1 #pragma once
2 
3 #include <array> // array
4 #include <cmath>   // signbit, isfinite
5 #include <cstdint> // intN_t, uintN_t
6 #include <cstring> // memcpy, memmove
7 #include <limits> // numeric_limits
8 #include <type_traits> // conditional
9 
10 #include <nlohmann/detail/macro_scope.hpp>
11 
12 namespace nlohmann
13 {
14 namespace detail
15 {
16 
17 /*!
18 @brief implements the Grisu2 algorithm for binary to decimal floating-point
19 conversion.
20 
21 This implementation is a slightly modified version of the reference
22 implementation which may be obtained from
23 http://florian.loitsch.com/publications (bench.tar.gz).
24 
25 The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch.
26 
27 For a detailed description of the algorithm see:
28 
29 [1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with
30     Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming
31     Language Design and Implementation, PLDI 2010
32 [2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately",
33     Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language
34     Design and Implementation, PLDI 1996
35 */
36 namespace dtoa_impl
37 {
38 
39 template<typename Target, typename Source>
40 Target reinterpret_bits(const Source source)
41 {
42     static_assert(sizeof(Target) == sizeof(Source), "size mismatch");
43 
44     Target target;
45     std::memcpy(&target, &source, sizeof(Source));
46     return target;
47 }
48 
49 struct diyfp // f * 2^e
50 {
51     static constexpr int kPrecision = 64; // = q
52 
53     std::uint64_t f = 0;
54     int e = 0;
55 
diyfpnlohmann::detail::dtoa_impl::diyfp56     constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {}
57 
58     /*!
59     @brief returns x - y
60     @pre x.e == y.e and x.f >= y.f
61     */
subnlohmann::detail::dtoa_impl::diyfp62     static diyfp sub(const diyfp& x, const diyfp& y) noexcept
63     {
64         JSON_ASSERT(x.e == y.e);
65         JSON_ASSERT(x.f >= y.f);
66 
67         return {x.f - y.f, x.e};
68     }
69 
70     /*!
71     @brief returns x * y
72     @note The result is rounded. (Only the upper q bits are returned.)
73     */
mulnlohmann::detail::dtoa_impl::diyfp74     static diyfp mul(const diyfp& x, const diyfp& y) noexcept
75     {
76         static_assert(kPrecision == 64, "internal error");
77 
78         // Computes:
79         //  f = round((x.f * y.f) / 2^q)
80         //  e = x.e + y.e + q
81 
82         // Emulate the 64-bit * 64-bit multiplication:
83         //
84         // p = u * v
85         //   = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)
86         //   = (u_lo v_lo         ) + 2^32 ((u_lo v_hi         ) + (u_hi v_lo         )) + 2^64 (u_hi v_hi         )
87         //   = (p0                ) + 2^32 ((p1                ) + (p2                )) + 2^64 (p3                )
88         //   = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3                )
89         //   = (p0_lo             ) + 2^32 (p0_hi + p1_lo + p2_lo                      ) + 2^64 (p1_hi + p2_hi + p3)
90         //   = (p0_lo             ) + 2^32 (Q                                          ) + 2^64 (H                 )
91         //   = (p0_lo             ) + 2^32 (Q_lo + 2^32 Q_hi                           ) + 2^64 (H                 )
92         //
93         // (Since Q might be larger than 2^32 - 1)
94         //
95         //   = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)
96         //
97         // (Q_hi + H does not overflow a 64-bit int)
98         //
99         //   = p_lo + 2^64 p_hi
100 
101         const std::uint64_t u_lo = x.f & 0xFFFFFFFFu;
102         const std::uint64_t u_hi = x.f >> 32u;
103         const std::uint64_t v_lo = y.f & 0xFFFFFFFFu;
104         const std::uint64_t v_hi = y.f >> 32u;
105 
106         const std::uint64_t p0 = u_lo * v_lo;
107         const std::uint64_t p1 = u_lo * v_hi;
108         const std::uint64_t p2 = u_hi * v_lo;
109         const std::uint64_t p3 = u_hi * v_hi;
110 
111         const std::uint64_t p0_hi = p0 >> 32u;
112         const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu;
113         const std::uint64_t p1_hi = p1 >> 32u;
114         const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu;
115         const std::uint64_t p2_hi = p2 >> 32u;
116 
117         std::uint64_t Q = p0_hi + p1_lo + p2_lo;
118 
119         // The full product might now be computed as
120         //
121         // p_hi = p3 + p2_hi + p1_hi + (Q >> 32)
122         // p_lo = p0_lo + (Q << 32)
123         //
124         // But in this particular case here, the full p_lo is not required.
125         // Effectively we only need to add the highest bit in p_lo to p_hi (and
126         // Q_hi + 1 does not overflow).
127 
128         Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up
129 
130         const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u);
131 
132         return {h, x.e + y.e + 64};
133     }
134 
135     /*!
136     @brief normalize x such that the significand is >= 2^(q-1)
137     @pre x.f != 0
138     */
normalizenlohmann::detail::dtoa_impl::diyfp139     static diyfp normalize(diyfp x) noexcept
140     {
141         JSON_ASSERT(x.f != 0);
142 
143         while ((x.f >> 63u) == 0)
144         {
145             x.f <<= 1u;
146             x.e--;
147         }
148 
149         return x;
150     }
151 
152     /*!
