1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date:        12. March 2014
5 * $Revision: 	V1.4.4
6 *
7 * Project: 	    CMSIS DSP Library
8 * Title:	    arm_math.h
9 *
10 * Description:	Public header file for CMSIS DSP Library
11 *
12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 *   - Redistributions of source code must retain the above copyright
18 *     notice, this list of conditions and the following disclaimer.
19 *   - Redistributions in binary form must reproduce the above copyright
20 *     notice, this list of conditions and the following disclaimer in
21 *     the documentation and/or other materials provided with the
22 *     distribution.
23 *   - Neither the name of ARM LIMITED nor the names of its contributors
24 *     may be used to endorse or promote products derived from this
25 *     software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39  * -------------------------------------------------------------------- */
40 
41 /**
42    \mainpage CMSIS DSP Software Library
43    *
44    * Introduction
45    * ------------
46    *
47    * This user manual describes the CMSIS DSP software library,
48    * a suite of common signal processing functions for use on Cortex-M processor based devices.
49    *
50    * The library is divided into a number of functions each covering a specific category:
51    * - Basic math functions
52    * - Fast math functions
53    * - Complex math functions
54    * - Filters
55    * - Matrix functions
56    * - Transforms
57    * - Motor control functions
58    * - Statistical functions
59    * - Support functions
60    * - Interpolation functions
61    *
62    * The library has separate functions for operating on 8-bit integers, 16-bit integers,
63    * 32-bit integer and 32-bit floating-point values.
64    *
65    * Using the Library
66    * ------------
67    *
68    * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
69    * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
70    * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
71    * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
72    * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
73    * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
74    * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
75    * - arm_cortexM0l_math.lib (Little endian on Cortex-M0)
76    * - arm_cortexM0b_math.lib (Big endian on Cortex-M3)
77    *
78    * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
79    * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
80    * public header file <code> arm_math.h</code> for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
81    * Define the appropriate pre processor MACRO ARM_MATH_CM4 or  ARM_MATH_CM3 or
82    * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
83    *
84    * Examples
85    * --------
86    *
87    * The library ships with a number of examples which demonstrate how to use the library functions.
88    *
89    * Toolchain Support
90    * ------------
91    *
92    * The library has been developed and tested with MDK-ARM version 4.60.
93    * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
94    *
95    * Building the Library
96    * ------------
97    *
98    * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
99    * - arm_cortexM_math.uvproj
100    *
101    *
102    * The libraries can be built by opening the arm_cortexM_math.uvproj project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
103    *
104    * Pre-processor Macros
105    * ------------
106    *
107    * Each library project have differant pre-processor macros.
108    *
109    * - UNALIGNED_SUPPORT_DISABLE:
110    *
111    * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
112    *
113    * - ARM_MATH_BIG_ENDIAN:
114    *
115    * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
116    *
117    * - ARM_MATH_MATRIX_CHECK:
118    *
119    * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
120    *
121    * - ARM_MATH_ROUNDING:
122    *
123    * Define macro ARM_MATH_ROUNDING for rounding on support functions
124    *
125    * - ARM_MATH_CMx:
126    *
127    * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
128    * and ARM_MATH_CM0 for building library on cortex-M0 target, ARM_MATH_CM0PLUS for building library on cortex-M0+ target.
129    *
130    * - __FPU_PRESENT:
131    *
132    * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
133    *
134    * <hr>
135    * CMSIS-DSP in ARM::CMSIS Pack
136    * -----------------------------
137    *
138    * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
139    * |File/Folder                   |Content                                                                 |
140    * |------------------------------|------------------------------------------------------------------------|
141    * |\b CMSIS\\Documentation\\DSP  | This documentation                                                     |
142    * |\b CMSIS\\DSP_Lib             | Software license agreement (license.txt)                               |
143    * |\b CMSIS\\DSP_Lib\\Examples   | Example projects demonstrating the usage of the library functions      |
144    * |\b CMSIS\\DSP_Lib\\Source     | Source files for rebuilding the library                                |
145    *
146    * <hr>
147    * Revision History of CMSIS-DSP
148    * ------------
149    * Please refer to \ref ChangeLog_pg.
150    *
151    * Copyright Notice
152    * ------------
153    *
154    * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
155    */
156 
157 
158 /**
159  * @defgroup groupMath Basic Math Functions
160  */
161 
162 /**
163  * @defgroup groupFastMath Fast Math Functions
164  * This set of functions provides a fast approximation to sine, cosine, and square root.
165  * As compared to most of the other functions in the CMSIS math library, the fast math functions
166  * operate on individual values and not arrays.
167  * There are separate functions for Q15, Q31, and floating-point data.
168  *
169  */
170 
171 /**
172  * @defgroup groupCmplxMath Complex Math Functions
173  * This set of functions operates on complex data vectors.
174  * The data in the complex arrays is stored in an interleaved fashion
175  * (real, imag, real, imag, ...).
176  * In the API functions, the number of samples in a complex array refers
177  * to the number of complex values; the array contains twice this number of
178  * real values.
179  */
180 
181 /**
182  * @defgroup groupFilters Filtering Functions
183  */
184 
185 /**
186  * @defgroup groupMatrix Matrix Functions
187  *
188  * This set of functions provides basic matrix math operations.
189  * The functions operate on matrix data structures.  For example,
190  * the type
191  * definition for the floating-point matrix structure is shown
192  * below:
193  * <pre>
194  *     typedef struct
195  *     {
196  *       uint16_t numRows;     // number of rows of the matrix.
197  *       uint16_t numCols;     // number of columns of the matrix.
198  *       float32_t *pData;     // points to the data of the matrix.
199  *     } arm_matrix_instance_f32;
200  * </pre>
201  * There are similar definitions for Q15 and Q31 data types.
202  *
203  * The structure specifies the size of the matrix and then points to
204  * an array of data.  The array is of size <code>numRows X numCols</code>
205  * and the values are arranged in row order.  That is, the
206  * matrix element (i, j) is stored at:
207  * <pre>
208  *     pData[i*numCols + j]
209  * </pre>
210  *
211  * \par Init Functions
212  * There is an associated initialization function for each type of matrix
213  * data structure.
214  * The initialization function sets the values of the internal structure fields.
215  * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
216  * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types,  respectively.
217  *
218  * \par
219  * Use of the initialization function is optional. However, if initialization function is used
220  * then the instance structure cannot be placed into a const data section.
221  * To place the instance structure in a const data
222  * section, manually initialize the data structure.  For example:
223  * <pre>
224  * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
225  * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
226  * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
227  * </pre>
228  * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
229  * specifies the number of columns, and <code>pData</code> points to the
230  * data array.
231  *
232  * \par Size Checking
233  * By default all of the matrix functions perform size checking on the input and
234  * output matrices.  For example, the matrix addition function verifies that the
235  * two input matrices and the output matrix all have the same number of rows and
236  * columns.  If the size check fails the functions return:
237  * <pre>
238  *     ARM_MATH_SIZE_MISMATCH
239  * </pre>
240  * Otherwise the functions return
241  * <pre>
242  *     ARM_MATH_SUCCESS
243  * </pre>
244  * There is some overhead associated with this matrix size checking.
245  * The matrix size checking is enabled via the \#define
246  * <pre>
247  *     ARM_MATH_MATRIX_CHECK
248  * </pre>
249  * within the library project settings.  By default this macro is defined
250  * and size checking is enabled.  By changing the project settings and
251  * undefining this macro size checking is eliminated and the functions
252  * run a bit faster.  With size checking disabled the functions always
253  * return <code>ARM_MATH_SUCCESS</code>.
254  */
255 
256 /**
257  * @defgroup groupTransforms Transform Functions
258  */
259 
260 /**
261  * @defgroup groupController Controller Functions
262  */
263 
264 /**
265  * @defgroup groupStats Statistics Functions
266  */
267 /**
268  * @defgroup groupSupport Support Functions
269  */
270 
271 /**
272  * @defgroup groupInterpolation Interpolation Functions
273  * These functions perform 1- and 2-dimensional interpolation of data.
274  * Linear interpolation is used for 1-dimensional data and
275  * bilinear interpolation is used for 2-dimensional data.
276  */
277 
278 /**
279  * @defgroup groupExamples Examples
280  */
281 #ifndef _ARM_MATH_H
282 #define _ARM_MATH_H
283 
284 #define __CMSIS_GENERIC         /* disable NVIC and Systick functions */
285 
286 #if defined(ARM_MATH_CM7)
287   #include "core_cm7.h"
288 #elif defined (ARM_MATH_CM4)
289   #include "core_cm4.h"
290 #elif defined (ARM_MATH_CM3)
291   #include "core_cm3.h"
292 #elif defined (ARM_MATH_CM0)
293   #include "core_cm0.h"
294 #define ARM_MATH_CM0_FAMILY
295   #elif defined (ARM_MATH_CM0PLUS)
296 #include "core_cm0plus.h"
297   #define ARM_MATH_CM0_FAMILY
298 #else
299   #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
300 #endif
301 
302 #undef  __CMSIS_GENERIC         /* enable NVIC and Systick functions */
303 #include "string.h"
304 #include "math.h"
305 #ifdef	__cplusplus
306 extern "C"
307 {
308 #endif
309 
310 
311   /**
312    * @brief Macros required for reciprocal calculation in Normalized LMS
313    */
314 
315 #define DELTA_Q31 			(0x100)
316 #define DELTA_Q15 			0x5
317 #define INDEX_MASK 			0x0000003F
318 #ifndef PI
319 #define PI					3.14159265358979f
320 #endif
321 
322   /**
323    * @brief Macros required for SINE and COSINE Fast math approximations
324    */
325 
326 #define FAST_MATH_TABLE_SIZE  512
327 #define FAST_MATH_Q31_SHIFT   (32 - 10)
328 #define FAST_MATH_Q15_SHIFT   (16 - 10)
329 #define CONTROLLER_Q31_SHIFT  (32 - 9)
330 #define TABLE_SIZE  256
331 #define TABLE_SPACING_Q31	   0x400000
332 #define TABLE_SPACING_Q15	   0x80
333 
334   /**
335    * @brief Macros required for SINE and COSINE Controller functions
336    */
337   /* 1.31(q31) Fixed value of 2/360 */
338   /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
339 #define INPUT_SPACING			0xB60B61
340 
341   /**
342    * @brief Macro for Unaligned Support
343    */
344 #ifndef UNALIGNED_SUPPORT_DISABLE
345     #define ALIGN4
346 #else
347   #if defined  (__GNUC__)
348     #define ALIGN4 __attribute__((aligned(4)))
349   #else
350     #define ALIGN4 __align(4)
351   #endif
352 #endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/
353 
354   /**
355    * @brief Error status returned by some functions in the library.
