter the loop in the middle, and scan around
3539 	     to the beginning, don't set not_every_iteration for that.
3540 	     This can be any kind of jump, since we want to know if insns
3541 	     will be executed if the loop is executed.  */
3542 	  && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3543 		&& ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3544 		    || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3545 	not_every_iteration = 1;
3546 
3547       /* At the virtual top of a converted loop, insns are again known to
3548 	 be executed each iteration: logically, the loop begins here
3549 	 even though the exit code has been duplicated.  */
3550 
3551       else if (GET_CODE (p) == NOTE
3552 	       && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3553 	not_every_iteration = 0;
3554 
3555       /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3556 	 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3557 	 or not an insn is known to be executed each iteration of the
3558 	 loop, whether or not any iterations are known to occur.
3559 
3560 	 Therefore, if we have just passed a label and have no more labels
3561 	 between here and the test insn of the loop, we know these insns
3562 	 will be executed each iteration.  */
3563 
3564       if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3565 	  && no_labels_between_p (p, loop_end))
3566 	not_every_iteration = 0;
3567     }
3568 
3569   /* Try to calculate and save the number of loop iterations.  This is
3570      set to zero if the actual number can not be calculated.  This must
3571      be called after all giv's have been identified, since otherwise it may
3572      fail if the iteration variable is a giv.  */
3573 
3574   loop_n_iterations = loop_iterations (loop_start, loop_end);
3575 
3576   /* Now for each giv for which we still don't know whether or not it is
3577      replaceable, check to see if it is replaceable because its final value
3578      can be calculated.  This must be done after loop_iterations is called,
3579      so that final_giv_value will work correctly.  */
3580 
3581   for (bl = loop_iv_list; bl; bl = bl->next)
3582     {
3583       struct induction *v;
3584 
3585       for (v = bl->giv; v; v = v->next_iv)
3586 	if (! v->replaceable && ! v->not_replaceable)
3587 	  check_final_value (v, loop_start, loop_end);
3588     }
3589 
3590   /* Try to prove that the loop counter variable (if any) is always
3591      nonnegative; if so, record that fact with a REG_NONNEG note
3592      so that "decrement and branch until zero" insn can be used.  */
3593   check_dbra_loop (loop_end, insn_count, loop_start);
3594 
3595   /* Create reg_map to hold substitutions for replaceable giv regs.  */
3596   reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3597   bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3598 
3599   /* Examine each iv class for feasibility of strength reduction/induction
3600      variable elimination.  */
3601 
3602   for (bl = loop_iv_list; bl; bl = bl->next)
3603     {
3604       struct induction *v;
3605       int benefit;
3606       int all_reduced;
3607       rtx final_value = 0;
3608 
3609       /* Test whether it will be possible to eliminate this biv
3610 	 provided all givs are reduced.  This is possible if either
3611 	 the reg is not used outside the loop, or we can compute
3612 	 what its final value will be.
3613 
3614 	 For architectures with a decrement_and_branch_until_zero insn,
3615 	 don't do this if we put a REG_NONNEG note on the endtest for
3616 	 this biv.  */
3617 
3618       /* Compare against bl->init_insn rather than loop_start.
3619 	 We aren't concerned with any uses of the biv between
3620 	 init_insn and loop_start since these won't be affected
3621 	 by the value of the biv elsewhere in the function, so
3622 	 long as init_insn doesn't use the biv itself.
3623 	 March 14, 1989 -- self@bayes.arc.nasa.gov */
3624 
3625       if ((uid_luid[regno_last_uid[bl->regno]] < INSN_LUID (loop_end)
3626 	   && bl->init_insn
3627 	   && INSN_UID (bl->init_insn) < max_uid_for_loop
3628 	   && uid_luid[regno_first_uid[bl->regno]] >= INSN_LUID (bl->init_insn)
3629 #ifdef HAVE_decrement_and_branch_until_zero
3630 	   && ! bl->nonneg
3631 #endif
3632 	   && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3633 	  || ((final_value = final_biv_value (bl, loop_start, loop_end))
3634 #ifdef HAVE_decrement_and_branch_until_zero
3635 	      && ! bl->nonneg
3636 #endif
3637 	      ))
3638 	bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3639 					      threshold, insn_count);
3640       else
3641 	{
3642 	  if (loop_dump_stream)
3643 	    {
3644 	      fprintf (loop_dump_stream,
3645 		       "Cannot eliminate biv %d.\n",
3646 		       bl->regno);
3647 	      fprintf (loop_dump_stream,
3648 		       "First use: insn %d, last use: insn %d.\n",
3649 		       regno_first_uid[bl->regno],
3650 		       regno_last_uid[bl->regno]);
3651 	    }
3652 	}
3653 
3654       /* Combine all giv's for this iv_class.  */
3655       combine_givs (bl);
3656 
3657       /* This will be true at the end, if all givs which depend on this
3658 	 biv have been strength reduced.
3659 	 We can't (currently) eliminate the biv unless this is so.  */
3660       all_reduced = 1;
3661 
3662       /* Check each giv in this class to see if we will benefit by reducing
3663 	 it.  Skip giv's combined with others.  */
3664       for (v = bl->giv; v; v = v->next_iv)
3665 	{
3666 	  struct induction *tv;
3667 
3668 	  if (v->ignore || v->same)
3669 	    continue;
3670 
3671 	  benefit = v->benefit;
3672 
3673 	  /* Reduce benefit if not replaceable, since we will insert
3674 	     a move-insn to replace the insn that calculates this giv.
3675 	     Don't do this unless the giv is a user variable, since it
3676 	     will often be marked non-replaceable because of the duplication
3677 	     of the exit code outside the loop.  In such a case, the copies
3678 	     we insert are dead and will be deleted.  So they don't have
3679 	     a cost.  Similar situations exist.  */
3680 	  /* ??? The new final_[bg]iv_value code does a much better job
3681 	     of finding replaceable giv's, and hence this code may no longer
3682 	     be necessary.  */
3683 	  if (! v->replaceable && ! bl->eliminable
3684 	      && REG_USERVAR_P (v->dest_reg))
3685 	    benefit -= copy_cost;
3686 
3687 	  /* Decrease the benefit to count the add-insns that we will
3688 	     insert to increment the reduced reg for the giv.  */
3689 	  benefit -= add_cost * bl->biv_count;
3690 
3691 	  /* Decide whether to strength-reduce this giv or to leave the code
3692 	     unchanged (recompute it from the biv each time it is used).
3693 	     This decision can be made independently for each giv.  */
3694 
3695 	  /* ??? Perhaps attempt to guess whether autoincrement will handle
3696 	     some of the new add insns; if so, can increase BENEFIT
3697 	     (undo the subtraction of add_cost that was done above).  */
3698 
3699 	  /* If an insn is not to be strength reduced, then set its ignore
3700 	     flag, and clear all_reduced.  */
3701 
3702 	  if (v->lifetime * threshold * benefit < insn_count)
3703 	    {
3704 	      if (loop_dump_stream)
3705 		fprintf (loop_dump_stream,
3706 			 "giv of insn %d not worth while, %d vs %d.\n",
3707 			 INSN_UID (v->insn),
3708 			 v->lifetime * threshold * benefit, insn_count);
3709 	      v->ignore = 1;
3710 	      all_reduced = 0;
3711 	    }
3712 	  else
3713 	    {
3714 	      /* Check that we can increment the reduced giv without a
3715 		 multiply insn.  If not, reject it.  */
3716 
3717 	      for (tv = bl->biv; tv; tv = tv->next_iv)
3718 		if (tv->mult_val == const1_rtx
3719 		    && ! product_cheap_p (tv->add_val, v->mult_val))
3720 		  {
3721 		    if (loop_dump_stream)
3722 		      fprintf (loop_dump_stream,
3723 			       "giv of insn %d: would need a multiply.\n",
3724 			       INSN_UID (v->insn));
3725 		    v->ignore = 1;
3726 		    all_reduced = 0;
3727 		    break;
3728 		  }
3729 	    }
3730 	}
3731 
3732       /* Reduce each giv that we decided to reduce.  */
3733 
3734       for (v = bl->giv; v; v = v->next_iv)
3735 	{
3736 	  struct induction *tv;
3737 	  if (! v->ignore && v->same == 0)
3738 	    {
3739 	      v->new_reg = gen_reg_rtx (v->mode);
3740 
3741 	      /* For each place where the biv is incremented,
3742 		 add an insn to increment the new, reduced reg for the giv.  */
3743 	      for (tv = bl->biv; tv; tv = tv->next_iv)
3744 		{
3745 		  if (tv->mult_val == const1_rtx)
3746 		    emit_iv_add_mult (tv->add_val, v->mult_val,
3747 				      v->new_reg, v->new_reg, tv->insn);
3748 		  else /* tv->mult_val == const0_rtx */
3749 		    /* A multiply is acceptable here
3750 		       since this is presumed to be seldom executed.  */
3751 		    emit_iv_add_mult (tv->add_val, v->mult_val,
3752 				      v->add_val, v->new_reg, tv->insn);
3753 		}
3754 
3755 	      /* Add code at loop start to initialize giv's reduced reg.  */
3756 
3757 	      emit_iv_add_mult (bl->initial_value, v->mult_val,
3758 				v->add_val, v->new_reg, loop_start);
3759 	    }
3760 	}
3761 
3762       /* Rescan all givs.  If a giv is the same as a giv not reduced, mark it
3763 	 as not reduced.
3764 
3765 	 For each giv register that can be reduced now: if replaceable,
3766 	 substitute reduced reg wherever the old giv occurs;
3767 	 else add new move insn "giv_reg = reduced_reg".
3768 
3769 	 Also check for givs whose first use is their definition and whose
3770 	 last use is the definition of another giv.  If so, it is likely
3771 	 dead and should not be used to eliminate a biv.  */
3772       for (v = bl->giv; v; v = v->next_iv)
3773 	{
3774 	  if (v->same && v->same->ignore)
3775 	    v->ignore = 1;
3776 
3777 	  if (v->ignore)
3778 	    continue;
3779 
3780 	  if (v->giv_type == DEST_REG
3781 	      && regno_first_uid[REGNO (v->dest_reg)] == INSN_UID (v->insn))
3782 	    {
3783 	      struct induction *v1;
3784 
3785 	      for (v1 = bl->giv; v1; v1 = v1->next_iv)
3786 		if (regno_last_uid[REGNO (v->dest_reg)] == INSN_UID (v1->insn))
3787 		  v->maybe_dead = 1;
3788 	    }
3789 
3790 	  /* Update expression if this was combined, in case other giv was
3791 	     replaced.  */
3792 	  if (v->same)
3793 	    v->new_reg = replace_rtx (v->new_reg,
3794 				      v->same->dest_reg, v->same->new_reg);
3795 
3796 	  if (v->giv_type == DEST_ADDR)
3797 	    /* Store reduced reg as the address in the memref where we found
3798 	       this giv.  */
3799 	    *v->location = v->new_reg;
3800 	  else if (v->replaceable)
3801 	    {
3802 	      reg_map[REGNO (v->dest_reg)] = v->new_reg;
3803 
3804 #if 0
3805 	      /* I can no longer duplicate the original problem.  Perhaps
3806 		 this is unnecessary now?  */
3807 
3808 	      /* Replaceable; it isn't strictly necessary to delete the old
3809 		 insn and emit a new one, because v->dest_reg is now dead.
3810 
3811 		 However, especially when unrolling loops, the special
3812 		 handling for (set REG0 REG1) in the second cse pass may
3813 		 make v->dest_reg live again.  To avoid this problem, emit
3814 		 an insn to set the original giv reg from the reduced giv.
3815 		 We can not delete the original insn, since it may be part
3816 		 of a LIBCALL, and the code in flow that eliminates dead
3817 		 libcalls will fail if it is deleted.  */
3818 	      emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3819 			       v->insn);
3820 #endif
3821 	    }
3822 	  else
3823 	    {
3824 	      /* Not replaceable; emit an insn to set the original giv reg from
3825 		 the reduced giv, same as above.  */
3826 	      emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3827 			       v->insn);
3828 	    }
3829 
3830 	  /* When a loop is reversed, givs which depend on the reversed
3831 	     biv, and which are live outside the loop, must be set to their
3832 	     correct final value.  This insn is only needed if the giv is
3833 	     not replaceable.  The correct final value is the same as the
3834 	     value that the giv starts the reversed loop with.  */
3835 	  if (bl->reversed && ! v->replaceable)
3836 	    emit_iv_add_mult (bl->initial_value, v->mult_val,
3837 			      v->add_val, v->dest_reg, end_insert_before);
3838 	  else if (v->final_value)
3839 	    {
3840 	      rtx insert_before;
3841 
3842 	      /* If the loop has multiple exits, emit the insn before the
3843 		 loop to ensure that it will always be executed no matter
3844 		 how the loop exits.  Otherwise, emit the insn after the loop,
3845 		 since this is slightly more efficient.  */
3846 	      if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3847 		insert_before = loop_start;
3848 	      else
3849 		insert_before = end_insert_before;
3850 	      emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
3851 				insert_before);
3852 
3853 #if 0
3854 	      /* If the insn to set the final value of the giv was emitted
3855 		 before the loop, then we must delete the insn inside the loop
3856 		 that sets it.  If this is a LIBCALL, then we must delete
3857 		 every insn in the libcall.  Note, however, that
3858 		 final_giv_value will only succeed when there are multiple
3859 		 exits if the giv is dead at each exit, hence it does not
3860 		 matter that the original insn remains because it is dead
3861 		 anyways.  */
3862 	      /* Delete the insn inside the loop that sets the giv since
3863 		 the giv is now set before (or after) the loop.  */
3864 	      delete_insn (v->insn);
3865 #endif
3866 	    }
3867 
3868 	  if (loop_dump_stream)
3869 	    {
3870 	      fprintf (loop_dump_stream, "giv at %d reduced to ",
3871 		       INSN_UID (v->insn));
3872 	      print_rtl (loop_dump_stream, v->new_reg);
3873 	      fprintf (loop_dump_stream, "\n");
3874 	    }
3875 	}
3876 
3877       /* All the givs based on the biv bl have been reduced if they
3878 	 merit it.  */
3879 
3880       /* For each giv not marked as maybe dead that has been combined with a
3881 	 second giv, clear any "maybe dead" mark on that second giv.
