1 /*
2  * rijndael-alg-fst.c   v2.4   April '2000
3  *
4  * Optimised ANSI C code
5  *
6  * authors: v1.0: Antoon Bosselaers
7  *          v2.0: Vincent Rijmen, K.U.Leuven
8  *          v2.3: Paulo Barreto
9  *          v2.4: Vincent Rijmen, K.U.Leuven
10  *
11  * This code is placed in the public domain.
12  */
13 
14 #include <stdio.h>
15 #include <stdlib.h>
16 
17 #include "rijndael-alg-fst.h"
18 
19 #include "boxes-fst.dat"
20 
rijndaelKeySched(word8 k[MAXKC][4],word8 W[MAXROUNDS+1][4][4],int ROUNDS)21 int rijndaelKeySched(word8 k[MAXKC][4], word8 W[MAXROUNDS+1][4][4], int ROUNDS) {
22 	/* Calculate the necessary round keys
23 	 * The number of calculations depends on keyBits and blockBits
24 	 */
25 	int j, r, t, rconpointer = 0;
26 	word8 tk[MAXKC][4];
27 	int KC = ROUNDS - 6;
28 
29 	for (j = KC-1; j >= 0; j--) {
30 		*((word32*)tk[j]) = *((word32*)k[j]);
31 	}
32 	r = 0;
33 	t = 0;
34 	/* copy values into round key array */
35 	for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
36 		for (; (j < KC) && (t < 4); j++, t++) {
37 			*((word32*)W[r][t]) = *((word32*)tk[j]);
38 		}
39 		if (t == 4) {
40 			r++;
41 			t = 0;
42 		}
43 	}
44 
45 	while (r < ROUNDS + 1) { /* while not enough round key material calculated */
46 		/* calculate new values */
47 		tk[0][0] ^= S[tk[KC-1][1]];
48 		tk[0][1] ^= S[tk[KC-1][2]];
49 		tk[0][2] ^= S[tk[KC-1][3]];
50 		tk[0][3] ^= S[tk[KC-1][0]];
51 		tk[0][0] ^= rcon[rconpointer++];
52 
53 		if (KC != 8) {
54 			for (j = 1; j < KC; j++) {
55 				*((word32*)tk[j]) ^= *((word32*)tk[j-1]);
56 			}
57 		} else {
58 			for (j = 1; j < KC/2; j++) {
59 				*((word32*)tk[j]) ^= *((word32*)tk[j-1]);
60 			}
61 			tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
62 			tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
63 			tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
64 			tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
65 			for (j = KC/2 + 1; j < KC; j++) {
66 				*((word32*)tk[j]) ^= *((word32*)tk[j-1]);
67 			}
68 		}
69 		/* copy values into round key array */
70 		for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
71 			for (; (j < KC) && (t < 4); j++, t++) {
72 				*((word32*)W[r][t]) = *((word32*)tk[j]);
73 			}
74 			if (t == 4) {
75 				r++;
76 				t = 0;
77 			}
78 		}
79 	}
80 	return 0;
81 }
82 
rijndaelKeyEncToDec(word8 W[MAXROUNDS+1][4][4],int ROUNDS)83 int rijndaelKeyEncToDec(word8 W[MAXROUNDS+1][4][4], int ROUNDS) {
84 	int r;
85 	word8 *w;
86 
87 	for (r = 1; r < ROUNDS; r++) {
88 		w = W[r][0];
89 		*((word32*)w) =
90 			  *((word32*)U1[w[0]])
91 			^ *((word32*)U2[w[1]])
92 			^ *((word32*)U3[w[2]])
93 			^ *((word32*)U4[w[3]]);
94 
95 		w = W[r][1];
96 		*((word32*)w) =
97 			  *((word32*)U1[w[0]])
98 			^ *((word32*)U2[w[1]])
99 			^ *((word32*)U3[w[2]])
100 			^ *((word32*)U4[w[3]]);
101 
102 		w = W[r][2];
103 		*((word32*)w) =
104 			  *((word32*)U1[w[0]])
105 			^ *((word32*)U2[w[1]])
106 			^ *((word32*)U3[w[2]])
107 			^ *((word32*)U4[w[3]]);
108 
109 		w = W[r][3];
110 		*((word32*)w) =
111 			  *((word32*)U1[w[0]])
112 			^ *((word32*)U2[w[1]])
113 			^ *((word32*)U3[w[2]])
114 			^ *((word32*)U4[w[3]]);
115 	}
116 	return 0;
117 }
118 
119 /**
120  * Encrypt a single block.