356    */
357 
358   typedef enum
359   {
360     ARM_MATH_SUCCESS = 0,                /**< No error */
361     ARM_MATH_ARGUMENT_ERROR = -1,        /**< One or more arguments are incorrect */
362     ARM_MATH_LENGTH_ERROR = -2,          /**< Length of data buffer is incorrect */
363     ARM_MATH_SIZE_MISMATCH = -3,         /**< Size of matrices is not compatible with the operation. */
364     ARM_MATH_NANINF = -4,                /**< Not-a-number (NaN) or infinity is generated */
365     ARM_MATH_SINGULAR = -5,              /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
366     ARM_MATH_TEST_FAILURE = -6           /**< Test Failed  */
367   } arm_status;
368 
369   /**
370    * @brief 8-bit fractional data type in 1.7 format.
371    */
372   typedef int8_t q7_t;
373 
374   /**
375    * @brief 16-bit fractional data type in 1.15 format.
376    */
377   typedef int16_t q15_t;
378 
379   /**
380    * @brief 32-bit fractional data type in 1.31 format.
381    */
382   typedef int32_t q31_t;
383 
384   /**
385    * @brief 64-bit fractional data type in 1.63 format.
386    */
387   typedef int64_t q63_t;
388 
389   /**
390    * @brief 32-bit floating-point type definition.
391    */
392   typedef float float32_t;
393 
394   /**
395    * @brief 64-bit floating-point type definition.
396    */
397   typedef double float64_t;
398 
399   /**
400    * @brief definition to read/write two 16 bit values.
401    */
402 #if defined __CC_ARM
403 #define __SIMD32_TYPE int32_t __packed
404 #define CMSIS_UNUSED __attribute__((unused))
405 #elif defined __ICCARM__
406 #define CMSIS_UNUSED
407 #define __SIMD32_TYPE int32_t __packed
408 #elif defined __GNUC__
409 #define __SIMD32_TYPE int32_t
410 #define CMSIS_UNUSED __attribute__((unused))
411 #elif defined __CSMC__			/* Cosmic */
412 #define CMSIS_UNUSED
413 #define __SIMD32_TYPE int32_t
414 #else
415 #error Unknown compiler
416 #endif
417 
418 #define __SIMD32(addr)  (*(__SIMD32_TYPE **) & (addr))
419 #define __SIMD32_CONST(addr)  ((__SIMD32_TYPE *)(addr))
420 
421 #define _SIMD32_OFFSET(addr)  (*(__SIMD32_TYPE *)  (addr))
422 
423 #define __SIMD64(addr)  (*(int64_t **) & (addr))
424 
425 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
426   /**
427    * @brief definition to pack two 16 bit values.
428    */
429 #define __PKHBT(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0x0000FFFF) | \
430                                          (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000)  )
431 #define __PKHTB(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0xFFFF0000) | \
432                                          (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF)  )
433 
434 #endif
435 
436 
437    /**
438    * @brief definition to pack four 8 bit values.
439    */
440 #ifndef ARM_MATH_BIG_ENDIAN
441 
442 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) <<  0) & (int32_t)0x000000FF) |	\
443                                 (((int32_t)(v1) <<  8) & (int32_t)0x0000FF00) |	\
444 							    (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) |	\
445 							    (((int32_t)(v3) << 24) & (int32_t)0xFF000000)  )
446 #else
447 
448 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) <<  0) & (int32_t)0x000000FF) |	\
449                                 (((int32_t)(v2) <<  8) & (int32_t)0x0000FF00) |	\
450 							    (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) |	\
451 							    (((int32_t)(v0) << 24) & (int32_t)0xFF000000)  )
452 
453 #endif
454 
455 
456   /**
457    * @brief Clips Q63 to Q31 values.
458    */
clip_q63_to_q31(q63_t x)459   static __INLINE q31_t clip_q63_to_q31(
460   q63_t x)
461   {
462     return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
463       ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
464   }
465 
466   /**
467    * @brief Clips Q63 to Q15 values.
468    */
clip_q63_to_q15(q63_t x)469   static __INLINE q15_t clip_q63_to_q15(
470   q63_t x)
471   {
472     return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
473       ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
474   }
475 
476   /**
477    * @brief Clips Q31 to Q7 values.
478    */
clip_q31_to_q7(q31_t x)479   static __INLINE q7_t clip_q31_to_q7(
480   q31_t x)
481   {
482     return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
483       ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
484   }
485 
486   /**
487    * @brief Clips Q31 to Q15 values.
488    */
clip_q31_to_q15(q31_t x)489   static __INLINE q15_t clip_q31_to_q15(
490   q31_t x)
491   {
492     return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
493       ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
494   }
495 
496   /**
497    * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
498    */
499 
mult32x64(q63_t x,q31_t y)500   static __INLINE q63_t mult32x64(
501   q63_t x,
502   q31_t y)
503   {
504     return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
505             (((q63_t) (x >> 32) * y)));
506   }
507 
508 
509 #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM   )
510 #define __CLZ __clz
511 #endif
512 
513 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) || defined (__TASKING__) )
514 
515   static __INLINE uint32_t __CLZ(
516   q31_t data);
517 
518 
__CLZ(q31_t data)519   static __INLINE uint32_t __CLZ(
520   q31_t data)
521   {
522     uint32_t count = 0;
523     uint32_t mask = 0x80000000;
524 
525     while((data & mask) == 0)
526     {
527       count += 1u;
528       mask = mask >> 1u;
529     }
530 
531     return (count);
532 
533   }
534 
535 #endif
536 
537   /**
538    * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
539    */
540 
arm_recip_q31(q31_t in,q31_t * dst,q31_t * pRecipTable)541   static __INLINE uint32_t arm_recip_q31(
542   q31_t in,
543   q31_t * dst,
544   q31_t * pRecipTable)
545   {
546 
547     uint32_t out, tempVal;
548     uint32_t index, i;
549     uint32_t signBits;
550 
551     if(in > 0)
552     {
553       signBits = __CLZ(in) - 1;
554     }
555     else
556     {
557       signBits = __CLZ(-in) - 1;
558     }
559 
560     /* Convert input sample to 1.31 format */
561     in = in << signBits;
562 
563     /* calculation of index for initial approximated Val */
564     index = (uint32_t) (in >> 24u);
565     index = (index & INDEX_MASK);
566 
567     /* 1.31 with exp 1 */
568     out = pRecipTable[index];
569 
570     /* calculation of reciprocal value */
571     /* running approximation for two iterations */
572     for (i = 0u; i < 2u; i++)
573     {
574       tempVal = (q31_t) (((q63_t) in * out) >> 31u);
575       tempVal = 0x7FFFFFFF - tempVal;
576       /*      1.31 with exp 1 */
577       //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
578       out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
579     }
580 
581     /* write output */
582     *dst = out;
583 
584     /* return num of signbits of out = 1/in value */
585     return (signBits + 1u);
586 
587   }
588 
589   /**
590    * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
591    */
arm_recip_q15(q15_t in,q15_t * dst,q15_t * pRecipTable)592   static __INLINE uint32_t arm_recip_q15(
593   q15_t in,
594   q15_t * dst,
595   q15_t * pRecipTable)
596   {
597 
598     uint32_t out = 0, tempVal = 0;
599     uint32_t index = 0, i = 0;
600     uint32_t signBits = 0;
601 
602     if(in > 0)
603     {
604       signBits = __CLZ(in) - 17;
605     }
606     else
607     {
608       signBits = __CLZ(-in) - 17;
609     }
610 
611     /* Convert input sample to 1.15 format */
612     in = in << signBits;
613 
614     /* calculation of index for initial approximated Val */
615     index = in >> 8;
616     index = (index & INDEX_MASK);
617 
618     /*      1.15 with exp 1  */
619     out = pRecipTable[index];
620 
621     /* calculation of reciprocal value */
622     /* running approximation for two iterations */
623     for (i = 0; i < 2; i++)
624     {
625       tempVal = (q15_t) (((q31_t) in * out) >> 15);
626       tempVal = 0x7FFF - tempVal;
627       /*      1.15 with exp 1 */
628       out = (q15_t) (((q31_t) out * tempVal) >> 14);
629     }
630 
631     /* write output */
632     *dst = out;
633 
634     /* return num of signbits of out = 1/in value */
635     return (signBits + 1);
636 
637   }
638 
639 
640   /*
641    * @brief C custom defined intrinisic function for only M0 processors
642    */
643 #if defined(ARM_MATH_CM0_FAMILY)
644 
__SSAT(q31_t x,uint32_t y)645   static __INLINE q31_t __SSAT(
646   q31_t x,
647   uint32_t y)
648   {
649     int32_t posMax, negMin;
650     uint32_t i;
651 
652     posMax = 1;
653     for (i = 0; i < (y - 1); i++)
654     {
655       posMax = posMax * 2;
656     }
657 
658     if(x > 0)
659     {
660       posMax = (posMax - 1);
661 
662       if(x > posMax)
663       {
664         x = posMax;
665       }
666     }
667     else
668     {
669       negMin = -posMax;
670 
671       if(x < negMin)
672       {
673         x = negMin;
674       }
675     }
676     return (x);
677 
678 
679   }
680 
681 #endif /* end of ARM_MATH_CM0_FAMILY */
682 
683 
684 
685   /*
686    * @brief C custom defined intrinsic function for M3 and M0 processors
687    */
688 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
