1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 
32 // Google Mock - a framework for writing C++ mock classes.
33 //
34 // This file implements some commonly used argument matchers.  More
35 // matchers can be defined by the user implementing the
36 // MatcherInterface<T> interface if necessary.
37 
38 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
39 #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
40 
41 #include <algorithm>
42 #include <limits>
43 #include <ostream>  // NOLINT
44 #include <sstream>
45 #include <string>
46 #include <vector>
47 
48 #include <gmock/gmock-printers.h>
49 #include <gmock/internal/gmock-internal-utils.h>
50 #include <gmock/internal/gmock-port.h>
51 #include <gtest/gtest.h>
52 
53 namespace testing {
54 
55 // To implement a matcher Foo for type T, define:
56 //   1. a class FooMatcherImpl that implements the
57 //      MatcherInterface<T> interface, and
58 //   2. a factory function that creates a Matcher<T> object from a
59 //      FooMatcherImpl*.
60 //
61 // The two-level delegation design makes it possible to allow a user
62 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
63 // is impossible if we pass matchers by pointers.  It also eases
64 // ownership management as Matcher objects can now be copied like
65 // plain values.
66 
67 // MatchResultListener is an abstract class.  Its << operator can be
68 // used by a matcher to explain why a value matches or doesn't match.
69 //
70 // TODO(wan@google.com): add method
71 //   bool InterestedInWhy(bool result) const;
72 // to indicate whether the listener is interested in why the match
73 // result is 'result'.
74 class MatchResultListener {
75  public:
76   // Creates a listener object with the given underlying ostream.  The
77   // listener does not own the ostream.
MatchResultListener(::std::ostream * os)78   explicit MatchResultListener(::std::ostream* os) : stream_(os) {}
79   virtual ~MatchResultListener() = 0;  // Makes this class abstract.
80 
81   // Streams x to the underlying ostream; does nothing if the ostream
82   // is NULL.
83   template <typename T>
84   MatchResultListener& operator<<(const T& x) {
85     if (stream_ != NULL)
86       *stream_ << x;
87     return *this;
88   }
89 
90   // Returns the underlying ostream.
stream()91   ::std::ostream* stream() { return stream_; }
92 
93   // Returns true iff the listener is interested in an explanation of
94   // the match result.  A matcher's MatchAndExplain() method can use
95   // this information to avoid generating the explanation when no one
96   // intends to hear it.
IsInterested()97   bool IsInterested() const { return stream_ != NULL; }
98 
99  private:
100   ::std::ostream* const stream_;
101 
102   GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener);
103 };
104 
~MatchResultListener()105 inline MatchResultListener::~MatchResultListener() {
106 }
107 
108 // The implementation of a matcher.
109 template <typename T>
110 class MatcherInterface {
111  public:
~MatcherInterface()112   virtual ~MatcherInterface() {}
113 
114   // Returns true iff the matcher matches x; also explains the match
115   // result to 'listener', in the form of a non-restrictive relative
116   // clause ("which ...", "whose ...", etc) that describes x.  For
117   // example, the MatchAndExplain() method of the Pointee(...) matcher
118   // should generate an explanation like "which points to ...".
119   //
120   // You should override this method when defining a new matcher.
121   //
122   // It's the responsibility of the caller (Google Mock) to guarantee
123   // that 'listener' is not NULL.  This helps to simplify a matcher's
124   // implementation when it doesn't care about the performance, as it
125   // can talk to 'listener' without checking its validity first.
126   // However, in order to implement dummy listeners efficiently,
127   // listener->stream() may be NULL.
128   virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0;
129 
130   // Describes this matcher to an ostream.  The function should print
131   // a verb phrase that describes the property a value matching this
132   // matcher should have.  The subject of the verb phrase is the value
133   // being matched.  For example, the DescribeTo() method of the Gt(7)
134   // matcher prints "is greater than 7".
135   virtual void DescribeTo(::std::ostream* os) const = 0;
136 
137   // Describes the negation of this matcher to an ostream.  For
138   // example, if the description of this matcher is "is greater than
139   // 7", the negated description could be "is not greater than 7".
140   // You are not required to override this when implementing
141   // MatcherInterface, but it is highly advised so that your matcher
142   // can produce good error messages.
DescribeNegationTo(::std::ostream * os)143   virtual void DescribeNegationTo(::std::ostream* os) const {
144     *os << "not (";
145     DescribeTo(os);
146     *os << ")";
147   }
148 };
149 
150 namespace internal {
151 
152 // A match result listener that ignores the explanation.
153 class DummyMatchResultListener : public MatchResultListener {
154  public:
DummyMatchResultListener()155   DummyMatchResultListener() : MatchResultListener(NULL) {}
156 
157  private:
158   GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener);
159 };
160 
161 // A match result listener that forwards the explanation to a given
162 // ostream.  The difference between this and MatchResultListener is
163 // that the former is concrete.
164 class StreamMatchResultListener : public MatchResultListener {
165  public:
StreamMatchResultListener(::std::ostream * os)166   explicit StreamMatchResultListener(::std::ostream* os)
167       : MatchResultListener(os) {}
168 
169  private:
170   GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener);
171 };
172 
173 // A match result listener that stores the explanation in a string.
174 class StringMatchResultListener : public MatchResultListener {
175  public:
StringMatchResultListener()176   StringMatchResultListener() : MatchResultListener(&ss_) {}
177 
178   // Returns the explanation heard so far.
str()179   internal::string str() const { return ss_.str(); }
180 
181  private:
182   ::std::stringstream ss_;
183 
184   GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
185 };
186 
187 // An internal class for implementing Matcher<T>, which will derive
188 // from it.  We put functionalities common to all Matcher<T>
189 // specializations here to avoid code duplication.
190 template <typename T>
191 class MatcherBase {
192  public:
193   // Returns true iff the matcher matches x; also explains the match
194   // result to 'listener'.
MatchAndExplain(T x,MatchResultListener * listener)195   bool MatchAndExplain(T x, MatchResultListener* listener) const {
196     return impl_->MatchAndExplain(x, listener);
197   }
198 
199   // Returns true iff this matcher matches x.
Matches(T x)200   bool Matches(T x) const {
201     DummyMatchResultListener dummy;
202     return MatchAndExplain(x, &dummy);
203   }
204 
205   // Describes this matcher to an ostream.
DescribeTo(::std::ostream * os)206   void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
207 
208   // Describes the negation of this matcher to an ostream.
DescribeNegationTo(::std::ostream * os)209   void DescribeNegationTo(::std::ostream* os) const {
210     impl_->DescribeNegationTo(os);
211   }
212 
213   // Explains why x matches, or doesn't match, the matcher.
ExplainMatchResultTo(T x,::std::ostream * os)214   void ExplainMatchResultTo(T x, ::std::ostream* os) const {
215     StreamMatchResultListener listener(os);
216     MatchAndExplain(x, &listener);
217   }
218 
219  protected:
MatcherBase()220   MatcherBase() {}
221 
222   // Constructs a matcher from its implementation.
MatcherBase(const MatcherInterface<T> * impl)223   explicit MatcherBase(const MatcherInterface<T>* impl)
224       : impl_(impl) {}
225 
~MatcherBase()226   virtual ~MatcherBase() {}
227 
228  private:
229   // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
230   // interfaces.  The former dynamically allocates a chunk of memory
231   // to hold the reference count, while the latter tracks all
232   // references using a circular linked list without allocating
233   // memory.  It has been observed that linked_ptr performs better in
234   // typical scenarios.  However, shared_ptr can out-perform
235   // linked_ptr when there are many more uses of the copy constructor
236   // than the default constructor.
237   //
238   // If performance becomes a problem, we should see if using
239   // shared_ptr helps.
240   ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
241 };
242 
243 }  // namespace internal
244 
245 // A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
246 // object that can check whether a value of type T matches.  The
247 // implementation of Matcher<T> is just a linked_ptr to const
248 // MatcherInterface<T>, so copying is fairly cheap.  Don't inherit
249 // from Matcher!
250 template <typename T>
251 class Matcher : public internal::MatcherBase<T> {
252  public:
253   // Constructs a null matcher.  Needed for storing Matcher objects in
254   // STL containers.
Matcher()255   Matcher() {}
256 
257   // Constructs a matcher from its implementation.
Matcher(const MatcherInterface<T> * impl)258   explicit Matcher(const MatcherInterface<T>* impl)
259       : internal::MatcherBase<T>(impl) {}
260 
261   // Implicit constructor here allows people to write
262   // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
263   Matcher(T value);  // NOLINT
264 };
265 
266 // The following two specializations allow the user to write str
267 // instead of Eq(str) and "foo" instead of Eq("foo") when a string
268 // matcher is expected.
269 template <>
270 class Matcher<const internal::string&>
271     : public internal::MatcherBase<const internal::string&> {
272  public:
Matcher()273   Matcher() {}
274 
Matcher(const MatcherInterface<const internal::string &> * impl)275   explicit Matcher(const MatcherInterface<const internal::string&>* impl)
276       : internal::MatcherBase<const internal::string&>(impl) {}
277 
278   // Allows the user to write str instead of Eq(str) sometimes, where
279   // str is a string object.
280   Matcher(const internal::string& s);  // NOLINT
281 
282   // Allows the user to write "foo" instead of Eq("foo") sometimes.
283   Matcher(const char* s);  // NOLINT
284 };
285 
286 template <>
287 class Matcher<internal::string>
288     : public internal::MatcherBase<internal::string> {
289  public:
Matcher()290   Matcher() {}
291 
Matcher(const MatcherInterface<internal::string> * impl)292   explicit Matcher(const MatcherInterface<internal::string>* impl)
293       : internal::MatcherBase<internal::string>(impl) {}
294 
295   // Allows the user to write str instead of Eq(str) sometimes, where
296   // str is a string object.
297   Matcher(const internal::string& s);  // NOLINT
298 
299   // Allows the user to write "foo" instead of Eq("foo") sometimes.
300   Matcher(const char* s);  // NOLINT
301 };
302 
303 // The PolymorphicMatcher class template makes it easy to implement a
304 // polymorphic matcher (i.e. a matcher that can match values of more
305 // than one type, e.g. Eq(n) and NotNull()).
306 //
307 // To define a polymorphic matcher, a user should provide an Impl
308 // class that has a DescribeTo() method and a DescribeNegationTo()
309 // method, and define a member function (or member function template)
310 //
311 //   bool MatchAndExplain(const Value& value,
312 //                        MatchResultListener* listener) const;
313 //
314 // See the definition of NotNull() for a complete example.
315 template <class Impl>
316 class PolymorphicMatcher {
317  public:
PolymorphicMatcher(const Impl & an_impl)318   explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {}
319 
320   // Returns a mutable reference to the underlying matcher
321   // implementation object.
mutable_impl()322   Impl& mutable_impl() { return impl_; }
323 
324   // Returns an immutable reference to the underlying matcher
325   // implementation object.
impl()326   const Impl& impl() const { return impl_; }
327 
328   template <typename T>
329   operator Matcher<T>() const {
330     return Matcher<T>(new MonomorphicImpl<T>(impl_));
331   }
332 
333  private:
334   template <typename T>
335   class MonomorphicImpl : public MatcherInterface<T> {
336    public:
MonomorphicImpl(const Impl & impl)337     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
338 
DescribeTo(::std::ostream * os)339     virtual void DescribeTo(::std::ostream* os) const {
340       impl_.DescribeTo(os);
341     }
342 
DescribeNegationTo(::std::ostream * os)343     virtual void DescribeNegationTo(::std::ostream* os) const {
344       impl_.DescribeNegationTo(os);
345     }
346 
MatchAndExplain(T x,MatchResultListener * listener)347     virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
348       return impl_.MatchAndExplain(x, listener);
349     }
350 
351    private:
352     const Impl impl_;
353 
354     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
355   };
356 
357   Impl impl_;
358 
359   GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher);
360 };
361 
362 // Creates a matcher from its implementation.  This is easier to use
363 // than the Matcher<T> constructor as it doesn't require you to
364 // explicitly write the template argument, e.g.
365 //
366 //   MakeMatcher(foo);
367 // vs
368 //   Matcher<const string&>(foo);
369 template <typename T>
MakeMatcher(const MatcherInterface<T> * impl)370 inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
371   return Matcher<T>(impl);
372 };
373 
374 // Creates a polymorphic matcher from its implementation.  This is
375 // easier to use than the PolymorphicMatcher<Impl> constructor as it
376 // doesn't require you to explicitly write the template argument, e.g.
377 //
378 //   MakePolymorphicMatcher(foo);
379 // vs
380 //   PolymorphicMatcher<TypeOfFoo>(foo);
381 template <class Impl>
MakePolymorphicMatcher(const Impl & impl)382 inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
383   return PolymorphicMatcher<Impl>(impl);
384 }
385 
386 // In order to be safe and clear, casting between different matcher
387 // types is done explicitly via MatcherCast<T>(m), which takes a
388 // matcher m and returns a Matcher<T>.  It compiles only when T can be
389 // statically converted to the argument type of m.
390 template <typename T, typename M>
391 Matcher<T> MatcherCast(M m);
392 
393 // Implements SafeMatcherCast().
394 //
395 // We use an intermediate class to do the actual safe casting as Nokia's
396 // Symbian compiler cannot decide between
397 // template <T, M> ... (M) and
398 // template <T, U> ... (const Matcher<U>&)
399 // for function templates but can for member function templates.
400 template <typename T>
401 class SafeMatcherCastImpl {
402  public:
403   // This overload handles polymorphic matchers only since monomorphic
404   // matchers are handled by the next one.
