1 /*
2   trees.h - Zip 3
3 
4   Copyright (c) 1990-2007 Info-ZIP.  All rights reserved.
5 
6   See the accompanying file LICENSE, version 2005-Feb-10 or later
7   (the contents of which are also included in zip.h) for terms of use.
8   If, for some reason, all these files are missing, the Info-ZIP license
9   also may be found at:  ftp://ftp.info-zip.org/pub/infozip/license.html
10 */
11 /*
12  *  trees.c by Jean-loup Gailly
13  *
14  *  This is a new version of im_ctree.c originally written by Richard B. Wales
15  *  for the defunct implosion method.
16  *  The low level bit string handling routines from bits.c (originally
17  *  im_bits.c written by Richard B. Wales) have been merged into this version
18  *  of trees.c.
19  *
20  *  PURPOSE
21  *
22  *      Encode various sets of source values using variable-length
23  *      binary code trees.
24  *      Output the resulting variable-length bit strings.
25  *      Compression can be done to a file or to memory.
26  *
27  *  DISCUSSION
28  *
29  *      The PKZIP "deflation" process uses several Huffman trees. The more
30  *      common source values are represented by shorter bit sequences.
31  *
32  *      Each code tree is stored in the ZIP file in a compressed form
33  *      which is itself a Huffman encoding of the lengths of
34  *      all the code strings (in ascending order by source values).
35  *      The actual code strings are reconstructed from the lengths in
36  *      the UNZIP process, as described in the "application note"
37  *      (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
38  *
39  *      The PKZIP "deflate" file format interprets compressed file data
40  *      as a sequence of bits.  Multi-bit strings in the file may cross
41  *      byte boundaries without restriction.
42  *      The first bit of each byte is the low-order bit.
43  *
44  *      The routines in this file allow a variable-length bit value to
45  *      be output right-to-left (useful for literal values). For
46  *      left-to-right output (useful for code strings from the tree routines),
47  *      the bits must have been reversed first with bi_reverse().
48  *
49  *      For in-memory compression, the compressed bit stream goes directly
50  *      into the requested output buffer. The buffer is limited to 64K on
51  *      16 bit machines; flushing of the output buffer during compression
52  *      process is not supported.
53  *      The input data is read in blocks by the (*read_buf)() function.
54  *
55  *      For more details about input to and output from the deflation routines,
56  *      see the actual input functions for (*read_buf)(), flush_outbuf(), and
57  *      the filecompress() resp. memcompress() wrapper functions which handle
58  *      the I/O setup.
59  *
60  *  REFERENCES
61  *
62  *      Lynch, Thomas J.
63  *          Data Compression:  Techniques and Applications, pp. 53-55.
64  *          Lifetime Learning Publications, 1985.  ISBN 0-534-03418-7.
65  *
66  *      Storer, James A.
67  *          Data Compression:  Methods and Theory, pp. 49-50.
68  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
69  *
70  *      Sedgewick, R.
71  *          Algorithms, p290.
72  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
73  *
74  *  INTERFACE
75  *
76  *      void ct_init (ush *attr, int *method)
77  *          Allocate the match buffer, initialize the various tables and save
78  *          the location of the internal file attribute (ascii/binary) and
79  *          method (DEFLATE/STORE)
80  *
81  *      void ct_tally (int dist, int lc);
82  *          Save the match info and tally the frequency counts.
83  *
84  *      uzoff_t flush_block (char *buf, ulg stored_len, int eof)
85  *          Determine the best encoding for the current block: dynamic trees,
86  *          static trees or store, and output the encoded block to the zip
87  *          file. Returns the total compressed length for the file so far.
88  *
89  *      void bi_init (char *tgt_buf, unsigned tgt_size, int flsh_allowed)
90  *          Initialize the bit string routines.
91  *
92  *    Most of the bit string output functions are only used internally
93  *    in this source file, they are normally declared as "local" routines:
94  *
95  *      local void send_bits (int value, int length)
96  *          Write out a bit string, taking the source bits right to
97  *          left.
98  *
99  *      local unsigned bi_reverse (unsigned code, int len)
100  *          Reverse the bits of a bit string, taking the source bits left to
101  *          right and emitting them right to left.
102  *
103  *      local void bi_windup (void)
104  *          Write out any remaining bits in an incomplete byte.
105  *
106  *      local void copy_block(char *buf, unsigned len, int header)
107  *          Copy a stored block to the zip file, storing first the length and
108  *          its one's complement if requested.
109  *
110  *    All output that exceeds the bitstring output buffer size (as initialized
111  *    by bi_init() is fed through an externally provided transfer routine
112  *    which flushes the bitstring output buffer on request and resets the
113  *    buffer fill counter:
114  *
115  *      extern void flush_outbuf(char *o_buf, unsigned *o_idx);
116  *
117  */
118 #define __TREES_C
119 
120 /* Put zip.h first as when using 64-bit file environment in unix ctype.h
121    defines off_t and then while other files are using an 8-byte off_t this
122    file gets a 4-byte off_t.  Once zip.h sets the large file defines can
123    then include ctype.h and get 8-byte off_t.  8/14/04 EG */
124 #include "zip.h"
125 #include <ctype.h>
126 
127 #ifndef USE_ZLIB
128 
129 /* ===========================================================================
130  * Constants
131  */
132 
133 #define MAX_BITS 15
134 /* All codes must not exceed MAX_BITS bits */
135 
136 #define MAX_BL_BITS 7
137 /* Bit length codes must not exceed MAX_BL_BITS bits */
138 
139 #define LENGTH_CODES 29
140 /* number of length codes, not counting the special END_BLOCK code */
141 
142 #define LITERALS  256
143 /* number of literal bytes 0..255 */
144 
145 #define END_BLOCK 256
146 /* end of block literal code */
147 
148 #define L_CODES (LITERALS+1+LENGTH_CODES)
149 /* number of Literal or Length codes, including the END_BLOCK code */
150 
151 #define D_CODES   30
152 /* number of distance codes */
153 
154 #define BL_CODES  19
155 /* number of codes used to transfer the bit lengths */
156 
157 
158 local int near extra_lbits[LENGTH_CODES] /* extra bits for each length code */
159    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
160 
161 local int near extra_dbits[D_CODES] /* extra bits for each distance code */
162    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
163 
164 local int near extra_blbits[BL_CODES]/* extra bits for each bit length code */
165    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
166 
167 #define STORED_BLOCK 0
168 #define STATIC_TREES 1
169 #define DYN_TREES    2
170 /* The three kinds of block type */
171 
172 #ifndef LIT_BUFSIZE
173 #  ifdef SMALL_MEM
174 #    define LIT_BUFSIZE  0x2000
175 #  else
176 #  ifdef MEDIUM_MEM
177 #    define LIT_BUFSIZE  0x4000
178 #  else
179 #    define LIT_BUFSIZE  0x8000
180 #  endif
181 #  endif
182 #endif
183 #define DIST_BUFSIZE  LIT_BUFSIZE
184 /* Sizes of match buffers for literals/lengths and distances.  There are
185  * 4 reasons for limiting LIT_BUFSIZE to 64K:
186  *   - frequencies can be kept in 16 bit counters
187  *   - if compression is not successful for the first block, all input data is
188  *     still in the window so we can still emit a stored block even when input
189  *     comes from standard input.  (This can also be done for all blocks if
190  *     LIT_BUFSIZE is not greater than 32K.)