689 
690   /*
691    * @brief C custom defined QADD8 for M3 and M0 processors
692    */
__QADD8(q31_t x,q31_t y)693   static __INLINE q31_t __QADD8(
694   q31_t x,
695   q31_t y)
696   {
697 
698     q31_t sum;
699     q7_t r, s, t, u;
700 
701     r = (q7_t) x;
702     s = (q7_t) y;
703 
704     r = __SSAT((q31_t) (r + s), 8);
705     s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
706     t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
707     u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
708 
709     sum =
710       (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
711       (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
712 
713     return sum;
714 
715   }
716 
717   /*
718    * @brief C custom defined QSUB8 for M3 and M0 processors
719    */
__QSUB8(q31_t x,q31_t y)720   static __INLINE q31_t __QSUB8(
721   q31_t x,
722   q31_t y)
723   {
724 
725     q31_t sum;
726     q31_t r, s, t, u;
727 
728     r = (q7_t) x;
729     s = (q7_t) y;
730 
731     r = __SSAT((r - s), 8);
732     s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
733     t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
734     u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
735 
736     sum =
737       (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
738                                                                 0x000000FF);
739 
740     return sum;
741   }
742 
743   /*
744    * @brief C custom defined QADD16 for M3 and M0 processors
745    */
746 
747   /*
748    * @brief C custom defined QADD16 for M3 and M0 processors
749    */
__QADD16(q31_t x,q31_t y)750   static __INLINE q31_t __QADD16(
751   q31_t x,
752   q31_t y)
753   {
754 
755     q31_t sum;
756     q31_t r, s;
757 
758     r = (q15_t) x;
759     s = (q15_t) y;
760 
761     r = __SSAT(r + s, 16);
762     s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
763 
764     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
765 
766     return sum;
767 
768   }
769 
770   /*
771    * @brief C custom defined SHADD16 for M3 and M0 processors
772    */
__SHADD16(q31_t x,q31_t y)773   static __INLINE q31_t __SHADD16(
774   q31_t x,
775   q31_t y)
776   {
777 
778     q31_t sum;
779     q31_t r, s;
780 
781     r = (q15_t) x;
782     s = (q15_t) y;
783 
784     r = ((r >> 1) + (s >> 1));
785     s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
786 
787     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
788 
789     return sum;
790 
791   }
792 
793   /*
794    * @brief C custom defined QSUB16 for M3 and M0 processors
795    */
__QSUB16(q31_t x,q31_t y)796   static __INLINE q31_t __QSUB16(
797   q31_t x,
798   q31_t y)
799   {
800 
801     q31_t sum;
802     q31_t r, s;
803 
804     r = (q15_t) x;
805     s = (q15_t) y;
806 
807     r = __SSAT(r - s, 16);
808     s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
809 
810     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
811 
812     return sum;
813   }
814 
815   /*
816    * @brief C custom defined SHSUB16 for M3 and M0 processors
817    */
__SHSUB16(q31_t x,q31_t y)818   static __INLINE q31_t __SHSUB16(
819   q31_t x,
820   q31_t y)
821   {
822 
823     q31_t diff;
824     q31_t r, s;
825 
826     r = (q15_t) x;
827     s = (q15_t) y;
828 
829     r = ((r >> 1) - (s >> 1));
830     s = (((x >> 17) - (y >> 17)) << 16);
831 
832     diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
833 
834     return diff;
835   }
836 
837   /*
838    * @brief C custom defined QASX for M3 and M0 processors
839    */
__QASX(q31_t x,q31_t y)840   static __INLINE q31_t __QASX(
841   q31_t x,
842   q31_t y)
843   {
844 
845     q31_t sum = 0;
846 
847     sum =
848       ((sum +
849         clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) +
850       clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16)));
851 
852     return sum;
853   }
854 
855   /*
856    * @brief C custom defined SHASX for M3 and M0 processors
857    */
__SHASX(q31_t x,q31_t y)858   static __INLINE q31_t __SHASX(
859   q31_t x,
860   q31_t y)
861   {
862 
863     q31_t sum;
864     q31_t r, s;
865 
866     r = (q15_t) x;
867     s = (q15_t) y;
868 
869     r = ((r >> 1) - (y >> 17));
870     s = (((x >> 17) + (s >> 1)) << 16);
871 
872     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
873 
874     return sum;
875   }
876 
877 
878   /*
879    * @brief C custom defined QSAX for M3 and M0 processors
880    */
__QSAX(q31_t x,q31_t y)881   static __INLINE q31_t __QSAX(
882   q31_t x,
883   q31_t y)
884   {
885 
886     q31_t sum = 0;
887 
888     sum =
889       ((sum +
890         clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) +
891       clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16)));
892 
893     return sum;
894   }
895 
896   /*
897    * @brief C custom defined SHSAX for M3 and M0 processors
898    */
__SHSAX(q31_t x,q31_t y)899   static __INLINE q31_t __SHSAX(
900   q31_t x,
901   q31_t y)
902   {
903 
904     q31_t sum;
905     q31_t r, s;
906 
907     r = (q15_t) x;
908     s = (q15_t) y;
909 
910     r = ((r >> 1) + (y >> 17));
911     s = (((x >> 17) - (s >> 1)) << 16);
912 
913     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
914 
915     return sum;
916   }
917 
918   /*
919    * @brief C custom defined SMUSDX for M3 and M0 processors
920    */
__SMUSDX(q31_t x,q31_t y)921   static __INLINE q31_t __SMUSDX(
922   q31_t x,
923   q31_t y)
924   {
925 
926     return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) -
927                      ((q15_t) (x >> 16) * (q15_t) y)));
928   }
929 
930   /*
931    * @brief C custom defined SMUADX for M3 and M0 processors
932    */
__SMUADX(q31_t x,q31_t y)933   static __INLINE q31_t __SMUADX(
934   q31_t x,
935   q31_t y)
936   {
937 
938     return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) +
939                      ((q15_t) (x >> 16) * (q15_t) y)));
940   }
941 
942   /*
943    * @brief C custom defined QADD for M3 and M0 processors
944    */
__QADD(q31_t x,q31_t y)945   static __INLINE q31_t __QADD(
946   q31_t x,
947   q31_t y)
948   {
949     return clip_q63_to_q31((q63_t) x + y);
950   }
951 
952   /*
953    * @brief C custom defined QSUB for M3 and M0 processors
954    */
__QSUB(q31_t x,q31_t y)955   static __INLINE q31_t __QSUB(
956   q31_t x,
957   q31_t y)
958   {
959     return clip_q63_to_q31((q63_t) x - y);
960   }
961 
962   /*
963    * @brief C custom defined SMLAD for M3 and M0 processors
964    */
__SMLAD(q31_t x,q31_t y,q31_t sum)965   static __INLINE q31_t __SMLAD(
966   q31_t x,
967   q31_t y,
968   q31_t sum)
969   {
970 
971     return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
972             ((q15_t) x * (q15_t) y));
973   }
974 
975   /*
976    * @brief C custom defined SMLADX for M3 and M0 processors
977    */
__SMLADX(q31_t x,q31_t y,q31_t sum)978   static __INLINE q31_t __SMLADX(
979   q31_t x,
980   q31_t y,
981   q31_t sum)
982   {
983 
984     return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) +
985             ((q15_t) x * (q15_t) (y >> 16)));
986   }
987 
988   /*
989    * @brief C custom defined SMLSDX for M3 and M0 processors
990    */
__SMLSDX(q31_t x,q31_t y,q31_t sum)991   static __INLINE q31_t __SMLSDX(
992   q31_t x,
993   q31_t y,
994   q31_t sum)
995   {
996 
997     return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) +
998             ((q15_t) x * (q15_t) (y >> 16)));
999   }
1000 
1001   /*
1002    * @brief C custom defined SMLALD for M3 and M0 processors
1003    */
__SMLALD(q31_t x,q31_t y,q63_t sum)1004   static __INLINE q63_t __SMLALD(
1005   q31_t x,
1006   q31_t y,
1007   q63_t sum)
1008   {
1009 
1010     return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
1011             ((q15_t) x * (q15_t) y));
1012   }
1013 
1014   /*
1015    * @brief C custom defined SMLALDX for M3 and M0 processors
1016    */
__SMLALDX(q31_t x,q31_t y,q63_t sum)1017   static __INLINE q63_t __SMLALDX(
1018   q31_t x,
1019   q31_t y,
1020   q63_t sum)
1021   {
1022 
1023     return (sum + ((q15_t) (x >> 16) * (q15_t) y)) +
1024       ((q15_t) x * (q15_t) (y >> 16));
1025   }
1026 
1027   /*
1028    * @brief C custom defined SMUAD for M3 and M0 processors
1029    */
__SMUAD(q31_t x,q31_t y)1030   static __INLINE q31_t __SMUAD(
1031   q31_t x,
1032   q31_t y)
1033   {
1034 
1035     return (((x >> 16) * (y >> 16)) +
1036             (((x << 16) >> 16) * ((y << 16) >> 16)));
1037   }
1038 
1039   /*
1040    * @brief C custom defined SMUSD for M3 and M0 processors
1041    */
__SMUSD(q31_t x,q31_t y)1042   static __INLINE q31_t __SMUSD(
1043   q31_t x,
1044   q31_t y)
1045   {
1046 
1047     return (-((x >> 16) * (y >> 16)) +
1048             (((x << 16) >> 16) * ((y << 16) >> 16)));
1049   }
1050 
1051 
1052   /*
1053    * @brief C custom defined SXTB16 for M3 and M0 processors
1054    */
__SXTB16(q31_t x)1055   static __INLINE q31_t __SXTB16(
1056   q31_t x)
1057   {
1058 
1059     return ((((x << 24) >> 24) & 0x0000FFFF) |
1060             (((x << 8) >> 8) & 0xFFFF0000));
1061   }
1062 
1063 
1064 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
1065 
1066 
1067   /**
1068    * @brief Instance structure for the Q7 FIR filter.