405   template <typename M>
Cast(M polymorphic_matcher)406   static inline Matcher<T> Cast(M polymorphic_matcher) {
407     return Matcher<T>(polymorphic_matcher);
408   }
409 
410   // This overload handles monomorphic matchers.
411   //
412   // In general, if type T can be implicitly converted to type U, we can
413   // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
414   // contravariant): just keep a copy of the original Matcher<U>, convert the
415   // argument from type T to U, and then pass it to the underlying Matcher<U>.
416   // The only exception is when U is a reference and T is not, as the
417   // underlying Matcher<U> may be interested in the argument's address, which
418   // is not preserved in the conversion from T to U.
419   template <typename U>
Cast(const Matcher<U> & matcher)420   static inline Matcher<T> Cast(const Matcher<U>& matcher) {
421     // Enforce that T can be implicitly converted to U.
422     GMOCK_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
423                           T_must_be_implicitly_convertible_to_U);
424     // Enforce that we are not converting a non-reference type T to a reference
425     // type U.
426     GMOCK_COMPILE_ASSERT_(
427         internal::is_reference<T>::value || !internal::is_reference<U>::value,
428         cannot_convert_non_referentce_arg_to_reference);
429     // In case both T and U are arithmetic types, enforce that the
430     // conversion is not lossy.
431     typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(T)) RawT;
432     typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(U)) RawU;
433     const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
434     const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
435     GMOCK_COMPILE_ASSERT_(
436         kTIsOther || kUIsOther ||
437         (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
438         conversion_of_arithmetic_types_must_be_lossless);
439     return MatcherCast<T>(matcher);
440   }
441 };
442 
443 template <typename T, typename M>
SafeMatcherCast(const M & polymorphic_matcher)444 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
445   return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
446 }
447 
448 // A<T>() returns a matcher that matches any value of type T.
449 template <typename T>
450 Matcher<T> A();
451 
452 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
453 // and MUST NOT BE USED IN USER CODE!!!
454 namespace internal {
455 
456 // If the explanation is not empty, prints it to the ostream.
PrintIfNotEmpty(const internal::string & explanation,std::ostream * os)457 inline void PrintIfNotEmpty(const internal::string& explanation,
458                             std::ostream* os) {
459   if (explanation != "" && os != NULL) {
460     *os << ", " << explanation;
461   }
462 }
463 
464 // Matches the value against the given matcher, prints the value and explains
465 // the match result to the listener. Returns the match result.
466 // 'listener' must not be NULL.
467 // Value cannot be passed by const reference, because some matchers take a
468 // non-const argument.
469 template <typename Value, typename T>
MatchPrintAndExplain(Value & value,const Matcher<T> & matcher,MatchResultListener * listener)470 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
471                           MatchResultListener* listener) {
472   if (!listener->IsInterested()) {
473     // If the listener is not interested, we do not need to construct the
474     // inner explanation.
475     return matcher.Matches(value);
476   }
477 
478   StringMatchResultListener inner_listener;
479   const bool match = matcher.MatchAndExplain(value, &inner_listener);
480 
481   UniversalPrint(value, listener->stream());
482   PrintIfNotEmpty(inner_listener.str(), listener->stream());
483 
484   return match;
485 }
486 
487 // An internal helper class for doing compile-time loop on a tuple's
488 // fields.
489 template <size_t N>
490 class TuplePrefix {
491  public:
492   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
493   // iff the first N fields of matcher_tuple matches the first N
494   // fields of value_tuple, respectively.
495   template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)496   static bool Matches(const MatcherTuple& matcher_tuple,
497                       const ValueTuple& value_tuple) {
498     using ::std::tr1::get;
499     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
500         && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
501   }
502 
503   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
504   // describes failures in matching the first N fields of matchers
505   // against the first N fields of values.  If there is no failure,
506   // nothing will be streamed to os.
507   template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)508   static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
509                                      const ValueTuple& values,
510                                      ::std::ostream* os) {
511     using ::std::tr1::tuple_element;
512     using ::std::tr1::get;
513 
514     // First, describes failures in the first N - 1 fields.
515     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
516 
517     // Then describes the failure (if any) in the (N - 1)-th (0-based)
518     // field.
519     typename tuple_element<N - 1, MatcherTuple>::type matcher =
520         get<N - 1>(matchers);
521     typedef typename tuple_element<N - 1, ValueTuple>::type Value;
522     Value value = get<N - 1>(values);
523     StringMatchResultListener listener;
524     if (!matcher.MatchAndExplain(value, &listener)) {
525       // TODO(wan): include in the message the name of the parameter
526       // as used in MOCK_METHOD*() when possible.
527       *os << "  Expected arg #" << N - 1 << ": ";
528       get<N - 1>(matchers).DescribeTo(os);
529       *os << "\n           Actual: ";
530       // We remove the reference in type Value to prevent the
531       // universal printer from printing the address of value, which
532       // isn't interesting to the user most of the time.  The
533       // matcher's MatchAndExplain() method handles the case when
534       // the address is interesting.
535       internal::UniversalPrint(value, os);
536       PrintIfNotEmpty(listener.str(), os);
537       *os << "\n";
538     }
539   }
540 };
541 
542 // The base case.
543 template <>
544 class TuplePrefix<0> {
545  public:
546   template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple &,const ValueTuple &)547   static bool Matches(const MatcherTuple& /* matcher_tuple */,
548                       const ValueTuple& /* value_tuple */) {
549     return true;
550   }
551 
552   template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple &,const ValueTuple &,::std::ostream *)553   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
554                                      const ValueTuple& /* values */,
555                                      ::std::ostream* /* os */) {}
556 };
557 
558 // TupleMatches(matcher_tuple, value_tuple) returns true iff all
559 // matchers in matcher_tuple match the corresponding fields in
560 // value_tuple.  It is a compiler error if matcher_tuple and
561 // value_tuple have different number of fields or incompatible field
562 // types.
563 template <typename MatcherTuple, typename ValueTuple>
TupleMatches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)564 bool TupleMatches(const MatcherTuple& matcher_tuple,
565                   const ValueTuple& value_tuple) {
566   using ::std::tr1::tuple_size;
567   // Makes sure that matcher_tuple and value_tuple have the same
568   // number of fields.
569   GMOCK_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
570                         tuple_size<ValueTuple>::value,
571                         matcher_and_value_have_different_numbers_of_fields);
572   return TuplePrefix<tuple_size<ValueTuple>::value>::
573       Matches(matcher_tuple, value_tuple);
574 }
575 
576 // Describes failures in matching matchers against values.  If there
577 // is no failure, nothing will be streamed to os.
578 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailureTupleTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)579 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
580                                 const ValueTuple& values,
581                                 ::std::ostream* os) {
582   using ::std::tr1::tuple_size;
583   TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
584       matchers, values, os);
585 }
586 
587 // The MatcherCastImpl class template is a helper for implementing
588 // MatcherCast().  We need this helper in order to partially
589 // specialize the implementation of MatcherCast() (C++ allows
590 // class/struct templates to be partially specialized, but not
591 // function templates.).
592 
593 // This general version is used when MatcherCast()'s argument is a
594 // polymorphic matcher (i.e. something that can be converted to a
595 // Matcher but is not one yet; for example, Eq(value)).
596 template <typename T, typename M>
597 class MatcherCastImpl {
598  public:
Cast(M polymorphic_matcher)599   static Matcher<T> Cast(M polymorphic_matcher) {
600     return Matcher<T>(polymorphic_matcher);
601   }
602 };
603 
604 // This more specialized version is used when MatcherCast()'s argument
605 // is already a Matcher.  This only compiles when type T can be
606 // statically converted to type U.
607 template <typename T, typename U>
608 class MatcherCastImpl<T, Matcher<U> > {
609  public:
Cast(const Matcher<U> & source_matcher)610   static Matcher<T> Cast(const Matcher<U>& source_matcher) {
611     return Matcher<T>(new Impl(source_matcher));
612   }
613 
614  private:
615   class Impl : public MatcherInterface<T> {
616    public:
Impl(const Matcher<U> & source_matcher)617     explicit Impl(const Matcher<U>& source_matcher)
618         : source_matcher_(source_matcher) {}
619 
620     // We delegate the matching logic to the source matcher.
MatchAndExplain(T x,MatchResultListener * listener)621     virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
622       return source_matcher_.MatchAndExplain(static_cast<U>(x), listener);
623     }
624 
DescribeTo(::std::ostream * os)625     virtual void DescribeTo(::std::ostream* os) const {
626       source_matcher_.DescribeTo(os);
627     }
628 
DescribeNegationTo(::std::ostream * os)629     virtual void DescribeNegationTo(::std::ostream* os) const {
630       source_matcher_.DescribeNegationTo(os);
631     }
632 
633    private:
634     const Matcher<U> source_matcher_;
635 
636     GTEST_DISALLOW_ASSIGN_(Impl);
637   };
638 };
639 
640 // This even more specialized version is used for efficiently casting
641 // a matcher to its own type.
642 template <typename T>
643 class MatcherCastImpl<T, Matcher<T> > {
644  public:
Cast(const Matcher<T> & matcher)645   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
646 };
647 
648 // Implements A<T>().
649 template <typename T>
650 class AnyMatcherImpl : public MatcherInterface<T> {
651  public:
MatchAndExplain(T,MatchResultListener *)652   virtual bool MatchAndExplain(
653       T /* x */, MatchResultListener* /* listener */) const { return true; }
DescribeTo(::std::ostream * os)654   virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
DescribeNegationTo(::std::ostream * os)655   virtual void DescribeNegationTo(::std::ostream* os) const {
656     // This is mostly for completeness' safe, as it's not very useful
657     // to write Not(A<bool>()).  However we cannot completely rule out
658     // such a possibility, and it doesn't hurt to be prepared.
659     *os << "never matches";
660   }
661 };
662 
663 // Implements _, a matcher that matches any value of any
664 // type.  This is a polymorphic matcher, so we need a template type
665 // conversion operator to make it appearing as a Matcher<T> for any
666 // type T.
667 class AnythingMatcher {
668  public:
669   template <typename T>
670   operator Matcher<T>() const { return A<T>(); }
671 };
672 
673 // Implements a matcher that compares a given value with a
674 // pre-supplied value using one of the ==, <=, <, etc, operators.  The
675 // two values being compared don't have to have the same type.
676 //
677 // The matcher defined here is polymorphic (for example, Eq(5) can be
678 // used to match an int, a short, a double, etc).  Therefore we use
679 // a template type conversion operator in the implementation.
680 //
681 // We define this as a macro in order to eliminate duplicated source
682 // code.
683 //
684 // The following template definition assumes that the Rhs parameter is
685 // a "bare" type (i.e. neither 'const T' nor 'T&').
686 #define GMOCK_IMPLEMENT_COMPARISON_MATCHER_( \
687     name, op, relation, negated_relation) \
688   template <typename Rhs> class name##Matcher { \
689    public: \
690     explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
691     template <typename Lhs> \
692     operator Matcher<Lhs>() const { \
693       return MakeMatcher(new Impl<Lhs>(rhs_)); \
694     } \
695    private: \
696     template <typename Lhs> \
697     class Impl : public MatcherInterface<Lhs> { \
698      public: \
699       explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
700       virtual bool MatchAndExplain(\
701           Lhs lhs, MatchResultListener* /* listener */) const { \
702         return lhs op rhs_; \
703       } \
704       virtual void DescribeTo(::std::ostream* os) const { \
705         *os << relation  " "; \
706         UniversalPrinter<Rhs>::Print(rhs_, os); \
707       } \
708       virtual void DescribeNegationTo(::std::ostream* os) const { \
709         *os << negated_relation  " "; \
710         UniversalPrinter<Rhs>::Print(rhs_, os); \
711       } \
712      private: \
713       Rhs rhs_; \
714       GTEST_DISALLOW_ASSIGN_(Impl); \
715     }; \
716     Rhs rhs_; \
717     GTEST_DISALLOW_ASSIGN_(name##Matcher); \
718   }
719 
720 // Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
721 // respectively.
722 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "is equal to", "isn't equal to");
723 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "is >=", "isn't >=");
724 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "is >", "isn't >");
725 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "is <=", "isn't <=");
726 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "is <", "isn't <");
727 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "isn't equal to", "is equal to");
728 
729 #undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_
730 
731 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
732 // pointer that is NULL.
733 class IsNullMatcher {
734  public:
735   template <typename Pointer>
MatchAndExplain(const Pointer & p,MatchResultListener *)736   bool MatchAndExplain(const Pointer& p,
737                        MatchResultListener* /* listener */) const {
738     return GetRawPointer(p) == NULL;
739   }
740 
DescribeTo(::std::ostream * os)741   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
DescribeNegationTo(::std::ostream * os)742   void DescribeNegationTo(::std::ostream* os) const {
743     *os << "isn't NULL";
744   }
745 };
746 
747 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
748 // pointer that is not NULL.
749 class NotNullMatcher {
750  public:
751   template <typename Pointer>
MatchAndExplain(const Pointer & p,MatchResultListener *)752   bool MatchAndExplain(const Pointer& p,
753                        MatchResultListener* /* listener */) const {
754     return GetRawPointer(p) != NULL;
755   }
756 
DescribeTo(::std::ostream * os)757   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
DescribeNegationTo(::std::ostream * os)758   void DescribeNegationTo(::std::ostream* os) const {
759     *os << "is NULL";
760   }
761 };
762 
763 // Ref(variable) matches any argument that is a reference to
764 // 'variable'.  This matcher is polymorphic as it can match any
765 // super type of the type of 'variable'.