3882 	 v->new_reg will either be or refer to the register of the giv it
3883 	 combined with.
3884 
3885 	 Doing this clearing avoids problems in biv elimination where a
3886 	 giv's new_reg is a complex value that can't be put in the insn but
3887 	 the giv combined with (with a reg as new_reg) is marked maybe_dead.
3888 	 Since the register will be used in either case, we'd prefer it be
3889 	 used from the simpler giv.  */
3890 
3891       for (v = bl->giv; v; v = v->next_iv)
3892 	if (! v->maybe_dead && v->same)
3893 	  v->same->maybe_dead = 0;
3894 
3895       /* Try to eliminate the biv, if it is a candidate.
3896 	 This won't work if ! all_reduced,
3897 	 since the givs we planned to use might not have been reduced.
3898 
3899 	 We have to be careful that we didn't initially think we could eliminate
3900 	 this biv because of a giv that we now think may be dead and shouldn't
3901 	 be used as a biv replacement.
3902 
3903 	 Also, there is the possibility that we may have a giv that looks
3904 	 like it can be used to eliminate a biv, but the resulting insn
3905 	 isn't valid.  This can happen, for example, on the 88k, where a
3906 	 JUMP_INSN can compare a register only with zero.  Attempts to
3907 	 replace it with a compare with a constant will fail.
3908 
3909 	 Note that in cases where this call fails, we may have replaced some
3910 	 of the occurrences of the biv with a giv, but no harm was done in
3911 	 doing so in the rare cases where it can occur.  */
3912 
3913       if (all_reduced == 1 && bl->eliminable
3914 	  && maybe_eliminate_biv (bl, loop_start, end, 1,
3915 				  threshold, insn_count))
3916 
3917 	{
3918 	  /* ?? If we created a new test to bypass the loop entirely,
3919 	     or otherwise drop straight in, based on this test, then
3920 	     we might want to rewrite it also.  This way some later
3921 	     pass has more hope of removing the initialization of this
3922 	     biv entirely. */
3923 
3924 	  /* If final_value != 0, then the biv may be used after loop end
3925 	     and we must emit an insn to set it just in case.
3926 
3927 	     Reversed bivs already have an insn after the loop setting their
3928 	     value, so we don't need another one.  We can't calculate the
3929 	     proper final value for such a biv here anyways. */
3930 	  if (final_value != 0 && ! bl->reversed)
3931 	    {
3932 	      rtx insert_before;
3933 
3934 	      /* If the loop has multiple exits, emit the insn before the
3935 		 loop to ensure that it will always be executed no matter
3936 		 how the loop exits.  Otherwise, emit the insn after the
3937 		 loop, since this is slightly more efficient.  */
3938 	      if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3939 		insert_before = loop_start;
3940 	      else
3941 		insert_before = end_insert_before;
3942 
3943 	      emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
3944 				end_insert_before);
3945 	    }
3946 
3947 #if 0
3948 	  /* Delete all of the instructions inside the loop which set
3949 	     the biv, as they are all dead.  If is safe to delete them,
3950 	     because an insn setting a biv will never be part of a libcall.  */
3951 	  /* However, deleting them will invalidate the regno_last_uid info,
3952 	     so keeping them around is more convenient.  Final_biv_value
3953 	     will only succeed when there are multiple exits if the biv
3954 	     is dead at each exit, hence it does not matter that the original
3955 	     insn remains, because it is dead anyways.  */
3956 	  for (v = bl->biv; v; v = v->next_iv)
3957 	    delete_insn (v->insn);
3958 #endif
3959 
3960 	  if (loop_dump_stream)
3961 	    fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
3962 		     bl->regno);
3963 	}
3964     }
3965 
3966   /* Go through all the instructions in the loop, making all the
3967      register substitutions scheduled in REG_MAP.  */
3968 
3969   for (p = loop_start; p != end; p = NEXT_INSN (p))
3970     if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3971  	|| GET_CODE (p) == CALL_INSN)
3972       {
3973 	replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
3974 	replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
3975 	INSN_CODE (p) = -1;
3976       }
3977 
3978   /* Unroll loops from within strength reduction so that we can use the
3979      induction variable information that strength_reduce has already
3980      collected.  */
3981 
3982   if (flag_unroll_loops)
3983     unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
3984 
3985   if (loop_dump_stream)
3986     fprintf (loop_dump_stream, "\n");
3987 }
3988 
3989 /* Return 1 if X is a valid source for an initial value (or as value being
3990    compared against in an initial test).
3991 
3992    X must be either a register or constant and must not be clobbered between
3993    the current insn and the start of the loop.
3994 
3995    INSN is the insn containing X.  */
3996 
3997 static int
valid_initial_value_p(x,insn,call_seen,loop_start)3998 valid_initial_value_p (x, insn, call_seen, loop_start)
3999      rtx x;
4000      rtx insn;
4001      int call_seen;
4002      rtx loop_start;
4003 {
4004   if (CONSTANT_P (x))
4005     return 1;
4006 
4007   /* Only consider pseudos we know about initialized in insns whose luids
4008      we know.  */
4009   if (GET_CODE (x) != REG
4010       || REGNO (x) >= max_reg_before_loop)
4011     return 0;
4012 
4013   /* Don't use call-clobbered registers across a call which clobbers it.  On
4014      some machines, don't use any hard registers at all.  */
4015   if (REGNO (x) < FIRST_PSEUDO_REGISTER
4016 #ifndef SMALL_REGISTER_CLASSES
4017       && call_used_regs[REGNO (x)] && call_seen
4018 #endif
4019       )
4020     return 0;
4021 
4022   /* Don't use registers that have been clobbered before the start of the
4023      loop.  */
4024   if (reg_set_between_p (x, insn, loop_start))
4025     return 0;
4026 
4027   return 1;
4028 }
4029 
4030 /* Scan X for memory refs and check each memory address
4031    as a possible giv.  INSN is the insn whose pattern X comes from.
4032    NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4033    every loop iteration.  */
4034 
4035 static void
find_mem_givs(x,insn,not_every_iteration,loop_start,loop_end)4036 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4037      rtx x;
4038      rtx insn;
4039      int not_every_iteration;
4040      rtx loop_start, loop_end;
4041 {
4042   register int i, j;
4043   register enum rtx_code code;
4044   register char *fmt;
4045 
4046   if (x == 0)
4047     return;
4048 
4049   code = GET_CODE (x);
4050   switch (code)
4051     {
4052     case REG:
4053     case CONST_INT:
4054     case CONST:
4055     case CONST_DOUBLE:
4056     case SYMBOL_REF:
4057     case LABEL_REF:
4058     case PC:
4059     case CC0:
4060     case ADDR_VEC:
4061     case ADDR_DIFF_VEC:
4062     case USE:
4063     case CLOBBER:
4064       return;
4065 
4066     case MEM:
4067       {
4068 	rtx src_reg;
4069 	rtx add_val;
4070 	rtx mult_val;
4071 	int benefit;
4072 
4073 	benefit = general_induction_var (XEXP (x, 0),
4074 					 &src_reg, &add_val, &mult_val);
4075 
4076 	/* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4077 	   Such a giv isn't useful.  */
4078 	if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4079 	  {
4080 	    /* Found one; record it.  */
4081 	    struct induction *v
4082 	      = (struct induction *) oballoc (sizeof (struct induction));
4083 
4084 	    record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4085 			add_val, benefit, DEST_ADDR, not_every_iteration,
4086 			&XEXP (x, 0), loop_start, loop_end);
4087 
4088 	    v->mem_mode = GET_MODE (x);
4089 	  }
4090 	return;
4091       }
4092     }
4093 
4094   /* Recursively scan the subexpressions for other mem refs.  */
4095 
4096   fmt = GET_RTX_FORMAT (code);
4097   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4098     if (fmt[i] == 'e')
4099       find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4100 		     loop_end);
4101     else if (fmt[i] == 'E')
4102       for (j = 0; j < XVECLEN (x, i); j++)
4103 	find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4104 		       loop_start, loop_end);
4105 }
4106 
4107 /* Fill in the data about one biv update.
4108    V is the `struct induction' in which we record the biv.  (It is
4109    allocated by the caller, with alloca.)
4110    INSN is the insn that sets it.
4111    DEST_REG is the biv's reg.
4112 
4113    MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4114    INC_VAL is the increment.  Otherwise, MULT_VAL is const0_rtx and the biv is
4115    being set to INC_VAL.
4116 
4117    NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4118    executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4119    can be executed more than once per iteration.  If MAYBE_MULTIPLE
4120    and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4121    executed exactly once per iteration.  */
4122 
4123 static void
record_biv(v,insn,dest_reg,inc_val,mult_val,not_every_iteration,maybe_multiple)4124 record_biv (v, insn, dest_reg, inc_val, mult_val,
4125 	    not_every_iteration, maybe_multiple)
4126      struct induction *v;
4127      rtx insn;
4128      rtx dest_reg;
4129      rtx inc_val;
4130      rtx mult_val;
4131      int not_every_iteration;
4132      int maybe_multiple;
4133 {
4134   struct iv_class *bl;
4135 
4136   v->insn = insn;
4137   v->src_reg = dest_reg;
4138   v->dest_reg = dest_reg;
4139   v->mult_val = mult_val;
4140   v->add_val = inc_val;
4141   v->mode = GET_MODE (dest_reg);
4142   v->always_computable = ! not_every_iteration;
4143   v->maybe_multiple = maybe_multiple;
4144 
4145   /* Add this to the reg's iv_class, creating a class
4146      if this is the first incrementation of the reg.  */
4147 
4148   bl = reg_biv_class[REGNO (dest_reg)];
4149   if (bl == 0)
4150     {
4151       /* Create and initialize new iv_class.  */
4152 
4153       bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4154 
4155       bl->regno = REGNO (dest_reg);
4156       bl->biv = 0;
4157       bl->giv = 0;
4158       bl->biv_count = 0;
4159       bl->giv_count = 0;
4160 
4161       /* Set initial value to the reg itself.  */
4162       bl->initial_value = dest_reg;
4163       /* We haven't seen the initializing insn yet */
4164       bl->init_insn = 0;
4165       bl->init_set = 0;
4166       bl->initial_test = 0;
4167       bl->incremented = 0;
4168       bl->eliminable = 0;
4169       bl->nonneg = 0;
4170       bl->reversed = 0;
4171       bl->total_benefit = 0;
4172 
4173       /* Add this class to loop_iv_list.  */
4174       bl->next = loop_iv_list;
4175       loop_iv_list = bl;
4176 
4177       /* Put it in the array of biv register classes.  */
4178       reg_biv_class[REGNO (dest_reg)] = bl;
4179     }
4180 
4181   /* Update IV_CLASS entry for this biv.  */
4182   v->next_iv = bl->biv;
4183   bl->biv = v;
4184   bl->biv_count++;
4185   if (mult_val == const1_rtx)
4186     bl->incremented = 1;
4187 
4188   if (loop_dump_stream)
4189     {
4190       fprintf (loop_dump_stream,
4191 	       "Insn %d: possible biv, reg %d,",
4192 	       INSN_UID (insn), REGNO (dest_reg));
4193       if (GET_CODE (inc_val) == CONST_INT)
4194 	fprintf (loop_dump_stream, " const = %d\n",
4195 		 INTVAL (inc_val));
4196       else
4197 	{
4198 	  fprintf (loop_dump_stream, " const = ");
4199 	  print_rtl (loop_dump_stream, inc_val);
4200 	  fprintf (loop_dump_stream, "\n");
4201 	}
4202     }
4203 }
4204 
4205 /* Fill in the data about one giv.
4206    V is the `struct induction' in which we record the giv.  (It is
4207    allocated by the caller, with alloca.)
4208    INSN is the insn that sets it.
4209    BENEFIT estimates the savings from deleting this insn.
4210    TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4211    into a register or is used as a memory address.
4212 
4213    SRC_REG is the biv reg which the giv is computed from.
4214    DEST_REG is the giv's reg (if the giv is stored in a reg).
4215    MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4216    LOCATION points to the place where this giv's value appears in INSN.  */
4217 
4218 static void
record_giv(v,insn,src_reg,dest_reg,mult_val,add_val,benefit,type,not_every_iteration,location,loop_start,loop_end)4219 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4220 	    type, not_every_iteration, location, loop_start, loop_end)
4221      struct induction *v;
4222      rtx insn;
4223      rtx src_reg;
4224      rtx dest_reg;
4225      rtx mult_val, add_val;
4226      int benefit;
4227      enum g_types type;
4228      int not_every_iteration;
4229      rtx *location;
4230      rtx loop_start, loop_end;
4231 {
4232   struct induction *b;
4233   struct iv_class *bl;
4234   rtx set = single_set (insn);
4235   rtx p;
4236 
4237   v->insn = insn;
4238   v->src_reg = src_reg;
4239   v->giv_type = type;
4240   v->dest_reg = dest_reg;
4241   v->mult_val = mult_val;
4242   v->add_val = add_val;
4243   v->benefit = benefit;
4244   v->location = location;
4245   v->cant_derive = 0;
4246   v->combined_with = 0;
4247   v->maybe_multiple = 0;
4248   v->maybe_dead = 0;
4249   v->derive_adjustment = 0;
4250   v->same = 0;
4251   v->ignore = 0;
4252   v->new_reg = 0;
4253   v->final_value = 0;
4254 
4255   /* The v->always_computable field is used in update_giv_derive, to
4256      determine whether a giv can be used to derive another giv.  For a
4257      DEST_REG giv, INSN computes a new value for the giv, so its value
4258      isn't computable if INSN insn't executed every iteration.