1069    */
1070   typedef struct
1071   {
1072     uint16_t numTaps;        /**< number of filter coefficients in the filter. */
1073     q7_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
1074     q7_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
1075   } arm_fir_instance_q7;
1076 
1077   /**
1078    * @brief Instance structure for the Q15 FIR filter.
1079    */
1080   typedef struct
1081   {
1082     uint16_t numTaps;         /**< number of filter coefficients in the filter. */
1083     q15_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
1084     q15_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
1085   } arm_fir_instance_q15;
1086 
1087   /**
1088    * @brief Instance structure for the Q31 FIR filter.
1089    */
1090   typedef struct
1091   {
1092     uint16_t numTaps;         /**< number of filter coefficients in the filter. */
1093     q31_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
1094     q31_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps. */
1095   } arm_fir_instance_q31;
1096 
1097   /**
1098    * @brief Instance structure for the floating-point FIR filter.
1099    */
1100   typedef struct
1101   {
1102     uint16_t numTaps;     /**< number of filter coefficients in the filter. */
1103     float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
1104     float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */
1105   } arm_fir_instance_f32;
1106 
1107 
1108   /**
1109    * @brief Processing function for the Q7 FIR filter.
1110    * @param[in] *S points to an instance of the Q7 FIR filter structure.
1111    * @param[in] *pSrc points to the block of input data.
1112    * @param[out] *pDst points to the block of output data.
1113    * @param[in] blockSize number of samples to process.
1114    * @return none.
1115    */
1116   void arm_fir_q7(
1117   const arm_fir_instance_q7 * S,
1118   q7_t * pSrc,
1119   q7_t * pDst,
1120   uint32_t blockSize);
1121 
1122 
1123   /**
1124    * @brief  Initialization function for the Q7 FIR filter.
1125    * @param[in,out] *S points to an instance of the Q7 FIR structure.
1126    * @param[in] numTaps  Number of filter coefficients in the filter.
1127    * @param[in] *pCoeffs points to the filter coefficients.
1128    * @param[in] *pState points to the state buffer.
1129    * @param[in] blockSize number of samples that are processed.
1130    * @return none
1131    */
1132   void arm_fir_init_q7(
1133   arm_fir_instance_q7 * S,
1134   uint16_t numTaps,
1135   q7_t * pCoeffs,
1136   q7_t * pState,
1137   uint32_t blockSize);
1138 
1139 
1140   /**
1141    * @brief Processing function for the Q15 FIR filter.
1142    * @param[in] *S points to an instance of the Q15 FIR structure.
1143    * @param[in] *pSrc points to the block of input data.
1144    * @param[out] *pDst points to the block of output data.
1145    * @param[in] blockSize number of samples to process.
1146    * @return none.
1147    */
1148   void arm_fir_q15(
1149   const arm_fir_instance_q15 * S,
1150   q15_t * pSrc,
1151   q15_t * pDst,
1152   uint32_t blockSize);
1153 
1154   /**
1155    * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
1156    * @param[in] *S points to an instance of the Q15 FIR filter structure.
1157    * @param[in] *pSrc points to the block of input data.
1158    * @param[out] *pDst points to the block of output data.
1159    * @param[in] blockSize number of samples to process.
1160    * @return none.
1161    */
1162   void arm_fir_fast_q15(
1163   const arm_fir_instance_q15 * S,
1164   q15_t * pSrc,
1165   q15_t * pDst,
1166   uint32_t blockSize);
1167 
1168   /**
1169    * @brief  Initialization function for the Q15 FIR filter.
1170    * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
1171    * @param[in] numTaps  Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
1172    * @param[in] *pCoeffs points to the filter coefficients.
1173    * @param[in] *pState points to the state buffer.
1174    * @param[in] blockSize number of samples that are processed at a time.
1175    * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
1176    * <code>numTaps</code> is not a supported value.
1177    */
1178 
1179   arm_status arm_fir_init_q15(
1180   arm_fir_instance_q15 * S,
1181   uint16_t numTaps,
1182   q15_t * pCoeffs,
1183   q15_t * pState,
1184   uint32_t blockSize);
1185 
1186   /**
1187    * @brief Processing function for the Q31 FIR filter.
1188    * @param[in] *S points to an instance of the Q31 FIR filter structure.
1189    * @param[in] *pSrc points to the block of input data.
1190    * @param[out] *pDst points to the block of output data.
1191    * @param[in] blockSize number of samples to process.
1192    * @return none.
1193    */
1194   void arm_fir_q31(
1195   const arm_fir_instance_q31 * S,
1196   q31_t * pSrc,
1197   q31_t * pDst,
1198   uint32_t blockSize);
1199 
1200   /**
1201    * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
1202    * @param[in] *S points to an instance of the Q31 FIR structure.
1203    * @param[in] *pSrc points to the block of input data.
1204    * @param[out] *pDst points to the block of output data.
1205    * @param[in] blockSize number of samples to process.
1206    * @return none.
1207    */
1208   void arm_fir_fast_q31(
1209   const arm_fir_instance_q31 * S,
1210   q31_t * pSrc,
1211   q31_t * pDst,
1212   uint32_t blockSize);
1213 
1214   /**
1215    * @brief  Initialization function for the Q31 FIR filter.
1216    * @param[in,out] *S points to an instance of the Q31 FIR structure.
1217    * @param[in] 	numTaps  Number of filter coefficients in the filter.
1218    * @param[in] 	*pCoeffs points to the filter coefficients.
1219    * @param[in] 	*pState points to the state buffer.
1220    * @param[in] 	blockSize number of samples that are processed at a time.
1221    * @return 		none.
1222    */
1223   void arm_fir_init_q31(
1224   arm_fir_instance_q31 * S,
1225   uint16_t numTaps,
1226   q31_t * pCoeffs,
1227   q31_t * pState,
1228   uint32_t blockSize);
1229 
1230   /**
1231    * @brief Processing function for the floating-point FIR filter.
1232    * @param[in] *S points to an instance of the floating-point FIR structure.
1233    * @param[in] *pSrc points to the block of input data.
1234    * @param[out] *pDst points to the block of output data.
1235    * @param[in] blockSize number of samples to process.
1236    * @return none.
1237    */
1238   void arm_fir_f32(
1239   const arm_fir_instance_f32 * S,
1240   float32_t * pSrc,
1241   float32_t * pDst,
1242   uint32_t blockSize);
1243 
1244   /**
1245    * @brief  Initialization function for the floating-point FIR filter.
1246    * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
1247    * @param[in] 	numTaps  Number of filter coefficients in the filter.
1248    * @param[in] 	*pCoeffs points to the filter coefficients.
1249    * @param[in] 	*pState points to the state buffer.
1250    * @param[in] 	blockSize number of samples that are processed at a time.
1251    * @return    	none.
1252    */
1253   void arm_fir_init_f32(
1254   arm_fir_instance_f32 * S,
1255   uint16_t numTaps,
1256   float32_t * pCoeffs,
1257   float32_t * pState,
1258   uint32_t blockSize);
1259 
1260 
1261   /**
1262    * @brief Instance structure for the Q15 Biquad cascade filter.
1263    */
1264   typedef struct
1265   {
1266     int8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
1267     q15_t *pState;            /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
1268     q15_t *pCoeffs;           /**< Points to the array of coefficients.  The array is of length 5*numStages. */
1269     int8_t postShift;         /**< Additional shift, in bits, applied to each output sample. */
1270 
1271   } arm_biquad_casd_df1_inst_q15;
1272 
1273 
1274   /**
1275    * @brief Instance structure for the Q31 Biquad cascade filter.
1276    */
1277   typedef struct
1278   {
1279     uint32_t numStages;      /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
1280     q31_t *pState;           /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
1281     q31_t *pCoeffs;          /**< Points to the array of coefficients.  The array is of length 5*numStages. */
1282     uint8_t postShift;       /**< Additional shift, in bits, applied to each output sample. */
1283 
1284   } arm_biquad_casd_df1_inst_q31;
1285 
1286   /**
1287    * @brief Instance structure for the floating-point Biquad cascade filter.
1288    */
1289   typedef struct
1290   {
1291     uint32_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
1292     float32_t *pState;          /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
1293     float32_t *pCoeffs;         /**< Points to the array of coefficients.  The array is of length 5*numStages. */
1294 
1295 
1296   } arm_biquad_casd_df1_inst_f32;
1297 
1298 
1299 
1300   /**
1301    * @brief Processing function for the Q15 Biquad cascade filter.
1302    * @param[in]  *S points to an instance of the Q15 Biquad cascade structure.
1303    * @param[in]  *pSrc points to the block of input data.
1304    * @param[out] *pDst points to the block of output data.
1305    * @param[in]  blockSize number of samples to process.
1306    * @return     none.