766 //
767 // The RefMatcher template class implements Ref(variable).  It can
768 // only be instantiated with a reference type.  This prevents a user
769 // from mistakenly using Ref(x) to match a non-reference function
770 // argument.  For example, the following will righteously cause a
771 // compiler error:
772 //
773 //   int n;
774 //   Matcher<int> m1 = Ref(n);   // This won't compile.
775 //   Matcher<int&> m2 = Ref(n);  // This will compile.
776 template <typename T>
777 class RefMatcher;
778 
779 template <typename T>
780 class RefMatcher<T&> {
781   // Google Mock is a generic framework and thus needs to support
782   // mocking any function types, including those that take non-const
783   // reference arguments.  Therefore the template parameter T (and
784   // Super below) can be instantiated to either a const type or a
785   // non-const type.
786  public:
787   // RefMatcher() takes a T& instead of const T&, as we want the
788   // compiler to catch using Ref(const_value) as a matcher for a
789   // non-const reference.
RefMatcher(T & x)790   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
791 
792   template <typename Super>
793   operator Matcher<Super&>() const {
794     // By passing object_ (type T&) to Impl(), which expects a Super&,
795     // we make sure that Super is a super type of T.  In particular,
796     // this catches using Ref(const_value) as a matcher for a
797     // non-const reference, as you cannot implicitly convert a const
798     // reference to a non-const reference.
799     return MakeMatcher(new Impl<Super>(object_));
800   }
801 
802  private:
803   template <typename Super>
804   class Impl : public MatcherInterface<Super&> {
805    public:
Impl(Super & x)806     explicit Impl(Super& x) : object_(x) {}  // NOLINT
807 
808     // MatchAndExplain() takes a Super& (as opposed to const Super&)
809     // in order to match the interface MatcherInterface<Super&>.
MatchAndExplain(Super & x,MatchResultListener * listener)810     virtual bool MatchAndExplain(
811         Super& x, MatchResultListener* listener) const {
812       *listener << "which is located @" << static_cast<const void*>(&x);
813       return &x == &object_;
814     }
815 
DescribeTo(::std::ostream * os)816     virtual void DescribeTo(::std::ostream* os) const {
817       *os << "references the variable ";
818       UniversalPrinter<Super&>::Print(object_, os);
819     }
820 
DescribeNegationTo(::std::ostream * os)821     virtual void DescribeNegationTo(::std::ostream* os) const {
822       *os << "does not reference the variable ";
823       UniversalPrinter<Super&>::Print(object_, os);
824     }
825 
826    private:
827     const Super& object_;
828 
829     GTEST_DISALLOW_ASSIGN_(Impl);
830   };
831 
832   T& object_;
833 
834   GTEST_DISALLOW_ASSIGN_(RefMatcher);
835 };
836 
837 // Polymorphic helper functions for narrow and wide string matchers.
CaseInsensitiveCStringEquals(const char * lhs,const char * rhs)838 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
839   return String::CaseInsensitiveCStringEquals(lhs, rhs);
840 }
841 
CaseInsensitiveCStringEquals(const wchar_t * lhs,const wchar_t * rhs)842 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
843                                          const wchar_t* rhs) {
844   return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
845 }
846 
847 // String comparison for narrow or wide strings that can have embedded NUL
848 // characters.
849 template <typename StringType>
CaseInsensitiveStringEquals(const StringType & s1,const StringType & s2)850 bool CaseInsensitiveStringEquals(const StringType& s1,
851                                  const StringType& s2) {
852   // Are the heads equal?
853   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
854     return false;
855   }
856 
857   // Skip the equal heads.
858   const typename StringType::value_type nul = 0;
859   const size_t i1 = s1.find(nul), i2 = s2.find(nul);
860 
861   // Are we at the end of either s1 or s2?
862   if (i1 == StringType::npos || i2 == StringType::npos) {
863     return i1 == i2;
864   }
865 
866   // Are the tails equal?
867   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
868 }
869 
870 // String matchers.
871 
872 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
873 template <typename StringType>
874 class StrEqualityMatcher {
875  public:
876   typedef typename StringType::const_pointer ConstCharPointer;
877 
StrEqualityMatcher(const StringType & str,bool expect_eq,bool case_sensitive)878   StrEqualityMatcher(const StringType& str, bool expect_eq,
879                      bool case_sensitive)
880       : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
881 
882   // When expect_eq_ is true, returns true iff s is equal to string_;
883   // otherwise returns true iff s is not equal to string_.
MatchAndExplain(ConstCharPointer s,MatchResultListener * listener)884   bool MatchAndExplain(ConstCharPointer s,
885                        MatchResultListener* listener) const {
886     if (s == NULL) {
887       return !expect_eq_;
888     }
889     return MatchAndExplain(StringType(s), listener);
890   }
891 
MatchAndExplain(const StringType & s,MatchResultListener *)892   bool MatchAndExplain(const StringType& s,
893                        MatchResultListener* /* listener */) const {
894     const bool eq = case_sensitive_ ? s == string_ :
895         CaseInsensitiveStringEquals(s, string_);
896     return expect_eq_ == eq;
897   }
898 
DescribeTo(::std::ostream * os)899   void DescribeTo(::std::ostream* os) const {
900     DescribeToHelper(expect_eq_, os);
901   }
902 
DescribeNegationTo(::std::ostream * os)903   void DescribeNegationTo(::std::ostream* os) const {
904     DescribeToHelper(!expect_eq_, os);
905   }
906 
907  private:
DescribeToHelper(bool expect_eq,::std::ostream * os)908   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
909     *os << (expect_eq ? "is " : "isn't ");
910     *os << "equal to ";
911     if (!case_sensitive_) {
912       *os << "(ignoring case) ";
913     }
914     UniversalPrinter<StringType>::Print(string_, os);
915   }
916 
917   const StringType string_;
918   const bool expect_eq_;
919   const bool case_sensitive_;
920 
921   GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher);
922 };
923 
924 // Implements the polymorphic HasSubstr(substring) matcher, which
925 // can be used as a Matcher<T> as long as T can be converted to a
926 // string.
927 template <typename StringType>
928 class HasSubstrMatcher {
929  public:
930   typedef typename StringType::const_pointer ConstCharPointer;
931 
HasSubstrMatcher(const StringType & substring)932   explicit HasSubstrMatcher(const StringType& substring)
933       : substring_(substring) {}
934 
935   // These overloaded methods allow HasSubstr(substring) to be used as a
936   // Matcher<T> as long as T can be converted to string.  Returns true
937   // iff s contains substring_ as a substring.
MatchAndExplain(ConstCharPointer s,MatchResultListener * listener)938   bool MatchAndExplain(ConstCharPointer s,
939                        MatchResultListener* listener) const {
940     return s != NULL && MatchAndExplain(StringType(s), listener);
941   }
942 
MatchAndExplain(const StringType & s,MatchResultListener *)943   bool MatchAndExplain(const StringType& s,
944                        MatchResultListener* /* listener */) const {
945     return s.find(substring_) != StringType::npos;
946   }
947 
948   // Describes what this matcher matches.
DescribeTo(::std::ostream * os)949   void DescribeTo(::std::ostream* os) const {
950     *os << "has substring ";
951     UniversalPrinter<StringType>::Print(substring_, os);
952   }
953 
DescribeNegationTo(::std::ostream * os)954   void DescribeNegationTo(::std::ostream* os) const {
955     *os << "has no substring ";
956     UniversalPrinter<StringType>::Print(substring_, os);
957   }
958 
959  private:
960   const StringType substring_;
961 
962   GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher);
963 };
964 
965 // Implements the polymorphic StartsWith(substring) matcher, which
966 // can be used as a Matcher<T> as long as T can be converted to a
967 // string.
968 template <typename StringType>
969 class StartsWithMatcher {
970  public:
971   typedef typename StringType::const_pointer ConstCharPointer;
972 
StartsWithMatcher(const StringType & prefix)973   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
974   }
975 
976   // These overloaded methods allow StartsWith(prefix) to be used as a
977   // Matcher<T> as long as T can be converted to string.  Returns true
978   // iff s starts with prefix_.
MatchAndExplain(ConstCharPointer s,MatchResultListener * listener)979   bool MatchAndExplain(ConstCharPointer s,
980                        MatchResultListener* listener) const {
981     return s != NULL && MatchAndExplain(StringType(s), listener);
982   }
983 
MatchAndExplain(const StringType & s,MatchResultListener *)984   bool MatchAndExplain(const StringType& s,
985                        MatchResultListener* /* listener */) const {
986     return s.length() >= prefix_.length() &&
987         s.substr(0, prefix_.length()) == prefix_;
988   }
989 
DescribeTo(::std::ostream * os)990   void DescribeTo(::std::ostream* os) const {
991     *os << "starts with ";
992     UniversalPrinter<StringType>::Print(prefix_, os);
993   }
994 
DescribeNegationTo(::std::ostream * os)995   void DescribeNegationTo(::std::ostream* os) const {
996     *os << "doesn't start with ";
997     UniversalPrinter<StringType>::Print(prefix_, os);
998   }
999 
1000  private:
1001   const StringType prefix_;
1002 
1003   GTEST_DISALLOW_ASSIGN_(StartsWithMatcher);
1004 };
1005 
1006 // Implements the polymorphic EndsWith(substring) matcher, which
1007 // can be used as a Matcher<T> as long as T can be converted to a
1008 // string.
1009 template <typename StringType>
1010 class EndsWithMatcher {
1011  public:
1012   typedef typename StringType::const_pointer ConstCharPointer;
1013 
EndsWithMatcher(const StringType & suffix)1014   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1015 
1016   // These overloaded methods allow EndsWith(suffix) to be used as a
1017   // Matcher<T> as long as T can be converted to string.  Returns true
1018   // iff s ends with suffix_.
MatchAndExplain(ConstCharPointer s,MatchResultListener * listener)1019   bool MatchAndExplain(ConstCharPointer s,
1020                        MatchResultListener* listener) const {
1021     return s != NULL && MatchAndExplain(StringType(s), listener);
1022   }
1023 
MatchAndExplain(const StringType & s,MatchResultListener *)1024   bool MatchAndExplain(const StringType& s,
1025                        MatchResultListener* /* listener */) const {
1026     return s.length() >= suffix_.length() &&
1027         s.substr(s.length() - suffix_.length()) == suffix_;
1028   }
1029 
DescribeTo(::std::ostream * os)1030   void DescribeTo(::std::ostream* os) const {
1031     *os << "ends with ";
1032     UniversalPrinter<StringType>::Print(suffix_, os);
1033   }
1034 
DescribeNegationTo(::std::ostream * os)1035   void DescribeNegationTo(::std::ostream* os) const {
1036     *os << "doesn't end with ";
1037     UniversalPrinter<StringType>::Print(suffix_, os);
1038   }
1039 
1040  private:
1041   const StringType suffix_;
1042 
1043   GTEST_DISALLOW_ASSIGN_(EndsWithMatcher);
1044 };
1045 
1046 // Implements polymorphic matchers MatchesRegex(regex) and
1047 // ContainsRegex(regex), which can be used as a Matcher<T> as long as
1048 // T can be converted to a string.
1049 class MatchesRegexMatcher {
1050  public:
MatchesRegexMatcher(const RE * regex,bool full_match)1051   MatchesRegexMatcher(const RE* regex, bool full_match)
1052       : regex_(regex), full_match_(full_match) {}
1053 
1054   // These overloaded methods allow MatchesRegex(regex) to be used as
1055   // a Matcher<T> as long as T can be converted to string.  Returns
1056   // true iff s matches regular expression regex.  When full_match_ is
1057   // true, a full match is done; otherwise a partial match is done.
MatchAndExplain(const char * s,MatchResultListener * listener)1058   bool MatchAndExplain(const char* s,
1059                        MatchResultListener* listener) const {
1060     return s != NULL && MatchAndExplain(internal::string(s), listener);
1061   }
1062 
MatchAndExplain(const internal::string & s,MatchResultListener *)1063   bool MatchAndExplain(const internal::string& s,
1064                        MatchResultListener* /* listener */) const {
1065     return full_match_ ? RE::FullMatch(s, *regex_) :
1066         RE::PartialMatch(s, *regex_);
1067   }
1068 
DescribeTo(::std::ostream * os)1069   void DescribeTo(::std::ostream* os) const {
1070     *os << (full_match_ ? "matches" : "contains")
1071         << " regular expression ";
1072     UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1073   }
1074 
DescribeNegationTo(::std::ostream * os)1075   void DescribeNegationTo(::std::ostream* os) const {
1076     *os << "doesn't " << (full_match_ ? "match" : "contain")
1077         << " regular expression ";
1078     UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1079   }
1080 
1081  private:
1082   const internal::linked_ptr<const RE> regex_;
1083   const bool full_match_;
1084 
1085   GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher);
1086 };
1087 
1088 // Implements a matcher that compares the two fields of a 2-tuple
1089 // using one of the ==, <=, <, etc, operators.  The two fields being
1090 // compared don't have to have the same type.
1091 //
1092 // The matcher defined here is polymorphic (for example, Eq() can be
1093 // used to match a tuple<int, short>, a tuple<const long&, double>,
1094 // etc).  Therefore we use a template type conversion operator in the
1095 // implementation.
1096 //
1097 // We define this as a macro in order to eliminate duplicated source
1098 // code.