4259      However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4260      it does not compute a new value.  Hence the value is always computable
4261      regardless of whether INSN is executed each iteration.  */
4262 
4263   if (type == DEST_ADDR)
4264     v->always_computable = 1;
4265   else
4266     v->always_computable = ! not_every_iteration;
4267 
4268   if (type == DEST_ADDR)
4269     {
4270       v->mode = GET_MODE (*location);
4271       v->lifetime = 1;
4272       v->times_used = 1;
4273     }
4274   else /* type == DEST_REG */
4275     {
4276       v->mode = GET_MODE (SET_DEST (set));
4277 
4278       v->lifetime = (uid_luid[regno_last_uid[REGNO (dest_reg)]]
4279 		     - uid_luid[regno_first_uid[REGNO (dest_reg)]]);
4280 
4281       v->times_used = n_times_used[REGNO (dest_reg)];
4282 
4283       /* If the lifetime is zero, it means that this register is
4284 	 really a dead store.  So mark this as a giv that can be
4285 	 ignored.  This will not prevent the biv from being eliminated. */
4286       if (v->lifetime == 0)
4287 	v->ignore = 1;
4288 
4289       reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4290       reg_iv_info[REGNO (dest_reg)] = v;
4291     }
4292 
4293   /* Add the giv to the class of givs computed from one biv.  */
4294 
4295   bl = reg_biv_class[REGNO (src_reg)];
4296   if (bl)
4297     {
4298       v->next_iv = bl->giv;
4299       bl->giv = v;
4300       /* Don't count DEST_ADDR.  This is supposed to count the number of
4301 	 insns that calculate givs.  */
4302       if (type == DEST_REG)
4303 	bl->giv_count++;
4304       bl->total_benefit += benefit;
4305     }
4306   else
4307     /* Fatal error, biv missing for this giv?  */
4308     abort ();
4309 
4310   if (type == DEST_ADDR)
4311     v->replaceable = 1;
4312   else
4313     {
4314       /* The giv can be replaced outright by the reduced register only if all
4315 	 of the following conditions are true:
4316  	 - the insn that sets the giv is always executed on any iteration
4317 	   on which the giv is used at all
4318 	   (there are two ways to deduce this:
4319 	    either the insn is executed on every iteration,
4320 	    or all uses follow that insn in the same basic block),
4321  	 - the giv is not used outside the loop
4322 	 - no assignments to the biv occur during the giv's lifetime.  */
4323 
4324       if (regno_first_uid[REGNO (dest_reg)] == INSN_UID (insn)
4325 	  /* Previous line always fails if INSN was moved by loop opt.  */
4326 	  && uid_luid[regno_last_uid[REGNO (dest_reg)]] < INSN_LUID (loop_end)
4327 	  && (! not_every_iteration
4328 	      || last_use_this_basic_block (dest_reg, insn)))
4329  	{
4330 	  /* Now check that there are no assignments to the biv within the
4331 	     giv's lifetime.  This requires two separate checks.  */
4332 
4333 	  /* Check each biv update, and fail if any are between the first
4334 	     and last use of the giv.
4335 
4336 	     If this loop contains an inner loop that was unrolled, then
4337 	     the insn modifying the biv may have been emitted by the loop
4338 	     unrolling code, and hence does not have a valid luid.  Just
4339 	     mark the biv as not replaceable in this case.  It is not very
4340 	     useful as a biv, because it is used in two different loops.
4341 	     It is very unlikely that we would be able to optimize the giv
4342 	     using this biv anyways.  */
4343 
4344 	  v->replaceable = 1;
4345 	  for (b = bl->biv; b; b = b->next_iv)
4346 	    {
4347 	      if (INSN_UID (b->insn) >= max_uid_for_loop
4348 		  || ((uid_luid[INSN_UID (b->insn)]
4349 		       >= uid_luid[regno_first_uid[REGNO (dest_reg)]])
4350 		      && (uid_luid[INSN_UID (b->insn)]
4351 			  <= uid_luid[regno_last_uid[REGNO (dest_reg)]])))
4352 		{
4353 		  v->replaceable = 0;
4354 		  v->not_replaceable = 1;
4355 		  break;
4356  		}
4357 	    }
4358 
4359 	  /* Check each insn between the first and last use of the giv,
4360 	     and fail if any of them are branches that jump to a named label
4361 	     outside this range, but still inside the loop.  This catches
4362 	     cases of spaghetti code where the execution order of insns
4363 	     is not linear, and hence the above test fails.  For example,
4364 	     in the following code, j is not replaceable:
4365 	     for (i = 0; i < 100; )	 {
4366 	     L0:	j = 4*i; goto L1;
4367 	     L2:	k = j;	 goto L3;
4368 	     L1:	i++;	 goto L2;
4369 	     L3:	;	 }
4370 	     printf ("k = %d\n", k); }
4371 	     This test is conservative, but this test succeeds rarely enough
4372 	     that it isn't a problem.  See also check_final_value below.  */
4373 
4374 	  if (v->replaceable)
4375 	    for (p = insn;
4376 		 INSN_UID (p) >= max_uid_for_loop
4377 		 || INSN_LUID (p) < uid_luid[regno_last_uid[REGNO (dest_reg)]];
4378 		 p = NEXT_INSN (p))
4379 	      {
4380 		if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4381 		    && LABEL_NAME (JUMP_LABEL (p))
4382 		    && ((INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start)
4383 			 && (INSN_LUID (JUMP_LABEL (p))
4384 			     < uid_luid[regno_first_uid[REGNO (dest_reg)]]))
4385 			|| (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end)
4386 			    && (INSN_LUID (JUMP_LABEL (p))
4387 				> uid_luid[regno_last_uid[REGNO (dest_reg)]]))))
4388 		  {
4389 		    v->replaceable = 0;
4390 		    v->not_replaceable = 1;
4391 
4392 		    if (loop_dump_stream)
4393 		      fprintf (loop_dump_stream,
4394 			       "Found branch outside giv lifetime.\n");
4395 
4396 		    break;
4397 		  }
4398 	      }
4399 	}
4400       else
4401 	{
4402 	  /* May still be replaceable, we don't have enough info here to
4403 	     decide.  */
4404 	  v->replaceable = 0;
4405 	  v->not_replaceable = 0;
4406 	}
4407     }
4408 
4409   if (loop_dump_stream)
4410     {
4411       if (type == DEST_REG)
4412  	fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4413 		 INSN_UID (insn), REGNO (dest_reg));
4414       else
4415  	fprintf (loop_dump_stream, "Insn %d: dest address",
4416  		 INSN_UID (insn));
4417 
4418       fprintf (loop_dump_stream, " src reg %d benefit %d",
4419 	       REGNO (src_reg), v->benefit);
4420       fprintf (loop_dump_stream, " used %d lifetime %d",
4421 	       v->times_used, v->lifetime);
4422 
4423       if (v->replaceable)
4424  	fprintf (loop_dump_stream, " replaceable");
4425 
4426       if (GET_CODE (mult_val) == CONST_INT)
4427 	fprintf (loop_dump_stream, " mult %d",
4428  		 INTVAL (mult_val));
4429       else
4430 	{
4431 	  fprintf (loop_dump_stream, " mult ");
4432 	  print_rtl (loop_dump_stream, mult_val);
4433 	}
4434 
4435       if (GET_CODE (add_val) == CONST_INT)
4436 	fprintf (loop_dump_stream, " add %d",
4437 		 INTVAL (add_val));
4438       else
4439 	{
4440 	  fprintf (loop_dump_stream, " add ");
4441 	  print_rtl (loop_dump_stream, add_val);
4442 	}
4443     }
4444 
4445   if (loop_dump_stream)
4446     fprintf (loop_dump_stream, "\n");
4447 
4448 }
4449 
4450 
4451 /* All this does is determine whether a giv can be made replaceable because
4452    its final value can be calculated.  This code can not be part of record_giv
4453    above, because final_giv_value requires that the number of loop iterations
4454    be known, and that can not be accurately calculated until after all givs
4455    have been identified.  */
4456 
4457 static void
check_final_value(v,loop_start,loop_end)4458 check_final_value (v, loop_start, loop_end)
4459      struct induction *v;
4460      rtx loop_start, loop_end;
4461 {
4462   struct iv_class *bl;
4463   rtx final_value = 0;
4464   rtx tem;
4465 
4466   bl = reg_biv_class[REGNO (v->src_reg)];
4467 
4468   /* DEST_ADDR givs will never reach here, because they are always marked
4469      replaceable above in record_giv.  */
4470 
4471   /* The giv can be replaced outright by the reduced register only if all
4472      of the following conditions are true:
4473      - the insn that sets the giv is always executed on any iteration
4474        on which the giv is used at all
4475        (there are two ways to deduce this:
4476         either the insn is executed on every iteration,
4477         or all uses follow that insn in the same basic block),
4478      - its final value can be calculated (this condition is different
4479        than the one above in record_giv)
4480      - no assignments to the biv occur during the giv's lifetime.  */
4481 
4482 #if 0
4483   /* This is only called now when replaceable is known to be false.  */
4484   /* Clear replaceable, so that it won't confuse final_giv_value.  */
4485   v->replaceable = 0;
4486 #endif
4487 
4488   if ((final_value = final_giv_value (v, loop_start, loop_end))
4489       && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4490     {
4491       int biv_increment_seen = 0;
4492       rtx p = v->insn;
4493       rtx last_giv_use;
4494 
4495       v->replaceable = 1;
4496 
4497       /* When trying to determine whether or not a biv increment occurs
4498 	 during the lifetime of the giv, we can ignore uses of the variable
4499 	 outside the loop because final_value is true.  Hence we can not
4500 	 use regno_last_uid and regno_first_uid as above in record_giv.  */
4501 
4502       /* Search the loop to determine whether any assignments to the
4503 	 biv occur during the giv's lifetime.  Start with the insn
4504 	 that sets the giv, and search around the loop until we come
4505 	 back to that insn again.
4506 
4507 	 Also fail if there is a jump within the giv's lifetime that jumps
4508 	 to somewhere outside the lifetime but still within the loop.  This
4509 	 catches spaghetti code where the execution order is not linear, and
4510 	 hence the above test fails.  Here we assume that the giv lifetime
4511 	 does not extend from one iteration of the loop to the next, so as
4512 	 to make the test easier.  Since the lifetime isn't known yet,
4513 	 this requires two loops.  See also record_giv above.  */
4514 
4515       last_giv_use = v->insn;
4516 
4517       while (1)
4518 	{
4519 	  p = NEXT_INSN (p);
4520 	  if (p == loop_end)
4521 	    p = NEXT_INSN (loop_start);
4522 	  if (p == v->insn)
4523 	    break;
4524 
4525 	  if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4526 	      || GET_CODE (p) == CALL_INSN)
4527 	    {
4528 	      if (biv_increment_seen)
4529 		{
4530 		  if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4531 		    {
4532 		      v->replaceable = 0;
4533 		      v->not_replaceable = 1;
4534 		      break;
4535 		    }
4536 		}
4537 	      else if (GET_CODE (PATTERN (p)) == SET
4538 		       && SET_DEST (PATTERN (p)) == v->src_reg)
4539 		biv_increment_seen = 1;
4540 	      else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4541 		last_giv_use = p;
4542 	    }
4543 	}
4544 
4545       /* Now that the lifetime of the giv is known, check for branches
4546 	 from within the lifetime to outside the lifetime if it is still
4547 	 replaceable.  */
4548 
4549       if (v->replaceable)
4550 	{
4551 	  p = v->insn;
4552 	  while (1)
4553 	    {
4554 	      p = NEXT_INSN (p);
4555 	      if (p == loop_end)
4556 		p = NEXT_INSN (loop_start);
4557 	      if (p == last_giv_use)
4558 		break;
4559 
4560 	      if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4561 		  && LABEL_NAME (JUMP_LABEL (p))
4562 		  && ((INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4563 		       && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4564 		      || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4565 			  && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4566 		{
4567 		  v->replaceable = 0;
4568 		  v->not_replaceable = 1;
4569 
4570 		  if (loop_dump_stream)
4571 		    fprintf (loop_dump_stream,
4572 			     "Found branch outside giv lifetime.\n");
4573 
4574 		  break;
4575 		}
4576 	    }
4577 	}
4578 
4579       /* If it is replaceable, then save the final value.  */
4580       if (v->replaceable)
4581 	v->final_value = final_value;
4582     }
4583 
4584   if (loop_dump_stream && v->replaceable)
4585     fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4586 	     INSN_UID (v->insn), REGNO (v->dest_reg));
4587 }
4588 
4589 /* Update the status of whether a giv can derive other givs.
4590 
4591    We need to do something special if there is or may be an update to the biv
4592    between the time the giv is defined and the time it is used to derive
4593    another giv.
4594 
4595    In addition, a giv that is only conditionally set is not allowed to
4596    derive another giv once a label has been passed.
4597 
4598    The cases we look at are when a label or an update to a biv is passed.  */
4599 
4600 static void
update_giv_derive(p)4601 update_giv_derive (p)
4602      rtx p;
4603 {
4604   struct iv_class *bl;
4605   struct induction *biv, *giv;
4606   rtx tem;
4607   int dummy;
4608 
4609   /* Search all IV classes, then all bivs, and finally all givs.
4610 
4611      There are three cases we are concerned with.  First we have the situation
4612      of a giv that is only updated conditionally.  In that case, it may not
4613      derive any givs after a label is passed.