153     @brief normalize x such that the result has the exponent E
154     @pre e >= x.e and the upper e - x.e bits of x.f must be zero.
155     */
normalize_tonlohmann::detail::dtoa_impl::diyfp156     static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept
157     {
158         const int delta = x.e - target_exponent;
159 
160         JSON_ASSERT(delta >= 0);
161         JSON_ASSERT(((x.f << delta) >> delta) == x.f);
162 
163         return {x.f << delta, target_exponent};
164     }
165 };
166 
167 struct boundaries
168 {
169     diyfp w;
170     diyfp minus;
171     diyfp plus;
172 };
173 
174 /*!
175 Compute the (normalized) diyfp representing the input number 'value' and its
176 boundaries.
177 
178 @pre value must be finite and positive
179 */
180 template<typename FloatType>
compute_boundaries(FloatType value)181 boundaries compute_boundaries(FloatType value)
182 {
183     JSON_ASSERT(std::isfinite(value));
184     JSON_ASSERT(value > 0);
185 
186     // Convert the IEEE representation into a diyfp.
187     //
188     // If v is denormal:
189     //      value = 0.F * 2^(1 - bias) = (          F) * 2^(1 - bias - (p-1))
190     // If v is normalized:
191     //      value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))
192 
193     static_assert(std::numeric_limits<FloatType>::is_iec559,
194                   "internal error: dtoa_short requires an IEEE-754 floating-point implementation");
195 
196     constexpr int      kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)
197     constexpr int      kBias      = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1);
198     constexpr int      kMinExp    = 1 - kBias;
199     constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1)
200 
201     using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t, std::uint64_t >::type;
202 
203     const std::uint64_t bits = reinterpret_bits<bits_type>(value);
204     const std::uint64_t E = bits >> (kPrecision - 1);
205     const std::uint64_t F = bits & (kHiddenBit - 1);
206 
207     const bool is_denormal = E == 0;
208     const diyfp v = is_denormal
209                     ? diyfp(F, kMinExp)
210                     : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias);
211 
212     // Compute the boundaries m- and m+ of the floating-point value
213     // v = f * 2^e.
214     //
215     // Determine v- and v+, the floating-point predecessor and successor if v,
216     // respectively.
217     //
218     //      v- = v - 2^e        if f != 2^(p-1) or e == e_min                (A)
219     //         = v - 2^(e-1)    if f == 2^(p-1) and e > e_min                (B)
220     //
221     //      v+ = v + 2^e
222     //
223     // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_
224     // between m- and m+ round to v, regardless of how the input rounding
225     // algorithm breaks ties.
226     //
227     //      ---+-------------+-------------+-------------+-------------+---  (A)
228     //         v-            m-            v             m+            v+
229     //
230     //      -----------------+------+------+-------------+-------------+---  (B)
231     //                       v-     m-     v             m+            v+
232 
233     const bool lower_boundary_is_closer = F == 0 && E > 1;
234     const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1);
235     const diyfp m_minus = lower_boundary_is_closer
236                           ? diyfp(4 * v.f - 1, v.e - 2)  // (B)
237                           : diyfp(2 * v.f - 1, v.e - 1); // (A)
238 
239     // Determine the normalized w+ = m+.
240     const diyfp w_plus = diyfp::normalize(m_plus);
241 
242     // Determine w- = m- such that e_(w-) = e_(w+).
243     const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e);
244 
245     return {diyfp::normalize(v), w_minus, w_plus};
246 }
247 
248 // Given normalized diyfp w, Grisu needs to find a (normalized) cached
249 // power-of-ten c, such that the exponent of the product c * w = f * 2^e lies
250 // within a certain range [alpha, gamma] (Definition 3.2 from [1])
251 //
252 //      alpha <= e = e_c + e_w + q <= gamma
253 //
254 // or
255 //
256 //      f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q
257 //                          <= f_c * f_w * 2^gamma
258 //
259 // Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies
260 //
261 //      2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma
262 //
263 // or
264 //
265 //      2^(q - 2 + alpha) <= c * w < 2^(q + gamma)
266 //
267 // The choice of (alpha,gamma) determines the size of the table and the form of
268 // the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well
269 // in practice:
270 //
271 // The idea is to cut the number c * w = f * 2^e into two parts, which can be
272 // processed independently: An integral part p1, and a fractional part p2:
273 //
274 //      f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e
275 //              = (f div 2^-e) + (f mod 2^-e) * 2^e
276 //              = p1 + p2 * 2^e
277 //
278 // The conversion of p1 into decimal form requires a series of divisions and
279 // modulos by (a power of) 10. These operations are faster for 32-bit than for
280 // 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be
281 // achieved by choosing
282 //
283 //      -e >= 32   or   e <= -32 := gamma
284 //
285 // In order to convert the fractional part
286 //
287 //      p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...
288 //
289 // into decimal form, the fraction is repeatedly multiplied by 10 and the digits
290 // d[-i] are extracted in order:
291 //
292 //      (10 * p2) div 2^-e = d[-1]
293 //      (10 * p2) mod 2^-e = d[-2] / 10^1 + ...