1099 #define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op) \
1100   class name##2Matcher { \
1101    public: \
1102     template <typename T1, typename T2> \
1103     operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
1104       return MakeMatcher(new Impl<T1, T2>); \
1105     } \
1106    private: \
1107     template <typename T1, typename T2> \
1108     class Impl : public MatcherInterface<const ::std::tr1::tuple<T1, T2>&> { \
1109      public: \
1110       virtual bool MatchAndExplain( \
1111           const ::std::tr1::tuple<T1, T2>& args, \
1112           MatchResultListener* /* listener */) const { \
1113         return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
1114       } \
1115       virtual void DescribeTo(::std::ostream* os) const { \
1116         *os << "are a pair (x, y) where x " #op " y"; \
1117       } \
1118       virtual void DescribeNegationTo(::std::ostream* os) const { \
1119         *os << "are a pair (x, y) where x " #op " y is false"; \
1120       } \
1121     }; \
1122   }
1123 
1124 // Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
1125 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==);
1126 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ge, >=);
1127 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Gt, >);
1128 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Le, <=);
1129 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Lt, <);
1130 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=);
1131 
1132 #undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_
1133 
1134 // Implements the Not(...) matcher for a particular argument type T.
1135 // We do not nest it inside the NotMatcher class template, as that
1136 // will prevent different instantiations of NotMatcher from sharing
1137 // the same NotMatcherImpl<T> class.
1138 template <typename T>
1139 class NotMatcherImpl : public MatcherInterface<T> {
1140  public:
NotMatcherImpl(const Matcher<T> & matcher)1141   explicit NotMatcherImpl(const Matcher<T>& matcher)
1142       : matcher_(matcher) {}
1143 
MatchAndExplain(T x,MatchResultListener * listener)1144   virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1145     return !matcher_.MatchAndExplain(x, listener);
1146   }
1147 
DescribeTo(::std::ostream * os)1148   virtual void DescribeTo(::std::ostream* os) const {
1149     matcher_.DescribeNegationTo(os);
1150   }
1151 
DescribeNegationTo(::std::ostream * os)1152   virtual void DescribeNegationTo(::std::ostream* os) const {
1153     matcher_.DescribeTo(os);
1154   }
1155 
1156  private:
1157   const Matcher<T> matcher_;
1158 
1159   GTEST_DISALLOW_ASSIGN_(NotMatcherImpl);
1160 };
1161 
1162 // Implements the Not(m) matcher, which matches a value that doesn't
1163 // match matcher m.
1164 template <typename InnerMatcher>
1165 class NotMatcher {
1166  public:
NotMatcher(InnerMatcher matcher)1167   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1168 
1169   // This template type conversion operator allows Not(m) to be used
1170   // to match any type m can match.
1171   template <typename T>
1172   operator Matcher<T>() const {
1173     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1174   }
1175 
1176  private:
1177   InnerMatcher matcher_;
1178 
1179   GTEST_DISALLOW_ASSIGN_(NotMatcher);
1180 };
1181 
1182 // Implements the AllOf(m1, m2) matcher for a particular argument type
1183 // T. We do not nest it inside the BothOfMatcher class template, as
1184 // that will prevent different instantiations of BothOfMatcher from
1185 // sharing the same BothOfMatcherImpl<T> class.
1186 template <typename T>
1187 class BothOfMatcherImpl : public MatcherInterface<T> {
1188  public:
BothOfMatcherImpl(const Matcher<T> & matcher1,const Matcher<T> & matcher2)1189   BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1190       : matcher1_(matcher1), matcher2_(matcher2) {}
1191 
DescribeTo(::std::ostream * os)1192   virtual void DescribeTo(::std::ostream* os) const {
1193     *os << "(";
1194     matcher1_.DescribeTo(os);
1195     *os << ") and (";
1196     matcher2_.DescribeTo(os);
1197     *os << ")";
1198   }
1199 
DescribeNegationTo(::std::ostream * os)1200   virtual void DescribeNegationTo(::std::ostream* os) const {
1201     *os << "(";
1202     matcher1_.DescribeNegationTo(os);
1203     *os << ") or (";
1204     matcher2_.DescribeNegationTo(os);
1205     *os << ")";
1206   }
1207 
MatchAndExplain(T x,MatchResultListener * listener)1208   virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1209     // If either matcher1_ or matcher2_ doesn't match x, we only need
1210     // to explain why one of them fails.
1211     StringMatchResultListener listener1;
1212     if (!matcher1_.MatchAndExplain(x, &listener1)) {
1213       *listener << listener1.str();
1214       return false;
1215     }
1216 
1217     StringMatchResultListener listener2;
1218     if (!matcher2_.MatchAndExplain(x, &listener2)) {
1219       *listener << listener2.str();
1220       return false;
1221     }
1222 
1223     // Otherwise we need to explain why *both* of them match.
1224     const internal::string s1 = listener1.str();
1225     const internal::string s2 = listener2.str();
1226 
1227     if (s1 == "") {
1228       *listener << s2;
1229     } else {
1230       *listener << s1;
1231       if (s2 != "") {
1232         *listener << ", and " << s2;
1233       }
1234     }
1235     return true;
1236   }
1237 
1238  private:
1239   const Matcher<T> matcher1_;
1240   const Matcher<T> matcher2_;
1241 
1242   GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl);
1243 };
1244 
1245 // Used for implementing the AllOf(m_1, ..., m_n) matcher, which
1246 // matches a value that matches all of the matchers m_1, ..., and m_n.
1247 template <typename Matcher1, typename Matcher2>
1248 class BothOfMatcher {
1249  public:
BothOfMatcher(Matcher1 matcher1,Matcher2 matcher2)1250   BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1251       : matcher1_(matcher1), matcher2_(matcher2) {}
1252 
1253   // This template type conversion operator allows a
1254   // BothOfMatcher<Matcher1, Matcher2> object to match any type that
1255   // both Matcher1 and Matcher2 can match.
1256   template <typename T>
1257   operator Matcher<T>() const {
1258     return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
1259                                                SafeMatcherCast<T>(matcher2_)));
1260   }
1261 
1262  private:
1263   Matcher1 matcher1_;
1264   Matcher2 matcher2_;
1265 
1266   GTEST_DISALLOW_ASSIGN_(BothOfMatcher);
1267 };
1268 
1269 // Implements the AnyOf(m1, m2) matcher for a particular argument type
1270 // T.  We do not nest it inside the AnyOfMatcher class template, as
1271 // that will prevent different instantiations of AnyOfMatcher from
1272 // sharing the same EitherOfMatcherImpl<T> class.
1273 template <typename T>
1274 class EitherOfMatcherImpl : public MatcherInterface<T> {
1275  public:
EitherOfMatcherImpl(const Matcher<T> & matcher1,const Matcher<T> & matcher2)1276   EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1277       : matcher1_(matcher1), matcher2_(matcher2) {}
1278 
DescribeTo(::std::ostream * os)1279   virtual void DescribeTo(::std::ostream* os) const {
1280     *os << "(";
1281     matcher1_.DescribeTo(os);
1282     *os << ") or (";
1283     matcher2_.DescribeTo(os);
1284     *os << ")";
1285   }
1286 
DescribeNegationTo(::std::ostream * os)1287   virtual void DescribeNegationTo(::std::ostream* os) const {
1288     *os << "(";
1289     matcher1_.DescribeNegationTo(os);
1290     *os << ") and (";
1291     matcher2_.DescribeNegationTo(os);
1292     *os << ")";
1293   }
1294 
MatchAndExplain(T x,MatchResultListener * listener)1295   virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1296     // If either matcher1_ or matcher2_ matches x, we just need to
1297     // explain why *one* of them matches.
1298     StringMatchResultListener listener1;
1299     if (matcher1_.MatchAndExplain(x, &listener1)) {
1300       *listener << listener1.str();
1301       return true;
1302     }
1303 
1304     StringMatchResultListener listener2;
1305     if (matcher2_.MatchAndExplain(x, &listener2)) {
1306       *listener << listener2.str();
1307       return true;
1308     }
1309 
1310     // Otherwise we need to explain why *both* of them fail.
1311     const internal::string s1 = listener1.str();
1312     const internal::string s2 = listener2.str();
1313 
1314     if (s1 == "") {
1315       *listener << s2;
1316     } else {
1317       *listener << s1;
1318       if (s2 != "") {
1319         *listener << ", and " << s2;
1320       }
1321     }
1322     return false;
1323   }
1324 
1325  private:
1326   const Matcher<T> matcher1_;
1327   const Matcher<T> matcher2_;
1328 
1329   GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl);
1330 };
1331 
1332 // Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
1333 // matches a value that matches at least one of the matchers m_1, ...,
1334 // and m_n.
1335 template <typename Matcher1, typename Matcher2>
1336 class EitherOfMatcher {
1337  public:
EitherOfMatcher(Matcher1 matcher1,Matcher2 matcher2)1338   EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1339       : matcher1_(matcher1), matcher2_(matcher2) {}
1340 
1341   // This template type conversion operator allows a
1342   // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
1343   // both Matcher1 and Matcher2 can match.
1344   template <typename T>
1345   operator Matcher<T>() const {
1346     return Matcher<T>(new EitherOfMatcherImpl<T>(
1347         SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
1348   }
1349 
1350  private:
1351   Matcher1 matcher1_;
1352   Matcher2 matcher2_;
1353 
1354   GTEST_DISALLOW_ASSIGN_(EitherOfMatcher);
1355 };
1356 
1357 // Used for implementing Truly(pred), which turns a predicate into a
1358 // matcher.
1359 template <typename Predicate>
1360 class TrulyMatcher {
1361  public:
TrulyMatcher(Predicate pred)1362   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1363 
1364   // This method template allows Truly(pred) to be used as a matcher
1365   // for type T where T is the argument type of predicate 'pred'.  The
1366   // argument is passed by reference as the predicate may be
1367   // interested in the address of the argument.
1368   template <typename T>
MatchAndExplain(T & x,MatchResultListener *)1369   bool MatchAndExplain(T& x,  // NOLINT
1370                        MatchResultListener* /* listener */) const {
1371 #if GTEST_OS_WINDOWS
1372     // MSVC warns about converting a value into bool (warning 4800).
1373 #pragma warning(push)          // Saves the current warning state.
1374 #pragma warning(disable:4800)  // Temporarily disables warning 4800.
1375 #endif  // GTEST_OS_WINDOWS
1376     return predicate_(x);
1377 #if GTEST_OS_WINDOWS
1378 #pragma warning(pop)           // Restores the warning state.
1379 #endif  // GTEST_OS_WINDOWS
1380   }
1381 
DescribeTo(::std::ostream * os)1382   void DescribeTo(::std::ostream* os) const {
1383     *os << "satisfies the given predicate";
1384   }
1385 
DescribeNegationTo(::std::ostream * os)1386   void DescribeNegationTo(::std::ostream* os) const {
1387     *os << "doesn't satisfy the given predicate";
1388   }
1389 
1390  private:
1391   Predicate predicate_;
1392 
1393   GTEST_DISALLOW_ASSIGN_(TrulyMatcher);
1394 };
1395 
1396 // Used for implementing Matches(matcher), which turns a matcher into
1397 // a predicate.
1398 template <typename M>
1399 class MatcherAsPredicate {
1400  public:
MatcherAsPredicate(M matcher)1401   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1402 
1403   // This template operator() allows Matches(m) to be used as a
1404   // predicate on type T where m is a matcher on type T.
1405   //
1406   // The argument x is passed by reference instead of by value, as
1407   // some matcher may be interested in its address (e.g. as in
1408   // Matches(Ref(n))(x)).
1409   template <typename T>
operator()1410   bool operator()(const T& x) const {
1411     // We let matcher_ commit to a particular type here instead of
1412     // when the MatcherAsPredicate object was constructed.  This
1413     // allows us to write Matches(m) where m is a polymorphic matcher
1414     // (e.g. Eq(5)).
1415     //
1416     // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1417     // compile when matcher_ has type Matcher<const T&>; if we write
1418     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1419     // when matcher_ has type Matcher<T>; if we just write
1420     // matcher_.Matches(x), it won't compile when matcher_ is
1421     // polymorphic, e.g. Eq(5).
1422     //
1423     // MatcherCast<const T&>() is necessary for making the code work
1424     // in all of the above situations.
1425     return MatcherCast<const T&>(matcher_).Matches(x);
1426   }
1427 
1428  private:
1429   M matcher_;
1430 
1431   GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate);
1432 };
1433 
1434 // For implementing ASSERT_THAT() and EXPECT_THAT().  The template
1435 // argument M must be a type that can be converted to a matcher.
1436 template <typename M>
1437 class PredicateFormatterFromMatcher {
1438  public:
PredicateFormatterFromMatcher(const M & m)1439   explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}
1440 
1441   // This template () operator allows a PredicateFormatterFromMatcher
1442   // object to act as a predicate-formatter suitable for using with
1443   // Google Test's EXPECT_PRED_FORMAT1() macro.
1444   template <typename T>
operator()1445   AssertionResult operator()(const char* value_text, const T& x) const {
1446     // We convert matcher_ to a Matcher<const T&> *now* instead of
1447     // when the PredicateFormatterFromMatcher object was constructed,
1448     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1449     // know which type to instantiate it to until we actually see the
1450     // type of x here.
1451     //
1452     // We write MatcherCast<const T&>(matcher_) instead of
1453     // Matcher<const T&>(matcher_), as the latter won't compile when
1454     // matcher_ has type Matcher<T> (e.g. An<int>()).