4614 
4615      The second case is when a biv update occurs, or may occur, after the
4616      definition of a giv.  For certain biv updates (see below) that are
4617      known to occur between the giv definition and use, we can adjust the
4618      giv definition.  For others, or when the biv update is conditional,
4619      we must prevent the giv from deriving any other givs.  There are two
4620      sub-cases within this case.
4621 
4622      If this is a label, we are concerned with any biv update that is done
4623      conditionally, since it may be done after the giv is defined followed by
4624      a branch here (actually, we need to pass both a jump and a label, but
4625      this extra tracking doesn't seem worth it).
4626 
4627      If this is a jump, we are concerned about any biv update that may be
4628      executed multiple times.  We are actually only concerned about
4629      backward jumps, but it is probably not worth performing the test
4630      on the jump again here.
4631 
4632      If this is a biv update, we must adjust the giv status to show that a
4633      subsequent biv update was performed.  If this adjustment cannot be done,
4634      the giv cannot derive further givs.  */
4635 
4636   for (bl = loop_iv_list; bl; bl = bl->next)
4637     for (biv = bl->biv; biv; biv = biv->next_iv)
4638       if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
4639 	  || biv->insn == p)
4640 	{
4641 	  for (giv = bl->giv; giv; giv = giv->next_iv)
4642 	    {
4643 	      /* If cant_derive is already true, there is no point in
4644 		 checking all of these conditions again.  */
4645 	      if (giv->cant_derive)
4646 		continue;
4647 
4648 	      /* If this giv is conditionally set and we have passed a label,
4649 		 it cannot derive anything.  */
4650 	      if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
4651 		giv->cant_derive = 1;
4652 
4653 	      /* Skip givs that have mult_val == 0, since
4654 		 they are really invariants.  Also skip those that are
4655 		 replaceable, since we know their lifetime doesn't contain
4656 		 any biv update.  */
4657 	      else if (giv->mult_val == const0_rtx || giv->replaceable)
4658 		continue;
4659 
4660 	      /* The only way we can allow this giv to derive another
4661 		 is if this is a biv increment and we can form the product
4662 		 of biv->add_val and giv->mult_val.  In this case, we will
4663 		 be able to compute a compensation.  */
4664 	      else if (biv->insn == p)
4665 		{
4666 		  tem = 0;
4667 
4668 		  if (biv->mult_val == const1_rtx)
4669 		    tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
4670 						      biv->add_val,
4671 						      giv->mult_val),
4672 					     &dummy);
4673 
4674 		  if (tem && giv->derive_adjustment)
4675 		    tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
4676 						      giv->derive_adjustment),
4677 					     &dummy);
4678 		  if (tem)
4679 		    giv->derive_adjustment = tem;
4680 		  else
4681 		    giv->cant_derive = 1;
4682 		}
4683 	      else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
4684 		       || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
4685 		giv->cant_derive = 1;
4686 	    }
4687 	}
4688 }
4689 
4690 /* Check whether an insn is an increment legitimate for a basic induction var.
4691    X is the source of insn P.
4692    DEST_REG is the putative biv, also the destination of the insn.
4693    We accept patterns of these forms:
4694      REG = REG + INVARIANT (includes REG = REG - CONSTANT)
4695      REG = INVARIANT + REG
4696 
4697    If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
4698    and store the additive term into *INC_VAL.
4699 
4700    If X is an assignment of an invariant into DEST_REG, we set
4701    *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
4702 
4703    We also want to detect a BIV when it corresponds to a variable
4704    whose mode was promoted via PROMOTED_MODE.  In that case, an increment
4705    of the variable may be a PLUS that adds a SUBREG of that variable to
4706    an invariant and then sign- or zero-extends the result of the PLUS
4707    into the variable.
4708 
4709    Most GIVs in such cases will be in the promoted mode, since that is the
4710    probably the natural computation mode (and almost certainly the mode
4711    used for addresses) on the machine.  So we view the pseudo-reg containing
4712    the variable as the BIV, as if it were simply incremented.
4713 
4714    Note that treating the entire pseudo as a BIV will result in making
4715    simple increments to any GIVs based on it.  However, if the variable
4716    overflows in its declared mode but not its promoted mode, the result will
4717    be incorrect.  This is acceptable if the variable is signed, since
4718    overflows in such cases are undefined, but not if it is unsigned, since
4719    those overflows are defined.  So we only check for SIGN_EXTEND and
4720    not ZERO_EXTEND.
4721 
4722    If we cannot find a biv, we return 0.  */
4723 
4724 static int
basic_induction_var(x,dest_reg,p,inc_val,mult_val)4725 basic_induction_var (x, dest_reg, p, inc_val, mult_val)
4726      register rtx x;
4727      rtx p;
4728      rtx dest_reg;
4729      rtx *inc_val;
4730      rtx *mult_val;
4731 {
4732   register enum rtx_code code;
4733   rtx arg;
4734   rtx insn, set = 0;
4735 
4736   code = GET_CODE (x);
4737   switch (code)
4738     {
4739     case PLUS:
4740       if (XEXP (x, 0) == dest_reg
4741 	  || (GET_CODE (XEXP (x, 0)) == SUBREG
4742 	      && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
4743 	      && SUBREG_REG (XEXP (x, 0)) == dest_reg))
4744  	arg = XEXP (x, 1);
4745       else if (XEXP (x, 1) == dest_reg
4746 	       || (GET_CODE (XEXP (x, 1)) == SUBREG
4747 		   && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
4748 		   && SUBREG_REG (XEXP (x, 1)) == dest_reg))
4749 	arg = XEXP (x, 0);
4750       else
4751  	return 0;
4752 
4753       if (invariant_p (arg) != 1)
4754 	return 0;
4755 
4756       *inc_val = convert_to_mode (GET_MODE (dest_reg), arg, 0);;
4757       *mult_val = const1_rtx;
4758       return 1;
4759 
4760     case SUBREG:
4761       /* If this is a SUBREG for a promoted variable, check the inner
4762 	 value.  */
4763       if (SUBREG_PROMOTED_VAR_P (x))
4764 	  return basic_induction_var (SUBREG_REG (x), dest_reg, p,
4765 				    inc_val, mult_val);
4766 
4767     case REG:
4768       /* If this register is assigned in the previous insn, look at its
4769 	 source, but don't go outside the loop or past a label.  */
4770 
4771       for (insn = PREV_INSN (p);
4772 	   (insn && GET_CODE (insn) == NOTE
4773 	    && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4774 	   insn = PREV_INSN (insn))
4775 	;
4776 
4777       if (insn)
4778 	set = single_set (insn);
4779 
4780       if (set != 0 && SET_DEST (set) == x)
4781 	return basic_induction_var (SET_SRC (set), dest_reg, insn,
4782 				    inc_val, mult_val);
4783       /* ... fall through ... */
4784 
4785       /* Can accept constant setting of biv only when inside inner most loop.
4786   	 Otherwise, a biv of an inner loop may be incorrectly recognized
4787 	 as a biv of the outer loop,
4788 	 causing code to be moved INTO the inner loop.  */
4789     case MEM:
4790       if (invariant_p (x) != 1)
4791 	return 0;
4792     case CONST_INT:
4793     case SYMBOL_REF:
4794     case CONST:
4795       if (loops_enclosed == 1)
4796  	{
4797 	  *inc_val = convert_to_mode (GET_MODE (dest_reg), x, 0);;
4798  	  *mult_val = const0_rtx;
4799  	  return 1;
4800  	}
4801       else
4802  	return 0;
4803 
4804     case SIGN_EXTEND:
4805       return basic_induction_var (XEXP (x, 0), dest_reg, p,
4806 				  inc_val, mult_val);
4807     case ASHIFTRT:
4808       /* Similar, since this can be a sign extension.  */
4809       for (insn = PREV_INSN (p);
4810 	   (insn && GET_CODE (insn) == NOTE
4811 	    && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4812 	   insn = PREV_INSN (insn))
4813 	;
4814 
4815       if (insn)
4816 	set = single_set (insn);
4817 
4818       if (set && SET_DEST (set) == XEXP (x, 0)
4819 	  && GET_CODE (XEXP (x, 1)) == CONST_INT
4820 	  && INTVAL (XEXP (x, 1)) >= 0
4821 	  && GET_CODE (SET_SRC (set)) == ASHIFT
4822 	  && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
4823 	return basic_induction_var (XEXP (SET_SRC (set), 0), dest_reg, insn,
4824 				    inc_val, mult_val);
4825       return 0;
4826 
4827     default:
4828       return 0;
4829     }
4830 }
4831 
4832 /* A general induction variable (giv) is any quantity that is a linear
4833    function   of a basic induction variable,
4834    i.e. giv = biv * mult_val + add_val.
4835    The coefficients can be any loop invariant quantity.
4836    A giv need not be computed directly from the biv;
4837    it can be computed by way of other givs.  */
4838 
4839 /* Determine whether X computes a giv.
4840    If it does, return a nonzero value
4841      which is the benefit from eliminating the computation of X;
4842    set *SRC_REG to the register of the biv that it is computed from;
4843    set *ADD_VAL and *MULT_VAL to the coefficients,
4844      such that the value of X is biv * mult + add;  */
4845 
4846 static int
general_induction_var(x,src_reg,add_val,mult_val)4847 general_induction_var (x, src_reg, add_val, mult_val)
4848      rtx x;
4849      rtx *src_reg;
4850      rtx *add_val;
4851      rtx *mult_val;
4852 {
4853   rtx orig_x = x;
4854   int benefit = 0;
4855   char *storage;
4856 
4857   /* If this is an invariant, forget it, it isn't a giv.  */
4858   if (invariant_p (x) == 1)
4859     return 0;
4860 
4861   /* See if the expression could be a giv and get its form.
4862      Mark our place on the obstack in case we don't find a giv.  */
4863   storage = (char *) oballoc (0);
4864   x = simplify_giv_expr (x, &benefit);
4865   if (x == 0)
4866     {
4867       obfree (storage);
4868       return 0;
4869     }
4870 
4871   switch (GET_CODE (x))
4872     {
4873     case USE:
4874     case CONST_INT:
4875       /* Since this is now an invariant and wasn't before, it must be a giv
4876 	 with MULT_VAL == 0.  It doesn't matter which BIV we associate this
4877 	 with.  */
4878       *src_reg = loop_iv_list->biv->dest_reg;
4879       *mult_val = const0_rtx;
4880       *add_val = x;
4881       break;
4882 
4883     case REG:
4884       /* This is equivalent to a BIV.  */
4885       *src_reg = x;
4886       *mult_val = const1_rtx;
4887       *add_val = const0_rtx;
4888       break;
4889 
4890     case PLUS:
4891       /* Either (plus (biv) (invar)) or
4892 	 (plus (mult (biv) (invar_1)) (invar_2)).  */
4893       if (GET_CODE (XEXP (x, 0)) == MULT)
4894 	{
4895 	  *src_reg = XEXP (XEXP (x, 0), 0);
4896 	  *mult_val = XEXP (XEXP (x, 0), 1);
4897 	}
4898       else
4899 	{
4900 	  *src_reg = XEXP (x, 0);
4901 	  *mult_val = const1_rtx;
4902 	}
4903       *add_val = XEXP (x, 1);
4904       break;
4905 
4906     case MULT:
4907       /* ADD_VAL is zero.  */
4908       *src_reg = XEXP (x, 0);
4909       *mult_val = XEXP (x, 1);
4910       *add_val = const0_rtx;
4911       break;
4912 
4913     default:
4914       abort ();
4915     }
4916 
4917   /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
4918      unless they are CONST_INT).  */
4919   if (GET_CODE (*add_val) == USE)
4920     *add_val = XEXP (*add_val, 0);
4921   if (GET_CODE (*mult_val) == USE)
4922     *mult_val = XEXP (*mult_val, 0);
4923 
4924   benefit += rtx_cost (orig_x, SET);
4925 
4926   /* Always return some benefit if this is a giv so it will be detected
4927      as such.  This allows elimination of bivs that might otherwise
4928      not be eliminated.  */
4929   return benefit == 0 ? 1 : benefit;
4930 }
4931 
4932 /* Given an expression, X, try to form it as a linear function of a biv.
4933    We will canonicalize it to be of the form
4934    	(plus (mult (BIV) (invar_1))
4935 	      (invar_2))
4936    with possible degeneracies.
4937 
4938    The invariant expressions must each be of a form that can be used as a
4939    machine operand.  We surround then with a USE rtx (a hack, but localized
4940    and certainly unambiguous!) if not a CONST_INT for simplicity in this
4941    routine; it is the caller's responsibility to strip them.
4942 
4943    If no such canonicalization is possible (i.e., two biv's are used or an
4944    expression that is neither invariant nor a biv or giv), this routine
4945    returns 0.
4946 
4947    For a non-zero return, the result will have a code of CONST_INT, USE,
4948    REG (for a BIV), PLUS, or MULT.  No other codes will occur.
4949 
4950    *BENEFIT will be incremented by the benefit of any sub-giv encountered.  */
4951 
4952 static rtx
simplify_giv_expr(x,benefit)4953 simplify_giv_expr (x, benefit)
4954      rtx x;
4955      int *benefit;
4956 {
4957   enum machine_mode mode = GET_MODE (x);
4958   rtx arg0, arg1;
4959   rtx tem;
4960 
4961   /* If this is not an integer mode, or if we cannot do arithmetic in this
4962      mode, this can't be a giv.  */
4963   if (mode != VOIDmode
4964       && (GET_MODE_CLASS (mode) != MODE_INT
4965 	  || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
4966     return 0;
4967 
4968   switch (GET_CODE (x))
4969     {
4970     case PLUS:
4971       arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
4972       arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
4973       if (arg0 == 0 || arg1 == 0)
4974 	return 0;
4975 
4976       /* Put constant last, CONST_INT last if both constant.  */
4977       if ((GET_CODE (arg0) == USE
4978 	   || GET_CODE (arg0) == CONST_INT)
4979 	  && GET_CODE (arg1) != CONST_INT)
4980 	tem = arg0, arg0 = arg1, arg1 = tem;
4981 
4982       /* Handle addition of zero, then addition of an invariant.  */
4983       if (arg1 == const0_rtx)
4984 	return arg0;
4985       else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
4986 	switch (GET_CODE (arg0))
4987 	  {
4988 	  case CONST_INT:
4989 	  case USE:
4990 	    /* Both invariant.  Only valid if sum is machine operand.