191  *   - if compression is not successful for a file smaller than 64K, we can
192  *     even emit a stored file instead of a stored block (saving 5 bytes).
193  *   - creating new Huffman trees less frequently may not provide fast
194  *     adaptation to changes in the input data statistics. (Take for
195  *     example a binary file with poorly compressible code followed by
196  *     a highly compressible string table.) Smaller buffer sizes give
197  *     fast adaptation but have of course the overhead of transmitting trees
198  *     more frequently.
199  *   - I can't count above 4
200  * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
201  * memory at the expense of compression). Some optimizations would be possible
202  * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
203  */
204 
205 #define REP_3_6      16
206 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
207 
208 #define REPZ_3_10    17
209 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
210 
211 #define REPZ_11_138  18
212 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
213 
214 /* ===========================================================================
215  * Local data
216  */
217 
218 /* Data structure describing a single value and its code string. */
219 typedef struct ct_data {
220     union {
221         ush  freq;       /* frequency count */
222         ush  code;       /* bit string */
223     } fc;
224     union {
225         ush  dad;        /* father node in Huffman tree */
226         ush  len;        /* length of bit string */
227     } dl;
228 } ct_data;
229 
230 #define Freq fc.freq
231 #define Code fc.code
232 #define Dad  dl.dad
233 #define Len  dl.len
234 
235 #define HEAP_SIZE (2*L_CODES+1)
236 /* maximum heap size */
237 
238 local ct_data near dyn_ltree[HEAP_SIZE];   /* literal and length tree */
239 local ct_data near dyn_dtree[2*D_CODES+1]; /* distance tree */
240 
241 local ct_data near static_ltree[L_CODES+2];
242 /* The static literal tree. Since the bit lengths are imposed, there is no
243  * need for the L_CODES extra codes used during heap construction. However
244  * The codes 286 and 287 are needed to build a canonical tree (see ct_init
245  * below).
246  */
247 
248 local ct_data near static_dtree[D_CODES];
249 /* The static distance tree. (Actually a trivial tree since all codes use
250  * 5 bits.)
251  */
252 
253 local ct_data near bl_tree[2*BL_CODES+1];
254 /* Huffman tree for the bit lengths */
255 
256 typedef struct tree_desc {
257     ct_data near *dyn_tree;      /* the dynamic tree */
258     ct_data near *static_tree;   /* corresponding static tree or NULL */
259     int     near *extra_bits;    /* extra bits for each code or NULL */
260     int     extra_base;          /* base index for extra_bits */
261     int     elems;               /* max number of elements in the tree */
262     int     max_length;          /* max bit length for the codes */
263     int     max_code;            /* largest code with non zero frequency */
264 } tree_desc;
265 
266 local tree_desc near l_desc =
267 {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};
268 
269 local tree_desc near d_desc =
270 {dyn_dtree, static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS, 0};
271 
272 local tree_desc near bl_desc =
273 {bl_tree, NULL,       extra_blbits, 0,         BL_CODES, MAX_BL_BITS, 0};
274 
275 
276 local ush near bl_count[MAX_BITS+1];
277 /* number of codes at each bit length for an optimal tree */
278 
279 local uch near bl_order[BL_CODES]
280    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
281 /* The lengths of the bit length codes are sent in order of decreasing
282  * probability, to avoid transmitting the lengths for unused bit length codes.
283  */
284 
285 local int near heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
286 local int heap_len;               /* number of elements in the heap */
287 local int heap_max;               /* element of largest frequency */
288 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
289  * The same heap array is used to build all trees.
290  */
291 
292 local uch near depth[2*L_CODES+1];
293 /* Depth of each subtree used as tie breaker for trees of equal frequency */
294 
295 local uch length_code[MAX_MATCH-MIN_MATCH+1];
296 /* length code for each normalized match length (0 == MIN_MATCH) */
297 
298 local uch dist_code[512];
299 /* distance codes. The first 256 values correspond to the distances
300  * 3 .. 258, the last 256 values correspond to the top 8 bits of
301  * the 15 bit distances.
302  */
303 
304 local int near base_length[LENGTH_CODES];
305 /* First normalized length for each code (0 = MIN_MATCH) */
306 
307 local int near base_dist[D_CODES];
308 /* First normalized distance for each code (0 = distance of 1) */
309 
310 #ifndef DYN_ALLOC
311   local uch far l_buf[LIT_BUFSIZE];  /* buffer for literals/lengths */
312   local ush far d_buf[DIST_BUFSIZE]; /* buffer for distances */
313 #else
314   local uch far *l_buf;
315   local ush far *d_buf;
316 #endif
317 
318 local uch near flag_buf[(LIT_BUFSIZE/8)];
319 /* flag_buf is a bit array distinguishing literals from lengths in
320  * l_buf, and thus indicating the presence or absence of a distance.
321  */
322 
323 local unsigned last_lit;    /* running index in l_buf */
324 local unsigned last_dist;   /* running index in d_buf */
325 local unsigned last_flags;  /* running index in flag_buf */
326 local uch flags;            /* current flags not yet saved in flag_buf */
327 local uch flag_bit;         /* current bit used in flags */
328 /* bits are filled in flags starting at bit 0 (least significant).
329  * Note: these flags are overkill in the current code since we don't
330  * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
331  */
332 
333 local ulg opt_len;        /* bit length of current block with optimal trees */
334 local ulg static_len;     /* bit length of current block with static trees */
335 
336 /* zip64 support 08/29/2003 R.Nausedat */
337 /* now all file sizes and offsets are zoff_t 7/24/04 EG */
338 local uzoff_t cmpr_bytelen;     /* total byte length of compressed file */
339 local ulg cmpr_len_bits;        /* number of bits past 'cmpr_bytelen' */
340 
341 #ifdef DEBUG
342 local uzoff_t input_len;        /* total byte length of input file */
343 /* input_len is for debugging only since we can get it by other means. */
344 #endif
345 
346 local ush *file_type;       /* pointer to UNKNOWN, BINARY or ASCII */
347 local int *file_method;     /* pointer to DEFLATE or STORE */
348 
349 /* ===========================================================================
350  * Local data used by the "bit string" routines.
351  */
352 
353 local int flush_flg;
354 
355 #if (!defined(ASMV) || !defined(RISCOS))
356 local unsigned bi_buf;
357 #else
358 unsigned bi_buf;
359 #endif
360 /* Output buffer. bits are inserted starting at the bottom (least significant
361  * bits). The width of bi_buf must be at least 16 bits.
362  */
363 
364 #define Buf_size (8 * 2*sizeof(char))
365 /* Number of bits used within bi_buf. (bi_buf may be implemented on
366  * more than 16 bits on some systems.)
367  */
368 
369 #if (!defined(ASMV) || !defined(RISCOS))
370 local int bi_valid;
371 #else
372 int bi_valid;
373 #endif
374 /* Number of valid bits in bi_buf.  All bits above the last valid bit
375  * are always zero.