1455     const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_);
1456     StringMatchResultListener listener;
1457     if (MatchPrintAndExplain(x, matcher, &listener))
1458       return AssertionSuccess();
1459 
1460     ::std::stringstream ss;
1461     ss << "Value of: " << value_text << "\n"
1462        << "Expected: ";
1463     matcher.DescribeTo(&ss);
1464     ss << "\n  Actual: " << listener.str();
1465     return AssertionFailure() << ss.str();
1466   }
1467 
1468  private:
1469   const M matcher_;
1470 
1471   GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher);
1472 };
1473 
1474 // A helper function for converting a matcher to a predicate-formatter
1475 // without the user needing to explicitly write the type.  This is
1476 // used for implementing ASSERT_THAT() and EXPECT_THAT().
1477 template <typename M>
1478 inline PredicateFormatterFromMatcher<M>
MakePredicateFormatterFromMatcher(const M & matcher)1479 MakePredicateFormatterFromMatcher(const M& matcher) {
1480   return PredicateFormatterFromMatcher<M>(matcher);
1481 }
1482 
1483 // Implements the polymorphic floating point equality matcher, which
1484 // matches two float values using ULP-based approximation.  The
1485 // template is meant to be instantiated with FloatType being either
1486 // float or double.
1487 template <typename FloatType>
1488 class FloatingEqMatcher {
1489  public:
1490   // Constructor for FloatingEqMatcher.
1491   // The matcher's input will be compared with rhs.  The matcher treats two
1492   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
1493   // equality comparisons between NANs will always return false.
FloatingEqMatcher(FloatType rhs,bool nan_eq_nan)1494   FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
1495     rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1496 
1497   // Implements floating point equality matcher as a Matcher<T>.
1498   template <typename T>
1499   class Impl : public MatcherInterface<T> {
1500    public:
Impl(FloatType rhs,bool nan_eq_nan)1501     Impl(FloatType rhs, bool nan_eq_nan) :
1502       rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1503 
MatchAndExplain(T value,MatchResultListener *)1504     virtual bool MatchAndExplain(T value,
1505                                  MatchResultListener* /* listener */) const {
1506       const FloatingPoint<FloatType> lhs(value), rhs(rhs_);
1507 
1508       // Compares NaNs first, if nan_eq_nan_ is true.
1509       if (nan_eq_nan_ && lhs.is_nan()) {
1510         return rhs.is_nan();
1511       }
1512 
1513       return lhs.AlmostEquals(rhs);
1514     }
1515 
DescribeTo(::std::ostream * os)1516     virtual void DescribeTo(::std::ostream* os) const {
1517       // os->precision() returns the previously set precision, which we
1518       // store to restore the ostream to its original configuration
1519       // after outputting.
1520       const ::std::streamsize old_precision = os->precision(
1521           ::std::numeric_limits<FloatType>::digits10 + 2);
1522       if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1523         if (nan_eq_nan_) {
1524           *os << "is NaN";
1525         } else {
1526           *os << "never matches";
1527         }
1528       } else {
1529         *os << "is approximately " << rhs_;
1530       }
1531       os->precision(old_precision);
1532     }
1533 
DescribeNegationTo(::std::ostream * os)1534     virtual void DescribeNegationTo(::std::ostream* os) const {
1535       // As before, get original precision.
1536       const ::std::streamsize old_precision = os->precision(
1537           ::std::numeric_limits<FloatType>::digits10 + 2);
1538       if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1539         if (nan_eq_nan_) {
1540           *os << "isn't NaN";
1541         } else {
1542           *os << "is anything";
1543         }
1544       } else {
1545         *os << "isn't approximately " << rhs_;
1546       }
1547       // Restore original precision.
1548       os->precision(old_precision);
1549     }
1550 
1551    private:
1552     const FloatType rhs_;
1553     const bool nan_eq_nan_;
1554 
1555     GTEST_DISALLOW_ASSIGN_(Impl);
1556   };
1557 
1558   // The following 3 type conversion operators allow FloatEq(rhs) and
1559   // NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
1560   // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1561   // (While Google's C++ coding style doesn't allow arguments passed
1562   // by non-const reference, we may see them in code not conforming to
1563   // the style.  Therefore Google Mock needs to support them.)
1564   operator Matcher<FloatType>() const {
1565     return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_));
1566   }
1567 
1568   operator Matcher<const FloatType&>() const {
1569     return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_));
1570   }
1571 
1572   operator Matcher<FloatType&>() const {
1573     return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_));
1574   }
1575  private:
1576   const FloatType rhs_;
1577   const bool nan_eq_nan_;
1578 
1579   GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher);
1580 };
1581 
1582 // Implements the Pointee(m) matcher for matching a pointer whose
1583 // pointee matches matcher m.  The pointer can be either raw or smart.
1584 template <typename InnerMatcher>
1585 class PointeeMatcher {
1586  public:
PointeeMatcher(const InnerMatcher & matcher)1587   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1588 
1589   // This type conversion operator template allows Pointee(m) to be
1590   // used as a matcher for any pointer type whose pointee type is
1591   // compatible with the inner matcher, where type Pointer can be
1592   // either a raw pointer or a smart pointer.
1593   //
1594   // The reason we do this instead of relying on
1595   // MakePolymorphicMatcher() is that the latter is not flexible
1596   // enough for implementing the DescribeTo() method of Pointee().
1597   template <typename Pointer>
1598   operator Matcher<Pointer>() const {
1599     return MakeMatcher(new Impl<Pointer>(matcher_));
1600   }
1601 
1602  private:
1603   // The monomorphic implementation that works for a particular pointer type.
1604   template <typename Pointer>
1605   class Impl : public MatcherInterface<Pointer> {
1606    public:
1607     typedef typename PointeeOf<GMOCK_REMOVE_CONST_(  // NOLINT
1608         GMOCK_REMOVE_REFERENCE_(Pointer))>::type Pointee;
1609 
Impl(const InnerMatcher & matcher)1610     explicit Impl(const InnerMatcher& matcher)
1611         : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1612 
DescribeTo(::std::ostream * os)1613     virtual void DescribeTo(::std::ostream* os) const {
1614       *os << "points to a value that ";
1615       matcher_.DescribeTo(os);
1616     }
1617 
DescribeNegationTo(::std::ostream * os)1618     virtual void DescribeNegationTo(::std::ostream* os) const {
1619       *os << "does not point to a value that ";
1620       matcher_.DescribeTo(os);
1621     }
1622 
MatchAndExplain(Pointer pointer,MatchResultListener * listener)1623     virtual bool MatchAndExplain(Pointer pointer,
1624                                  MatchResultListener* listener) const {
1625       if (GetRawPointer(pointer) == NULL)
1626         return false;
1627 
1628       *listener << "which points to ";
1629       return MatchPrintAndExplain(*pointer, matcher_, listener);
1630     }
1631 
1632    private:
1633     const Matcher<const Pointee&> matcher_;
1634 
1635     GTEST_DISALLOW_ASSIGN_(Impl);
1636   };
1637 
1638   const InnerMatcher matcher_;
1639 
1640   GTEST_DISALLOW_ASSIGN_(PointeeMatcher);
1641 };
1642 
1643 // Implements the Field() matcher for matching a field (i.e. member
1644 // variable) of an object.
1645 template <typename Class, typename FieldType>
1646 class FieldMatcher {
1647  public:
FieldMatcher(FieldType Class::* field,const Matcher<const FieldType &> & matcher)1648   FieldMatcher(FieldType Class::*field,
1649                const Matcher<const FieldType&>& matcher)
1650       : field_(field), matcher_(matcher) {}
1651 
DescribeTo(::std::ostream * os)1652   void DescribeTo(::std::ostream* os) const {
1653     *os << "is an object whose given field ";
1654     matcher_.DescribeTo(os);
1655   }
1656 
DescribeNegationTo(::std::ostream * os)1657   void DescribeNegationTo(::std::ostream* os) const {
1658     *os << "is an object whose given field ";
1659     matcher_.DescribeNegationTo(os);
1660   }
1661 
1662   template <typename T>
MatchAndExplain(const T & value,MatchResultListener * listener)1663   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
1664     return MatchAndExplainImpl(
1665         typename ::testing::internal::
1666             is_pointer<GMOCK_REMOVE_CONST_(T)>::type(),
1667         value, listener);
1668   }
1669 
1670  private:
1671   // The first argument of MatchAndExplainImpl() is needed to help
1672   // Symbian's C++ compiler choose which overload to use.  Its type is
1673   // true_type iff the Field() matcher is used to match a pointer.
MatchAndExplainImpl(false_type,const Class & obj,MatchResultListener * listener)1674   bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
1675                            MatchResultListener* listener) const {
1676     *listener << "whose given field is ";
1677     return MatchPrintAndExplain(obj.*field_, matcher_, listener);
1678   }
1679 
MatchAndExplainImpl(true_type,const Class * p,MatchResultListener * listener)1680   bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
1681                            MatchResultListener* listener) const {
1682     if (p == NULL)
1683       return false;
1684 
1685     *listener << "which points to an object ";
1686     // Since *p has a field, it must be a class/struct/union type and
1687     // thus cannot be a pointer.  Therefore we pass false_type() as
1688     // the first argument.
1689     return MatchAndExplainImpl(false_type(), *p, listener);
1690   }
1691 
1692   const FieldType Class::*field_;
1693   const Matcher<const FieldType&> matcher_;
1694 
1695   GTEST_DISALLOW_ASSIGN_(FieldMatcher);
1696 };
1697 
1698 // Implements the Property() matcher for matching a property
1699 // (i.e. return value of a getter method) of an object.
1700 template <typename Class, typename PropertyType>
1701 class PropertyMatcher {
1702  public:
1703   // The property may have a reference type, so 'const PropertyType&'
1704   // may cause double references and fail to compile.  That's why we
1705   // need GMOCK_REFERENCE_TO_CONST, which works regardless of
1706   // PropertyType being a reference or not.
1707   typedef GMOCK_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
1708 
PropertyMatcher(PropertyType (Class::* property)()const,const Matcher<RefToConstProperty> & matcher)1709   PropertyMatcher(PropertyType (Class::*property)() const,
1710                   const Matcher<RefToConstProperty>& matcher)
1711       : property_(property), matcher_(matcher) {}
1712 
DescribeTo(::std::ostream * os)1713   void DescribeTo(::std::ostream* os) const {
1714     *os << "is an object whose given property ";
1715     matcher_.DescribeTo(os);
1716   }
1717 
DescribeNegationTo(::std::ostream * os)1718   void DescribeNegationTo(::std::ostream* os) const {
1719     *os << "is an object whose given property ";
1720     matcher_.DescribeNegationTo(os);
1721   }
1722 
1723   template <typename T>
MatchAndExplain(const T & value,MatchResultListener * listener)1724   bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
1725     return MatchAndExplainImpl(
1726         typename ::testing::internal::
1727             is_pointer<GMOCK_REMOVE_CONST_(T)>::type(),
1728         value, listener);
1729   }
1730 
1731  private:
1732   // The first argument of MatchAndExplainImpl() is needed to help
1733   // Symbian's C++ compiler choose which overload to use.  Its type is
1734   // true_type iff the Property() matcher is used to match a pointer.
MatchAndExplainImpl(false_type,const Class & obj,MatchResultListener * listener)1735   bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
1736                            MatchResultListener* listener) const {
1737     *listener << "whose given property is ";
1738     // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
1739     // which takes a non-const reference as argument.
1740     RefToConstProperty result = (obj.*property_)();
1741     return MatchPrintAndExplain(result, matcher_, listener);
1742   }
1743 
MatchAndExplainImpl(true_type,const Class * p,MatchResultListener * listener)1744   bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
1745                            MatchResultListener* listener) const {
1746     if (p == NULL)
1747       return false;
1748 
1749     *listener << "which points to an object ";
1750     // Since *p has a property method, it must be a class/struct/union
1751     // type and thus cannot be a pointer.  Therefore we pass
1752     // false_type() as the first argument.
1753     return MatchAndExplainImpl(false_type(), *p, listener);
1754   }
1755 
1756   PropertyType (Class::*property_)() const;
1757   const Matcher<RefToConstProperty> matcher_;
1758 
1759   GTEST_DISALLOW_ASSIGN_(PropertyMatcher);
1760 };
1761 
1762 // Type traits specifying various features of different functors for ResultOf.
1763 // The default template specifies features for functor objects.
1764 // Functor classes have to typedef argument_type and result_type
1765 // to be compatible with ResultOf.
1766 template <typename Functor>
1767 struct CallableTraits {
1768   typedef typename Functor::result_type ResultType;
1769   typedef Functor StorageType;
1770 
CheckIsValidCallableTraits1771   static void CheckIsValid(Functor /* functor */) {}
1772   template <typename T>
InvokeCallableTraits1773   static ResultType Invoke(Functor f, T arg) { return f(arg); }
1774 };
1775 
1776 // Specialization for function pointers.
1777 template <typename ArgType, typename ResType>
1778 struct CallableTraits<ResType(*)(ArgType)> {
1779   typedef ResType ResultType;
1780   typedef ResType(*StorageType)(ArgType);
1781 
1782   static void CheckIsValid(ResType(*f)(ArgType)) {
1783     GTEST_CHECK_(f != NULL)
1784         << "NULL function pointer is passed into ResultOf().";
1785   }
1786   template <typename T>
1787   static ResType Invoke(ResType(*f)(ArgType), T arg) {
1788     return (*f)(arg);
1789   }
1790 };
1791 
1792 // Implements the ResultOf() matcher for matching a return value of a
1793 // unary function of an object.