294 //
295 // The multiplication by 10 must not overflow. It is sufficient to choose
296 //
297 //      10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.
298 //
299 // Since p2 = f mod 2^-e < 2^-e,
300 //
301 //      -e <= 60   or   e >= -60 := alpha
302 
303 constexpr int kAlpha = -60;
304 constexpr int kGamma = -32;
305 
306 struct cached_power // c = f * 2^e ~= 10^k
307 {
308     std::uint64_t f;
309     int e;
310     int k;
311 };
312 
313 /*!
314 For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached
315 power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c
316 satisfies (Definition 3.2 from [1])
317 
318      alpha <= e_c + e + q <= gamma.
319 */
get_cached_power_for_binary_exponent(int e)320 inline cached_power get_cached_power_for_binary_exponent(int e)
321 {
322     // Now
323     //
324     //      alpha <= e_c + e + q <= gamma                                    (1)
325     //      ==> f_c * 2^alpha <= c * 2^e * 2^q
326     //
327     // and since the c's are normalized, 2^(q-1) <= f_c,
328     //
329     //      ==> 2^(q - 1 + alpha) <= c * 2^(e + q)
330     //      ==> 2^(alpha - e - 1) <= c
331     //
332     // If c were an exact power of ten, i.e. c = 10^k, one may determine k as
333     //
334     //      k = ceil( log_10( 2^(alpha - e - 1) ) )
335     //        = ceil( (alpha - e - 1) * log_10(2) )
336     //
337     // From the paper:
338     // "In theory the result of the procedure could be wrong since c is rounded,
339     //  and the computation itself is approximated [...]. In practice, however,
340     //  this simple function is sufficient."
341     //
342     // For IEEE double precision floating-point numbers converted into
343     // normalized diyfp's w = f * 2^e, with q = 64,
344     //
345     //      e >= -1022      (min IEEE exponent)
346     //           -52        (p - 1)
347     //           -52        (p - 1, possibly normalize denormal IEEE numbers)
348     //           -11        (normalize the diyfp)
349     //         = -1137
350     //
351     // and
352     //
353     //      e <= +1023      (max IEEE exponent)
354     //           -52        (p - 1)
355     //           -11        (normalize the diyfp)
356     //         = 960
357     //
358     // This binary exponent range [-1137,960] results in a decimal exponent
359     // range [-307,324]. One does not need to store a cached power for each
360     // k in this range. For each such k it suffices to find a cached power
361     // such that the exponent of the product lies in [alpha,gamma].
362     // This implies that the difference of the decimal exponents of adjacent
363     // table entries must be less than or equal to
364     //
365     //      floor( (gamma - alpha) * log_10(2) ) = 8.
366     //
367     // (A smaller distance gamma-alpha would require a larger table.)
368 
369     // NB:
370     // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.
371 
372     constexpr int kCachedPowersMinDecExp = -300;
373     constexpr int kCachedPowersDecStep = 8;
374 
375     static constexpr std::array<cached_power, 79> kCachedPowers =
376     {
377         {
378             { 0xAB70FE17C79AC6CA, -1060, -300 },
379             { 0xFF77B1FCBEBCDC4F, -1034, -292 },
380             { 0xBE5691EF416BD60C, -1007, -284 },
381             { 0x8DD01FAD907FFC3C,  -980, -276 },
382             { 0xD3515C2831559A83,  -954, -268 },
383             { 0x9D71AC8FADA6C9B5,  -927, -260 },
384             { 0xEA9C227723EE8BCB,  -901, -252 },
385             { 0xAECC49914078536D,  -874, -244 },
386             { 0x823C12795DB6CE57,  -847, -236 },
387             { 0xC21094364DFB5637,  -821, -228 },
388             { 0x9096EA6F3848984F,  -794, -220 },
389             { 0xD77485CB25823AC7,  -768, -212 },
390             { 0xA086CFCD97BF97F4,  -741, -204 },
391             { 0xEF340A98172AACE5,  -715, -196 },
392             { 0xB23867FB2A35B28E,  -688, -188 },
393             { 0x84C8D4DFD2C63F3B,  -661, -180 },
394             { 0xC5DD44271AD3CDBA,  -635, -172 },
395             { 0x936B9FCEBB25C996,  -608, -164 },