376  */
377 
378 #if (!defined(ASMV) || !defined(RISCOS))
379 local char *out_buf;
380 #else
381 char *out_buf;
382 #endif
383 /* Current output buffer. */
384 
385 #if (!defined(ASMV) || !defined(RISCOS))
386 local unsigned out_offset;
387 #else
388 unsigned out_offset;
389 #endif
390 /* Current offset in output buffer.
391  * On 16 bit machines, the buffer is limited to 64K.
392  */
393 
394 #if !defined(ASMV) || !defined(RISCOS)
395 local unsigned out_size;
396 #else
397 unsigned out_size;
398 #endif
399 /* Size of current output buffer */
400 
401 /* Output a 16 bit value to the bit stream, lower (oldest) byte first */
402 #define PUTSHORT(w) \
403 { if (out_offset >= out_size-1) \
404     flush_outbuf(out_buf, &out_offset); \
405   out_buf[out_offset++] = (char) ((w) & 0xff); \
406   out_buf[out_offset++] = (char) ((ush)(w) >> 8); \
407 }
408 
409 #define PUTBYTE(b) \
410 { if (out_offset >= out_size) \
411     flush_outbuf(out_buf, &out_offset); \
412   out_buf[out_offset++] = (char) (b); \
413 }
414 
415 #ifdef DEBUG
416 local uzoff_t bits_sent;   /* bit length of the compressed data */
417 extern uzoff_t isize;      /* byte length of input file */
418 #endif
419 
420 extern long block_start;       /* window offset of current block */
421 extern unsigned near strstart; /* window offset of current string */
422 
423 
424 /* ===========================================================================
425  * Local (static) routines in this file.
426  */
427 
428 local void init_block     OF((void));
429 local void pqdownheap     OF((ct_data near *tree, int k));
430 local void gen_bitlen     OF((tree_desc near *desc));
431 local void gen_codes      OF((ct_data near *tree, int max_code));
432 local void build_tree     OF((tree_desc near *desc));
433 local void scan_tree      OF((ct_data near *tree, int max_code));
434 local void send_tree      OF((ct_data near *tree, int max_code));
435 local int  build_bl_tree  OF((void));
436 local void send_all_trees OF((int lcodes, int dcodes, int blcodes));
437 local void compress_block OF((ct_data near *ltree, ct_data near *dtree));
438 local void set_file_type  OF((void));
439 #if (!defined(ASMV) || !defined(RISCOS))
440 local void send_bits      OF((int value, int length));
441 local unsigned bi_reverse OF((unsigned code, int len));
442 #endif
443 local void bi_windup      OF((void));
444 local void copy_block     OF((char *buf, unsigned len, int header));
445 
446 
447 #ifndef DEBUG
448 #  define send_code(c, tree) send_bits(tree[c].Code, tree[c].Len)
449    /* Send a code of the given tree. c and tree must not have side effects */
450 
451 #else /* DEBUG */
452 #  define send_code(c, tree) \
453      { if (verbose>1) fprintf(mesg,"\ncd %3d ",(c)); \
454        send_bits(tree[c].Code, tree[c].Len); }
455 #endif
456 
457 #define d_code(dist) \
458    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
459 /* Mapping from a distance to a distance code. dist is the distance - 1 and
460  * must not have side effects. dist_code[256] and dist_code[257] are never
461  * used.
462  */
463 
464 #define Max(a,b) (a >= b ? a : b)
465 /* the arguments must not have side effects */
466 
467 /* ===========================================================================
468  * Allocate the match buffer, initialize the various tables and save the
469  * location of the internal file attribute (ascii/binary) and method
470  * (DEFLATE/STORE).
471  */
ct_init(attr,method)472 void ct_init(attr, method)
473     ush  *attr;   /* pointer to internal file attribute */
474     int  *method; /* pointer to compression method */
475 {
476     int n;        /* iterates over tree elements */
477     int bits;     /* bit counter */
478     int length;   /* length value */
479     int code;     /* code value */
480     int dist;     /* distance index */
481 
482     file_type = attr;
483     file_method = method;
484     cmpr_len_bits = 0L;
485     cmpr_bytelen = (uzoff_t)0;
486 #ifdef DEBUG
487     input_len = (uzoff_t)0;
488 #endif
489 
490     if (static_dtree[0].Len != 0) return; /* ct_init already called */
491 
492 #ifdef DYN_ALLOC
493     d_buf = (ush far *) zcalloc(DIST_BUFSIZE, sizeof(ush));
494     l_buf = (uch far *) zcalloc(LIT_BUFSIZE/2, 2);
495     /* Avoid using the value 64K on 16 bit machines */
496     if (l_buf == NULL || d_buf == NULL)
497         ziperr(ZE_MEM, "ct_init: out of memory");
498 #endif
499 
500     /* Initialize the mapping length (0..255) -> length code (0..28) */
501     length = 0;
502     for (code = 0; code < LENGTH_CODES-1; code++) {
503         base_length[code] = length;
504         for (n = 0; n < (1<<extra_lbits[code]); n++) {
505             length_code[length++] = (uch)code;
506         }
507     }
508     Assert(length == 256, "ct_init: length != 256");
509     /* Note that the length 255 (match length 258) can be represented
510      * in two different ways: code 284 + 5 bits or code 285, so we
511      * overwrite length_code[255] to use the best encoding:
512      */
513     length_code[length-1] = (uch)code;
514 
515     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
516     dist = 0;
517     for (code = 0 ; code < 16; code++) {
518         base_dist[code] = dist;
519         for (n = 0; n < (1<<extra_dbits[code]); n++) {
520             dist_code[dist++] = (uch)code;
521         }
522     }
523     Assert(dist == 256, "ct_init: dist != 256");
524     dist >>= 7; /* from now on, all distances are divided by 128 */
525     for ( ; code < D_CODES; code++) {
526         base_dist[code] = dist << 7;
527         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
528             dist_code[256 + dist++] = (uch)code;
529         }
530     }
531     Assert(dist == 256, "ct_init: 256+dist != 512");
532 
533     /* Construct the codes of the static literal tree */
534     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
535     n = 0;
536     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
537     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
538     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
539     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
540     /* Codes 286 and 287 do not exist, but we must include them in the
541      * tree construction to get a canonical Huffman tree (longest code
542      * all ones)
543      */
544     gen_codes((ct_data near *)static_ltree, L_CODES+1);
545 
546     /* The static distance tree is trivial: */
547     for (n = 0; n < D_CODES; n++) {
548         static_dtree[n].Len = 5;
549         static_dtree[n].Code = (ush)bi_reverse(n, 5);
550     }
551 
552     /* Initialize the first block of the first file: */
553     init_block();
554 }
555 
556 /* ===========================================================================
557  * Initialize a new block.