1794 template <typename Callable>
1795 class ResultOfMatcher {
1796  public:
1797   typedef typename CallableTraits<Callable>::ResultType ResultType;
1798 
1799   ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
1800       : callable_(callable), matcher_(matcher) {
1801     CallableTraits<Callable>::CheckIsValid(callable_);
1802   }
1803 
1804   template <typename T>
1805   operator Matcher<T>() const {
1806     return Matcher<T>(new Impl<T>(callable_, matcher_));
1807   }
1808 
1809  private:
1810   typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
1811 
1812   template <typename T>
1813   class Impl : public MatcherInterface<T> {
1814    public:
1815     Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
1816         : callable_(callable), matcher_(matcher) {}
1817 
1818     virtual void DescribeTo(::std::ostream* os) const {
1819       *os << "is mapped by the given callable to a value that ";
1820       matcher_.DescribeTo(os);
1821     }
1822 
1823     virtual void DescribeNegationTo(::std::ostream* os) const {
1824       *os << "is mapped by the given callable to a value that ";
1825       matcher_.DescribeNegationTo(os);
1826     }
1827 
1828     virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const {
1829       *listener << "which is mapped by the given callable to ";
1830       // Cannot pass the return value (for example, int) to
1831       // MatchPrintAndExplain, which takes a non-const reference as argument.
1832       ResultType result =
1833           CallableTraits<Callable>::template Invoke<T>(callable_, obj);
1834       return MatchPrintAndExplain(result, matcher_, listener);
1835     }
1836 
1837    private:
1838     // Functors often define operator() as non-const method even though
1839     // they are actualy stateless. But we need to use them even when
1840     // 'this' is a const pointer. It's the user's responsibility not to
1841     // use stateful callables with ResultOf(), which does't guarantee
1842     // how many times the callable will be invoked.
1843     mutable CallableStorageType callable_;
1844     const Matcher<ResultType> matcher_;
1845 
1846     GTEST_DISALLOW_ASSIGN_(Impl);
1847   };  // class Impl
1848 
1849   const CallableStorageType callable_;
1850   const Matcher<ResultType> matcher_;
1851 
1852   GTEST_DISALLOW_ASSIGN_(ResultOfMatcher);
1853 };
1854 
1855 // Implements an equality matcher for any STL-style container whose elements
1856 // support ==. This matcher is like Eq(), but its failure explanations provide
1857 // more detailed information that is useful when the container is used as a set.
1858 // The failure message reports elements that are in one of the operands but not
1859 // the other. The failure messages do not report duplicate or out-of-order
1860 // elements in the containers (which don't properly matter to sets, but can
1861 // occur if the containers are vectors or lists, for example).
1862 //
1863 // Uses the container's const_iterator, value_type, operator ==,
1864 // begin(), and end().
1865 template <typename Container>
1866 class ContainerEqMatcher {
1867  public:
1868   typedef internal::StlContainerView<Container> View;
1869   typedef typename View::type StlContainer;
1870   typedef typename View::const_reference StlContainerReference;
1871 
1872   // We make a copy of rhs in case the elements in it are modified
1873   // after this matcher is created.
1874   explicit ContainerEqMatcher(const Container& rhs) : rhs_(View::Copy(rhs)) {
1875     // Makes sure the user doesn't instantiate this class template
1876     // with a const or reference type.
1877     testing::StaticAssertTypeEq<Container,
1878         GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))>();
1879   }
1880 
1881   void DescribeTo(::std::ostream* os) const {
1882     *os << "equals ";
1883     UniversalPrinter<StlContainer>::Print(rhs_, os);
1884   }
1885   void DescribeNegationTo(::std::ostream* os) const {
1886     *os << "does not equal ";
1887     UniversalPrinter<StlContainer>::Print(rhs_, os);
1888   }
1889 
1890   template <typename LhsContainer>
1891   bool MatchAndExplain(const LhsContainer& lhs,
1892                        MatchResultListener* listener) const {
1893     // GMOCK_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
1894     // that causes LhsContainer to be a const type sometimes.
1895     typedef internal::StlContainerView<GMOCK_REMOVE_CONST_(LhsContainer)>
1896         LhsView;
1897     typedef typename LhsView::type LhsStlContainer;
1898     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
1899     if (lhs_stl_container == rhs_)
1900       return true;
1901 
1902     ::std::ostream* const os = listener->stream();
1903     if (os != NULL) {
1904       // Something is different. Check for extra values first.
1905       bool printed_header = false;
1906       for (typename LhsStlContainer::const_iterator it =
1907                lhs_stl_container.begin();
1908            it != lhs_stl_container.end(); ++it) {
1909         if (internal::ArrayAwareFind(rhs_.begin(), rhs_.end(), *it) ==
1910             rhs_.end()) {
1911           if (printed_header) {
1912             *os << ", ";
1913           } else {
1914             *os << "which has these unexpected elements: ";
1915             printed_header = true;
1916           }
1917           UniversalPrinter<typename LhsStlContainer::value_type>::
1918               Print(*it, os);
1919         }
1920       }
1921 
1922       // Now check for missing values.
1923       bool printed_header2 = false;
1924       for (typename StlContainer::const_iterator it = rhs_.begin();
1925            it != rhs_.end(); ++it) {
1926         if (internal::ArrayAwareFind(
1927                 lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
1928             lhs_stl_container.end()) {
1929           if (printed_header2) {
1930             *os << ", ";
1931           } else {
1932             *os << (printed_header ? ",\nand" : "which")
1933                 << " doesn't have these expected elements: ";
1934             printed_header2 = true;
1935           }
1936           UniversalPrinter<typename StlContainer::value_type>::Print(*it, os);
1937         }
1938       }
1939     }
1940 
1941     return false;
1942   }
1943 
1944  private:
1945   const StlContainer rhs_;
1946 
1947   GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher);
1948 };
1949 
1950 // Implements Contains(element_matcher) for the given argument type Container.
1951 template <typename Container>
1952 class ContainsMatcherImpl : public MatcherInterface<Container> {
1953  public:
1954   typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer;
1955   typedef StlContainerView<RawContainer> View;
1956   typedef typename View::type StlContainer;
1957   typedef typename View::const_reference StlContainerReference;
1958   typedef typename StlContainer::value_type Element;
1959 
1960   template <typename InnerMatcher>
1961   explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
1962       : inner_matcher_(
1963           testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
1964 
1965   // Describes what this matcher does.
1966   virtual void DescribeTo(::std::ostream* os) const {
1967     *os << "contains at least one element that ";
1968     inner_matcher_.DescribeTo(os);
1969   }
1970 
1971   // Describes what the negation of this matcher does.
1972   virtual void DescribeNegationTo(::std::ostream* os) const {
1973     *os << "doesn't contain any element that ";
1974     inner_matcher_.DescribeTo(os);
1975   }
1976 
1977   virtual bool MatchAndExplain(Container container,
1978                                MatchResultListener* listener) const {
1979     StlContainerReference stl_container = View::ConstReference(container);
1980     size_t i = 0;
1981     for (typename StlContainer::const_iterator it = stl_container.begin();
1982          it != stl_container.end(); ++it, ++i) {
1983       StringMatchResultListener inner_listener;
1984       if (inner_matcher_.MatchAndExplain(*it, &inner_listener)) {
1985         *listener << "whose element #" << i << " matches";
1986         PrintIfNotEmpty(inner_listener.str(), listener->stream());
1987         return true;
1988       }
1989     }
1990     return false;
1991   }
1992 
1993  private:
1994   const Matcher<const Element&> inner_matcher_;
1995 
1996   GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl);
1997 };
1998 
1999 // Implements polymorphic Contains(element_matcher).
2000 template <typename M>
2001 class ContainsMatcher {
2002  public:
2003   explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2004 
2005   template <typename Container>
2006   operator Matcher<Container>() const {
2007     return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
2008   }
2009 
2010  private:
2011   const M inner_matcher_;
2012 
2013   GTEST_DISALLOW_ASSIGN_(ContainsMatcher);
2014 };
2015 
2016 // Implements Key(inner_matcher) for the given argument pair type.
2017 // Key(inner_matcher) matches an std::pair whose 'first' field matches
2018 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2019 // std::map that contains at least one element whose key is >= 5.
2020 template <typename PairType>
2021 class KeyMatcherImpl : public MatcherInterface<PairType> {
2022  public:
2023   typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(PairType)) RawPairType;
2024   typedef typename RawPairType::first_type KeyType;
2025 
2026   template <typename InnerMatcher>
2027   explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2028       : inner_matcher_(
2029           testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
2030   }
2031 
2032   // Returns true iff 'key_value.first' (the key) matches the inner matcher.
2033   virtual bool MatchAndExplain(PairType key_value,
2034                                MatchResultListener* listener) const {
2035     StringMatchResultListener inner_listener;
2036     const bool match = inner_matcher_.MatchAndExplain(key_value.first,
2037                                                       &inner_listener);
2038     const internal::string explanation = inner_listener.str();
2039     if (explanation != "") {
2040       *listener << "whose first field is a value " << explanation;
2041     }
2042     return match;
2043   }
2044 
2045   // Describes what this matcher does.
2046   virtual void DescribeTo(::std::ostream* os) const {
2047     *os << "has a key that ";
2048     inner_matcher_.DescribeTo(os);
2049   }
2050 
2051   // Describes what the negation of this matcher does.
2052   virtual void DescribeNegationTo(::std::ostream* os) const {
2053     *os << "doesn't have a key that ";
2054     inner_matcher_.DescribeTo(os);
2055   }
2056 
2057  private:
2058   const Matcher<const KeyType&> inner_matcher_;
2059 
2060   GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl);
2061 };
2062 
2063 // Implements polymorphic Key(matcher_for_key).
2064 template <typename M>
2065 class KeyMatcher {
2066  public:
2067   explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2068 
2069   template <typename PairType>
2070   operator Matcher<PairType>() const {
2071     return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
2072   }
2073 
2074  private:
2075   const M matcher_for_key_;
2076 
2077   GTEST_DISALLOW_ASSIGN_(KeyMatcher);
2078 };
2079 
2080 // Implements Pair(first_matcher, second_matcher) for the given argument pair
2081 // type with its two matchers. See Pair() function below.
2082 template <typename PairType>
2083 class PairMatcherImpl : public MatcherInterface<PairType> {
2084  public:
2085   typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(PairType)) RawPairType;
2086   typedef typename RawPairType::first_type FirstType;
2087   typedef typename RawPairType::second_type SecondType;
2088 
2089   template <typename FirstMatcher, typename SecondMatcher>
2090   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
2091       : first_matcher_(
2092             testing::SafeMatcherCast<const FirstType&>(first_matcher)),
2093         second_matcher_(
2094             testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
2095   }
2096 
2097   // Describes what this matcher does.
2098   virtual void DescribeTo(::std::ostream* os) const {
2099     *os << "has a first field that ";
2100     first_matcher_.DescribeTo(os);
2101     *os << ", and has a second field that ";
2102     second_matcher_.DescribeTo(os);
2103   }
2104 
2105   // Describes what the negation of this matcher does.
2106   virtual void DescribeNegationTo(::std::ostream* os) const {
2107     *os << "has a first field that ";
2108     first_matcher_.DescribeNegationTo(os);
2109     *os << ", or has a second field that ";
2110     second_matcher_.DescribeNegationTo(os);
2111   }
2112 
2113   // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
2114   // matches second_matcher.
2115   virtual bool MatchAndExplain(PairType a_pair,
2116                                MatchResultListener* listener) const {
2117     if (!listener->IsInterested()) {
2118       // If the listener is not interested, we don't need to construct the
2119       // explanation.
2120       return first_matcher_.Matches(a_pair.first) &&
2121              second_matcher_.Matches(a_pair.second);
2122     }
2123     StringMatchResultListener first_inner_listener;
2124     if (!first_matcher_.MatchAndExplain(a_pair.first,
2125                                         &first_inner_listener)) {
2126       *listener << "whose first field does not match";
2127       PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
2128       return false;
2129     }
2130     StringMatchResultListener second_inner_listener;
2131     if (!second_matcher_.MatchAndExplain(a_pair.second,
2132                                          &second_inner_listener)) {
2133       *listener << "whose second field does not match";
2134       PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
2135       return false;
2136     }
2137     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
2138                    listener);
2139     return true;
2140   }
2141 
2142  private:
2143   void ExplainSuccess(const internal::string& first_explanation,
2144                       const internal::string& second_explanation,
2145                       MatchResultListener* listener) const {
2146     *listener << "whose both fields match";
2147     if (first_explanation != "") {
2148       *listener << ", where the first field is a value " << first_explanation;
2149     }
2150     if (second_explanation != "") {
2151       *listener << ", ";
2152       if (first_explanation != "") {
2153         *listener << "and ";
2154       } else {
2155         *listener << "where ";
2156       }
2157       *listener << "the second field is a value " << second_explanation;
2158     }
2159   }
2160 
2161   const Matcher<const FirstType&> first_matcher_;
2162   const Matcher<const SecondType&> second_matcher_;
2163 
2164   GTEST_DISALLOW_ASSIGN_(PairMatcherImpl);
2165 };
2166 
2167 // Implements polymorphic Pair(first_matcher, second_matcher).