1307    */
1308 
1309   void arm_biquad_cascade_df1_q15(
1310   const arm_biquad_casd_df1_inst_q15 * S,
1311   q15_t * pSrc,
1312   q15_t * pDst,
1313   uint32_t blockSize);
1314 
1315   /**
1316    * @brief  Initialization function for the Q15 Biquad cascade filter.
1317    * @param[in,out] *S           points to an instance of the Q15 Biquad cascade structure.
1318    * @param[in]     numStages    number of 2nd order stages in the filter.
1319    * @param[in]     *pCoeffs     points to the filter coefficients.
1320    * @param[in]     *pState      points to the state buffer.
1321    * @param[in]     postShift    Shift to be applied to the output. Varies according to the coefficients format
1322    * @return        none
1323    */
1324 
1325   void arm_biquad_cascade_df1_init_q15(
1326   arm_biquad_casd_df1_inst_q15 * S,
1327   uint8_t numStages,
1328   q15_t * pCoeffs,
1329   q15_t * pState,
1330   int8_t postShift);
1331 
1332 
1333   /**
1334    * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
1335    * @param[in]  *S points to an instance of the Q15 Biquad cascade structure.
1336    * @param[in]  *pSrc points to the block of input data.
1337    * @param[out] *pDst points to the block of output data.
1338    * @param[in]  blockSize number of samples to process.
1339    * @return     none.
1340    */
1341 
1342   void arm_biquad_cascade_df1_fast_q15(
1343   const arm_biquad_casd_df1_inst_q15 * S,
1344   q15_t * pSrc,
1345   q15_t * pDst,
1346   uint32_t blockSize);
1347 
1348 
1349   /**
1350    * @brief Processing function for the Q31 Biquad cascade filter
1351    * @param[in]  *S         points to an instance of the Q31 Biquad cascade structure.
1352    * @param[in]  *pSrc      points to the block of input data.
1353    * @param[out] *pDst      points to the block of output data.
1354    * @param[in]  blockSize  number of samples to process.
1355    * @return     none.
1356    */
1357 
1358   void arm_biquad_cascade_df1_q31(
1359   const arm_biquad_casd_df1_inst_q31 * S,
1360   q31_t * pSrc,
1361   q31_t * pDst,
1362   uint32_t blockSize);
1363 
1364   /**
1365    * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
1366    * @param[in]  *S         points to an instance of the Q31 Biquad cascade structure.
1367    * @param[in]  *pSrc      points to the block of input data.
1368    * @param[out] *pDst      points to the block of output data.
1369    * @param[in]  blockSize  number of samples to process.
1370    * @return     none.
1371    */
1372 
1373   void arm_biquad_cascade_df1_fast_q31(
1374   const arm_biquad_casd_df1_inst_q31 * S,
1375   q31_t * pSrc,
1376   q31_t * pDst,
1377   uint32_t blockSize);
1378 
1379   /**
1380    * @brief  Initialization function for the Q31 Biquad cascade filter.
1381    * @param[in,out] *S           points to an instance of the Q31 Biquad cascade structure.
1382    * @param[in]     numStages      number of 2nd order stages in the filter.
1383    * @param[in]     *pCoeffs     points to the filter coefficients.
1384    * @param[in]     *pState      points to the state buffer.
1385    * @param[in]     postShift    Shift to be applied to the output. Varies according to the coefficients format
1386    * @return        none
1387    */
1388 
1389   void arm_biquad_cascade_df1_init_q31(
1390   arm_biquad_casd_df1_inst_q31 * S,
1391   uint8_t numStages,
1392   q31_t * pCoeffs,
1393   q31_t * pState,
1394   int8_t postShift);
1395 
1396   /**
1397    * @brief Processing function for the floating-point Biquad cascade filter.
1398    * @param[in]  *S         points to an instance of the floating-point Biquad cascade structure.
1399    * @param[in]  *pSrc      points to the block of input data.
1400    * @param[out] *pDst      points to the block of output data.
1401    * @param[in]  blockSize  number of samples to process.
1402    * @return     none.
1403    */
1404 
1405   void arm_biquad_cascade_df1_f32(
1406   const arm_biquad_casd_df1_inst_f32 * S,
1407   float32_t * pSrc,
1408   float32_t * pDst,
1409   uint32_t blockSize);
1410 
1411   /**
1412    * @brief  Initialization function for the floating-point Biquad cascade filter.
1413    * @param[in,out] *S           points to an instance of the floating-point Biquad cascade structure.
1414    * @param[in]     numStages    number of 2nd order stages in the filter.
1415    * @param[in]     *pCoeffs     points to the filter coefficients.
1416    * @param[in]     *pState      points to the state buffer.
1417    * @return        none
1418    */
1419 
1420   void arm_biquad_cascade_df1_init_f32(
1421   arm_biquad_casd_df1_inst_f32 * S,
1422   uint8_t numStages,
1423   float32_t * pCoeffs,
1424   float32_t * pState);
1425 
1426 
1427   /**
1428    * @brief Instance structure for the floating-point matrix structure.
1429    */
1430 
1431   typedef struct
1432   {
1433     uint16_t numRows;     /**< number of rows of the matrix.     */
1434     uint16_t numCols;     /**< number of columns of the matrix.  */
1435     float32_t *pData;     /**< points to the data of the matrix. */
1436   } arm_matrix_instance_f32;
1437 
1438 
1439   /**
1440    * @brief Instance structure for the floating-point matrix structure.
1441    */
1442 
1443   typedef struct
1444   {
1445     uint16_t numRows;     /**< number of rows of the matrix.     */
1446     uint16_t numCols;     /**< number of columns of the matrix.  */
1447     float64_t *pData;     /**< points to the data of the matrix. */
1448   } arm_matrix_instance_f64;
1449 
1450   /**
1451    * @brief Instance structure for the Q15 matrix structure.
1452    */
1453 
1454   typedef struct
1455   {
1456     uint16_t numRows;     /**< number of rows of the matrix.     */
1457     uint16_t numCols;     /**< number of columns of the matrix.  */
1458     q15_t *pData;         /**< points to the data of the matrix. */
1459 
1460   } arm_matrix_instance_q15;
1461 
1462   /**
1463    * @brief Instance structure for the Q31 matrix structure.
1464    */
1465 
1466   typedef struct
1467   {
1468     uint16_t numRows;     /**< number of rows of the matrix.     */
1469     uint16_t numCols;     /**< number of columns of the matrix.  */
1470     q31_t *pData;         /**< points to the data of the matrix. */
1471 
1472   } arm_matrix_instance_q31;
1473 
1474 
1475 
1476   /**
1477    * @brief Floating-point matrix addition.
1478    * @param[in]       *pSrcA points to the first input matrix structure
1479    * @param[in]       *pSrcB points to the second input matrix structure
1480    * @param[out]      *pDst points to output matrix structure
1481    * @return     The function returns either
1482    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1483    */
1484 
1485   arm_status arm_mat_add_f32(
1486   const arm_matrix_instance_f32 * pSrcA,
1487   const arm_matrix_instance_f32 * pSrcB,
1488   arm_matrix_instance_f32 * pDst);
1489 
1490   /**
1491    * @brief Q15 matrix addition.
1492    * @param[in]       *pSrcA points to the first input matrix structure
1493    * @param[in]       *pSrcB points to the second input matrix structure
1494    * @param[out]      *pDst points to output matrix structure
1495    * @return     The function returns either
1496    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1497    */
1498 
1499   arm_status arm_mat_add_q15(
1500   const arm_matrix_instance_q15 * pSrcA,
1501   const arm_matrix_instance_q15 * pSrcB,
1502   arm_matrix_instance_q15 * pDst);
1503 
1504   /**
1505    * @brief Q31 matrix addition.
1506    * @param[in]       *pSrcA points to the first input matrix structure
1507    * @param[in]       *pSrcB points to the second input matrix structure
1508    * @param[out]      *pDst points to output matrix structure
1509    * @return     The function returns either
1510    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1511    */
1512 
1513   arm_status arm_mat_add_q31(
1514   const arm_matrix_instance_q31 * pSrcA,
1515   const arm_matrix_instance_q31 * pSrcB,
1516   arm_matrix_instance_q31 * pDst);
1517 
1518   /**
1519    * @brief Floating-point, complex, matrix multiplication.
1520    * @param[in]       *pSrcA points to the first input matrix structure
1521    * @param[in]       *pSrcB points to the second input matrix structure
1522    * @param[out]      *pDst points to output matrix structure
1523    * @return     The function returns either
1524    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1525    */
1526 
1527   arm_status arm_mat_cmplx_mult_f32(
1528   const arm_matrix_instance_f32 * pSrcA,
1529   const arm_matrix_instance_f32 * pSrcB,
1530   arm_matrix_instance_f32 * pDst);
1531 
1532   /**
1533    * @brief Q15, complex,  matrix multiplication.
1534    * @param[in]       *pSrcA points to the first input matrix structure
1535    * @param[in]       *pSrcB points to the second input matrix structure
1536    * @param[out]      *pDst points to output matrix structure
1537    * @return     The function returns either
1538    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1539    */
1540 
1541   arm_status arm_mat_cmplx_mult_q15(
1542   const arm_matrix_instance_q15 * pSrcA,
1543   const arm_matrix_instance_q15 * pSrcB,
1544   arm_matrix_instance_q15 * pDst,
1545   q15_t * pScratch);
1546 
1547   /**
1548    * @brief Q31, complex, matrix multiplication.
1549    * @param[in]       *pSrcA points to the first input matrix structure
1550    * @param[in]       *pSrcB points to the second input matrix structure
1551    * @param[out]      *pDst points to output matrix structure
1552    * @return     The function returns either
1553    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1554    */
1555 
1556   arm_status arm_mat_cmplx_mult_q31(
1557   const arm_matrix_instance_q31 * pSrcA,
1558   const arm_matrix_instance_q31 * pSrcB,
1559   arm_matrix_instance_q31 * pDst);
1560 
1561 
1562   /**
1563    * @brief Floating-point matrix transpose.