558  */
init_block()559 local void init_block()
560 {
561     int n; /* iterates over tree elements */
562 
563     /* Initialize the trees. */
564     for (n = 0; n < L_CODES;  n++) dyn_ltree[n].Freq = 0;
565     for (n = 0; n < D_CODES;  n++) dyn_dtree[n].Freq = 0;
566     for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0;
567 
568     dyn_ltree[END_BLOCK].Freq = 1;
569     opt_len = static_len = 0L;
570     last_lit = last_dist = last_flags = 0;
571     flags = 0; flag_bit = 1;
572 }
573 
574 #define SMALLEST 1
575 /* Index within the heap array of least frequent node in the Huffman tree */
576 
577 
578 /* ===========================================================================
579  * Remove the smallest element from the heap and recreate the heap with
580  * one less element. Updates heap and heap_len.
581  */
582 #define pqremove(tree, top) \
583 {\
584     top = heap[SMALLEST]; \
585     heap[SMALLEST] = heap[heap_len--]; \
586     pqdownheap(tree, SMALLEST); \
587 }
588 
589 /* ===========================================================================
590  * Compares to subtrees, using the tree depth as tie breaker when
591  * the subtrees have equal frequency. This minimizes the worst case length.
592  */
593 #define smaller(tree, n, m) \
594    (tree[n].Freq < tree[m].Freq || \
595    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
596 
597 /* ===========================================================================
598  * Restore the heap property by moving down the tree starting at node k,
599  * exchanging a node with the smallest of its two sons if necessary, stopping
600  * when the heap property is re-established (each father smaller than its
601  * two sons).
602  */
pqdownheap(tree,k)603 local void pqdownheap(tree, k)
604     ct_data near *tree;  /* the tree to restore */
605     int k;               /* node to move down */
606 {
607     int v = heap[k];
608     int j = k << 1;  /* left son of k */
609     int htemp;       /* required because of bug in SASC compiler */
610 
611     while (j <= heap_len) {
612         /* Set j to the smallest of the two sons: */
613         if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++;
614 
615         /* Exit if v is smaller than both sons */
616         htemp = heap[j];
617         if (smaller(tree, v, htemp)) break;
618 
619         /* Exchange v with the smallest son */
620         heap[k] = htemp;
621         k = j;
622 
623         /* And continue down the tree, setting j to the left son of k */
624         j <<= 1;
625     }
626     heap[k] = v;
627 }
628 
629 /* ===========================================================================
630  * Compute the optimal bit lengths for a tree and update the total bit length
631  * for the current block.
632  * IN assertion: the fields freq and dad are set, heap[heap_max] and
633  *    above are the tree nodes sorted by increasing frequency.
634  * OUT assertions: the field len is set to the optimal bit length, the
635  *     array bl_count contains the frequencies for each bit length.
636  *     The length opt_len is updated; static_len is also updated if stree is
637  *     not null.
638  */
gen_bitlen(desc)639 local void gen_bitlen(desc)
640     tree_desc near *desc; /* the tree descriptor */
641 {
642     ct_data near *tree  = desc->dyn_tree;
643     int near *extra     = desc->extra_bits;
644     int base            = desc->extra_base;
645     int max_code        = desc->max_code;
646     int max_length      = desc->max_length;
647     ct_data near *stree = desc->static_tree;
648     int h;              /* heap index */
649     int n, m;           /* iterate over the tree elements */
650     int bits;           /* bit length */
651     int xbits;          /* extra bits */
652     ush f;              /* frequency */
653     int overflow = 0;   /* number of elements with bit length too large */
654 
655     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
656 
657     /* In a first pass, compute the optimal bit lengths (which may
658      * overflow in the case of the bit length tree).
659      */
660     tree[heap[heap_max]].Len = 0; /* root of the heap */
661 
662     for (h = heap_max+1; h < HEAP_SIZE; h++) {
663         n = heap[h];
664         bits = tree[tree[n].Dad].Len + 1;
665         if (bits > max_length) bits = max_length, overflow++;
666         tree[n].Len = (ush)bits;
667         /* We overwrite tree[n].Dad which is no longer needed */
668 
669         if (n > max_code) continue; /* not a leaf node */
670 
671         bl_count[bits]++;
672         xbits = 0;
673         if (n >= base) xbits = extra[n-base];
674         f = tree[n].Freq;
675         opt_len += (ulg)f * (bits + xbits);
676         if (stree) static_len += (ulg)f * (stree[n].Len + xbits);
677     }
678     if (overflow == 0) return;
679 
680     Trace((stderr,"\nbit length overflow\n"));
681     /* This happens for example on obj2 and pic of the Calgary corpus */
682 
683     /* Find the first bit length which could increase: */
684     do {
685         bits = max_length-1;
686         while (bl_count[bits] == 0) bits--;
687         bl_count[bits]--;           /* move one leaf down the tree */
688         bl_count[bits+1] += (ush)2; /* move one overflow item as its brother */
689         bl_count[max_length]--;
690         /* The brother of the overflow item also moves one step up,
691          * but this does not affect bl_count[max_length]
692          */
693         overflow -= 2;
694     } while (overflow > 0);
695 
696     /* Now recompute all bit lengths, scanning in increasing frequency.
697      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
698      * lengths instead of fixing only the wrong ones. This idea is taken
699      * from 'ar' written by Haruhiko Okumura.)
700      */
701     for (bits = max_length; bits != 0; bits--) {
702         n = bl_count[bits];
703         while (n != 0) {
704             m = heap[--h];
705             if (m > max_code) continue;
706             if (tree[m].Len != (ush)bits) {
707                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
708                 opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;
709                 tree[m].Len = (ush)bits;
710             }
711             n--;
712         }
713     }
714 }
715 
716 /* ===========================================================================
717  * Generate the codes for a given tree and bit counts (which need not be
718  * optimal).
719  * IN assertion: the array bl_count contains the bit length statistics for
720  * the given tree and the field len is set for all tree elements.
721  * OUT assertion: the field code is set for all tree elements of non
722  *     zero code length.
723  */
gen_codes(tree,max_code)724 local void gen_codes (tree, max_code)
725     ct_data near *tree;        /* the tree to decorate */
726     int max_code;              /* largest code with non zero frequency */
727 {
728     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
729     ush code = 0;              /* running code value */
730     int bits;                  /* bit index */
731     int n;                     /* code index */
732 
733     /* The distribution counts are first used to generate the code values
734      * without bit reversal.
735      */
736     for (bits = 1; bits <= MAX_BITS; bits++) {
737         next_code[bits] = code = (ush)((code + bl_count[bits-1]) << 1);
738     }
739     /* Check that the bit counts in bl_count are consistent. The last code
740      * must be all ones.
741      */
742     Assert(code + bl_count[MAX_BITS]-1 == (1<< ((ush) MAX_BITS)) - 1,
743             "inconsistent bit counts");
744     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
745 
746     for (n = 0;  n <= max_code; n++) {
747         int len = tree[n].Len;
748         if (len == 0) continue;
749         /* Now reverse the bits */
750         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
751 
752         Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
753              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
754     }
755 }
756 
757 /* ===========================================================================
758  * Construct one Huffman tree and assigns the code bit strings and lengths.
759  * Update the total bit length for the current block.
760  * IN assertion: the field freq is set for all tree elements.
761  * OUT assertions: the fields len and code are set to the optimal bit length
762  *     and corresponding code. The length opt_len is updated; static_len is
763  *     also updated if stree is not null. The field max_code is set.