121  */
rijndaelEncrypt(word8 a[16],word8 b[16],word8 rk[MAXROUNDS+1][4][4],int ROUNDS)122 int rijndaelEncrypt(word8 a[16], word8 b[16], word8 rk[MAXROUNDS+1][4][4], int ROUNDS) {
123 	int r;
124 	word8 temp[4][4];
125 
126     *((word32*)temp[0]) = *((word32*)(a   )) ^ *((word32*)rk[0][0]);
127     *((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[0][1]);
128     *((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[0][2]);
129     *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[0][3]);
130     *((word32*)(b    )) = *((word32*)T1[temp[0][0]])
131 						^ *((word32*)T2[temp[1][1]])
132 						^ *((word32*)T3[temp[2][2]])
133 						^ *((word32*)T4[temp[3][3]]);
134     *((word32*)(b + 4)) = *((word32*)T1[temp[1][0]])
135 						^ *((word32*)T2[temp[2][1]])
136 						^ *((word32*)T3[temp[3][2]])
137 						^ *((word32*)T4[temp[0][3]]);
138     *((word32*)(b + 8)) = *((word32*)T1[temp[2][0]])
139 						^ *((word32*)T2[temp[3][1]])
140 						^ *((word32*)T3[temp[0][2]])
141 						^ *((word32*)T4[temp[1][3]]);
142     *((word32*)(b +12)) = *((word32*)T1[temp[3][0]])
143 						^ *((word32*)T2[temp[0][1]])
144 						^ *((word32*)T3[temp[1][2]])
145 						^ *((word32*)T4[temp[2][3]]);
146 	for (r = 1; r < ROUNDS-1; r++) {
147 		*((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[r][0]);
148 		*((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]);
149 		*((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]);
150 		*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
151 
152 		*((word32*)(b    )) = *((word32*)T1[temp[0][0]])
153 							^ *((word32*)T2[temp[1][1]])
154 							^ *((word32*)T3[temp[2][2]])
155 							^ *((word32*)T4[temp[3][3]]);
156 		*((word32*)(b + 4)) = *((word32*)T1[temp[1][0]])
157 							^ *((word32*)T2[temp[2][1]])
158 							^ *((word32*)T3[temp[3][2]])
159 							^ *((word32*)T4[temp[0][3]]);
160 		*((word32*)(b + 8)) = *((word32*)T1[temp[2][0]])
161 							^ *((word32*)T2[temp[3][1]])
162 							^ *((word32*)T3[temp[0][2]])
163 							^ *((word32*)T4[temp[1][3]]);
164 		*((word32*)(b +12)) = *((word32*)T1[temp[3][0]])
165 							^ *((word32*)T2[temp[0][1]])
166 							^ *((word32*)T3[temp[1][2]])
167 							^ *((word32*)T4[temp[2][3]]);
168 	}
169 	/* last round is special */
170 	*((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[ROUNDS-1][0]);
171 	*((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[ROUNDS-1][1]);
172 	*((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[ROUNDS-1][2]);
173 	*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[ROUNDS-1][3]);
174 	b[ 0] = T1[temp[0][0]][1];
175 	b[ 1] = T1[temp[1][1]][1];
176 	b[ 2] = T1[temp[2][2]][1];
177 	b[ 3] = T1[temp[3][3]][1];
178 	b[ 4] = T1[temp[1][0]][1];
179 	b[ 5] = T1[temp[2][1]][1];
180 	b[ 6] = T1[temp[3][2]][1];
181 	b[ 7] = T1[temp[0][3]][1];
182 	b[ 8] = T1[temp[2][0]][1];
183 	b[ 9] = T1[temp[3][1]][1];
184 	b[10] = T1[temp[0][2]][1];
185 	b[11] = T1[temp[1][3]][1];
186 	b[12] = T1[temp[3][0]][1];
187 	b[13] = T1[temp[0][1]][1];
188 	b[14] = T1[temp[1][2]][1];
189 	b[15] = T1[temp[2][3]][1];
190 	*((word32*)(b   )) ^= *((word32*)rk[ROUNDS][0]);
191 	*((word32*)(b+ 4)) ^= *((word32*)rk[ROUNDS][1]);
192 	*((word32*)(b+ 8)) ^= *((word32*)rk[ROUNDS][2]);
193 	*((word32*)(b+12)) ^= *((word32*)rk[ROUNDS][3]);
194 
195 	return 0;
196 }
197 
198 #ifdef INTERMEDIATE_VALUE_KAT
199 /**
200  * Encrypt only a certain number of rounds.