4991 	       First strip off possible USE on first operand.  */
4992 	    if (GET_CODE (arg0) == USE)
4993 	      arg0 = XEXP (arg0, 0);
4994 
4995 	    tem = 0;
4996 	    if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
4997 	      {
4998 		tem = plus_constant (arg0, INTVAL (arg1));
4999 		if (GET_CODE (tem) != CONST_INT)
5000 		  tem = gen_rtx (USE, mode, tem);
5001 	      }
5002 
5003 	    return tem;
5004 
5005 	  case REG:
5006 	  case MULT:
5007 	    /* biv + invar or mult + invar.  Return sum.  */
5008 	    return gen_rtx (PLUS, mode, arg0, arg1);
5009 
5010 	  case PLUS:
5011 	    /* (a + invar_1) + invar_2.  Associate.  */
5012 	    return simplify_giv_expr (gen_rtx (PLUS, mode,
5013 					       XEXP (arg0, 0),
5014 					       gen_rtx (PLUS, mode,
5015 							XEXP (arg0, 1), arg1)),
5016 				      benefit);
5017 
5018 	  default:
5019 	    abort ();
5020 	  }
5021 
5022       /* Each argument must be either REG, PLUS, or MULT.  Convert REG to
5023 	 MULT to reduce cases.  */
5024       if (GET_CODE (arg0) == REG)
5025 	arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5026       if (GET_CODE (arg1) == REG)
5027 	arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5028 
5029       /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5030 	 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5031 	 Recurse to associate the second PLUS.  */
5032       if (GET_CODE (arg1) == MULT)
5033 	tem = arg0, arg0 = arg1, arg1 = tem;
5034 
5035       if (GET_CODE (arg1) == PLUS)
5036 	  return simplify_giv_expr (gen_rtx (PLUS, mode,
5037 					     gen_rtx (PLUS, mode,
5038 						      arg0, XEXP (arg1, 0)),
5039 					     XEXP (arg1, 1)),
5040 				    benefit);
5041 
5042       /* Now must have MULT + MULT.  Distribute if same biv, else not giv.  */
5043       if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5044 	abort ();
5045 
5046       if (XEXP (arg0, 0) != XEXP (arg1, 0))
5047 	return 0;
5048 
5049       return simplify_giv_expr (gen_rtx (MULT, mode,
5050 					 XEXP (arg0, 0),
5051 					 gen_rtx (PLUS, mode,
5052 						  XEXP (arg0, 1),
5053 						  XEXP (arg1, 1))),
5054 				benefit);
5055 
5056     case MINUS:
5057       /* Handle "a - b" as "a + b * (-1)". */
5058       return simplify_giv_expr (gen_rtx (PLUS, mode,
5059 					 XEXP (x, 0),
5060 					 gen_rtx (MULT, mode,
5061 						  XEXP (x, 1), constm1_rtx)),
5062 				benefit);
5063 
5064     case MULT:
5065       arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5066       arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5067       if (arg0 == 0 || arg1 == 0)
5068 	return 0;
5069 
5070       /* Put constant last, CONST_INT last if both constant.  */
5071       if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5072 	  && GET_CODE (arg1) != CONST_INT)
5073 	tem = arg0, arg0 = arg1, arg1 = tem;
5074 
5075       /* If second argument is not now constant, not giv.  */
5076       if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5077 	return 0;
5078 
5079       /* Handle multiply by 0 or 1.  */
5080       if (arg1 == const0_rtx)
5081 	return const0_rtx;
5082 
5083       else if (arg1 == const1_rtx)
5084 	return arg0;
5085 
5086       switch (GET_CODE (arg0))
5087 	{
5088 	case REG:
5089 	  /* biv * invar.  Done.  */
5090 	  return gen_rtx (MULT, mode, arg0, arg1);
5091 
5092 	case CONST_INT:
5093 	  /* Product of two constants.  */
5094 	  return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5095 
5096 	case USE:
5097 	  /* invar * invar.  Not giv. */
5098 	  return 0;
5099 
5100 	case MULT:
5101 	  /* (a * invar_1) * invar_2.  Associate.  */
5102 	  return simplify_giv_expr (gen_rtx (MULT, mode,
5103 					     XEXP (arg0, 0),
5104 					     gen_rtx (MULT, mode,
5105 						      XEXP (arg0, 1), arg1)),
5106 				    benefit);
5107 
5108 	case PLUS:
5109 	  /* (a + invar_1) * invar_2.  Distribute.  */
5110 	  return simplify_giv_expr (gen_rtx (PLUS, mode,
5111 					     gen_rtx (MULT, mode,
5112 						      XEXP (arg0, 0), arg1),
5113 					     gen_rtx (MULT, mode,
5114 						      XEXP (arg0, 1), arg1)),
5115 				    benefit);
5116 
5117 	default:
5118 	  abort ();
5119 	}
5120 
5121     case ASHIFT:
5122     case LSHIFT:
5123       /* Shift by constant is multiply by power of two.  */
5124       if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5125 	return 0;
5126 
5127       return simplify_giv_expr (gen_rtx (MULT, mode,
5128 					 XEXP (x, 0),
5129 					 GEN_INT ((HOST_WIDE_INT) 1
5130 						  << INTVAL (XEXP (x, 1)))),
5131 				benefit);
5132 
5133     case NEG:
5134       /* "-a" is "a * (-1)" */
5135       return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
5136 				benefit);
5137 
5138     case NOT:
5139       /* "~a" is "-a - 1". Silly, but easy.  */
5140       return simplify_giv_expr (gen_rtx (MINUS, mode,
5141 					 gen_rtx (NEG, mode, XEXP (x, 0)),
5142 					 const1_rtx),
5143 				benefit);
5144 
5145     case USE:
5146       /* Already in proper form for invariant.  */
5147       return x;
5148 
5149     case REG:
5150       /* If this is a new register, we can't deal with it.  */
5151       if (REGNO (x) >= max_reg_before_loop)
5152 	return 0;
5153 
5154       /* Check for biv or giv.  */
5155       switch (reg_iv_type[REGNO (x)])
5156 	{
5157 	case BASIC_INDUCT:
5158 	  return x;
5159 	case GENERAL_INDUCT:
5160 	  {
5161 	    struct induction *v = reg_iv_info[REGNO (x)];
5162 
5163 	    /* Form expression from giv and add benefit.  Ensure this giv
5164 	       can derive another and subtract any needed adjustment if so.  */
5165 	    *benefit += v->benefit;
5166 	    if (v->cant_derive)
5167 	      return 0;
5168 
5169 	    tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5170 						v->src_reg, v->mult_val),
5171 			   v->add_val);
5172 	    if (v->derive_adjustment)
5173 	      tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5174 	    return simplify_giv_expr (tem, benefit);
5175 	  }
5176 	}
5177 
5178       /* Fall through to general case.  */
5179     default:
5180       /* If invariant, return as USE (unless CONST_INT).
5181 	 Otherwise, not giv.  */
5182       if (GET_CODE (x) == USE)
5183 	x = XEXP (x, 0);
5184 
5185       if (invariant_p (x) == 1)
5186 	{
5187 	  if (GET_CODE (x) == CONST_INT)
5188 	    return x;
5189 	  else
5190 	    return gen_rtx (USE, mode, x);
5191 	}
5192       else
5193 	return 0;
5194     }
5195 }
5196 
5197 /* Help detect a giv that is calculated by several consecutive insns;
5198    for example,
5199       giv = biv * M
5200       giv = giv + A
5201    The caller has already identified the first insn P as having a giv as dest;
5202    we check that all other insns that set the same register follow
5203    immediately after P, that they alter nothing else,
5204    and that the result of the last is still a giv.
5205 
5206    The value is 0 if the reg set in P is not really a giv.
5207    Otherwise, the value is the amount gained by eliminating
5208    all the consecutive insns that compute the value.
5209 
5210    FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5211    SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5212 
5213    The coefficients of the ultimate giv value are stored in
5214    *MULT_VAL and *ADD_VAL.  */
5215 
5216 static int
consec_sets_giv(first_benefit,p,src_reg,dest_reg,add_val,mult_val)5217 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5218 		 add_val, mult_val)
5219      int first_benefit;
5220      rtx p;
5221      rtx src_reg;
5222      rtx dest_reg;
5223      rtx *add_val;
5224      rtx *mult_val;
5225 {
5226   int count;
5227   enum rtx_code code;
5228   int benefit;
5229   rtx temp;
5230   rtx set;
5231 
5232   /* Indicate that this is a giv so that we can update the value produced in
5233      each insn of the multi-insn sequence.
5234 
5235      This induction structure will be used only by the call to
5236      general_induction_var below, so we can allocate it on our stack.
5237      If this is a giv, our caller will replace the induct var entry with
5238      a new induction structure.  */
5239   struct induction *v
5240     = (struct induction *) alloca (sizeof (struct induction));
5241   v->src_reg = src_reg;
5242   v->mult_val = *mult_val;
5243   v->add_val = *add_val;
5244   v->benefit = first_benefit;
5245   v->cant_derive = 0;
5246   v->derive_adjustment = 0;
5247 
5248   reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5249   reg_iv_info[REGNO (dest_reg)] = v;
5250 
5251   count = n_times_set[REGNO (dest_reg)] - 1;
5252 
5253   while (count > 0)
5254     {
5255       p = NEXT_INSN (p);
5256       code = GET_CODE (p);
5257 
5258       /* If libcall, skip to end of call sequence.  */
5259       if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5260 	p = XEXP (temp, 0);
5261 
5262       if (code == INSN
5263 	  && (set = single_set (p))
5264 	  && GET_CODE (SET_DEST (set)) == REG
5265 	  && SET_DEST (set) == dest_reg
5266 	  && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5267 						add_val, mult_val))
5268 	      /* Giv created by equivalent expression.  */
5269 	      || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5270 		  && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5271 						       add_val, mult_val))))
5272 	  && src_reg == v->src_reg)
5273 	{
5274 	  if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5275 	    benefit += libcall_benefit (p);
5276 
5277 	  count--;
5278 	  v->mult_val = *mult_val;
5279 	  v->add_val = *add_val;
5280 	  v->benefit = benefit;
5281 	}
5282       else if (code != NOTE)
5283 	{
5284 	  /* Allow insns that set something other than this giv to a
5285 	     constant.  Such insns are needed on machines which cannot
5286 	     include long constants and should not disqualify a giv.  */
5287 	  if (code == INSN
5288 	      && (set = single_set (p))
5289 	      && SET_DEST (set) != dest_reg
5290 	      && CONSTANT_P (SET_SRC (set)))
5291 	    continue;
5292 
5293 	  reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5294 	  return 0;
5295 	}
5296     }
5297 
5298   return v->benefit;
5299 }
5300 
5301 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5302    represented by G1.  If no such expression can be found, or it is clear that
5303    it cannot possibly be a valid address, 0 is returned.
5304 
5305    To perform the computation, we note that
5306    	G1 = a * v + b		and
5307 	G2 = c * v + d
5308    where `v' is the biv.