396             { 0xDBAC6C247D62A584,  -582, -156 },
397             { 0xA3AB66580D5FDAF6,  -555, -148 },
398             { 0xF3E2F893DEC3F126,  -529, -140 },
399             { 0xB5B5ADA8AAFF80B8,  -502, -132 },
400             { 0x87625F056C7C4A8B,  -475, -124 },
401             { 0xC9BCFF6034C13053,  -449, -116 },
402             { 0x964E858C91BA2655,  -422, -108 },
403             { 0xDFF9772470297EBD,  -396, -100 },
404             { 0xA6DFBD9FB8E5B88F,  -369,  -92 },
405             { 0xF8A95FCF88747D94,  -343,  -84 },
406             { 0xB94470938FA89BCF,  -316,  -76 },
407             { 0x8A08F0F8BF0F156B,  -289,  -68 },
408             { 0xCDB02555653131B6,  -263,  -60 },
409             { 0x993FE2C6D07B7FAC,  -236,  -52 },
410             { 0xE45C10C42A2B3B06,  -210,  -44 },
411             { 0xAA242499697392D3,  -183,  -36 },
412             { 0xFD87B5F28300CA0E,  -157,  -28 },
413             { 0xBCE5086492111AEB,  -130,  -20 },
414             { 0x8CBCCC096F5088CC,  -103,  -12 },
415             { 0xD1B71758E219652C,   -77,   -4 },
416             { 0x9C40000000000000,   -50,    4 },
417             { 0xE8D4A51000000000,   -24,   12 },
418             { 0xAD78EBC5AC620000,     3,   20 },
419             { 0x813F3978F8940984,    30,   28 },
420             { 0xC097CE7BC90715B3,    56,   36 },
421             { 0x8F7E32CE7BEA5C70,    83,   44 },
422             { 0xD5D238A4ABE98068,   109,   52 },
423             { 0x9F4F2726179A2245,   136,   60 },
424             { 0xED63A231D4C4FB27,   162,   68 },
425             { 0xB0DE65388CC8ADA8,   189,   76 },
426             { 0x83C7088E1AAB65DB,   216,   84 },
427             { 0xC45D1DF942711D9A,   242,   92 },
428             { 0x924D692CA61BE758,   269,  100 },
429             { 0xDA01EE641A708DEA,   295,  108 },
430             { 0xA26DA3999AEF774A,   322,  116 },
431             { 0xF209787BB47D6B85,   348,  124 },
432             { 0xB454E4A179DD1877,   375,  132 },
433             { 0x865B86925B9BC5C2,   402,  140 },
434             { 0xC83553C5C8965D3D,   428,  148 },
435             { 0x952AB45CFA97A0B3,   455,  156 },
436             { 0xDE469FBD99A05FE3,   481,  164 },
437             { 0xA59BC234DB398C25,   508,  172 },
438             { 0xF6C69A72A3989F5C,   534,  180 },
439             { 0xB7DCBF5354E9BECE,   561,  188 },
440             { 0x88FCF317F22241E2,   588,  196 },
441             { 0xCC20CE9BD35C78A5,   614,  204 },
442             { 0x98165AF37B2153DF,   641,  212 },
443             { 0xE2A0B5DC971F303A,   667,  220 },
444             { 0xA8D9D1535CE3B396,   694,  228 },
445             { 0xFB9B7CD9A4A7443C,   720,  236 },
446             { 0xBB764C4CA7A44410,   747,  244 },
447             { 0x8BAB8EEFB6409C1A,   774,  252 },
448             { 0xD01FEF10A657842C,   800,  260 },
449             { 0x9B10A4E5E9913129,   827,  268 },
450             { 0xE7109BFBA19C0C9D,   853,  276 },
451             { 0xAC2820D9623BF429,   880,  284 },
452             { 0x80444B5E7AA7CF85,   907,  292 },
453             { 0xBF21E44003ACDD2D,   933,  300 },
454             { 0x8E679C2F5E44FF8F,   960,  308 },
455             { 0xD433179D9C8CB841,   986,  316 },
456             { 0x9E19DB92B4E31BA9,  1013,  324 },
457         }
458     };
459 
460     // This computation gives exactly the same results for k as
461     //      k = ceil((kAlpha - e - 1) * 0.30102999566398114)
462     // for |e| <= 1500, but doesn't require floating-point operations.
463     // NB: log_10(2) ~= 78913 / 2^18
464     JSON_ASSERT(e >= -1500);
465     JSON_ASSERT(e <=  1500);
466     const int f = kAlpha - e - 1;
467     const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0);
468 
469     const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep;
470     JSON_ASSERT(index >= 0);
471     JSON_ASSERT(static_cast<std::size_t>(index) < kCachedPowers.size());
472 
473     const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)];
474     JSON_ASSERT(kAlpha <= cached.e + e + 64);
475     JSON_ASSERT(kGamma >= cached.e + e + 64);
476 
477     return cached;
478 }
479 
480 /*!