1564    * @param[in]  *pSrc points to the input matrix
1565    * @param[out] *pDst points to the output matrix
1566    * @return 	The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code>
1567    * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1568    */
1569 
1570   arm_status arm_mat_trans_f32(
1571   const arm_matrix_instance_f32 * pSrc,
1572   arm_matrix_instance_f32 * pDst);
1573 
1574 
1575   /**
1576    * @brief Q15 matrix transpose.
1577    * @param[in]  *pSrc points to the input matrix
1578    * @param[out] *pDst points to the output matrix
1579    * @return 	The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code>
1580    * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1581    */
1582 
1583   arm_status arm_mat_trans_q15(
1584   const arm_matrix_instance_q15 * pSrc,
1585   arm_matrix_instance_q15 * pDst);
1586 
1587   /**
1588    * @brief Q31 matrix transpose.
1589    * @param[in]  *pSrc points to the input matrix
1590    * @param[out] *pDst points to the output matrix
1591    * @return 	The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code>
1592    * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1593    */
1594 
1595   arm_status arm_mat_trans_q31(
1596   const arm_matrix_instance_q31 * pSrc,
1597   arm_matrix_instance_q31 * pDst);
1598 
1599 
1600   /**
1601    * @brief Floating-point matrix multiplication
1602    * @param[in]       *pSrcA points to the first input matrix structure
1603    * @param[in]       *pSrcB points to the second input matrix structure
1604    * @param[out]      *pDst points to output matrix structure
1605    * @return     The function returns either
1606    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1607    */
1608 
1609   arm_status arm_mat_mult_f32(
1610   const arm_matrix_instance_f32 * pSrcA,
1611   const arm_matrix_instance_f32 * pSrcB,
1612   arm_matrix_instance_f32 * pDst);
1613 
1614   /**
1615    * @brief Q15 matrix multiplication
1616    * @param[in]       *pSrcA points to the first input matrix structure
1617    * @param[in]       *pSrcB points to the second input matrix structure
1618    * @param[out]      *pDst points to output matrix structure
1619    * @param[in]		 *pState points to the array for storing intermediate results
1620    * @return     The function returns either
1621    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1622    */
1623 
1624   arm_status arm_mat_mult_q15(
1625   const arm_matrix_instance_q15 * pSrcA,
1626   const arm_matrix_instance_q15 * pSrcB,
1627   arm_matrix_instance_q15 * pDst,
1628   q15_t * pState);
1629 
1630   /**
1631    * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
1632    * @param[in]       *pSrcA  points to the first input matrix structure
1633    * @param[in]       *pSrcB  points to the second input matrix structure
1634    * @param[out]      *pDst   points to output matrix structure
1635    * @param[in]		  *pState points to the array for storing intermediate results
1636    * @return     The function returns either
1637    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1638    */
1639 
1640   arm_status arm_mat_mult_fast_q15(
1641   const arm_matrix_instance_q15 * pSrcA,
1642   const arm_matrix_instance_q15 * pSrcB,
1643   arm_matrix_instance_q15 * pDst,
1644   q15_t * pState);
1645 
1646   /**
1647    * @brief Q31 matrix multiplication
1648    * @param[in]       *pSrcA points to the first input matrix structure
1649    * @param[in]       *pSrcB points to the second input matrix structure
1650    * @param[out]      *pDst points to output matrix structure
1651    * @return     The function returns either
1652    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1653    */
1654 
1655   arm_status arm_mat_mult_q31(
1656   const arm_matrix_instance_q31 * pSrcA,
1657   const arm_matrix_instance_q31 * pSrcB,
1658   arm_matrix_instance_q31 * pDst);
1659 
1660   /**
1661    * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
1662    * @param[in]       *pSrcA points to the first input matrix structure
1663    * @param[in]       *pSrcB points to the second input matrix structure
1664    * @param[out]      *pDst points to output matrix structure
1665    * @return     The function returns either
1666    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1667    */
1668 
1669   arm_status arm_mat_mult_fast_q31(
1670   const arm_matrix_instance_q31 * pSrcA,
1671   const arm_matrix_instance_q31 * pSrcB,
1672   arm_matrix_instance_q31 * pDst);
1673 
1674 
1675   /**
1676    * @brief Floating-point matrix subtraction
1677    * @param[in]       *pSrcA points to the first input matrix structure
1678    * @param[in]       *pSrcB points to the second input matrix structure
1679    * @param[out]      *pDst points to output matrix structure
1680    * @return     The function returns either
1681    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1682    */
1683 
1684   arm_status arm_mat_sub_f32(
1685   const arm_matrix_instance_f32 * pSrcA,
1686   const arm_matrix_instance_f32 * pSrcB,
1687   arm_matrix_instance_f32 * pDst);
1688 
1689   /**
1690    * @brief Q15 matrix subtraction
1691    * @param[in]       *pSrcA points to the first input matrix structure
1692    * @param[in]       *pSrcB points to the second input matrix structure
1693    * @param[out]      *pDst points to output matrix structure
1694    * @return     The function returns either
1695    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1696    */
1697 
1698   arm_status arm_mat_sub_q15(
1699   const arm_matrix_instance_q15 * pSrcA,
1700   const arm_matrix_instance_q15 * pSrcB,
1701   arm_matrix_instance_q15 * pDst);
1702 
1703   /**
1704    * @brief Q31 matrix subtraction
1705    * @param[in]       *pSrcA points to the first input matrix structure
1706    * @param[in]       *pSrcB points to the second input matrix structure
1707    * @param[out]      *pDst points to output matrix structure
1708    * @return     The function returns either
1709    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1710    */
1711 
1712   arm_status arm_mat_sub_q31(
1713   const arm_matrix_instance_q31 * pSrcA,
1714   const arm_matrix_instance_q31 * pSrcB,
1715   arm_matrix_instance_q31 * pDst);
1716 
1717   /**
1718    * @brief Floating-point matrix scaling.
1719    * @param[in]  *pSrc points to the input matrix
1720    * @param[in]  scale scale factor
1721    * @param[out] *pDst points to the output matrix
1722    * @return     The function returns either
1723    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1724    */
1725 
1726   arm_status arm_mat_scale_f32(
1727   const arm_matrix_instance_f32 * pSrc,
1728   float32_t scale,
1729   arm_matrix_instance_f32 * pDst);
1730 
1731   /**
1732    * @brief Q15 matrix scaling.
1733    * @param[in]       *pSrc points to input matrix
1734    * @param[in]       scaleFract fractional portion of the scale factor
1735    * @param[in]       shift number of bits to shift the result by
1736    * @param[out]      *pDst points to output matrix
1737    * @return     The function returns either
1738    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1739    */
1740 
1741   arm_status arm_mat_scale_q15(
1742   const arm_matrix_instance_q15 * pSrc,
1743   q15_t scaleFract,
1744   int32_t shift,
1745   arm_matrix_instance_q15 * pDst);
1746 
1747   /**
1748    * @brief Q31 matrix scaling.
1749    * @param[in]       *pSrc points to input matrix
1750    * @param[in]       scaleFract fractional portion of the scale factor
1751    * @param[in]       shift number of bits to shift the result by
1752    * @param[out]      *pDst points to output matrix structure
1753    * @return     The function returns either
1754    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1755    */
1756 
1757   arm_status arm_mat_scale_q31(
1758   const arm_matrix_instance_q31 * pSrc,
1759   q31_t scaleFract,
1760   int32_t shift,
1761   arm_matrix_instance_q31 * pDst);
1762 
1763 
1764   /**
1765    * @brief  Q31 matrix initialization.
1766    * @param[in,out] *S             points to an instance of the floating-point matrix structure.
1767    * @param[in]     nRows          number of rows in the matrix.
1768    * @param[in]     nColumns       number of columns in the matrix.
1769    * @param[in]     *pData	       points to the matrix data array.
1770    * @return        none
1771    */
1772 
1773   void arm_mat_init_q31(
1774   arm_matrix_instance_q31 * S,
1775   uint16_t nRows,
1776   uint16_t nColumns,
1777   q31_t * pData);
1778 
1779   /**
1780    * @brief  Q15 matrix initialization.
1781    * @param[in,out] *S             points to an instance of the floating-point matrix structure.
1782    * @param[in]     nRows          number of rows in the matrix.
1783    * @param[in]     nColumns       number of columns in the matrix.
1784    * @param[in]     *pData	       points to the matrix data array.
1785    * @return        none
1786    */
1787 
1788   void arm_mat_init_q15(
1789   arm_matrix_instance_q15 * S,
1790   uint16_t nRows,
1791   uint16_t nColumns,
1792   q15_t * pData);
1793 
1794   /**
1795    * @brief  Floating-point matrix initialization.
1796    * @param[in,out] *S             points to an instance of the floating-point matrix structure.
1797    * @param[in]     nRows          number of rows in the matrix.
1798    * @param[in]     nColumns       number of columns in the matrix.
1799    * @param[in]     *pData	       points to the matrix data array.
1800    * @return        none
1801    */
1802 
1803   void arm_mat_init_f32(
1804   arm_matrix_instance_f32 * S,
1805   uint16_t nRows,
1806   uint16_t nColumns,
1807   float32_t * pData);
1808 
1809 
1810 
1811   /**
1812    * @brief Instance structure for the Q15 PID Control.