764  */
build_tree(desc)765 local void build_tree(desc)
766     tree_desc near *desc; /* the tree descriptor */
767 {
768     ct_data near *tree   = desc->dyn_tree;
769     ct_data near *stree  = desc->static_tree;
770     int elems            = desc->elems;
771     int n, m;          /* iterate over heap elements */
772     int max_code = -1; /* largest code with non zero frequency */
773     int node = elems;  /* next internal node of the tree */
774 
775     /* Construct the initial heap, with least frequent element in
776      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
777      * heap[0] is not used.
778      */
779     heap_len = 0, heap_max = HEAP_SIZE;
780 
781     for (n = 0; n < elems; n++) {
782         if (tree[n].Freq != 0) {
783             heap[++heap_len] = max_code = n;
784             depth[n] = 0;
785         } else {
786             tree[n].Len = 0;
787         }
788     }
789 
790     /* The pkzip format requires that at least one distance code exists,
791      * and that at least one bit should be sent even if there is only one
792      * possible code. So to avoid special checks later on we force at least
793      * two codes of non zero frequency.
794      */
795     while (heap_len < 2) {
796         int new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
797         tree[new].Freq = 1;
798         depth[new] = 0;
799         opt_len--; if (stree) static_len -= stree[new].Len;
800         /* new is 0 or 1 so it does not have extra bits */
801     }
802     desc->max_code = max_code;
803 
804     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
805      * establish sub-heaps of increasing lengths:
806      */
807     for (n = heap_len/2; n >= 1; n--) pqdownheap(tree, n);
808 
809     /* Construct the Huffman tree by repeatedly combining the least two
810      * frequent nodes.
811      */
812     do {
813         pqremove(tree, n);   /* n = node of least frequency */
814         m = heap[SMALLEST];  /* m = node of next least frequency */
815 
816         heap[--heap_max] = n; /* keep the nodes sorted by frequency */
817         heap[--heap_max] = m;
818 
819         /* Create a new node father of n and m */
820         tree[node].Freq = (ush)(tree[n].Freq + tree[m].Freq);
821         depth[node] = (uch) (Max(depth[n], depth[m]) + 1);
822         tree[n].Dad = tree[m].Dad = (ush)node;
823 #ifdef DUMP_BL_TREE
824         if (tree == bl_tree) {
825             fprintf(mesg,"\nnode %d(%d), sons %d(%d) %d(%d)",
826                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
827         }
828 #endif
829         /* and insert the new node in the heap */
830         heap[SMALLEST] = node++;
831         pqdownheap(tree, SMALLEST);
832 
833     } while (heap_len >= 2);
834 
835     heap[--heap_max] = heap[SMALLEST];
836 
837     /* At this point, the fields freq and dad are set. We can now
838      * generate the bit lengths.
839      */
840     gen_bitlen((tree_desc near *)desc);
841 
842     /* The field len is now set, we can generate the bit codes */
843     gen_codes ((ct_data near *)tree, max_code);
844 }
845 
846 /* ===========================================================================
847  * Scan a literal or distance tree to determine the frequencies of the codes
848  * in the bit length tree. Updates opt_len to take into account the repeat
849  * counts. (The contribution of the bit length codes will be added later
850  * during the construction of bl_tree.)
851  */
scan_tree(tree,max_code)852 local void scan_tree (tree, max_code)
853     ct_data near *tree; /* the tree to be scanned */
854     int max_code;       /* and its largest code of non zero frequency */
855 {
856     int n;                     /* iterates over all tree elements */
857     int prevlen = -1;          /* last emitted length */
858     int curlen;                /* length of current code */
859     int nextlen = tree[0].Len; /* length of next code */
860     int count = 0;             /* repeat count of the current code */
861     int max_count = 7;         /* max repeat count */
862     int min_count = 4;         /* min repeat count */
863 
864     if (nextlen == 0) max_count = 138, min_count = 3;
865     tree[max_code+1].Len = (ush)-1; /* guard */
866 
867     for (n = 0; n <= max_code; n++) {
868         curlen = nextlen; nextlen = tree[n+1].Len;
869         if (++count < max_count && curlen == nextlen) {
870             continue;
871         } else if (count < min_count) {
872             bl_tree[curlen].Freq += (ush)count;
873         } else if (curlen != 0) {
874             if (curlen != prevlen) bl_tree[curlen].Freq++;
875             bl_tree[REP_3_6].Freq++;
876         } else if (count <= 10) {
877             bl_tree[REPZ_3_10].Freq++;
878         } else {
879             bl_tree[REPZ_11_138].Freq++;
880         }
881         count = 0; prevlen = curlen;
882         if (nextlen == 0) {
883             max_count = 138, min_count = 3;
884         } else if (curlen == nextlen) {
885             max_count = 6, min_count = 3;
886         } else {
887             max_count = 7, min_count = 4;
888         }
889     }
890 }
891 
892 /* ===========================================================================
893  * Send a literal or distance tree in compressed form, using the codes in
894  * bl_tree.
895  */
send_tree(tree,max_code)896 local void send_tree (tree, max_code)
897     ct_data near *tree; /* the tree to be scanned */
898     int max_code;       /* and its largest code of non zero frequency */
899 {
900     int n;                     /* iterates over all tree elements */
901     int prevlen = -1;          /* last emitted length */
902     int curlen;                /* length of current code */
903     int nextlen = tree[0].Len; /* length of next code */
904     int count = 0;             /* repeat count of the current code */
905     int max_count = 7;         /* max repeat count */
906     int min_count = 4;         /* min repeat count */
907 
908     /* tree[max_code+1].Len = -1; */  /* guard already set */
909     if (nextlen == 0) max_count = 138, min_count = 3;
910 
911     for (n = 0; n <= max_code; n++) {
912         curlen = nextlen; nextlen = tree[n+1].Len;
913         if (++count < max_count && curlen == nextlen) {
914             continue;
915         } else if (count < min_count) {
916             do { send_code(curlen, bl_tree); } while (--count != 0);
917 
918         } else if (curlen != 0) {
919             if (curlen != prevlen) {
920                 send_code(curlen, bl_tree); count--;
921             }
922             Assert(count >= 3 && count <= 6, " 3_6?");
923             send_code(REP_3_6, bl_tree); send_bits(count-3, 2);
924 
925         } else if (count <= 10) {
926             send_code(REPZ_3_10, bl_tree); send_bits(count-3, 3);
927 
928         } else {
929             send_code(REPZ_11_138, bl_tree); send_bits(count-11, 7);
930         }
931         count = 0; prevlen = curlen;
932         if (nextlen == 0) {
933             max_count = 138, min_count = 3;
934         } else if (curlen == nextlen) {
935             max_count = 6, min_count = 3;
936         } else {
937             max_count = 7, min_count = 4;
938         }
939     }
940 }
941 
942 /* ===========================================================================
943  * Construct the Huffman tree for the bit lengths and return the index in
944  * bl_order of the last bit length code to send.