5309 
5310    So G2 = (c/a) * G1 + (d - b*c/a)  */
5311 
5312 #ifdef ADDRESS_COST
5313 static rtx
express_from(g1,g2)5314 express_from (g1, g2)
5315      struct induction *g1, *g2;
5316 {
5317   rtx mult, add;
5318 
5319   /* The value that G1 will be multiplied by must be a constant integer.  Also,
5320      the only chance we have of getting a valid address is if b*c/a (see above
5321      for notation) is also an integer.  */
5322   if (GET_CODE (g1->mult_val) != CONST_INT
5323       || GET_CODE (g2->mult_val) != CONST_INT
5324       || GET_CODE (g1->add_val) != CONST_INT
5325       || g1->mult_val == const0_rtx
5326       || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5327     return 0;
5328 
5329   mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5330   add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5331 
5332   /* Form simplified final result.  */
5333   if (mult == const0_rtx)
5334     return add;
5335   else if (mult == const1_rtx)
5336     mult = g1->dest_reg;
5337   else
5338     mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5339 
5340   if (add == const0_rtx)
5341     return mult;
5342   else
5343     return gen_rtx (PLUS, g2->mode, mult, add);
5344 }
5345 #endif
5346 
5347 /* Return 1 if giv G2 can be combined with G1.  This means that G2 can use
5348    (either directly or via an address expression) a register used to represent
5349    G1.  Set g2->new_reg to a represtation of G1 (normally just
5350    g1->dest_reg).  */
5351 
5352 static int
combine_givs_p(g1,g2)5353 combine_givs_p (g1, g2)
5354      struct induction *g1, *g2;
5355 {
5356   rtx tem;
5357 
5358   /* If these givs are identical, they can be combined.  */
5359   if (rtx_equal_p (g1->mult_val, g2->mult_val)
5360       && rtx_equal_p (g1->add_val, g2->add_val))
5361     {
5362       g2->new_reg = g1->dest_reg;
5363       return 1;
5364     }
5365 
5366 #ifdef ADDRESS_COST
5367   /* If G2 can be expressed as a function of G1 and that function is valid
5368      as an address and no more expensive than using a register for G2,
5369      the expression of G2 in terms of G1 can be used.  */
5370   if (g2->giv_type == DEST_ADDR
5371       && (tem = express_from (g1, g2)) != 0
5372       && memory_address_p (g2->mem_mode, tem)
5373       && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5374     {
5375       g2->new_reg = tem;
5376       return 1;
5377     }
5378 #endif
5379 
5380   return 0;
5381 }
5382 
5383 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5384    any other.  If so, point SAME to the giv combined with and set NEW_REG to
5385    be an expression (in terms of the other giv's DEST_REG) equivalent to the
5386    giv.  Also, update BENEFIT and related fields for cost/benefit analysis.  */
5387 
5388 static void
combine_givs(bl)5389 combine_givs (bl)
5390      struct iv_class *bl;
5391 {
5392   struct induction *g1, *g2;
5393   int pass;
5394 
5395   for (g1 = bl->giv; g1; g1 = g1->next_iv)
5396     for (pass = 0; pass <= 1; pass++)
5397       for (g2 = bl->giv; g2; g2 = g2->next_iv)
5398 	if (g1 != g2
5399 	    /* First try to combine with replaceable givs, then all givs. */
5400 	    && (g1->replaceable || pass == 1)
5401 	    /* If either has already been combined or is to be ignored, can't
5402 	       combine.  */
5403 	    && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5404 	    /* If something has been based on G2, G2 cannot itself be based
5405 	       on something else.  */
5406 	    && ! g2->combined_with
5407 	    && combine_givs_p (g1, g2))
5408 	  {
5409 	    /* g2->new_reg set by `combine_givs_p'  */
5410 	    g2->same = g1;
5411 	    g1->combined_with = 1;
5412 	    g1->benefit += g2->benefit;
5413 	    /* ??? The new final_[bg]iv_value code does a much better job
5414 	       of finding replaceable giv's, and hence this code may no
5415 	       longer be necessary.  */
5416 	    if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5417 	      g1->benefit -= copy_cost;
5418 	    g1->lifetime += g2->lifetime;
5419 	    g1->times_used += g2->times_used;
5420 
5421 	    if (loop_dump_stream)
5422 	      fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5423 		       INSN_UID (g2->insn), INSN_UID (g1->insn));
5424 	  }
5425 }
5426 
5427 /* EMIT code before INSERT_BEFORE to set REG = B * M + A.  */
5428 
5429 void
emit_iv_add_mult(b,m,a,reg,insert_before)5430 emit_iv_add_mult (b, m, a, reg, insert_before)
5431      rtx b;          /* initial value of basic induction variable */
5432      rtx m;          /* multiplicative constant */
5433      rtx a;          /* additive constant */
5434      rtx reg;        /* destination register */
5435      rtx insert_before;
5436 {
5437   rtx seq;
5438   rtx result;
5439 
5440   /* Prevent unexpected sharing of these rtx.  */
5441   a = copy_rtx (a);
5442   b = copy_rtx (b);
5443 
5444   /* Increase the lifetime of any invariants moved further in code. */
5445   update_reg_last_use (a, insert_before);
5446   update_reg_last_use (b, insert_before);
5447   update_reg_last_use (m, insert_before);
5448 
5449   start_sequence ();
5450   result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5451   if (reg != result)
5452     emit_move_insn (reg, result);
5453   seq = gen_sequence ();
5454   end_sequence ();
5455 
5456   emit_insn_before (seq, insert_before);
5457 }
5458 
5459 /* Test whether A * B can be computed without
5460    an actual multiply insn.  Value is 1 if so.  */
5461 
5462 static int
product_cheap_p(a,b)5463 product_cheap_p (a, b)
5464      rtx a;
5465      rtx b;
5466 {
5467   int i;
5468   rtx tmp;
5469   struct obstack *old_rtl_obstack = rtl_obstack;
5470   char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5471   int win = 1;
5472 
5473   /* If only one is constant, make it B. */
5474   if (GET_CODE (a) == CONST_INT)
5475     tmp = a, a = b, b = tmp;
5476 
5477   /* If first constant, both constant, so don't need multiply.  */
5478   if (GET_CODE (a) == CONST_INT)
5479     return 1;
5480 
5481   /* If second not constant, neither is constant, so would need multiply.  */
5482   if (GET_CODE (b) != CONST_INT)
5483     return 0;
5484 
5485   /* One operand is constant, so might not need multiply insn.  Generate the
5486      code for the multiply and see if a call or multiply, or long sequence
5487      of insns is generated.  */
5488 
5489   rtl_obstack = &temp_obstack;
5490   start_sequence ();
5491   expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5492   tmp = gen_sequence ();
5493   end_sequence ();
5494 
5495   if (GET_CODE (tmp) == SEQUENCE)
5496     {
5497       if (XVEC (tmp, 0) == 0)
5498 	win = 1;
5499       else if (XVECLEN (tmp, 0) > 3)
5500 	win = 0;
5501       else
5502 	for (i = 0; i < XVECLEN (tmp, 0); i++)
5503 	  {
5504 	    rtx insn = XVECEXP (tmp, 0, i);
5505 
5506 	    if (GET_CODE (insn) != INSN
5507 		|| (GET_CODE (PATTERN (insn)) == SET
5508 		    && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5509 		|| (GET_CODE (PATTERN (insn)) == PARALLEL
5510 		    && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5511 		    && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5512 	      {
5513 		win = 0;
5514 		break;
5515 	      }
5516 	  }
5517     }
5518   else if (GET_CODE (tmp) == SET
5519 	   && GET_CODE (SET_SRC (tmp)) == MULT)
5520     win = 0;
5521   else if (GET_CODE (tmp) == PARALLEL
5522 	   && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5523 	   && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5524     win = 0;
5525 
5526   /* Free any storage we obtained in generating this multiply and restore rtl
5527      allocation to its normal obstack.  */
5528   obstack_free (&temp_obstack, storage);
5529   rtl_obstack = old_rtl_obstack;
5530 
5531   return win;
5532 }
5533 
5534 /* Check to see if loop can be terminated by a "decrement and branch until
5535    zero" instruction.  If so, add a REG_NONNEG note to the branch insn if so.
5536    Also try reversing an increment loop to a decrement loop
5537    to see if the optimization can be performed.
5538    Value is nonzero if optimization was performed.  */
5539 
5540 /* This is useful even if the architecture doesn't have such an insn,
5541    because it might change a loops which increments from 0 to n to a loop
5542    which decrements from n to 0.  A loop that decrements to zero is usually
5543    faster than one that increments from zero.  */
5544 
5545 /* ??? This could be rewritten to use some of the loop unrolling procedures,
5546    such as approx_final_value, biv_total_increment, loop_iterations, and
5547    final_[bg]iv_value.  */
5548 
5549 static int
check_dbra_loop(loop_end,insn_count,loop_start)5550 check_dbra_loop (loop_end, insn_count, loop_start)
5551      rtx loop_end;
5552      int insn_count;
5553      rtx loop_start;
5554 {
5555   struct iv_class *bl;
5556   rtx reg;
5557   rtx jump_label;
5558   rtx final_value;
5559   rtx start_value;
5560   enum rtx_code branch_code;
5561   rtx new_add_val;
5562   rtx comparison;
5563   rtx before_comparison;
5564   rtx p;
5565 
5566   /* If last insn is a conditional branch, and the insn before tests a
5567      register value, try to optimize it.  Otherwise, we can't do anything.  */
5568 
5569   comparison = get_condition_for_loop (PREV_INSN (loop_end));
5570   if (comparison == 0)
5571     return 0;
5572 
5573   /* Check all of the bivs to see if the compare uses one of them.
5574      Skip biv's set more than once because we can't guarantee that
5575      it will be zero on the last iteration.  Also skip if the biv is
5576      used between its update and the test insn.  */
5577 
5578   for (bl = loop_iv_list; bl; bl = bl->next)
5579     {
5580       if (bl->biv_count == 1
5581 	  && bl->biv->dest_reg == XEXP (comparison, 0)
5582 	  && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
5583 				   PREV_INSN (PREV_INSN (loop_end))))
5584 	break;
5585     }
5586 
5587   if (! bl)
5588     return 0;
5589 
5590   /* Look for the case where the basic induction variable is always
5591      nonnegative, and equals zero on the last iteration.
5592      In this case, add a reg_note REG_NONNEG, which allows the
5593      m68k DBRA instruction to be used.  */
5594 
5595   if (((GET_CODE (comparison) == GT
5596 	&& GET_CODE (XEXP (comparison, 1)) == CONST_INT
5597 	&& INTVAL (XEXP (comparison, 1)) == -1)
5598        || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
5599       && GET_CODE (bl->biv->add_val) == CONST_INT
5600       && INTVAL (bl->biv->add_val) < 0)
5601     {
5602       /* Initial value must be greater than 0,
5603 	 init_val % -dec_value == 0 to ensure that it equals zero on
5604 	 the last iteration */
5605 
5606       if (GET_CODE (bl->initial_value) == CONST_INT
5607 	  && INTVAL (bl->initial_value) > 0
5608 	  && (INTVAL (bl->initial_value) %
5609 	      (-INTVAL (bl->biv->add_val))) == 0)
5610 	{
5611 	  /* register always nonnegative, add REG_NOTE to branch */
5612 	  REG_NOTES (PREV_INSN (loop_end))
5613 	    = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5614 		       REG_NOTES (PREV_INSN (loop_end)));
5615 	  bl->nonneg = 1;
5616 
5617 	  return 1;
5618 	}
5619 
5620       /* If the decrement is 1 and the value was tested as >= 0 before
5621 	 the loop, then we can safely optimize.  */
5622       for (p = loop_start; p; p = PREV_INSN (p))
5623 	{
5624 	  if (GET_CODE (p) == CODE_LABEL)
5625 	    break;
5626 	  if (GET_CODE (p) != JUMP_INSN)
5627 	    continue;
5628 
5629 	  before_comparison = get_condition_for_loop (p);
5630 	  if (before_comparison
5631 	      && XEXP (before_comparison, 0) == bl->biv->dest_reg
5632 	      && GET_CODE (before_comparison) == LT
5633 	      && XEXP (before_comparison, 1) == const0_rtx
5634 	      && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
5635 	      && INTVAL (bl->biv->add_val) == -1)
5636 	    {
5637 	      REG_NOTES (PREV_INSN (loop_end))
5638 		= gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5639 			   REG_NOTES (PREV_INSN (loop_end)));
5640 	      bl->nonneg = 1;
5641 
5642 	      return 1;
5643 	    }
5644 	}
5645     }
5646   else if (num_mem_sets <= 1)
5647     {
5648       /* Try to change inc to dec, so can apply above optimization.  */
5649       /* Can do this if:
5650 	 all registers modified are induction variables or invariant,
5651 	 all memory references have non-overlapping addresses
5652 	 (obviously true if only one write)
5653 	 allow 2 insns for the compare/jump at the end of the loop.  */
5654       int num_nonfixed_reads = 0;
5655       /* 1 if the iteration var is used only to count iterations.  */
5656       int no_use_except_counting = 0;
5657 
5658       for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5659 	if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5660 	  num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
5661 
5662       if (bl->giv_count == 0
5663 	  && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
5664 	{
5665 	  rtx bivreg = regno_reg_rtx[bl->regno];
5666 
5667 	  /* If there are no givs for this biv, and the only exit is the
5668 	     fall through at the end of the the loop, then
5669 	     see if perhaps there are no uses except to count.  */
5670 	  no_use_except_counting = 1;
5671 	  for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5672 	    if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5673 	      {
5674 		rtx set = single_set (p);
5675 
5676 		if (set && GET_CODE (SET_DEST (set)) == REG
5677 		    && REGNO (SET_DEST (set)) == bl->regno)
5678 		  /* An insn that sets the biv is okay.  */
5679 		  ;
5680 		else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
5681 			 || p == prev_nonnote_insn (loop_end))
5682 		  /* Don't bother about the end test.  */
5683 		  ;
5684 		else if (reg_mentioned_p (bivreg, PATTERN (p)))
5685 		  /* Any other use of the biv is no good.  */
5686 		  {
5687 		    no_use_except_counting = 0;
5688 		    break;
5689 		  }
5690 	      }
5691 	}
5692 
5693       /* This code only acts for innermost loops.  Also it simplifies
5694 	 the memory address check by only reversing loops with
5695 	 zero or one memory access.
5696 	 Two memory accesses could involve parts of the same array,
5697 	 and that can't be reversed.  */
5698 
5699       if (num_nonfixed_reads <= 1
5700 	  && !loop_has_call
5701 	  && !loop_has_volatile
5702 	  && (no_use_except_counting
5703 	      || (bl->giv_count + bl->biv_count + num_mem_sets
5704 		  + num_movables + 2 == insn_count)))
5705 	{
5706 	  rtx condition = get_condition_for_loop (PREV_INSN (loop_end));
5707 	  int win;
5708 	  rtx tem;
5709 
5710 	  /* Loop can be reversed.  */
5711 	  if (loop_dump_stream)
5712 	    fprintf (loop_dump_stream, "Can reverse loop\n");
5713 
5714 	  /* Now check other conditions:
5715 	     initial_value must be zero,
5716 	     final_value % add_val == 0, so that when reversed, the
5717 	     biv will be zero on the last iteration.
5718 
5719 	     This test can probably be improved since +/- 1 in the constant
5720 	     can be obtained by changing LT to LE and vice versa; this is
5721 	     confusing.  */
5722 
5723 	  if (comparison && bl->initial_value == const0_rtx
5724 	      && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5725 	      /* LE gets turned into LT */
5726 	      && GET_CODE (comparison) == LT
5727 	      && (INTVAL (XEXP (comparison, 1))
5728 		  % INTVAL (bl->biv->add_val)) == 0)
5729 	    {
5730 	      /* Register will always be nonnegative, with value
5731 		 0 on last iteration if loop reversed */
5732 
5733 	      /* Save some info needed to produce the new insns.  */
5734 	      reg = bl->biv->dest_reg;
5735 	      jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
5736 	      new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
5737 
5738 	      final_value = XEXP (comparison, 1);
5739 	      start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
5740 				     - INTVAL (bl->biv->add_val));
5741 
5742 	      /* Initialize biv to start_value before loop start.