481 For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k.
482 For n == 0, returns 1 and sets pow10 := 1.
483 */
find_largest_pow10(const std::uint32_t n,std::uint32_t & pow10)484 inline int find_largest_pow10(const std::uint32_t n, std::uint32_t& pow10)
485 {
486     // LCOV_EXCL_START
487     if (n >= 1000000000)
488     {
489         pow10 = 1000000000;
490         return 10;
491     }
492     // LCOV_EXCL_STOP
493     else if (n >= 100000000)
494     {
495         pow10 = 100000000;
496         return  9;
497     }
498     else if (n >= 10000000)
499     {
500         pow10 = 10000000;
501         return  8;
502     }
503     else if (n >= 1000000)
504     {
505         pow10 = 1000000;
506         return  7;
507     }
508     else if (n >= 100000)
509     {
510         pow10 = 100000;
511         return  6;
512     }
513     else if (n >= 10000)
514     {
515         pow10 = 10000;
516         return  5;
517     }
518     else if (n >= 1000)
519     {
520         pow10 = 1000;
521         return  4;
522     }
523     else if (n >= 100)
524     {
525         pow10 = 100;
526         return  3;
527     }
528     else if (n >= 10)
529     {
530         pow10 = 10;
531         return  2;
532     }
533     else
534     {
535         pow10 = 1;
536         return 1;
537     }
538 }
539 
grisu2_round(char * buf,int len,std::uint64_t dist,std::uint64_t delta,std::uint64_t rest,std::uint64_t ten_k)540 inline void grisu2_round(char* buf, int len, std::uint64_t dist, std::uint64_t delta,
541                          std::uint64_t rest, std::uint64_t ten_k)
542 {
543     JSON_ASSERT(len >= 1);
544     JSON_ASSERT(dist <= delta);
545     JSON_ASSERT(rest <= delta);
546     JSON_ASSERT(ten_k > 0);
547 
548     //               <--------------------------- delta ---->
549     //                                  <---- dist --------->
550     // --------------[------------------+-------------------]--------------
551     //               M-                 w                   M+
552     //
553     //                                  ten_k
554     //                                <------>
555     //                                       <---- rest ---->
556     // --------------[------------------+----+--------------]--------------
557     //                                  w    V
558     //                                       = buf * 10^k
559     //
560     // ten_k represents a unit-in-the-last-place in the decimal representation
561     // stored in buf.
562     // Decrement buf by ten_k while this takes buf closer to w.
563 
564     // The tests are written in this order to avoid overflow in unsigned
565     // integer arithmetic.
566 
567     while (rest < dist
568             && delta - rest >= ten_k
569             && (rest + ten_k < dist || dist - rest > rest + ten_k - dist))
570     {
571         JSON_ASSERT(buf[len - 1] != '0');
572         buf[len - 1]--;
573         rest += ten_k;
574     }
575 }
576 
577 /*!
578 Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+.
579 M- and M+ must be normalized and share the same exponent -60 <= e <= -32.
580 */
grisu2_digit_gen(char * buffer,int & length,int & decimal_exponent,diyfp M_minus,diyfp w,diyfp M_plus)581 inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent,
582                              diyfp M_minus, diyfp w, diyfp M_plus)
583 {
584     static_assert(kAlpha >= -60, "internal error");
585     static_assert(kGamma <= -32, "internal error");
586 
587     // Generates the digits (and the exponent) of a decimal floating-point
588     // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's
589     // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma.
590     //
591     //               <--------------------------- delta ---->
592     //                                  <---- dist --------->
593     // --------------[------------------+-------------------]--------------
594     //               M-                 w                   M+
595     //
596     // Grisu2 generates the digits of M+ from left to right and stops as soon as
597     // V is in [M-,M+].
598 
599     JSON_ASSERT(M_plus.e >= kAlpha);
600     JSON_ASSERT(M_plus.e <= kGamma);
601 
602     std::uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e)
603     std::uint64_t dist  = diyfp::sub(M_plus, w      ).f; // (significand of (M+ - w ), implicit exponent is e)
604 
605     // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):
606     //
607     //      M+ = f * 2^e
608     //         = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e
609     //         = ((p1        ) * 2^-e + (p2        )) * 2^e
610     //         = p1 + p2 * 2^e
611 
612     const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e);
613 
614     auto p1 = static_cast<std::uint32_t>(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)
615     std::uint64_t p2 = M_plus.f & (one.f - 1);                    // p2 = f mod 2^-e
616 
617     // 1)
618     //
619     // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]
620 
621     JSON_ASSERT(p1 > 0);
622 
623     std::uint32_t pow10;
624     const int k = find_largest_pow10(p1, pow10);
625 
626     //      10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)
627     //
628     //      p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))
629     //         = (d[k-1]         ) * 10^(k-1) + (p1 mod 10^(k-1))
630     //
631     //      M+ = p1                                             + p2 * 2^e
632     //         = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1))          + p2 * 2^e
633     //         = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e
634     //         = d[k-1] * 10^(k-1) + (                         rest) * 2^e
635     //
636     // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)
637     //
638     //      p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]
639     //
640     // but stop as soon as
641     //
642     //      rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e
643 
644     int n = k;
645     while (n > 0)
646     {
647         // Invariants:
648         //      M+ = buffer * 10^n + (p1 + p2 * 2^e)    (buffer = 0 for n = k)
649         //      pow10 = 10^(n-1) <= p1 < 10^n
650         //
651         const std::uint32_t d = p1 / pow10;  // d = p1 div 10^(n-1)
652         const std::uint32_t r = p1 % pow10;  // r = p1 mod 10^(n-1)
653         //
654         //      M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e
655         //         = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)
656         //
657         JSON_ASSERT(d <= 9);
658         buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
659         //
660         //      M+ = buffer * 10^(n-1) + (r + p2 * 2^e)
661         //
662         p1 = r;
663         n--;
664         //
665         //      M+ = buffer * 10^n + (p1 + p2 * 2^e)
666         //      pow10 = 10^n
667         //
668 
669         // Now check if enough digits have been generated.