2168 template <typename FirstMatcher, typename SecondMatcher>
2169 class PairMatcher {
2170  public:
2171   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
2172       : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
2173 
2174   template <typename PairType>
2175   operator Matcher<PairType> () const {
2176     return MakeMatcher(
2177         new PairMatcherImpl<PairType>(
2178             first_matcher_, second_matcher_));
2179   }
2180 
2181  private:
2182   const FirstMatcher first_matcher_;
2183   const SecondMatcher second_matcher_;
2184 
2185   GTEST_DISALLOW_ASSIGN_(PairMatcher);
2186 };
2187 
2188 // Implements ElementsAre() and ElementsAreArray().
2189 template <typename Container>
2190 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
2191  public:
2192   typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer;
2193   typedef internal::StlContainerView<RawContainer> View;
2194   typedef typename View::type StlContainer;
2195   typedef typename View::const_reference StlContainerReference;
2196   typedef typename StlContainer::value_type Element;
2197 
2198   // Constructs the matcher from a sequence of element values or
2199   // element matchers.
2200   template <typename InputIter>
2201   ElementsAreMatcherImpl(InputIter first, size_t a_count) {
2202     matchers_.reserve(a_count);
2203     InputIter it = first;
2204     for (size_t i = 0; i != a_count; ++i, ++it) {
2205       matchers_.push_back(MatcherCast<const Element&>(*it));
2206     }
2207   }
2208 
2209   // Describes what this matcher does.
2210   virtual void DescribeTo(::std::ostream* os) const {
2211     if (count() == 0) {
2212       *os << "is empty";
2213     } else if (count() == 1) {
2214       *os << "has 1 element that ";
2215       matchers_[0].DescribeTo(os);
2216     } else {
2217       *os << "has " << Elements(count()) << " where\n";
2218       for (size_t i = 0; i != count(); ++i) {
2219         *os << "element #" << i << " ";
2220         matchers_[i].DescribeTo(os);
2221         if (i + 1 < count()) {
2222           *os << ",\n";
2223         }
2224       }
2225     }
2226   }
2227 
2228   // Describes what the negation of this matcher does.
2229   virtual void DescribeNegationTo(::std::ostream* os) const {
2230     if (count() == 0) {
2231       *os << "isn't empty";
2232       return;
2233     }
2234 
2235     *os << "doesn't have " << Elements(count()) << ", or\n";
2236     for (size_t i = 0; i != count(); ++i) {
2237       *os << "element #" << i << " ";
2238       matchers_[i].DescribeNegationTo(os);
2239       if (i + 1 < count()) {
2240         *os << ", or\n";
2241       }
2242     }
2243   }
2244 
2245   virtual bool MatchAndExplain(Container container,
2246                                MatchResultListener* listener) const {
2247     StlContainerReference stl_container = View::ConstReference(container);
2248     const size_t actual_count = stl_container.size();
2249     if (actual_count != count()) {
2250       // The element count doesn't match.  If the container is empty,
2251       // there's no need to explain anything as Google Mock already
2252       // prints the empty container.  Otherwise we just need to show
2253       // how many elements there actually are.
2254       if (actual_count != 0) {
2255         *listener << "which has " << Elements(actual_count);
2256       }
2257       return false;
2258     }
2259 
2260     typename StlContainer::const_iterator it = stl_container.begin();
2261     // explanations[i] is the explanation of the element at index i.
2262     std::vector<internal::string> explanations(count());
2263     for (size_t i = 0; i != count();  ++it, ++i) {
2264       StringMatchResultListener s;
2265       if (matchers_[i].MatchAndExplain(*it, &s)) {
2266         explanations[i] = s.str();
2267       } else {
2268         // The container has the right size but the i-th element
2269         // doesn't match its expectation.
2270         *listener << "whose element #" << i << " doesn't match";
2271         PrintIfNotEmpty(s.str(), listener->stream());
2272         return false;
2273       }
2274     }
2275 
2276     // Every element matches its expectation.  We need to explain why
2277     // (the obvious ones can be skipped).
2278     bool reason_printed = false;
2279     for (size_t i = 0; i != count(); ++i) {
2280       const internal::string& s = explanations[i];
2281       if (!s.empty()) {
2282         if (reason_printed) {
2283           *listener << ",\nand ";
2284         }
2285         *listener << "whose element #" << i << " matches, " << s;
2286         reason_printed = true;
2287       }
2288     }
2289 
2290     return true;
2291   }
2292 
2293  private:
2294   static Message Elements(size_t count) {
2295     return Message() << count << (count == 1 ? " element" : " elements");
2296   }
2297 
2298   size_t count() const { return matchers_.size(); }
2299   std::vector<Matcher<const Element&> > matchers_;
2300 
2301   GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl);
2302 };
2303 
2304 // Implements ElementsAre() of 0 arguments.
2305 class ElementsAreMatcher0 {
2306  public:
2307   ElementsAreMatcher0() {}
2308 
2309   template <typename Container>
2310   operator Matcher<Container>() const {
2311     typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
2312         RawContainer;
2313     typedef typename internal::StlContainerView<RawContainer>::type::value_type
2314         Element;
2315 
2316     const Matcher<const Element&>* const matchers = NULL;
2317     return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0));
2318   }
2319 };
2320 
2321 // Implements ElementsAreArray().
2322 template <typename T>
2323 class ElementsAreArrayMatcher {
2324  public:
2325   ElementsAreArrayMatcher(const T* first, size_t count) :
2326       first_(first), count_(count) {}
2327 
2328   template <typename Container>
2329   operator Matcher<Container>() const {
2330     typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
2331         RawContainer;
2332     typedef typename internal::StlContainerView<RawContainer>::type::value_type
2333         Element;
2334 
2335     return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_));
2336   }
2337 
2338  private:
2339   const T* const first_;
2340   const size_t count_;
2341 
2342   GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher);
2343 };
2344 
2345 // Constants denoting interpolations in a matcher description string.
2346 const int kTupleInterpolation = -1;    // "%(*)s"
2347 const int kPercentInterpolation = -2;  // "%%"
2348 const int kInvalidInterpolation = -3;  // "%" followed by invalid text
2349 
2350 // Records the location and content of an interpolation.
2351 struct Interpolation {
2352   Interpolation(const char* start, const char* end, int param)
2353       : start_pos(start), end_pos(end), param_index(param) {}
2354 
2355   // Points to the start of the interpolation (the '%' character).
2356   const char* start_pos;
2357   // Points to the first character after the interpolation.
2358   const char* end_pos;
2359   // 0-based index of the interpolated matcher parameter;
2360   // kTupleInterpolation for "%(*)s"; kPercentInterpolation for "%%".
2361   int param_index;
2362 };
2363 
2364 typedef ::std::vector<Interpolation> Interpolations;
2365 
2366 // Parses a matcher description string and returns a vector of
2367 // interpolations that appear in the string; generates non-fatal
2368 // failures iff 'description' is an invalid matcher description.
2369 // 'param_names' is a NULL-terminated array of parameter names in the
2370 // order they appear in the MATCHER_P*() parameter list.
2371 Interpolations ValidateMatcherDescription(
2372     const char* param_names[], const char* description);
2373 
2374 // Returns the actual matcher description, given the matcher name,
2375 // user-supplied description template string, interpolations in the
2376 // string, and the printed values of the matcher parameters.
2377 string FormatMatcherDescription(
2378     const char* matcher_name, const char* description,
2379     const Interpolations& interp, const Strings& param_values);
2380 
2381 }  // namespace internal
2382 
2383 // Implements MatcherCast().
2384 template <typename T, typename M>
2385 inline Matcher<T> MatcherCast(M matcher) {
2386   return internal::MatcherCastImpl<T, M>::Cast(matcher);
2387 }
2388 
2389 // _ is a matcher that matches anything of any type.
2390 //
2391 // This definition is fine as:
2392 //
2393 //   1. The C++ standard permits using the name _ in a namespace that
2394 //      is not the global namespace or ::std.
2395 //   2. The AnythingMatcher class has no data member or constructor,
2396 //      so it's OK to create global variables of this type.
2397 //   3. c-style has approved of using _ in this case.
2398 const internal::AnythingMatcher _ = {};
2399 // Creates a matcher that matches any value of the given type T.
2400 template <typename T>
2401 inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
2402 
2403 // Creates a matcher that matches any value of the given type T.
2404 template <typename T>
2405 inline Matcher<T> An() { return A<T>(); }
2406 
2407 // Creates a polymorphic matcher that matches anything equal to x.
2408 // Note: if the parameter of Eq() were declared as const T&, Eq("foo")
2409 // wouldn't compile.
2410 template <typename T>
2411 inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
2412 
2413 // Constructs a Matcher<T> from a 'value' of type T.  The constructed
2414 // matcher matches any value that's equal to 'value'.
2415 template <typename T>
2416 Matcher<T>::Matcher(T value) { *this = Eq(value); }
2417 
2418 // Creates a monomorphic matcher that matches anything with type Lhs
2419 // and equal to rhs.  A user may need to use this instead of Eq(...)
2420 // in order to resolve an overloading ambiguity.
2421 //
2422 // TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
2423 // or Matcher<T>(x), but more readable than the latter.
2424 //
2425 // We could define similar monomorphic matchers for other comparison
2426 // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
2427 // it yet as those are used much less than Eq() in practice.  A user
2428 // can always write Matcher<T>(Lt(5)) to be explicit about the type,
2429 // for example.
2430 template <typename Lhs, typename Rhs>
2431 inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
2432 
2433 // Creates a polymorphic matcher that matches anything >= x.
2434 template <typename Rhs>
2435 inline internal::GeMatcher<Rhs> Ge(Rhs x) {
2436   return internal::GeMatcher<Rhs>(x);
2437 }
2438 
2439 // Creates a polymorphic matcher that matches anything > x.
2440 template <typename Rhs>
2441 inline internal::GtMatcher<Rhs> Gt(Rhs x) {
2442   return internal::GtMatcher<Rhs>(x);
2443 }
2444 
2445 // Creates a polymorphic matcher that matches anything <= x.
2446 template <typename Rhs>
2447 inline internal::LeMatcher<Rhs> Le(Rhs x) {
2448   return internal::LeMatcher<Rhs>(x);
2449 }
2450 
2451 // Creates a polymorphic matcher that matches anything < x.
2452 template <typename Rhs>
2453 inline internal::LtMatcher<Rhs> Lt(Rhs x) {
2454   return internal::LtMatcher<Rhs>(x);
2455 }
2456 
2457 // Creates a polymorphic matcher that matches anything != x.
2458 template <typename Rhs>
2459 inline internal::NeMatcher<Rhs> Ne(Rhs x) {
2460   return internal::NeMatcher<Rhs>(x);
2461 }
2462 
2463 // Creates a polymorphic matcher that matches any NULL pointer.
2464 inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
2465   return MakePolymorphicMatcher(internal::IsNullMatcher());
2466 }
2467 
2468 // Creates a polymorphic matcher that matches any non-NULL pointer.
2469 // This is convenient as Not(NULL) doesn't compile (the compiler
2470 // thinks that that expression is comparing a pointer with an integer).
2471 inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
2472   return MakePolymorphicMatcher(internal::NotNullMatcher());
2473 }
2474 
2475 // Creates a polymorphic matcher that matches any argument that
2476 // references variable x.
2477 template <typename T>
2478 inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
2479   return internal::RefMatcher<T&>(x);
2480 }
2481 
2482 // Creates a matcher that matches any double argument approximately
2483 // equal to rhs, where two NANs are considered unequal.
2484 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
2485   return internal::FloatingEqMatcher<double>(rhs, false);
2486 }
2487 
2488 // Creates a matcher that matches any double argument approximately
2489 // equal to rhs, including NaN values when rhs is NaN.
2490 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
2491   return internal::FloatingEqMatcher<double>(rhs, true);
2492 }
2493 
2494 // Creates a matcher that matches any float argument approximately
2495 // equal to rhs, where two NANs are considered unequal.
2496 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
2497   return internal::FloatingEqMatcher<float>(rhs, false);
2498 }
2499 
2500 // Creates a matcher that matches any double argument approximately
2501 // equal to rhs, including NaN values when rhs is NaN.
2502 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
2503   return internal::FloatingEqMatcher<float>(rhs, true);
2504 }
2505 
2506 // Creates a matcher that matches a pointer (raw or smart) that points
2507 // to a value that matches inner_matcher.
2508 template <typename InnerMatcher>
2509 inline internal::PointeeMatcher<InnerMatcher> Pointee(
2510     const InnerMatcher& inner_matcher) {
2511   return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
2512 }
2513 
2514 // Creates a matcher that matches an object whose given field matches
2515 // 'matcher'.  For example,
2516 //   Field(&Foo::number, Ge(5))
2517 // matches a Foo object x iff x.number >= 5.
2518 template <typename Class, typename FieldType, typename FieldMatcher>
2519 inline PolymorphicMatcher<
2520   internal::FieldMatcher<Class, FieldType> > Field(
2521     FieldType Class::*field, const FieldMatcher& matcher) {
2522   return MakePolymorphicMatcher(
2523       internal::FieldMatcher<Class, FieldType>(
2524           field, MatcherCast<const FieldType&>(matcher)));
2525   // The call to MatcherCast() is required for supporting inner
2526   // matchers of compatible types.  For example, it allows
2527   //   Field(&Foo::bar, m)
2528   // to compile where bar is an int32 and m is a matcher for int64.
2529 }
2530 
2531 // Creates a matcher that matches an object whose given property
2532 // matches 'matcher'.  For example,
2533 //   Property(&Foo::str, StartsWith("hi"))
2534 // matches a Foo object x iff x.str() starts with "hi".