5743 		 The old initializing insn will be deleted as a
5744 		 dead store by flow.c.  */
5745 	      emit_insn_before (gen_move_insn (reg, start_value), loop_start);
5746 
5747 	      /* Add insn to decrement register, and delete insn
5748 		 that incremented the register.  */
5749 	      p = emit_insn_before (gen_add2_insn (reg, new_add_val),
5750 				    bl->biv->insn);
5751 	      delete_insn (bl->biv->insn);
5752 
5753 	      /* Update biv info to reflect its new status.  */
5754 	      bl->biv->insn = p;
5755 	      bl->initial_value = start_value;
5756 	      bl->biv->add_val = new_add_val;
5757 
5758 	      /* Inc LABEL_NUSES so that delete_insn will
5759 		 not delete the label.  */
5760 	      LABEL_NUSES (XEXP (jump_label, 0)) ++;
5761 
5762 	      /* Emit an insn after the end of the loop to set the biv's
5763 		 proper exit value if it is used anywhere outside the loop.  */
5764 	      if ((regno_last_uid[bl->regno]
5765 		   != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
5766 		  || ! bl->init_insn
5767 		  || regno_first_uid[bl->regno] != INSN_UID (bl->init_insn))
5768 		emit_insn_after (gen_move_insn (reg, final_value),
5769 				 loop_end);
5770 
5771 	      /* Delete compare/branch at end of loop.  */
5772 	      delete_insn (PREV_INSN (loop_end));
5773 	      delete_insn (PREV_INSN (loop_end));
5774 
5775 	      /* Add new compare/branch insn at end of loop.  */
5776 	      start_sequence ();
5777 	      emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
5778 			     GET_MODE (reg), 0, 0);
5779 	      emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
5780 	      tem = gen_sequence ();
5781 	      end_sequence ();
5782 	      emit_jump_insn_before (tem, loop_end);
5783 
5784 	      for (tem = PREV_INSN (loop_end);
5785 		   tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
5786 		;
5787 	      if (tem)
5788 		{
5789 		  JUMP_LABEL (tem) = XEXP (jump_label, 0);
5790 
5791 		  /* Increment of LABEL_NUSES done above. */
5792 		  /* Register is now always nonnegative,
5793 		     so add REG_NONNEG note to the branch.  */
5794 		  REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5795 					     REG_NOTES (tem));
5796 		}
5797 
5798 	      bl->nonneg = 1;
5799 
5800 	      /* Mark that this biv has been reversed.  Each giv which depends
5801 		 on this biv, and which is also live past the end of the loop
5802 		 will have to be fixed up.  */
5803 
5804 	      bl->reversed = 1;
5805 
5806 	      if (loop_dump_stream)
5807 		fprintf (loop_dump_stream,
5808 			 "Reversed loop and added reg_nonneg\n");
5809 
5810 	      return 1;
5811 	    }
5812 	}
5813     }
5814 
5815   return 0;
5816 }
5817 
5818 /* Verify whether the biv BL appears to be eliminable,
5819    based on the insns in the loop that refer to it.
5820    LOOP_START is the first insn of the loop, and END is the end insn.
5821 
5822    If ELIMINATE_P is non-zero, actually do the elimination.
5823 
5824    THRESHOLD and INSN_COUNT are from loop_optimize and are used to
5825    determine whether invariant insns should be placed inside or at the
5826    start of the loop.  */
5827 
5828 static int
maybe_eliminate_biv(bl,loop_start,end,eliminate_p,threshold,insn_count)5829 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
5830      struct iv_class *bl;
5831      rtx loop_start;
5832      rtx end;
5833      int eliminate_p;
5834      int threshold, insn_count;
5835 {
5836   rtx reg = bl->biv->dest_reg;
5837   rtx p, set;
5838   struct induction *v;
5839 
5840   /* Scan all insns in the loop, stopping if we find one that uses the
5841      biv in a way that we cannot eliminate.  */
5842 
5843   for (p = loop_start; p != end; p = NEXT_INSN (p))
5844     {
5845       enum rtx_code code = GET_CODE (p);
5846       rtx where = threshold >= insn_count ? loop_start : p;
5847 
5848       if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
5849 	  && reg_mentioned_p (reg, PATTERN (p))
5850 	  && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
5851 	{
5852 	  if (loop_dump_stream)
5853 	    fprintf (loop_dump_stream,
5854 		     "Cannot eliminate biv %d: biv used in insn %d.\n",
5855 		     bl->regno, INSN_UID (p));
5856 	  break;
5857 	}
5858     }
5859 
5860   if (p == end)
5861     {
5862       if (loop_dump_stream)
5863 	fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
5864 		 bl->regno, eliminate_p ? "was" : "can be");
5865       return 1;
5866     }
5867 
5868   return 0;
5869 }
5870 
5871 /* If BL appears in X (part of the pattern of INSN), see if we can
5872    eliminate its use.  If so, return 1.  If not, return 0.
5873 
5874    If BIV does not appear in X, return 1.
5875 
5876    If ELIMINATE_P is non-zero, actually do the elimination.  WHERE indicates
5877    where extra insns should be added.  Depending on how many items have been
5878    moved out of the loop, it will either be before INSN or at the start of
5879    the loop.  */
5880 
5881 static int
maybe_eliminate_biv_1(x,insn,bl,eliminate_p,where)5882 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
5883      rtx x, insn;
5884      struct iv_class *bl;
5885      int eliminate_p;
5886      rtx where;
5887 {
5888   enum rtx_code code = GET_CODE (x);
5889   rtx reg = bl->biv->dest_reg;
5890   enum machine_mode mode = GET_MODE (reg);
5891   struct induction *v;
5892   rtx arg, new, tem;
5893   int arg_operand;
5894   char *fmt;
5895   int i, j;
5896 
5897   switch (code)
5898     {
5899     case REG:
5900       /* If we haven't already been able to do something with this BIV,
5901 	 we can't eliminate it.  */
5902       if (x == reg)
5903 	return 0;
5904       return 1;
5905 
5906     case SET:
5907       /* If this sets the BIV, it is not a problem.  */
5908       if (SET_DEST (x) == reg)
5909 	return 1;
5910 
5911       /* If this is an insn that defines a giv, it is also ok because
5912 	 it will go away when the giv is reduced.  */
5913       for (v = bl->giv; v; v = v->next_iv)
5914 	if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
5915 	  return 1;
5916 
5917 #ifdef HAVE_cc0
5918       if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
5919 	{
5920 	  /* Can replace with any giv that was reduced and
5921 	     that has (MULT_VAL != 0) and (ADD_VAL == 0).
5922 	     Require a constant for MULT_VAL, so we know it's nonzero.  */
5923 
5924 	  for (v = bl->giv; v; v = v->next_iv)
5925 	    if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5926 		&& v->add_val == const0_rtx
5927 		&& ! v->ignore && ! v->maybe_dead
5928 		&& v->mode == mode)
5929 	      {
5930 		if (! eliminate_p)
5931 		  return 1;
5932 
5933 		/* If the giv has the opposite direction of change,
5934 		   then reverse the comparison.  */
5935 		if (INTVAL (v->mult_val) < 0)
5936 		  new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
5937 				 const0_rtx, v->new_reg);
5938 		else
5939 		  new = v->new_reg;
5940 
5941 		/* We can probably test that giv's reduced reg.  */
5942 		if (validate_change (insn, &SET_SRC (x), new, 0))
5943 		  return 1;
5944 	      }
5945 
5946 	  /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
5947 	     replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
5948 	     Require a constant for MULT_VAL, so we know it's nonzero.  */
5949 
5950 	  for (v = bl->giv; v; v = v->next_iv)
5951 	    if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5952 		&& ! v->ignore && ! v->maybe_dead
5953 		&& v->mode == mode)
5954 	      {
5955 		if (! eliminate_p)
5956 		  return 1;
5957 
5958 		/* If the giv has the opposite direction of change,
5959 		   then reverse the comparison.  */
5960 		if (INTVAL (v->mult_val) < 0)
5961 		  new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
5962 				 v->new_reg);
5963 		else
5964 		  new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
5965 				 copy_rtx (v->add_val));
5966 
5967 		/* Replace biv with the giv's reduced register.  */
5968 		update_reg_last_use (v->add_val, insn);
5969 		if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
5970 		  return 1;
5971 
5972 		/* Insn doesn't support that constant or invariant.  Copy it
5973 		   into a register (it will be a loop invariant.)  */
5974 		tem = gen_reg_rtx (GET_MODE (v->new_reg));
5975 
5976 		emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
5977 				  where);
5978 
5979 		if (validate_change (insn, &SET_SRC (PATTERN (insn)),
5980 				     gen_rtx (COMPARE, VOIDmode,
5981 					      v->new_reg, tem), 0))
5982 		  return 1;
5983 	      }
5984 	}
5985 #endif
5986       break;
5987 
5988     case COMPARE:
5989     case EQ:  case NE:
5990     case GT:  case GE:  case GTU:  case GEU:
5991     case LT:  case LE:  case LTU:  case LEU:
5992       /* See if either argument is the biv.  */
5993       if (XEXP (x, 0) == reg)
5994 	arg = XEXP (x, 1), arg_operand = 1;
5995       else if (XEXP (x, 1) == reg)
5996 	arg = XEXP (x, 0), arg_operand = 0;
5997       else
5998 	break;
5999 
6000       if (CONSTANT_P (arg))
6001 	{
6002 	  /* First try to replace with any giv that has constant positive
6003 	     mult_val and constant add_val.  We might be able to support
6004 	     negative mult_val, but it seems complex to do it in general.  */
6005 
6006 	  for (v = bl->giv; v; v = v->next_iv)
6007 	    if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6008 		&& CONSTANT_P (v->add_val)
6009 		&& ! v->ignore && ! v->maybe_dead
6010 		&& v->mode == mode)
6011 	      {
6012 		if (! eliminate_p)
6013 		  return 1;
6014 
6015 		/* Replace biv with the giv's reduced reg.  */
6016 		XEXP (x, 1-arg_operand) = v->new_reg;
6017 
6018 		/* If all constants are actually constant integers and
6019 		   the derived constant can be directly placed in the COMPARE,
6020 		   do so.  */
6021 		if (GET_CODE (arg) == CONST_INT
6022 		    && GET_CODE (v->mult_val) == CONST_INT
6023 		    && GET_CODE (v->add_val) == CONST_INT
6024 		    && validate_change (insn, &XEXP (x, arg_operand),
6025 					GEN_INT (INTVAL (arg)
6026 						 * INTVAL (v->mult_val)
6027 						 + INTVAL (v->add_val)), 0))
6028 		  return 1;
6029 
6030 		/* Otherwise, load it into a register.  */
6031 		tem = gen_reg_rtx (mode);
6032 		emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6033 		if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6034 		  return 1;
6035 
6036 		/* If that failed, put back the change we made above.  */
6037 		XEXP (x, 1-arg_operand) = reg;
6038 	      }
6039 
6040 	  /* Look for giv with positive constant mult_val and nonconst add_val.
6041 	     Insert insns to calculate new compare value.  */
6042 
6043 	  for (v = bl->giv; v; v = v->next_iv)
6044 	    if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6045 		&& ! v->ignore && ! v->maybe_dead
6046 		&& v->mode == mode)
6047 	      {
6048 		rtx tem;
6049 
6050 		if (! eliminate_p)
6051 		  return 1;
6052 
6053 		tem = gen_reg_rtx (mode);
6054 
6055 		/* Replace biv with giv's reduced register.  */
6056 		validate_change (insn, &XEXP (x, 1 - arg_operand),
6057 				 v->new_reg, 1);
6058 
6059 		/* Compute value to compare against.  */
6060 		emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6061 		/* Use it in this insn.  */
6062 		validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6063 		if (apply_change_group ())
6064 		  return 1;
6065 	      }
6066 	}
6067       else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6068 	{
6069 	  if (invariant_p (arg) == 1)
6070 	    {
6071 	      /* Look for giv with constant positive mult_val and nonconst
6072 		 add_val. Insert insns to compute new compare value.  */
6073 
6074 	      for (v = bl->giv; v; v = v->next_iv)
6075 		if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6076 		    && ! v->ignore && ! v->maybe_dead
6077 		    && v->mode == mode)
6078 		  {
6079 		    rtx tem;
6080 
6081 		    if (! eliminate_p)
6082 		      return 1;
6083 
6084 		    tem = gen_reg_rtx (mode);
6085 
6086 		    /* Replace biv with giv's reduced register.  */
6087 		    validate_change (insn, &XEXP (x, 1 - arg_operand),
6088 				     v->new_reg, 1);
6089 
6090 		    /* Compute value to compare against.  */
6091 		    emit_iv_add_mult (arg, v->mult_val, v->add_val,
6092 				      tem, where);
6093 		    validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6094 		    if (apply_change_group ())
6095 		      return 1;
6096 		  }
6097 	    }
6098 
6099 	  /* This code has problems.  Basically, you can't know when
6100 	     seeing if we will eliminate BL, whether a particular giv
6101 	     of ARG will be reduced.  If it isn't going to be reduced,
6102 	     we can't eliminate BL.  We can try forcing it to be reduced,
6103 	     but that can generate poor code.