201  * Only used in the Intermediate Value Known Answer Test.
202  */
rijndaelEncryptRound(word8 a[4][4],word8 rk[MAXROUNDS+1][4][4],int ROUNDS,int rounds)203 int rijndaelEncryptRound(word8 a[4][4], word8 rk[MAXROUNDS+1][4][4], int ROUNDS, int rounds) {
204 	int r;
205 	word8 temp[4][4];
206 
207 	/* make number of rounds sane */
208 	if (rounds > ROUNDS) {
209 		rounds = ROUNDS;
210 	}
211 
212 	*((word32*)a[0]) = *((word32*)a[0]) ^ *((word32*)rk[0][0]);
213 	*((word32*)a[1]) = *((word32*)a[1]) ^ *((word32*)rk[0][1]);
214 	*((word32*)a[2]) = *((word32*)a[2]) ^ *((word32*)rk[0][2]);
215 	*((word32*)a[3]) = *((word32*)a[3]) ^ *((word32*)rk[0][3]);
216 
217 	for (r = 1; (r <= rounds) && (r < ROUNDS); r++) {
218 		*((word32*)temp[0]) = *((word32*)T1[a[0][0]])
219            ^ *((word32*)T2[a[1][1]])
220            ^ *((word32*)T3[a[2][2]])
221            ^ *((word32*)T4[a[3][3]]);
222 		*((word32*)temp[1]) = *((word32*)T1[a[1][0]])
223            ^ *((word32*)T2[a[2][1]])
224            ^ *((word32*)T3[a[3][2]])
225            ^ *((word32*)T4[a[0][3]]);
226 		*((word32*)temp[2]) = *((word32*)T1[a[2][0]])
227            ^ *((word32*)T2[a[3][1]])
228            ^ *((word32*)T3[a[0][2]])
229            ^ *((word32*)T4[a[1][3]]);
230 		*((word32*)temp[3]) = *((word32*)T1[a[3][0]])
231            ^ *((word32*)T2[a[0][1]])
232            ^ *((word32*)T3[a[1][2]])
233            ^ *((word32*)T4[a[2][3]]);
234 		*((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[r][0]);
235 		*((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[r][1]);
236 		*((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[r][2]);
237 		*((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[r][3]);
238 	}
239 	if (rounds == ROUNDS) {
240 	   	/* last round is special */
241 	   	temp[0][0] = T1[a[0][0]][1];
242 	   	temp[0][1] = T1[a[1][1]][1];
243 	   	temp[0][2] = T1[a[2][2]][1];
244 	   	temp[0][3] = T1[a[3][3]][1];
245 	   	temp[1][0] = T1[a[1][0]][1];
246 	   	temp[1][1] = T1[a[2][1]][1];
247 	   	temp[1][2] = T1[a[3][2]][1];
248 	   	temp[1][3] = T1[a[0][3]][1];
249 	   	temp[2][0] = T1[a[2][0]][1];
250 	   	temp[2][1] = T1[a[3][1]][1];
251 	   	temp[2][2] = T1[a[0][2]][1];
252 	   	temp[2][3] = T1[a[1][3]][1];
253 	   	temp[3][0] = T1[a[3][0]][1];
254 	   	temp[3][1] = T1[a[0][1]][1];
255 	   	temp[3][2] = T1[a[1][2]][1];
256 	   	temp[3][3] = T1[a[2][3]][1];
257 		*((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[ROUNDS][0]);
258 		*((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[ROUNDS][1]);
259 		*((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[ROUNDS][2]);
260 		*((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[ROUNDS][3]);
261 	}
262 
263 	return 0;
264 }
265 #endif /* INTERMEDIATE_VALUE_KAT */
266 
267 /**
268  * Decrypt a single block.