2535 template <typename Class, typename PropertyType, typename PropertyMatcher>
2536 inline PolymorphicMatcher<
2537   internal::PropertyMatcher<Class, PropertyType> > Property(
2538     PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
2539   return MakePolymorphicMatcher(
2540       internal::PropertyMatcher<Class, PropertyType>(
2541           property,
2542           MatcherCast<GMOCK_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
2543   // The call to MatcherCast() is required for supporting inner
2544   // matchers of compatible types.  For example, it allows
2545   //   Property(&Foo::bar, m)
2546   // to compile where bar() returns an int32 and m is a matcher for int64.
2547 }
2548 
2549 // Creates a matcher that matches an object iff the result of applying
2550 // a callable to x matches 'matcher'.
2551 // For example,
2552 //   ResultOf(f, StartsWith("hi"))
2553 // matches a Foo object x iff f(x) starts with "hi".
2554 // callable parameter can be a function, function pointer, or a functor.
2555 // Callable has to satisfy the following conditions:
2556 //   * It is required to keep no state affecting the results of
2557 //     the calls on it and make no assumptions about how many calls
2558 //     will be made. Any state it keeps must be protected from the
2559 //     concurrent access.
2560 //   * If it is a function object, it has to define type result_type.
2561 //     We recommend deriving your functor classes from std::unary_function.
2562 template <typename Callable, typename ResultOfMatcher>
2563 internal::ResultOfMatcher<Callable> ResultOf(
2564     Callable callable, const ResultOfMatcher& matcher) {
2565   return internal::ResultOfMatcher<Callable>(
2566           callable,
2567           MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
2568               matcher));
2569   // The call to MatcherCast() is required for supporting inner
2570   // matchers of compatible types.  For example, it allows
2571   //   ResultOf(Function, m)
2572   // to compile where Function() returns an int32 and m is a matcher for int64.
2573 }
2574 
2575 // String matchers.
2576 
2577 // Matches a string equal to str.
2578 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2579     StrEq(const internal::string& str) {
2580   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2581       str, true, true));
2582 }
2583 
2584 // Matches a string not equal to str.
2585 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2586     StrNe(const internal::string& str) {
2587   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2588       str, false, true));
2589 }
2590 
2591 // Matches a string equal to str, ignoring case.
2592 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2593     StrCaseEq(const internal::string& str) {
2594   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2595       str, true, false));
2596 }
2597 
2598 // Matches a string not equal to str, ignoring case.
2599 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2600     StrCaseNe(const internal::string& str) {
2601   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2602       str, false, false));
2603 }
2604 
2605 // Creates a matcher that matches any string, std::string, or C string
2606 // that contains the given substring.
2607 inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
2608     HasSubstr(const internal::string& substring) {
2609   return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
2610       substring));
2611 }
2612 
2613 // Matches a string that starts with 'prefix' (case-sensitive).
2614 inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
2615     StartsWith(const internal::string& prefix) {
2616   return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
2617       prefix));
2618 }
2619 
2620 // Matches a string that ends with 'suffix' (case-sensitive).
2621 inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
2622     EndsWith(const internal::string& suffix) {
2623   return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
2624       suffix));
2625 }
2626 
2627 // Matches a string that fully matches regular expression 'regex'.
2628 // The matcher takes ownership of 'regex'.
2629 inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2630     const internal::RE* regex) {
2631   return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
2632 }
2633 inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2634     const internal::string& regex) {
2635   return MatchesRegex(new internal::RE(regex));
2636 }
2637 
2638 // Matches a string that contains regular expression 'regex'.
2639 // The matcher takes ownership of 'regex'.
2640 inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2641     const internal::RE* regex) {
2642   return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
2643 }
2644 inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2645     const internal::string& regex) {
2646   return ContainsRegex(new internal::RE(regex));
2647 }
2648 
2649 #if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2650 // Wide string matchers.
2651 
2652 // Matches a string equal to str.
2653 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2654     StrEq(const internal::wstring& str) {
2655   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2656       str, true, true));
2657 }
2658 
2659 // Matches a string not equal to str.
2660 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2661     StrNe(const internal::wstring& str) {
2662   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2663       str, false, true));
2664 }
2665 
2666 // Matches a string equal to str, ignoring case.
2667 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2668     StrCaseEq(const internal::wstring& str) {
2669   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2670       str, true, false));
2671 }
2672 
2673 // Matches a string not equal to str, ignoring case.
2674 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2675     StrCaseNe(const internal::wstring& str) {
2676   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2677       str, false, false));
2678 }
2679 
2680 // Creates a matcher that matches any wstring, std::wstring, or C wide string
2681 // that contains the given substring.
2682 inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
2683     HasSubstr(const internal::wstring& substring) {
2684   return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
2685       substring));
2686 }
2687 
2688 // Matches a string that starts with 'prefix' (case-sensitive).
2689 inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
2690     StartsWith(const internal::wstring& prefix) {
2691   return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
2692       prefix));
2693 }
2694 
2695 // Matches a string that ends with 'suffix' (case-sensitive).
2696 inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
2697     EndsWith(const internal::wstring& suffix) {
2698   return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
2699       suffix));
2700 }
2701 
2702 #endif  // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2703 
2704 // Creates a polymorphic matcher that matches a 2-tuple where the
2705 // first field == the second field.
2706 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
2707 
2708 // Creates a polymorphic matcher that matches a 2-tuple where the
2709 // first field >= the second field.
2710 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
2711 
2712 // Creates a polymorphic matcher that matches a 2-tuple where the
2713 // first field > the second field.
2714 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
2715 
2716 // Creates a polymorphic matcher that matches a 2-tuple where the
2717 // first field <= the second field.
2718 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
2719 
2720 // Creates a polymorphic matcher that matches a 2-tuple where the
2721 // first field < the second field.
2722 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
2723 
2724 // Creates a polymorphic matcher that matches a 2-tuple where the
2725 // first field != the second field.
2726 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
2727 
2728 // Creates a matcher that matches any value of type T that m doesn't
2729 // match.
2730 template <typename InnerMatcher>
2731 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
2732   return internal::NotMatcher<InnerMatcher>(m);
2733 }
2734 
2735 // Creates a matcher that matches any value that matches all of the
2736 // given matchers.
2737 //
2738 // For now we only support up to 5 matchers.  Support for more
2739 // matchers can be added as needed, or the user can use nested
2740 // AllOf()s.
2741 template <typename Matcher1, typename Matcher2>
2742 inline internal::BothOfMatcher<Matcher1, Matcher2>
2743 AllOf(Matcher1 m1, Matcher2 m2) {
2744   return internal::BothOfMatcher<Matcher1, Matcher2>(m1, m2);
2745 }
2746 
2747 template <typename Matcher1, typename Matcher2, typename Matcher3>
2748 inline internal::BothOfMatcher<Matcher1,
2749            internal::BothOfMatcher<Matcher2, Matcher3> >
2750 AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
2751   return AllOf(m1, AllOf(m2, m3));
2752 }
2753 
2754 template <typename Matcher1, typename Matcher2, typename Matcher3,
2755           typename Matcher4>
2756 inline internal::BothOfMatcher<Matcher1,
2757            internal::BothOfMatcher<Matcher2,
2758                internal::BothOfMatcher<Matcher3, Matcher4> > >
2759 AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
2760   return AllOf(m1, AllOf(m2, m3, m4));
2761 }
2762 
2763 template <typename Matcher1, typename Matcher2, typename Matcher3,
2764           typename Matcher4, typename Matcher5>
2765 inline internal::BothOfMatcher<Matcher1,
2766            internal::BothOfMatcher<Matcher2,
2767                internal::BothOfMatcher<Matcher3,
2768                    internal::BothOfMatcher<Matcher4, Matcher5> > > >
2769 AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
2770   return AllOf(m1, AllOf(m2, m3, m4, m5));
2771 }
2772 
2773 // Creates a matcher that matches any value that matches at least one
2774 // of the given matchers.
2775 //
2776 // For now we only support up to 5 matchers.  Support for more
2777 // matchers can be added as needed, or the user can use nested
2778 // AnyOf()s.
2779 template <typename Matcher1, typename Matcher2>
2780 inline internal::EitherOfMatcher<Matcher1, Matcher2>
2781 AnyOf(Matcher1 m1, Matcher2 m2) {
2782   return internal::EitherOfMatcher<Matcher1, Matcher2>(m1, m2);
2783 }
2784 
2785 template <typename Matcher1, typename Matcher2, typename Matcher3>
2786 inline internal::EitherOfMatcher<Matcher1,
2787            internal::EitherOfMatcher<Matcher2, Matcher3> >
2788 AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
2789   return AnyOf(m1, AnyOf(m2, m3));
2790 }
2791 
2792 template <typename Matcher1, typename Matcher2, typename Matcher3,
2793           typename Matcher4>
2794 inline internal::EitherOfMatcher<Matcher1,
2795            internal::EitherOfMatcher<Matcher2,
2796                internal::EitherOfMatcher<Matcher3, Matcher4> > >
2797 AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
2798   return AnyOf(m1, AnyOf(m2, m3, m4));
2799 }
2800 
2801 template <typename Matcher1, typename Matcher2, typename Matcher3,
2802           typename Matcher4, typename Matcher5>
2803 inline internal::EitherOfMatcher<Matcher1,
2804            internal::EitherOfMatcher<Matcher2,
2805                internal::EitherOfMatcher<Matcher3,
2806                    internal::EitherOfMatcher<Matcher4, Matcher5> > > >
2807 AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
2808   return AnyOf(m1, AnyOf(m2, m3, m4, m5));
2809 }
2810 
2811 // Returns a matcher that matches anything that satisfies the given
2812 // predicate.  The predicate can be any unary function or functor
2813 // whose return type can be implicitly converted to bool.
2814 template <typename Predicate>
2815 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
2816 Truly(Predicate pred) {
2817   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
2818 }
2819 
2820 // Returns a matcher that matches an equal container.
2821 // This matcher behaves like Eq(), but in the event of mismatch lists the
2822 // values that are included in one container but not the other. (Duplicate
2823 // values and order differences are not explained.)
2824 template <typename Container>
2825 inline PolymorphicMatcher<internal::ContainerEqMatcher<  // NOLINT
2826                             GMOCK_REMOVE_CONST_(Container)> >
2827     ContainerEq(const Container& rhs) {
2828   // This following line is for working around a bug in MSVC 8.0,
2829   // which causes Container to be a const type sometimes.
2830   typedef GMOCK_REMOVE_CONST_(Container) RawContainer;
2831   return MakePolymorphicMatcher(
2832       internal::ContainerEqMatcher<RawContainer>(rhs));
2833 }
2834 
2835 // Matches an STL-style container or a native array that contains at
2836 // least one element matching the given value or matcher.
2837 //
2838 // Examples:
2839 //   ::std::set<int> page_ids;
2840 //   page_ids.insert(3);
2841 //   page_ids.insert(1);
2842 //   EXPECT_THAT(page_ids, Contains(1));
2843 //   EXPECT_THAT(page_ids, Contains(Gt(2)));
2844 //   EXPECT_THAT(page_ids, Not(Contains(4)));
2845 //
2846 //   ::std::map<int, size_t> page_lengths;
2847 //   page_lengths[1] = 100;
2848 //   EXPECT_THAT(page_lengths,
2849 //               Contains(::std::pair<const int, size_t>(1, 100)));
2850 //
2851 //   const char* user_ids[] = { "joe", "mike", "tom" };
2852 //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
2853 template <typename M>
2854 inline internal::ContainsMatcher<M> Contains(M matcher) {
2855   return internal::ContainsMatcher<M>(matcher);
2856 }
2857 
2858 // Key(inner_matcher) matches an std::pair whose 'first' field matches
2859 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2860 // std::map that contains at least one element whose key is >= 5.
2861 template <typename M>
2862 inline internal::KeyMatcher<M> Key(M inner_matcher) {
2863   return internal::KeyMatcher<M>(inner_matcher);
2864 }
2865 
2866 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
2867 // matches first_matcher and whose 'second' field matches second_matcher.  For
2868 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
2869 // to match a std::map<int, string> that contains exactly one element whose key
2870 // is >= 5 and whose value equals "foo".
2871 template <typename FirstMatcher, typename SecondMatcher>
2872 inline internal::PairMatcher<FirstMatcher, SecondMatcher>
2873 Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
2874   return internal::PairMatcher<FirstMatcher, SecondMatcher>(
2875       first_matcher, second_matcher);
2876 }
2877 
2878 // Returns a predicate that is satisfied by anything that matches the
2879 // given matcher.
2880 template <typename M>
2881 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
2882   return internal::MatcherAsPredicate<M>(matcher);
2883 }
2884 
2885 // Returns true iff the value matches the matcher.
2886 template <typename T, typename M>
2887 inline bool Value(const T& value, M matcher) {
2888   return testing::Matches(matcher)(value);
2889 }
2890 
2891 // Matches the value against the given matcher and explains the match
2892 // result to listener.
2893 template <typename T, typename M>
2894 inline bool ExplainMatchResult(
2895     M matcher, const T& value, MatchResultListener* listener) {
2896   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
2897 }
2898 
2899 // AllArgs(m) is a synonym of m.  This is useful in
2900 //
2901 //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
2902 //
2903 // which is easier to read than
2904 //
2905 //   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
2906 template <typename InnerMatcher>
2907 inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
2908 
2909 // These macros allow using matchers to check values in Google Test
2910 // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
2911 // succeed iff the value matches the matcher.  If the assertion fails,
2912 // the value and the description of the matcher will be printed.
2913 #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
2914     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
2915 #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
2916     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
2917 
2918 }  // namespace testing
2919 
2920 #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
2921