945  */
build_bl_tree()946 local int build_bl_tree()
947 {
948     int max_blindex;  /* index of last bit length code of non zero freq */
949 
950     /* Determine the bit length frequencies for literal and distance trees */
951     scan_tree((ct_data near *)dyn_ltree, l_desc.max_code);
952     scan_tree((ct_data near *)dyn_dtree, d_desc.max_code);
953 
954     /* Build the bit length tree: */
955     build_tree((tree_desc near *)(&bl_desc));
956     /* opt_len now includes the length of the tree representations, except
957      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
958      */
959 
960     /* Determine the number of bit length codes to send. The pkzip format
961      * requires that at least 4 bit length codes be sent. (appnote.txt says
962      * 3 but the actual value used is 4.)
963      */
964     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
965         if (bl_tree[bl_order[max_blindex]].Len != 0) break;
966     }
967     /* Update opt_len to include the bit length tree and counts */
968     opt_len += 3*(max_blindex+1) + 5+5+4;
969     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", opt_len, static_len));
970 
971     return max_blindex;
972 }
973 
974 /* ===========================================================================
975  * Send the header for a block using dynamic Huffman trees: the counts, the
976  * lengths of the bit length codes, the literal tree and the distance tree.
977  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
978  */
send_all_trees(lcodes,dcodes,blcodes)979 local void send_all_trees(lcodes, dcodes, blcodes)
980     int lcodes, dcodes, blcodes; /* number of codes for each tree */
981 {
982     int rank;                    /* index in bl_order */
983 
984     Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
985     Assert(lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
986             "too many codes");
987     Tracev((stderr, "\nbl counts: "));
988     send_bits(lcodes-257, 5);
989     /* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */
990     send_bits(dcodes-1,   5);
991     send_bits(blcodes-4,  4); /* not -3 as stated in appnote.txt */
992     for (rank = 0; rank < blcodes; rank++) {
993         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
994         send_bits(bl_tree[bl_order[rank]].Len, 3);
995     }
996     Tracev((stderr, "\nbl tree: sent %s",
997      zip_fuzofft(bits_sent, NULL, NULL)));
998 
999     send_tree((ct_data near *)dyn_ltree, lcodes-1); /* send the literal tree */
1000     Tracev((stderr, "\nlit tree: sent %s",
1001      zip_fuzofft(bits_sent, NULL, NULL)));
1002 
1003     send_tree((ct_data near *)dyn_dtree, dcodes-1); /* send the distance tree */
1004     Tracev((stderr, "\ndist tree: sent %ld",
1005      zip_fuzofft(bits_sent, NULL, NULL)));
1006 }
1007 
1008 /* ===========================================================================
1009  * Determine the best encoding for the current block: dynamic trees, static
1010  * trees or store, and output the encoded block to the zip file. This function
1011  * returns the total compressed length (in bytes) for the file so far.
1012  */
1013 /* zip64 support 08/29/2003 R.Nausedat */
flush_block(buf,stored_len,eof)1014 uzoff_t flush_block(buf, stored_len, eof)
1015     char *buf;        /* input block, or NULL if too old */
1016     ulg stored_len;   /* length of input block */
1017     int eof;          /* true if this is the last block for a file */
1018 {
1019     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1020     int max_blindex;  /* index of last bit length code of non zero freq */
1021 
1022     flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
1023 
1024      /* Check if the file is ascii or binary */
1025     if (*file_type == (ush)UNKNOWN) set_file_type();
1026 
1027     /* Construct the literal and distance trees */
1028     build_tree((tree_desc near *)(&l_desc));
1029     Tracev((stderr, "\nlit data: dyn %ld, stat %ld", opt_len, static_len));
1030 
1031     build_tree((tree_desc near *)(&d_desc));
1032     Tracev((stderr, "\ndist data: dyn %ld, stat %ld", opt_len, static_len));
1033     /* At this point, opt_len and static_len are the total bit lengths of
1034      * the compressed block data, excluding the tree representations.
1035      */
1036 
1037     /* Build the bit length tree for the above two trees, and get the index
1038      * in bl_order of the last bit length code to send.
1039      */
1040     max_blindex = build_bl_tree();
1041 
1042     /* Determine the best encoding. Compute first the block length in bytes */
1043     opt_lenb = (opt_len+3+7)>>3;
1044     static_lenb = (static_len+3+7)>>3;
1045 #ifdef DEBUG
1046     input_len += stored_len; /* for debugging only */
1047 #endif
1048 
1049     Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1050             opt_lenb, opt_len, static_lenb, static_len, stored_len,
1051             last_lit, last_dist));
1052 
1053     if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
1054 
1055 #ifndef PGP /* PGP can't handle stored blocks */
1056     /* If compression failed and this is the first and last block,
1057      * the whole file is transformed into a stored file:
1058      */
1059 #ifdef FORCE_METHOD
1060     if (level == 1 && eof && file_method != NULL &&
1061         cmpr_bytelen == (uzoff_t)0 && cmpr_len_bits == 0L
1062        ) { /* force stored file */
1063 #else
1064     if (stored_len <= opt_lenb && eof && file_method != NULL &&
1065         cmpr_bytelen == (uzoff_t)0 && cmpr_len_bits == 0L &&
1066         seekable() && !use_descriptors) {
1067 #endif
1068         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1069         if (buf == NULL) error ("block vanished");
1070 
1071         copy_block(buf, (unsigned)stored_len, 0); /* without header */
1072         cmpr_bytelen = stored_len;
1073         *file_method = STORE;
1074     } else
1075 #endif /* PGP */
1076 
1077 #ifdef FORCE_METHOD
1078     if (level <= 2 && buf != (char*)NULL) { /* force stored block */
1079 #else
1080     if (stored_len+4 <= opt_lenb && buf != (char*)NULL) {
1081                        /* 4: two words for the lengths */
1082 #endif
1083         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1084          * Otherwise we can't have processed more than WSIZE input bytes since
1085          * the last block flush, because compression would have been
1086          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1087          * transform a block into a stored block.
1088          */
1089         send_bits((STORED_BLOCK<<1)+eof, 3);  /* send block type */
1090         cmpr_bytelen += ((cmpr_len_bits + 3 + 7) >> 3) + stored_len + 4;
1091         cmpr_len_bits = 0L;
1092 
1093         copy_block(buf, (unsigned)stored_len, 1); /* with header */
1094 
1095 #ifdef FORCE_METHOD
1096     } else if (level == 3) { /* force static trees */
1097 #else
1098     } else if (static_lenb == opt_lenb) {
1099 #endif
1100         send_bits((STATIC_TREES<<1)+eof, 3);
1101         compress_block((ct_data near *)static_ltree, (ct_data near *)static_dtree);
1102         cmpr_len_bits += 3 + static_len;
1103         cmpr_bytelen += cmpr_len_bits >> 3;
1104         cmpr_len_bits &= 7L;
1105     } else {
1106         send_bits((DYN_TREES<<1)+eof, 3);
1107         send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
1108         compress_block((ct_data near *)dyn_ltree, (ct_data near *)dyn_dtree);
1109         cmpr_len_bits += 3 + opt_len;
1110         cmpr_bytelen += cmpr_len_bits >> 3;
1111         cmpr_len_bits &= 7L;
1112     }
1113     Assert(((cmpr_bytelen << 3) + cmpr_len_bits) == bits_sent,
1114             "bad compressed size");
1115     init_block();
1116 
1117     if (eof) {
1118 #if defined(PGP) && !defined(MMAP)
1119         /* Wipe out sensitive data for pgp */
1120 # ifdef DYN_ALLOC
1121         extern uch *window;
1122 # else
1123         extern uch window[];
1124 # endif
1125         memset(window, 0, (unsigned)(2*WSIZE-1)); /* -1 needed if WSIZE=32K */
1126 #else /* !PGP */
1127         Assert(input_len == isize, "bad input size");
1128 #endif
1129         bi_windup();
1130         cmpr_len_bits += 7;  /* align on byte boundary */
1131     }
1132     Tracev((stderr,"\ncomprlen %s(%s) ",
1133      zip_fuzofft( cmpr_bytelen + (cmpr_len_bits>>3), NULL, NULL),
1134      zip_fuzofft( (cmpr_bytelen << 3) + cmpr_len_bits - 7*eof, NULL, NULL)));
1135     Trace((stderr, "\n"));
1136 
1137     return cmpr_bytelen + (cmpr_len_bits >> 3);
1138 }
1139 
1140 /* ===========================================================================
1141  * Save the match info and tally the frequency counts. Return true if
1142  * the current block must be flushed.