1813    */
1814   typedef struct
1815   {
1816     q15_t A0;    /**< The derived gain, A0 = Kp + Ki + Kd . */
1817 #ifdef ARM_MATH_CM0_FAMILY
1818     q15_t A1;
1819     q15_t A2;
1820 #else
1821     q31_t A1;           /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
1822 #endif
1823     q15_t state[3];       /**< The state array of length 3. */
1824     q15_t Kp;           /**< The proportional gain. */
1825     q15_t Ki;           /**< The integral gain. */
1826     q15_t Kd;           /**< The derivative gain. */
1827   } arm_pid_instance_q15;
1828 
1829   /**
1830    * @brief Instance structure for the Q31 PID Control.
1831    */
1832   typedef struct
1833   {
1834     q31_t A0;            /**< The derived gain, A0 = Kp + Ki + Kd . */
1835     q31_t A1;            /**< The derived gain, A1 = -Kp - 2Kd. */
1836     q31_t A2;            /**< The derived gain, A2 = Kd . */
1837     q31_t state[3];      /**< The state array of length 3. */
1838     q31_t Kp;            /**< The proportional gain. */
1839     q31_t Ki;            /**< The integral gain. */
1840     q31_t Kd;            /**< The derivative gain. */
1841 
1842   } arm_pid_instance_q31;
1843 
1844   /**
1845    * @brief Instance structure for the floating-point PID Control.
1846    */
1847   typedef struct
1848   {
1849     float32_t A0;          /**< The derived gain, A0 = Kp + Ki + Kd . */
1850     float32_t A1;          /**< The derived gain, A1 = -Kp - 2Kd. */
1851     float32_t A2;          /**< The derived gain, A2 = Kd . */
1852     float32_t state[3];    /**< The state array of length 3. */
1853     float32_t Kp;               /**< The proportional gain. */
1854     float32_t Ki;               /**< The integral gain. */
1855     float32_t Kd;               /**< The derivative gain. */
1856   } arm_pid_instance_f32;
1857 
1858 
1859 
1860   /**
1861    * @brief  Initialization function for the floating-point PID Control.
1862    * @param[in,out] *S      points to an instance of the PID structure.
1863    * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
1864    * @return none.
1865    */
1866   void arm_pid_init_f32(
1867   arm_pid_instance_f32 * S,
1868   int32_t resetStateFlag);
1869 
1870   /**
1871    * @brief  Reset function for the floating-point PID Control.
1872    * @param[in,out] *S is an instance of the floating-point PID Control structure
1873    * @return none
1874    */
1875   void arm_pid_reset_f32(
1876   arm_pid_instance_f32 * S);
1877 
1878 
1879   /**
1880    * @brief  Initialization function for the Q31 PID Control.
1881    * @param[in,out] *S points to an instance of the Q15 PID structure.
1882    * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
1883    * @return none.
1884    */
1885   void arm_pid_init_q31(
1886   arm_pid_instance_q31 * S,
1887   int32_t resetStateFlag);
1888 
1889 
1890   /**
1891    * @brief  Reset function for the Q31 PID Control.
1892    * @param[in,out] *S points to an instance of the Q31 PID Control structure
1893    * @return none
1894    */
1895 
1896   void arm_pid_reset_q31(
1897   arm_pid_instance_q31 * S);
1898 
1899   /**
1900    * @brief  Initialization function for the Q15 PID Control.
1901    * @param[in,out] *S points to an instance of the Q15 PID structure.
1902    * @param[in] resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
1903    * @return none.
1904    */
1905   void arm_pid_init_q15(
1906   arm_pid_instance_q15 * S,
1907   int32_t resetStateFlag);
1908 
1909   /**
1910    * @brief  Reset function for the Q15 PID Control.
1911    * @param[in,out] *S points to an instance of the q15 PID Control structure
1912    * @return none
1913    */
1914   void arm_pid_reset_q15(
1915   arm_pid_instance_q15 * S);
1916 
1917 
1918   /**
1919    * @brief Instance structure for the floating-point Linear Interpolate function.
1920    */
1921   typedef struct
1922   {
1923     uint32_t nValues;           /**< nValues */
1924     float32_t x1;               /**< x1 */
1925     float32_t xSpacing;         /**< xSpacing */
1926     float32_t *pYData;          /**< pointer to the table of Y values */
1927   } arm_linear_interp_instance_f32;
1928 
1929   /**
1930    * @brief Instance structure for the floating-point bilinear interpolation function.
1931    */
1932 
1933   typedef struct
1934   {
1935     uint16_t numRows;   /**< number of rows in the data table. */
1936     uint16_t numCols;   /**< number of columns in the data table. */
1937     float32_t *pData;   /**< points to the data table. */
1938   } arm_bilinear_interp_instance_f32;
1939 
1940    /**
1941    * @brief Instance structure for the Q31 bilinear interpolation function.
1942    */
1943 
1944   typedef struct
1945   {
1946     uint16_t numRows;   /**< number of rows in the data table. */
1947     uint16_t numCols;   /**< number of columns in the data table. */
1948     q31_t *pData;       /**< points to the data table. */
1949   } arm_bilinear_interp_instance_q31;
1950 
1951    /**
1952    * @brief Instance structure for the Q15 bilinear interpolation function.
1953    */
1954 
1955   typedef struct
1956   {
1957     uint16_t numRows;   /**< number of rows in the data table. */
1958     uint16_t numCols;   /**< number of columns in the data table. */
1959     q15_t *pData;       /**< points to the data table. */
1960   } arm_bilinear_interp_instance_q15;
1961 
1962    /**
1963    * @brief Instance structure for the Q15 bilinear interpolation function.
1964    */
1965 
1966   typedef struct
1967   {
1968     uint16_t numRows;   /**< number of rows in the data table. */
1969     uint16_t numCols;   /**< number of columns in the data table. */
1970     q7_t *pData;                /**< points to the data table. */
1971   } arm_bilinear_interp_instance_q7;
1972 
1973 
1974   /**
1975    * @brief Q7 vector multiplication.
1976    * @param[in]       *pSrcA points to the first input vector
1977    * @param[in]       *pSrcB points to the second input vector
1978    * @param[out]      *pDst  points to the output vector
1979    * @param[in]       blockSize number of samples in each vector
1980    * @return none.
1981    */
1982 
1983   void arm_mult_q7(
1984   q7_t * pSrcA,
1985   q7_t * pSrcB,
1986   q7_t * pDst,
1987   uint32_t blockSize);
1988 
1989   /**
1990    * @brief Q15 vector multiplication.
1991    * @param[in]       *pSrcA points to the first input vector
1992    * @param[in]       *pSrcB points to the second input vector
1993    * @param[out]      *pDst  points to the output vector
1994    * @param[in]       blockSize number of samples in each vector
1995    * @return none.
1996    */
1997 
1998   void arm_mult_q15(
1999   q15_t * pSrcA,
2000   q15_t * pSrcB,
2001   q15_t * pDst,
2002   uint32_t blockSize);
2003 
2004   /**
2005    * @brief Q31 vector multiplication.
2006    * @param[in]       *pSrcA points to the first input vector
2007    * @param[in]       *pSrcB points to the second input vector
2008    * @param[out]      *pDst points to the output vector
2009    * @param[in]       blockSize number of samples in each vector
2010    * @return none.
2011    */
2012 
2013   void arm_mult_q31(
2014   q31_t * pSrcA,
2015   q31_t * pSrcB,
2016   q31_t * pDst,
2017   uint32_t blockSize);
2018 
2019   /**
2020    * @brief Floating-point vector multiplication.
2021    * @param[in]       *pSrcA points to the first input vector
2022    * @param[in]       *pSrcB points to the second input vector
2023    * @param[out]      *pDst points to the output vector
2024    * @param[in]       blockSize number of samples in each vector
2025    * @return none.
2026    */
2027 
2028   void arm_mult_f32(
2029   float32_t * pSrcA,
2030   float32_t * pSrcB,
2031   float32_t * pDst,
2032   uint32_t blockSize);
2033 
2034 
2035 
2036 
2037 
2038 
2039   /**
2040    * @brief Instance structure for the Q15 CFFT/CIFFT function.
2041    */
2042 
2043   typedef struct
2044   {
2045     uint16_t fftLen;                 /**< length of the FFT. */
2046     uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2047     uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2048     q15_t *pTwiddle;                     /**< points to the Sin twiddle factor table. */
2049     uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
2050     uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2051     uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2052   } arm_cfft_radix2_instance_q15;
2053 
2054 /* Deprecated */
2055   arm_status arm_cfft_radix2_init_q15(
2056   arm_cfft_radix2_instance_q15 * S,
2057   uint16_t fftLen,
2058   uint8_t ifftFlag,
2059   uint8_t bitReverseFlag);
2060 
2061 /* Deprecated */
2062   void arm_cfft_radix2_q15(
2063   const arm_cfft_radix2_instance_q15 * S,
2064   q15_t * pSrc);
2065 
2066 
2067 
2068   /**
2069    * @brief Instance structure for the Q15 CFFT/CIFFT function.