269  */
rijndaelDecrypt(word8 a[16],word8 b[16],word8 rk[MAXROUNDS+1][4][4],int ROUNDS)270 int rijndaelDecrypt(word8 a[16], word8 b[16], word8 rk[MAXROUNDS+1][4][4], int ROUNDS) {
271 	int r;
272 	word8 temp[4][4];
273 
274     *((word32*)temp[0]) = *((word32*)(a   )) ^ *((word32*)rk[ROUNDS][0]);
275     *((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[ROUNDS][1]);
276     *((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[ROUNDS][2]);
277     *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[ROUNDS][3]);
278 
279     *((word32*)(b   )) = *((word32*)T5[temp[0][0]])
280            ^ *((word32*)T6[temp[3][1]])
281            ^ *((word32*)T7[temp[2][2]])
282            ^ *((word32*)T8[temp[1][3]]);
283 	*((word32*)(b+ 4)) = *((word32*)T5[temp[1][0]])
284            ^ *((word32*)T6[temp[0][1]])
285            ^ *((word32*)T7[temp[3][2]])
286            ^ *((word32*)T8[temp[2][3]]);
287 	*((word32*)(b+ 8)) = *((word32*)T5[temp[2][0]])
288            ^ *((word32*)T6[temp[1][1]])
289            ^ *((word32*)T7[temp[0][2]])
290            ^ *((word32*)T8[temp[3][3]]);
291 	*((word32*)(b+12)) = *((word32*)T5[temp[3][0]])
292            ^ *((word32*)T6[temp[2][1]])
293            ^ *((word32*)T7[temp[1][2]])
294            ^ *((word32*)T8[temp[0][3]]);
295 	for (r = ROUNDS-1; r > 1; r--) {
296 		*((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[r][0]);
297 		*((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]);
298 		*((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]);
299 		*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
300 		*((word32*)(b   )) = *((word32*)T5[temp[0][0]])
301            ^ *((word32*)T6[temp[3][1]])
302            ^ *((word32*)T7[temp[2][2]])
303            ^ *((word32*)T8[temp[1][3]]);
304 		*((word32*)(b+ 4)) = *((word32*)T5[temp[1][0]])
305            ^ *((word32*)T6[temp[0][1]])
306            ^ *((word32*)T7[temp[3][2]])
307            ^ *((word32*)T8[temp[2][3]]);
308 		*((word32*)(b+ 8)) = *((word32*)T5[temp[2][0]])
309            ^ *((word32*)T6[temp[1][1]])
310            ^ *((word32*)T7[temp[0][2]])
311            ^ *((word32*)T8[temp[3][3]]);
312 		*((word32*)(b+12)) = *((word32*)T5[temp[3][0]])
313            ^ *((word32*)T6[temp[2][1]])
314            ^ *((word32*)T7[temp[1][2]])
315            ^ *((word32*)T8[temp[0][3]]);
316 	}
317 	/* last round is special */
318 	*((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[1][0]);
319 	*((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[1][1]);
320 	*((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[1][2]);
321 	*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[1][3]);
322 	b[ 0] = S5[temp[0][0]];
323 	b[ 1] = S5[temp[3][1]];
324 	b[ 2] = S5[temp[2][2]];
325 	b[ 3] = S5[temp[1][3]];
326 	b[ 4] = S5[temp[1][0]];
327 	b[ 5] = S5[temp[0][1]];
328 	b[ 6] = S5[temp[3][2]];
329 	b[ 7] = S5[temp[2][3]];
330 	b[ 8] = S5[temp[2][0]];
331 	b[ 9] = S5[temp[1][1]];
332 	b[10] = S5[temp[0][2]];
333 	b[11] = S5[temp[3][3]];
334 	b[12] = S5[temp[3][0]];
335 	b[13] = S5[temp[2][1]];
336 	b[14] = S5[temp[1][2]];
337 	b[15] = S5[temp[0][3]];
338 	*((word32*)(b   )) ^= *((word32*)rk[0][0]);
339 	*((word32*)(b+ 4)) ^= *((word32*)rk[0][1]);
340 	*((word32*)(b+ 8)) ^= *((word32*)rk[0][2]);
341 	*((word32*)(b+12)) ^= *((word32*)rk[0][3]);
342 
343 	return 0;
344 }
345 
346 #ifdef INTERMEDIATE_VALUE_KAT
347 /**
348  * Decrypt only a certain number of rounds.
349  * Only used in the Intermediate Value Known Answer Test.
350  * Operations rearranged such that the intermediate values
351  * of decryption correspond with the intermediate values
352  * of encryption.