1143  */
ct_tally(dist,lc)1144 int ct_tally (dist, lc)
1145     int dist;  /* distance of matched string */
1146     int lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1147 {
1148     l_buf[last_lit++] = (uch)lc;
1149     if (dist == 0) {
1150         /* lc is the unmatched char */
1151         dyn_ltree[lc].Freq++;
1152     } else {
1153         /* Here, lc is the match length - MIN_MATCH */
1154         dist--;             /* dist = match distance - 1 */
1155         Assert((ush)dist < (ush)MAX_DIST &&
1156                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1157                (ush)d_code(dist) < (ush)D_CODES,  "ct_tally: bad match");
1158 
1159         dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
1160         dyn_dtree[d_code(dist)].Freq++;
1161 
1162         d_buf[last_dist++] = (ush)dist;
1163         flags |= flag_bit;
1164     }
1165     flag_bit <<= 1;
1166 
1167     /* Output the flags if they fill a byte: */
1168     if ((last_lit & 7) == 0) {
1169         flag_buf[last_flags++] = flags;
1170         flags = 0, flag_bit = 1;
1171     }
1172     /* Try to guess if it is profitable to stop the current block here */
1173     if (level > 2 && (last_lit & 0xfff) == 0) {
1174         /* Compute an upper bound for the compressed length */
1175         ulg out_length = (ulg)last_lit*8L;
1176         ulg in_length = (ulg)strstart-block_start;
1177         int dcode;
1178         for (dcode = 0; dcode < D_CODES; dcode++) {
1179             out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
1180         }
1181         out_length >>= 3;
1182         Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1183                last_lit, last_dist, in_length, out_length,
1184                100L - out_length*100L/in_length));
1185         if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
1186     }
1187     return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE);
1188     /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1189      * on 16 bit machines and because stored blocks are restricted to
1190      * 64K-1 bytes.
1191      */
1192 }
1193 
1194 /* ===========================================================================
1195  * Send the block data compressed using the given Huffman trees
1196  */
compress_block(ltree,dtree)1197 local void compress_block(ltree, dtree)
1198     ct_data near *ltree; /* literal tree */
1199     ct_data near *dtree; /* distance tree */
1200 {
1201     unsigned dist;      /* distance of matched string */
1202     int lc;             /* match length or unmatched char (if dist == 0) */
1203     unsigned lx = 0;    /* running index in l_buf */
1204     unsigned dx = 0;    /* running index in d_buf */
1205     unsigned fx = 0;    /* running index in flag_buf */
1206     uch flag = 0;       /* current flags */
1207     unsigned code;      /* the code to send */
1208     int extra;          /* number of extra bits to send */
1209 
1210     if (last_lit != 0) do {
1211         if ((lx & 7) == 0) flag = flag_buf[fx++];
1212         lc = l_buf[lx++];
1213         if ((flag & 1) == 0) {
1214             send_code(lc, ltree); /* send a literal byte */
1215             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1216         } else {
1217             /* Here, lc is the match length - MIN_MATCH */
1218             code = length_code[lc];
1219             send_code(code+LITERALS+1, ltree); /* send the length code */
1220             extra = extra_lbits[code];
1221             if (extra != 0) {
1222                 lc -= base_length[code];
1223                 send_bits(lc, extra);        /* send the extra length bits */
1224             }
1225             dist = d_buf[dx++];
1226             /* Here, dist is the match distance - 1 */
1227             code = d_code(dist);
1228             Assert(code < D_CODES, "bad d_code");
1229 
1230             send_code(code, dtree);       /* send the distance code */
1231             extra = extra_dbits[code];
1232             if (extra != 0) {
1233                 dist -= base_dist[code];
1234                 send_bits(dist, extra);   /* send the extra distance bits */
1235             }
1236         } /* literal or match pair ? */
1237         flag >>= 1;
1238     } while (lx < last_lit);
1239 
1240     send_code(END_BLOCK, ltree);
1241 }
1242 
1243 /* ===========================================================================
1244  * Set the file type to TEXT (ASCII) or BINARY, using following algorithm:
1245  * - TEXT, either ASCII or an ASCII-compatible extension such as ISO-8859,
1246  *   UTF-8, etc., when the following two conditions are satisfied:
1247  *    a) There are no non-portable control characters belonging to the
1248  *       "black list" (0..6, 14..25, 28..31).
1249  *    b) There is at least one printable character belonging to the
1250  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1251  * - BINARY otherwise.
1252  *
1253  * Note that the following partially-portable control characters form a
1254  * "gray list" that is ignored in this detection algorithm:
1255  * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1256  *
1257  * Also note that, unlike in the previous 20% binary detection algorithm,
1258  * any control characters in the black list will set the file type to
1259  * BINARY.  If a text file contains a single accidental black character,
1260  * the file will be flagged as BINARY in the archive.
1261  *
1262  * IN assertion: the fields freq of dyn_ltree are set.
1263  */
set_file_type()1264 local void set_file_type()
1265 {
1266     /* bit-mask of black-listed bytes
1267      * bit is set if byte is black-listed
1268      * set bits 0..6, 14..25, and 28..31
1269      * 0xf3ffc07f = binary 11110011111111111100000001111111
1270      */
1271     unsigned long mask = 0xf3ffc07fL;
1272     int n;
1273 
1274     /* Check for non-textual ("black-listed") bytes. */
1275     for (n = 0; n <= 31; n++, mask >>= 1)
1276         if ((mask & 1) && (dyn_ltree[n].Freq != 0))
1277         {
1278             *file_type = BINARY;
1279             return;
1280         }
1281 
1282     /* Check for textual ("white-listed") bytes. */
1283     *file_type = ASCII;
1284     if (dyn_ltree[9].Freq != 0 || dyn_ltree[10].Freq != 0
1285             || dyn_ltree[13].Freq != 0)
1286         return;
1287     for (n = 32; n < LITERALS; n++)
1288         if (dyn_ltree[n].Freq != 0)
1289             return;
1290 
1291     /* This deflate stream is either empty, or
1292      * it has tolerated ("gray-listed") bytes only.