670         // Compute
671         //
672         //      p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e
673         //
674         // Note:
675         // Since rest and delta share the same exponent e, it suffices to
676         // compare the significands.
677         const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2;
678         if (rest <= delta)
679         {
680             // V = buffer * 10^n, with M- <= V <= M+.
681 
682             decimal_exponent += n;
683 
684             // We may now just stop. But instead look if the buffer could be
685             // decremented to bring V closer to w.
686             //
687             // pow10 = 10^n is now 1 ulp in the decimal representation V.
688             // The rounding procedure works with diyfp's with an implicit
689             // exponent of e.
690             //
691             //      10^n = (10^n * 2^-e) * 2^e = ulp * 2^e
692             //
693             const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e;
694             grisu2_round(buffer, length, dist, delta, rest, ten_n);
695 
696             return;
697         }
698 
699         pow10 /= 10;
700         //
701         //      pow10 = 10^(n-1) <= p1 < 10^n
702         // Invariants restored.
703     }
704 
705     // 2)
706     //
707     // The digits of the integral part have been generated:
708     //
709     //      M+ = d[k-1]...d[1]d[0] + p2 * 2^e
710     //         = buffer            + p2 * 2^e
711     //
712     // Now generate the digits of the fractional part p2 * 2^e.
713     //
714     // Note:
715     // No decimal point is generated: the exponent is adjusted instead.
716     //
717     // p2 actually represents the fraction
718     //
719     //      p2 * 2^e
720     //          = p2 / 2^-e
721     //          = d[-1] / 10^1 + d[-2] / 10^2 + ...
722     //
723     // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)
724     //
725     //      p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m
726     //                      + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)
727     //
728     // using
729     //
730     //      10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)
731     //                = (                   d) * 2^-e + (                   r)
732     //
733     // or
734     //      10^m * p2 * 2^e = d + r * 2^e
735     //
736     // i.e.
737     //
738     //      M+ = buffer + p2 * 2^e
739     //         = buffer + 10^-m * (d + r * 2^e)
740     //         = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e
741     //
742     // and stop as soon as 10^-m * r * 2^e <= delta * 2^e
743 
744     JSON_ASSERT(p2 > delta);
745 
746     int m = 0;
747     for (;;)
748     {
749         // Invariant:
750         //      M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e
751         //         = buffer * 10^-m + 10^-m * (p2                                 ) * 2^e
752         //         = buffer * 10^-m + 10^-m * (1/10 * (10 * p2)                   ) * 2^e
753         //         = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e
754         //
755         JSON_ASSERT(p2 <= (std::numeric_limits<std::uint64_t>::max)() / 10);
756         p2 *= 10;
757         const std::uint64_t d = p2 >> -one.e;     // d = (10 * p2) div 2^-e
758         const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e
759         //
760         //      M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e
761         //         = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))
762         //         = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e
763         //
764         JSON_ASSERT(d <= 9);
765         buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
766         //
767         //      M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e
768         //
769         p2 = r;
770         m++;
771         //
772         //      M+ = buffer * 10^-m + 10^-m * p2 * 2^e
773         // Invariant restored.
774 
775         // Check if enough digits have been generated.
776         //
777         //      10^-m * p2 * 2^e <= delta * 2^e
778         //              p2 * 2^e <= 10^m * delta * 2^e
779         //                    p2 <= 10^m * delta
780         delta *= 10;
781         dist  *= 10;
782         if (p2 <= delta)
783         {
784             break;
785         }
786     }
787 
788     // V = buffer * 10^-m, with M- <= V <= M+.
789 
790     decimal_exponent -= m;
791 
792     // 1 ulp in the decimal representation is now 10^-m.
793     // Since delta and dist are now scaled by 10^m, we need to do the
794     // same with ulp in order to keep the units in sync.
795     //
796     //      10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e
797     //
798     const std::uint64_t ten_m = one.f;
799     grisu2_round(buffer, length, dist, delta, p2, ten_m);
800 
801     // By construction this algorithm generates the shortest possible decimal
802     // number (Loitsch, Theorem 6.2) which rounds back to w.
803     // For an input number of precision p, at least
804     //
805     //      N = 1 + ceil(p * log_10(2))
806     //
807     // decimal digits are sufficient to identify all binary floating-point
808     // numbers (Matula, "In-and-Out conversions").
809     // This implies that the algorithm does not produce more than N decimal
810     // digits.
811     //
812     //      N = 17 for p = 53 (IEEE double precision)
813     //      N = 9  for p = 24 (IEEE single precision)
814 }
815 
816 /*!
817 v = buf * 10^decimal_exponent
818 len is the length of the buffer (number of decimal digits)
819 The buffer must be large enough, i.e. >= max_digits10.
820 */
821 JSON_HEDLEY_NON_NULL(1)
grisu2(char * buf,int & len,int & decimal_exponent,diyfp m_minus,diyfp v,diyfp m_plus)822 inline void grisu2(char* buf, int& len, int& decimal_exponent,
823                    diyfp m_minus, diyfp v, diyfp m_plus)
824 {
825     JSON_ASSERT(m_plus.e == m_minus.e);
826     JSON_ASSERT(m_plus.e == v.e);
827 
828     //  --------(-----------------------+-----------------------)--------    (A)
829     //          m-                      v                       m+
830     //
831     //  --------------------(-----------+-----------------------)--------    (B)
832     //                      m-          v                       m+
833     //
834     // First scale v (and m- and m+) such that the exponent is in the range
835     // [alpha, gamma].