6104 
6105 	     The problem is that the benefit of reducing TV, below should
6106 	     be increased if BL can actually be eliminated, but this means
6107 	     we might have to do a topological sort of the order in which
6108 	     we try to process biv.  It doesn't seem worthwhile to do
6109 	     this sort of thing now.  */
6110 
6111 #if 0
6112 	  /* Otherwise the reg compared with had better be a biv.  */
6113 	  if (GET_CODE (arg) != REG
6114 	      || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6115 	    return 0;
6116 
6117 	  /* Look for a pair of givs, one for each biv,
6118 	     with identical coefficients.  */
6119 	  for (v = bl->giv; v; v = v->next_iv)
6120 	    {
6121 	      struct induction *tv;
6122 
6123 	      if (v->ignore || v->maybe_dead || v->mode != mode)
6124 		continue;
6125 
6126 	      for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6127 		if (! tv->ignore && ! tv->maybe_dead
6128 		    && rtx_equal_p (tv->mult_val, v->mult_val)
6129 		    && rtx_equal_p (tv->add_val, v->add_val)
6130 		    && tv->mode == mode)
6131 		  {
6132 		    if (! eliminate_p)
6133 		      return 1;
6134 
6135 		    /* Replace biv with its giv's reduced reg.  */
6136 		    XEXP (x, 1-arg_operand) = v->new_reg;
6137 		    /* Replace other operand with the other giv's
6138 		       reduced reg.  */
6139 		    XEXP (x, arg_operand) = tv->new_reg;
6140 		    return 1;
6141 		  }
6142 	    }
6143 #endif
6144 	}
6145 
6146       /* If we get here, the biv can't be eliminated.  */
6147       return 0;
6148 
6149     case MEM:
6150       /* If this address is a DEST_ADDR giv, it doesn't matter if the
6151 	 biv is used in it, since it will be replaced.  */
6152       for (v = bl->giv; v; v = v->next_iv)
6153 	if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6154 	  return 1;
6155       break;
6156     }
6157 
6158   /* See if any subexpression fails elimination.  */
6159   fmt = GET_RTX_FORMAT (code);
6160   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6161     {
6162       switch (fmt[i])
6163 	{
6164 	case 'e':
6165 	  if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6166 				       eliminate_p, where))
6167 	    return 0;
6168 	  break;
6169 
6170 	case 'E':
6171 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6172 	    if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6173 					 eliminate_p, where))
6174 	      return 0;
6175 	  break;
6176 	}
6177     }
6178 
6179   return 1;
6180 }
6181 
6182 /* Return nonzero if the last use of REG
6183    is in an insn following INSN in the same basic block.  */
6184 
6185 static int
last_use_this_basic_block(reg,insn)6186 last_use_this_basic_block (reg, insn)
6187      rtx reg;
6188      rtx insn;
6189 {
6190   rtx n;
6191   for (n = insn;
6192        n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6193        n = NEXT_INSN (n))
6194     {
6195       if (regno_last_uid[REGNO (reg)] == INSN_UID (n))
6196 	return 1;
6197     }
6198   return 0;
6199 }
6200 
6201 /* Called via `note_stores' to record the initial value of a biv.  Here we
6202    just record the location of the set and process it later.  */
6203 
6204 static void
record_initial(dest,set)6205 record_initial (dest, set)
6206      rtx dest;
6207      rtx set;
6208 {
6209   struct iv_class *bl;
6210 
6211   if (GET_CODE (dest) != REG
6212       || REGNO (dest) >= max_reg_before_loop
6213       || reg_iv_type[REGNO (dest)] != BASIC_INDUCT
6214       /* Reject this insn if the source isn't valid for the mode of DEST.  */
6215       || GET_MODE (dest) != GET_MODE (SET_DEST (set)))
6216     return;
6217 
6218   bl = reg_biv_class[REGNO (dest)];
6219 
6220   /* If this is the first set found, record it.  */
6221   if (bl->init_insn == 0)
6222     {
6223       bl->init_insn = note_insn;
6224       bl->init_set = set;
6225     }
6226 }
6227 
6228 /* If any of the registers in X are "old" and currently have a last use earlier
6229    than INSN, update them to have a last use of INSN.  Their actual last use
6230    will be the previous insn but it will not have a valid uid_luid so we can't
6231    use it.  */
6232 
6233 static void
update_reg_last_use(x,insn)6234 update_reg_last_use (x, insn)
6235      rtx x;
6236      rtx insn;
6237 {
6238   /* Check for the case where INSN does not have a valid luid.  In this case,
6239      there is no need to modify the regno_last_uid, as this can only happen
6240      when code is inserted after the loop_end to set a pseudo's final value,
6241      and hence this insn will never be the last use of x.  */
6242   if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6243       && INSN_UID (insn) < max_uid_for_loop
6244       && uid_luid[regno_last_uid[REGNO (x)]] < uid_luid[INSN_UID (insn)])
6245     regno_last_uid[REGNO (x)] = INSN_UID (insn);
6246   else
6247     {
6248       register int i, j;
6249       register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6250       for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6251 	{
6252 	  if (fmt[i] == 'e')
6253 	    update_reg_last_use (XEXP (x, i), insn);
6254 	  else if (fmt[i] == 'E')
6255 	    for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6256 	      update_reg_last_use (XVECEXP (x, i, j), insn);
6257 	}
6258     }
6259 }
6260 
6261 /* Given a jump insn JUMP, return the condition that will cause it to branch
6262    to its JUMP_LABEL.  If the condition cannot be understood, or is an
6263    inequality floating-point comparison which needs to be reversed, 0 will
6264    be returned.
6265 
6266    If EARLIEST is non-zero, it is a pointer to a place where the earliest
6267    insn used in locating the condition was found.  If a replacement test
6268    of the condition is desired, it should be placed in front of that
6269    insn and we will be sure that the inputs are still valid.
6270 
6271    The condition will be returned in a canonical form to simplify testing by
6272    callers.  Specifically:
6273 
6274    (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6275    (2) Both operands will be machine operands; (cc0) will have been replaced.
6276    (3) If an operand is a constant, it will be the second operand.
6277    (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6278        for GE, GEU, and LEU.  */
6279 
6280 rtx
get_condition(jump,earliest)6281 get_condition (jump, earliest)
6282      rtx jump;
6283      rtx *earliest;
6284 {
6285   enum rtx_code code;
6286   rtx prev = jump;
6287   rtx set;
6288   rtx tem;
6289   rtx op0, op1;
6290   int reverse_code = 0;
6291   int did_reverse_condition = 0;
6292 
6293   /* If this is not a standard conditional jump, we can't parse it.  */
6294   if (GET_CODE (jump) != JUMP_INSN
6295       || ! condjump_p (jump) || simplejump_p (jump))
6296     return 0;
6297 
6298   code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6299   op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6300   op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6301 
6302   if (earliest)
6303     *earliest = jump;
6304 
6305   /* If this branches to JUMP_LABEL when the condition is false, reverse
6306      the condition.  */
6307   if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6308       && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6309     code = reverse_condition (code), did_reverse_condition ^= 1;
6310 
6311   /* If we are comparing a register with zero, see if the register is set
6312      in the previous insn to a COMPARE or a comparison operation.  Perform
6313      the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6314      in cse.c  */
6315 
6316   while (GET_RTX_CLASS (code) == '<' && op1 == const0_rtx)
6317     {
6318       /* Set non-zero when we find something of interest.  */
6319       rtx x = 0;
6320 
6321 #ifdef HAVE_cc0
6322       /* If comparison with cc0, import actual comparison from compare
6323 	 insn.  */
6324       if (op0 == cc0_rtx)
6325 	{
6326 	  if ((prev = prev_nonnote_insn (prev)) == 0
6327 	      || GET_CODE (prev) != INSN
6328 	      || (set = single_set (prev)) == 0
6329 	      || SET_DEST (set) != cc0_rtx)
6330 	    return 0;
6331 
6332 	  op0 = SET_SRC (set);
6333 	  op1 = CONST0_RTX (GET_MODE (op0));
6334 	  if (earliest)
6335 	    *earliest = prev;
6336 	}
6337 #endif
6338 
6339       /* If this is a COMPARE, pick up the two things being compared.  */
6340       if (GET_CODE (op0) == COMPARE)
6341 	{
6342 	  op1 = XEXP (op0, 1);
6343 	  op0 = XEXP (op0, 0);
6344 	  continue;
6345 	}
6346       else if (GET_CODE (op0) != REG)
6347 	break;
6348 
6349       /* Go back to the previous insn.  Stop if it is not an INSN.  We also
6350 	 stop if it isn't a single set or if it has a REG_INC note because
6351 	 we don't want to bother dealing with it.  */
6352 
6353       if ((prev = prev_nonnote_insn (prev)) == 0
6354 	  || GET_CODE (prev) != INSN
6355 	  || FIND_REG_INC_NOTE (prev, 0)
6356 	  || (set = single_set (prev)) == 0)
6357 	break;
6358 
6359       /* If this is setting OP0, get what it sets it to if it looks
6360 	 relevant.  */
6361       if (SET_DEST (set) == op0)
6362 	{
6363 	  enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6364 
6365 	  if ((GET_CODE (SET_SRC (set)) == COMPARE
6366 	       || (((code == NE
6367 		     || (code == LT
6368 			 && GET_MODE_CLASS (inner_mode) == MODE_INT
6369 			 && (GET_MODE_BITSIZE (inner_mode)
6370 			     <= HOST_BITS_PER_WIDE_INT)
6371 			 && (STORE_FLAG_VALUE
6372 			     & ((HOST_WIDE_INT) 1
6373 				<< (GET_MODE_BITSIZE (inner_mode) - 1))))
6374 #ifdef FLOAT_STORE_FLAG_VALUE
6375 		     || (code == LT
6376 			 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6377 			 && FLOAT_STORE_FLAG_VALUE < 0)
6378 #endif
6379 		     ))
6380 		   && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6381 	    x = SET_SRC (set);
6382 	  else if (((code == EQ
6383 		     || (code == GE
6384 			 && (GET_MODE_BITSIZE (inner_mode)
6385 			     <= HOST_BITS_PER_WIDE_INT)
6386 			 && GET_MODE_CLASS (inner_mode) == MODE_INT
6387 			 && (STORE_FLAG_VALUE
6388 			     & ((HOST_WIDE_INT) 1
6389 				<< (GET_MODE_BITSIZE (inner_mode) - 1))))
6390 #ifdef FLOAT_STORE_FLAG_VALUE
6391 		     || (code == GE
6392 			 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6393 			 && FLOAT_STORE_FLAG_VALUE < 0)
6394 #endif
6395 		     ))
6396 		   && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6397 	    {
6398 	      /* We might have reversed a LT to get a GE here.  But this wasn't
6399 		 actually the comparison of data, so we don't flag that we
6400 		 have had to reverse the condition.  */
6401 	      did_reverse_condition ^= 1;
6402 	      reverse_code = 1;
6403 	      x = SET_SRC (set);
6404 	    }
6405 	}
6406 
6407       else if (reg_set_p (op0, prev))
6408 	/* If this sets OP0, but not directly, we have to give up.  */
6409 	break;
6410 
6411       if (x)
6412 	{
6413 	  if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6414 	    code = GET_CODE (x);
6415 	  if (reverse_code)
6416 	    {
6417 	      code = reverse_condition (code);
6418 	      did_reverse_condition ^= 1;
6419 	      reverse_code = 0;
6420 	    }
6421 
6422 	  op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6423 	  if (earliest)
6424 	    *earliest = prev;
6425 	}
6426     }
6427 
6428   /* If constant is first, put it last.  */
6429   if (CONSTANT_P (op0))
6430     code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6431 
6432   /* If OP0 is the result of a comparison, we weren't able to find what
6433      was really being compared, so fail.  */
6434   if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6435     return 0;
6436 
6437   /* Canonicalize any ordered comparison with integers involving equality
6438      if we can do computations in the relevant mode and we do not
6439      overflow.  */
6440 
6441   if (GET_CODE (op1) == CONST_INT
6442       && GET_MODE (op0) != VOIDmode
6443       && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
6444     {
6445       HOST_WIDE_INT const_val = INTVAL (op1);
6446       unsigned HOST_WIDE_INT uconst_val = const_val;
6447       unsigned HOST_WIDE_INT max_val
6448 	= (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
6449 
6450       switch (code)
6451 	{
6452 	case LE:
6453 	  if (const_val != max_val >> 1)
6454 	    code = LT,	op1 = GEN_INT (const_val + 1);
6455 	  break;
6456 
6457 	case GE:
6458 	  if (const_val
6459 	      != (((HOST_WIDE_INT) 1
6460 		   << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
6461 	    code = GT, op1 = GEN_INT (const_val - 1);
6462 	  break;
6463 
6464 	case LEU:
6465 	  if (uconst_val != max_val)
6466 	    code = LTU, op1 = GEN_INT (uconst_val + 1);
6467 	  break;
6468 
6469 	case GEU:
6470 	  if (uconst_val != 0)
6471 	    code = GTU, op1 = GEN_INT (uconst_val - 1);
6472 	  break;
6473 	}
6474     }
6475 
6476   /* If this was floating-point and we reversed anything other than an
6477      EQ or NE, return zero.  */
6478   if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
6479       && did_reverse_condition && code != NE && code != EQ
6480       && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
6481     return 0;
6482 
6483 #ifdef HAVE_cc0
6484   /* Never return CC0; return zero instead.  */
6485   if (op0 == cc0_rtx)
6486     return 0;
6487 #endif
6488 
6489   return gen_rtx (code, VOIDmode, op0, op1);
6490 }
6491 
6492 /* Similar to above routine, except that we also put an invariant last
6493    unless both operands are invariants.  */
6494 
6495 rtx
get_condition_for_loop(x)6496 get_condition_for_loop (x)
6497      rtx x;
6498 {
6499   rtx comparison = get_condition (x, NULL_PTR);
6500 
6501   if (comparison == 0
6502       || ! invariant_p (XEXP (comparison, 0))
6503       || invariant_p (XEXP (comparison, 1)))
6504     return comparison;
6505 
6506   return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
6507 		  XEXP (comparison, 1), XEXP (comparison, 0));
6508 }
6509