353  */
rijndaelDecryptRound(word8 a[4][4],word8 rk[MAXROUNDS+1][4][4],int ROUNDS,int rounds)354 int rijndaelDecryptRound(word8 a[4][4], word8 rk[MAXROUNDS+1][4][4], int ROUNDS, int rounds) {
355 	int r, i;
356 	word8 temp[4], shift;
357 
358 	/* make number of rounds sane */
359 	if (rounds > ROUNDS) {
360 		rounds = ROUNDS;
361 	}
362     /* first round is special: */
363 	*(word32 *)a[0] ^= *(word32 *)rk[ROUNDS][0];
364 	*(word32 *)a[1] ^= *(word32 *)rk[ROUNDS][1];
365 	*(word32 *)a[2] ^= *(word32 *)rk[ROUNDS][2];
366 	*(word32 *)a[3] ^= *(word32 *)rk[ROUNDS][3];
367 	for (i = 0; i < 4; i++) {
368 		a[i][0] = Si[a[i][0]];
369 		a[i][1] = Si[a[i][1]];
370 		a[i][2] = Si[a[i][2]];
371 		a[i][3] = Si[a[i][3]];
372 	}
373 	for (i = 1; i < 4; i++) {
374 		shift = (4 - i) & 3;
375 		temp[0] = a[(0 + shift) & 3][i];
376 		temp[1] = a[(1 + shift) & 3][i];
377 		temp[2] = a[(2 + shift) & 3][i];
378 		temp[3] = a[(3 + shift) & 3][i];
379 		a[0][i] = temp[0];
380 		a[1][i] = temp[1];
381 		a[2][i] = temp[2];
382 		a[3][i] = temp[3];
383 	}
384 	/* ROUNDS-1 ordinary rounds */
385 	for (r = ROUNDS-1; r > rounds; r--) {
386 		*(word32 *)a[0] ^= *(word32 *)rk[r][0];
387 		*(word32 *)a[1] ^= *(word32 *)rk[r][1];
388 		*(word32 *)a[2] ^= *(word32 *)rk[r][2];
389 		*(word32 *)a[3] ^= *(word32 *)rk[r][3];
390 
391 		*((word32*)a[0]) =
392 			  *((word32*)U1[a[0][0]])
393 			^ *((word32*)U2[a[0][1]])
394 			^ *((word32*)U3[a[0][2]])
395 			^ *((word32*)U4[a[0][3]]);
396 
397 		*((word32*)a[1]) =
398 			  *((word32*)U1[a[1][0]])
399 			^ *((word32*)U2[a[1][1]])
400 			^ *((word32*)U3[a[1][2]])
401 			^ *((word32*)U4[a[1][3]]);
402 
403 		*((word32*)a[2]) =
404 			  *((word32*)U1[a[2][0]])
405 			^ *((word32*)U2[a[2][1]])
406 			^ *((word32*)U3[a[2][2]])
407 			^ *((word32*)U4[a[2][3]]);
408 
409 		*((word32*)a[3]) =
410 			  *((word32*)U1[a[3][0]])
411 			^ *((word32*)U2[a[3][1]])
412 			^ *((word32*)U3[a[3][2]])
413 			^ *((word32*)U4[a[3][3]]);
414 		for (i = 0; i < 4; i++) {
415 			a[i][0] = Si[a[i][0]];
416 			a[i][1] = Si[a[i][1]];
417 			a[i][2] = Si[a[i][2]];
418 			a[i][3] = Si[a[i][3]];
419 		}
420 		for (i = 1; i < 4; i++) {
421 			shift = (4 - i) & 3;
422 			temp[0] = a[(0 + shift) & 3][i];
423 			temp[1] = a[(1 + shift) & 3][i];
424 			temp[2] = a[(2 + shift) & 3][i];
425 			temp[3] = a[(3 + shift) & 3][i];
426 			a[0][i] = temp[0];
427 			a[1][i] = temp[1];
428 			a[2][i] = temp[2];
429 			a[3][i] = temp[3];
430 		}
431 	}
432 	if (rounds == 0) {
433 		/* End with the extra key addition */
434 		*(word32 *)a[0] ^= *(word32 *)rk[0][0];
435 		*(word32 *)a[1] ^= *(word32 *)rk[0][1];
436 		*(word32 *)a[2] ^= *(word32 *)rk[0][2];
437 		*(word32 *)a[3] ^= *(word32 *)rk[0][3];
438 	}
439 	return 0;
440 }
441 #endif /* INTERMEDIATE_VALUE_KAT */
442