836 
837     const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e);
838 
839     const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k
840 
841     // The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma]
842     const diyfp w       = diyfp::mul(v,       c_minus_k);
843     const diyfp w_minus = diyfp::mul(m_minus, c_minus_k);
844     const diyfp w_plus  = diyfp::mul(m_plus,  c_minus_k);
845 
846     //  ----(---+---)---------------(---+---)---------------(---+---)----
847     //          w-                      w                       w+
848     //          = c*m-                  = c*v                   = c*m+
849     //
850     // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and
851     // w+ are now off by a small amount.
852     // In fact:
853     //
854     //      w - v * 10^k < 1 ulp
855     //
856     // To account for this inaccuracy, add resp. subtract 1 ulp.
857     //
858     //  --------+---[---------------(---+---)---------------]---+--------
859     //          w-  M-                  w                   M+  w+
860     //
861     // Now any number in [M-, M+] (bounds included) will round to w when input,
862     // regardless of how the input rounding algorithm breaks ties.
863     //
864     // And digit_gen generates the shortest possible such number in [M-, M+].
865     // Note that this does not mean that Grisu2 always generates the shortest
866     // possible number in the interval (m-, m+).
867     const diyfp M_minus(w_minus.f + 1, w_minus.e);
868     const diyfp M_plus (w_plus.f  - 1, w_plus.e );
869 
870     decimal_exponent = -cached.k; // = -(-k) = k
871 
872     grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus);
873 }
874 
875 /*!
876 v = buf * 10^decimal_exponent
877 len is the length of the buffer (number of decimal digits)
878 The buffer must be large enough, i.e. >= max_digits10.
879 */
880 template<typename FloatType>
881 JSON_HEDLEY_NON_NULL(1)
grisu2(char * buf,int & len,int & decimal_exponent,FloatType value)882 void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value)
883 {
884     static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3,
885                   "internal error: not enough precision");
886 
887     JSON_ASSERT(std::isfinite(value));
888     JSON_ASSERT(value > 0);
889 
890     // If the neighbors (and boundaries) of 'value' are always computed for double-precision
891     // numbers, all float's can be recovered using strtod (and strtof). However, the resulting
892     // decimal representations are not exactly "short".
893     //
894     // The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars)
895     // says "value is converted to a string as if by std::sprintf in the default ("C") locale"
896     // and since sprintf promotes float's to double's, I think this is exactly what 'std::to_chars'
897     // does.
898     // On the other hand, the documentation for 'std::to_chars' requires that "parsing the
899     // representation using the corresponding std::from_chars function recovers value exactly". That
900     // indicates that single precision floating-point numbers should be recovered using
901     // 'std::strtof'.
902     //
903     // NB: If the neighbors are computed for single-precision numbers, there is a single float
904     //     (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision
905     //     value is off by 1 ulp.
906 #if 0
907     const boundaries w = compute_boundaries(static_cast<double>(value));
908 #else
909     const boundaries w = compute_boundaries(value);
910 #endif
911 
912     grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus);
913 }
914 
915 /*!
916 @brief appends a decimal representation of e to buf
917 @return a pointer to the element following the exponent.
918 @pre -1000 < e < 1000
919 */
920 JSON_HEDLEY_NON_NULL(1)
921 JSON_HEDLEY_RETURNS_NON_NULL
append_exponent(char * buf,int e)922 inline char* append_exponent(char* buf, int e)
923 {
924     JSON_ASSERT(e > -1000);
925     JSON_ASSERT(e <  1000);
926 
927     if (e < 0)
928     {
929         e = -e;
930         *buf++ = '-';
931     }
932     else
933     {
934         *buf++ = '+';
935     }
936 
937     auto k = static_cast<std::uint32_t>(e);
938     if (k < 10)
939     {
940         // Always print at least two digits in the exponent.
941         // This is for compatibility with printf("%g").
942         *buf++ = '0';
943         *buf++ = static_cast<char>('0' + k);
944     }
945     else if (k < 100)
946     {
947         *buf++ = static_cast<char>('0' + k / 10);
948         k %= 10;
949         *buf++ = static_cast<char>('0' + k);
950     }
951     else
952     {
953         *buf++ = static_cast<char>('0' + k / 100);
954         k %= 100;
955         *buf++ = static_cast<char>('0' + k / 10);
956         k %= 10;
957         *buf++ = static_cast<char>('0' + k);
958     }
959 
960     return buf;
961 }
962 
963 /*!
964 @brief prettify v = buf * 10^decimal_exponent
965 
966 If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point
967 notation. Otherwise it will be printed in exponential notation.