1293      */
1294     *file_type = BINARY;
1295 }
1296 
1297 
1298 /* ===========================================================================
1299  * Initialize the bit string routines.
1300  */
bi_init(tgt_buf,tgt_size,flsh_allowed)1301 void bi_init (tgt_buf, tgt_size, flsh_allowed)
1302     char *tgt_buf;
1303     unsigned tgt_size;
1304     int flsh_allowed;
1305 {
1306     out_buf = tgt_buf;
1307     out_size = tgt_size;
1308     out_offset = 0;
1309     flush_flg = flsh_allowed;
1310 
1311     bi_buf = 0;
1312     bi_valid = 0;
1313 #ifdef DEBUG
1314     bits_sent = (uzoff_t)0;
1315 #endif
1316 }
1317 
1318 #if (!defined(ASMV) || !defined(RISCOS))
1319 /* ===========================================================================
1320  * Send a value on a given number of bits.
1321  * IN assertion: length <= 16 and value fits in length bits.
1322  */
send_bits(value,length)1323 local void send_bits(value, length)
1324     int value;  /* value to send */
1325     int length; /* number of bits */
1326 {
1327 #ifdef DEBUG
1328     Tracevv((stderr," l %2d v %4x ", length, value));
1329     Assert(length > 0 && length <= 15, "invalid length");
1330     bits_sent += (uzoff_t)length;
1331 #endif
1332     /* If not enough room in bi_buf, use (bi_valid) bits from bi_buf and
1333      * (Buf_size - bi_valid) bits from value to flush the filled bi_buf,
1334      * then fill in the rest of (value), leaving (length - (Buf_size-bi_valid))
1335      * unused bits in bi_buf.
1336      */
1337     bi_buf |= (value << bi_valid);
1338     bi_valid += length;
1339     if (bi_valid > (int)Buf_size) {
1340         PUTSHORT(bi_buf);
1341         bi_valid -= Buf_size;
1342         bi_buf = (unsigned)value >> (length - bi_valid);
1343     }
1344 }
1345 
1346 /* ===========================================================================
1347  * Reverse the first len bits of a code, using straightforward code (a faster
1348  * method would use a table)
1349  * IN assertion: 1 <= len <= 15
1350  */
bi_reverse(code,len)1351 local unsigned bi_reverse(code, len)
1352     unsigned code; /* the value to invert */
1353     int len;       /* its bit length */
1354 {
1355     register unsigned res = 0;
1356     do {
1357         res |= code & 1;
1358         code >>= 1, res <<= 1;
1359     } while (--len > 0);
1360     return res >> 1;
1361 }
1362 #endif /* !ASMV || !RISCOS */
1363 
1364 /* ===========================================================================
1365  * Write out any remaining bits in an incomplete byte.
1366  */
bi_windup()1367 local void bi_windup()
1368 {
1369     if (bi_valid > 8) {
1370         PUTSHORT(bi_buf);
1371     } else if (bi_valid > 0) {
1372         PUTBYTE(bi_buf);
1373     }
1374     if (flush_flg) {
1375         flush_outbuf(out_buf, &out_offset);
1376     }
1377     bi_buf = 0;
1378     bi_valid = 0;
1379 #ifdef DEBUG
1380     bits_sent = (bits_sent+7) & ~7;
1381 #endif
1382 }
1383 
1384 /* ===========================================================================
1385  * Copy a stored block to the zip file, storing first the length and its
1386  * one's complement if requested.
1387  *
1388  * Buffer Overwrite fix
1389  *
1390  * A buffer flush has been added to fix a bug when encrypting deflated files
1391  * with embedded "copied blocks".  When encrypting, the flush_out() routine
1392  * modifies its data buffer because encryption is done "in-place" in
1393  * zfwrite(), whereas without encryption, the flush_out() data buffer is
1394  * left unaltered.  This can be a problem as noted below by the submitter.
1395  *
1396  * "But an exception comes when a block of stored data (data that could not
1397  * be compressed) is being encrypted. In this case, the data that is passed
1398  * to zfwrite (and is therefore encrypted-in-place) is actually a block of
1399  * data from within the sliding input window that is being managed by
1400  * deflate.c.
1401  *
1402  * "Since part of the sliding input window has now been overwritten by
1403  * encrypted (and essentially random) data, deflate.c's search for previous
1404  * text that matches the current text will usually fail but on rare
1405  * occasions will find a match with something in the encrypted data. This
1406  * incorrect match then causes incorrect information to be placed in the
1407  * ZIP file."
1408  *
1409  * The problem results in the zip file having bad data and so a bad CRC.
1410  * This does not happen often and to recreate the problem a large file
1411  * with non-compressable data is needed so that deflate chooses to store the
1412  * data.  A test file of 400 MB seems large enough to recreate the problem
1413  * using a command such as
1414  *     zip -1 -e crcerror.zip testfile.dat
1415  * maybe half the time.
1416  *
1417  * This problem has been fixed by copying the data into the deflate output
1418  * buffer before calling flush_outbuf(), when encryption is enabled.
1419  *
1420  * Thanks to the nice people at WinZip for identifying the problem and
1421  * passing it on.  Also see Changes.
1422  *
1423  * 2006-03-06 EG, CS
1424  */
copy_block(block,len,header)1425 local void copy_block(block, len, header)
1426     char *block;  /* the input data */
1427     unsigned len; /* its length */
1428     int header;   /* true if block header must be written */
1429 {
1430     bi_windup();              /* align on byte boundary */
1431 
1432     if (header) {
1433         PUTSHORT((ush)len);
1434         PUTSHORT((ush)~len);
1435 #ifdef DEBUG
1436         bits_sent += 2*16;
1437 #endif
1438     }
1439     if (flush_flg) {
1440         flush_outbuf(out_buf, &out_offset);
1441         if (key != (char *)NULL) {  /* key is the global password pointer */
1442             /* Encryption modifies the data in the output buffer. But the
1443              * copied input data must remain intact for further deflate
1444              * string matching lookups.  Therefore, the input data is
1445              * copied into the compression output buffer for flushing
1446              * to the compressed/encrypted output stream.
1447              */
1448             while(len > 0) {
1449                 out_offset = (len < out_size ? len : out_size);
1450                 memcpy(out_buf, block, out_offset);
1451                 block += out_offset;
1452                 len -= out_offset;
1453                 flush_outbuf(out_buf, &out_offset);
1454             }
1455         } else {
1456             /* Without encryption, the output routines do not touch the
1457              * written data, so there is no need for an additional copy
1458              * operation.
1459              */
1460             out_offset = len;
1461             flush_outbuf(block, &out_offset);
1462         }
1463     } else if (out_offset + len > out_size) {
1464         error("output buffer too small for in-memory compression");
1465     } else {
1466         memcpy(out_buf + out_offset, block, len);
1467         out_offset += len;
1468     }
1469 #ifdef DEBUG
1470     bits_sent += (ulg)len<<3;
1471 #endif
1472 }
1473 
1474 #endif /* !USE_ZLIB */
1475