968 
969 @pre min_exp < 0
970 @pre max_exp > 0
971 */
972 JSON_HEDLEY_NON_NULL(1)
973 JSON_HEDLEY_RETURNS_NON_NULL
format_buffer(char * buf,int len,int decimal_exponent,int min_exp,int max_exp)974 inline char* format_buffer(char* buf, int len, int decimal_exponent,
975                            int min_exp, int max_exp)
976 {
977     JSON_ASSERT(min_exp < 0);
978     JSON_ASSERT(max_exp > 0);
979 
980     const int k = len;
981     const int n = len + decimal_exponent;
982 
983     // v = buf * 10^(n-k)
984     // k is the length of the buffer (number of decimal digits)
985     // n is the position of the decimal point relative to the start of the buffer.
986 
987     if (k <= n && n <= max_exp)
988     {
989         // digits[000]
990         // len <= max_exp + 2
991 
992         std::memset(buf + k, '0', static_cast<size_t>(n) - static_cast<size_t>(k));
993         // Make it look like a floating-point number (#362, #378)
994         buf[n + 0] = '.';
995         buf[n + 1] = '0';
996         return buf + (static_cast<size_t>(n) + 2);
997     }
998 
999     if (0 < n && n <= max_exp)
1000     {
1001         // dig.its
1002         // len <= max_digits10 + 1
1003 
1004         JSON_ASSERT(k > n);
1005 
1006         std::memmove(buf + (static_cast<size_t>(n) + 1), buf + n, static_cast<size_t>(k) - static_cast<size_t>(n));
1007         buf[n] = '.';
1008         return buf + (static_cast<size_t>(k) + 1U);
1009     }
1010 
1011     if (min_exp < n && n <= 0)
1012     {
1013         // 0.[000]digits
1014         // len <= 2 + (-min_exp - 1) + max_digits10
1015 
1016         std::memmove(buf + (2 + static_cast<size_t>(-n)), buf, static_cast<size_t>(k));
1017         buf[0] = '0';
1018         buf[1] = '.';
1019         std::memset(buf + 2, '0', static_cast<size_t>(-n));
1020         return buf + (2U + static_cast<size_t>(-n) + static_cast<size_t>(k));
1021     }
1022 
1023     if (k == 1)
1024     {
1025         // dE+123
1026         // len <= 1 + 5
1027 
1028         buf += 1;
1029     }
1030     else
1031     {
1032         // d.igitsE+123
1033         // len <= max_digits10 + 1 + 5
1034 
1035         std::memmove(buf + 2, buf + 1, static_cast<size_t>(k) - 1);
1036         buf[1] = '.';
1037         buf += 1 + static_cast<size_t>(k);
1038     }
1039 
1040     *buf++ = 'e';
1041     return append_exponent(buf, n - 1);
1042 }
1043 
1044 } // namespace dtoa_impl
1045 
1046 /*!
1047 @brief generates a decimal representation of the floating-point number value in [first, last).
1048 
1049 The format of the resulting decimal representation is similar to printf's %g
1050 format. Returns an iterator pointing past-the-end of the decimal representation.
1051 
1052 @note The input number must be finite, i.e. NaN's and Inf's are not supported.
1053 @note The buffer must be large enough.
1054 @note The result is NOT null-terminated.
1055 */
1056 template<typename FloatType>
1057 JSON_HEDLEY_NON_NULL(1, 2)
1058 JSON_HEDLEY_RETURNS_NON_NULL
to_chars(char * first,const char * last,FloatType value)1059 char* to_chars(char* first, const char* last, FloatType value)
1060 {
1061     static_cast<void>(last); // maybe unused - fix warning
1062     JSON_ASSERT(std::isfinite(value));
1063 
1064     // Use signbit(value) instead of (value < 0) since signbit works for -0.
1065     if (std::signbit(value))
1066     {
1067         value = -value;
1068         *first++ = '-';
1069     }
1070 
1071     if (value == 0) // +-0
1072     {
1073         *first++ = '0';
1074         // Make it look like a floating-point number (#362, #378)
1075         *first++ = '.';
1076         *first++ = '0';
1077         return first;
1078     }
1079 
1080     JSON_ASSERT(last - first >= std::numeric_limits<FloatType>::max_digits10);
1081 
1082     // Compute v = buffer * 10^decimal_exponent.
1083     // The decimal digits are stored in the buffer, which needs to be interpreted
1084     // as an unsigned decimal integer.
1085     // len is the length of the buffer, i.e. the number of decimal digits.
1086     int len = 0;
1087     int decimal_exponent = 0;
1088     dtoa_impl::grisu2(first, len, decimal_exponent, value);
1089 
1090     JSON_ASSERT(len <= std::numeric_limits<FloatType>::max_digits10);
1091 
1092     // Format the buffer like printf("%.*g", prec, value)
1093     constexpr int kMinExp = -4;
1094     // Use digits10 here to increase compatibility with version 2.
1095     constexpr int kMaxExp = std::numeric_limits<FloatType>::digits10;
1096 
1097     JSON_ASSERT(last - first >= kMaxExp + 2);
1098     JSON_ASSERT(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits<FloatType>::max_digits10);
1099     JSON_ASSERT(last - first >= std::numeric_limits<FloatType>::max_digits10 + 6);
1100 
1101     return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp);
1102 }
1103 
1104 } // namespace detail
1105 } // namespace nlohmann
1106