2070    */
2071 
2072   typedef struct
2073   {
2074     uint16_t fftLen;                 /**< length of the FFT. */
2075     uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2076     uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2077     q15_t *pTwiddle;                 /**< points to the twiddle factor table. */
2078     uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
2079     uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2080     uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2081   } arm_cfft_radix4_instance_q15;
2082 
2083 /* Deprecated */
2084   arm_status arm_cfft_radix4_init_q15(
2085   arm_cfft_radix4_instance_q15 * S,
2086   uint16_t fftLen,
2087   uint8_t ifftFlag,
2088   uint8_t bitReverseFlag);
2089 
2090 /* Deprecated */
2091   void arm_cfft_radix4_q15(
2092   const arm_cfft_radix4_instance_q15 * S,
2093   q15_t * pSrc);
2094 
2095   /**
2096    * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
2097    */
2098 
2099   typedef struct
2100   {
2101     uint16_t fftLen;                 /**< length of the FFT. */
2102     uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2103     uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2104     q31_t *pTwiddle;                     /**< points to the Twiddle factor table. */
2105     uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
2106     uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2107     uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2108   } arm_cfft_radix2_instance_q31;
2109 
2110 /* Deprecated */
2111   arm_status arm_cfft_radix2_init_q31(
2112   arm_cfft_radix2_instance_q31 * S,
2113   uint16_t fftLen,
2114   uint8_t ifftFlag,
2115   uint8_t bitReverseFlag);
2116 
2117 /* Deprecated */
2118   void arm_cfft_radix2_q31(
2119   const arm_cfft_radix2_instance_q31 * S,
2120   q31_t * pSrc);
2121 
2122   /**
2123    * @brief Instance structure for the Q31 CFFT/CIFFT function.
2124    */
2125 
2126   typedef struct
2127   {
2128     uint16_t fftLen;                 /**< length of the FFT. */
2129     uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2130     uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2131     q31_t *pTwiddle;                 /**< points to the twiddle factor table. */
2132     uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
2133     uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2134     uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2135   } arm_cfft_radix4_instance_q31;
2136 
2137 /* Deprecated */
2138   void arm_cfft_radix4_q31(
2139   const arm_cfft_radix4_instance_q31 * S,
2140   q31_t * pSrc);
2141 
2142 /* Deprecated */
2143   arm_status arm_cfft_radix4_init_q31(
2144   arm_cfft_radix4_instance_q31 * S,
2145   uint16_t fftLen,
2146   uint8_t ifftFlag,
2147   uint8_t bitReverseFlag);
2148 
2149   /**
2150    * @brief Instance structure for the floating-point CFFT/CIFFT function.
2151    */
2152 
2153   typedef struct
2154   {
2155     uint16_t fftLen;                   /**< length of the FFT. */
2156     uint8_t ifftFlag;                  /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2157     uint8_t bitReverseFlag;            /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2158     float32_t *pTwiddle;               /**< points to the Twiddle factor table. */
2159     uint16_t *pBitRevTable;            /**< points to the bit reversal table. */
2160     uint16_t twidCoefModifier;         /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2161     uint16_t bitRevFactor;             /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2162     float32_t onebyfftLen;                 /**< value of 1/fftLen. */
2163   } arm_cfft_radix2_instance_f32;
2164 
2165 /* Deprecated */
2166   arm_status arm_cfft_radix2_init_f32(
2167   arm_cfft_radix2_instance_f32 * S,
2168   uint16_t fftLen,
2169   uint8_t ifftFlag,
2170   uint8_t bitReverseFlag);
2171 
2172 /* Deprecated */
2173   void arm_cfft_radix2_f32(
2174   const arm_cfft_radix2_instance_f32 * S,
2175   float32_t * pSrc);
2176 
2177   /**
2178    * @brief Instance structure for the floating-point CFFT/CIFFT function.
2179    */
2180 
2181   typedef struct
2182   {
2183     uint16_t fftLen;                   /**< length of the FFT. */
2184     uint8_t ifftFlag;                  /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2185     uint8_t bitReverseFlag;            /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2186     float32_t *pTwiddle;               /**< points to the Twiddle factor table. */
2187     uint16_t *pBitRevTable;            /**< points to the bit reversal table. */
2188     uint16_t twidCoefModifier;         /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2189     uint16_t bitRevFactor;             /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2190     float32_t onebyfftLen;                 /**< value of 1/fftLen. */
2191   } arm_cfft_radix4_instance_f32;
2192 
2193 /* Deprecated */
2194   arm_status arm_cfft_radix4_init_f32(
2195   arm_cfft_radix4_instance_f32 * S,
2196   uint16_t fftLen,
2197   uint8_t ifftFlag,
2198   uint8_t bitReverseFlag);
2199 
2200 /* Deprecated */
2201   void arm_cfft_radix4_f32(
2202   const arm_cfft_radix4_instance_f32 * S,
2203   float32_t * pSrc);
2204 
2205   /**
2206    * @brief Instance structure for the fixed-point CFFT/CIFFT function.
2207    */
2208 
2209   typedef struct
2210   {
2211     uint16_t fftLen;                   /**< length of the FFT. */
2212     const q15_t *pTwiddle;             /**< points to the Twiddle factor table. */
2213     const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */
2214     uint16_t bitRevLength;             /**< bit reversal table length. */
2215   } arm_cfft_instance_q15;
2216 
2217 void arm_cfft_q15(
2218     const arm_cfft_instance_q15 * S,
2219     q15_t * p1,
2220     uint8_t ifftFlag,
2221     uint8_t bitReverseFlag);
2222 
2223   /**
2224    * @brief Instance structure for the fixed-point CFFT/CIFFT function.
2225    */
2226 
2227   typedef struct
2228   {
2229     uint16_t fftLen;                   /**< length of the FFT. */
2230     const q31_t *pTwiddle;             /**< points to the Twiddle factor table. */
2231     const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */
2232     uint16_t bitRevLength;             /**< bit reversal table length. */
2233   } arm_cfft_instance_q31;
2234 
2235 void arm_cfft_q31(
2236     const arm_cfft_instance_q31 * S,
2237     q31_t * p1,
2238     uint8_t ifftFlag,
2239     uint8_t bitReverseFlag);
2240 
2241   /**
2242    * @brief Instance structure for the floating-point CFFT/CIFFT function.
2243    */
2244 
2245   typedef struct
2246   {
2247     uint16_t fftLen;                   /**< length of the FFT. */
2248     const float32_t *pTwiddle;         /**< points to the Twiddle factor table. */
2249     const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */
2250     uint16_t bitRevLength;             /**< bit reversal table length. */
2251   } arm_cfft_instance_f32;
2252 
2253   void arm_cfft_f32(
2254   const arm_cfft_instance_f32 * S,
2255   float32_t * p1,
2256   uint8_t ifftFlag,
2257   uint8_t bitReverseFlag);
2258 
2259   /**
2260    * @brief Instance structure for the Q15 RFFT/RIFFT function.
2261    */
2262 
2263   typedef struct
2264   {
2265     uint32_t fftLenReal;                      /**< length of the real FFT. */
2266     uint8_t ifftFlagR;                        /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
2267     uint8_t bitReverseFlagR;                  /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
2268     uint32_t twidCoefRModifier;               /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2269     q15_t *pTwiddleAReal;                     /**< points to the real twiddle factor table. */
2270     q15_t *pTwiddleBReal;                     /**< points to the imag twiddle factor table. */
2271     const arm_cfft_instance_q15 *pCfft;       /**< points to the complex FFT instance. */
2272   } arm_rfft_instance_q15;
2273 
2274   arm_status arm_rfft_init_q15(
2275   arm_rfft_instance_q15 * S,
2276   uint32_t fftLenReal,
2277   uint32_t ifftFlagR,
2278   uint32_t bitReverseFlag);
2279 
2280   void arm_rfft_q15(
2281   const arm_rfft_instance_q15 * S,
2282   q15_t * pSrc,
2283   q15_t * pDst);
2284 
2285   /**
2286    * @brief Instance structure for the Q31 RFFT/RIFFT function.
2287    */
2288 
2289   typedef struct
2290   {
2291     uint32_t fftLenReal;                        /**< length of the real FFT. */
2292     uint8_t ifftFlagR;                          /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
2293     uint8_t bitReverseFlagR;                    /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
2294     uint32_t twidCoefRModifier;                 /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2295     q31_t *pTwiddleAReal;                       /**< points to the real twiddle factor table. */
2296     q31_t *pTwiddleBReal;                       /**< points to the imag twiddle factor table. */
2297     const arm_cfft_instance_q31 *pCfft;         /**< points to the complex FFT instance. */
2298   } arm_rfft_instance_q31;
2299 
2300   arm_status arm_rfft_init_q31(
2301   arm_rfft_instance_q31 * S,
2302   uint32_t fftLenReal,
2303   uint32_t ifftFlagR,
2304   uint32_t bitReverseFlag);
2305 
2306   void arm_rfft_q31(
2307   const arm_rfft_instance_q31 * S,
2308   q31_t * pSrc,
2309   q31_t * pDst);
2310 
2311   /**
2312    * @brief Instance structure for the floating-point RFFT/RIFFT function.
2313    */
2314 
2315   typedef struct
2316   {
2317     uint32_t fftLenReal;                        /**< length of the real FFT. */
2318     uint16_t fftLenBy2;                         /**< length of the complex FFT. */
2319     uint8_t ifftFlagR;                          /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
2320     uint8_t bitReverseFlagR;                    /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
2321     uint32_t twidCoefRModifier;                     /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2322     float32_t *pTwiddleAReal;                   /**< points to the real twiddle factor table. */
2323     float32_t *pTwiddleBReal;                   /**< points to the imag twiddle factor table. */
2324     arm_cfft_radix4_instance_f32 *pCfft;        /**< points to the complex FFT instance. */
2325   } arm_rfft_instance_f32;
2326 
2327   arm_status arm_rfft_init_f32(
2328   arm_rfft_instance_f32 * S,
2329   arm_cfft_radix4_instance_f32 * S_CFFT,
2330   uint32_t fftLenReal,
2331   uint32_t ifftFlagR,
2332   uint32_t bitReverseFlag);
2333 
2334   void arm_rfft_f32(
2335   const arm_rfft_instance_f32 * S,
2336   float32_t * pSrc,
2337   float32_t * pDst);
2338 
2339   /**
2340    * @brief Instance structure for the floating-point RFFT/RIFFT function.
2341    */
2342 
2343 typedef struct
2344   {
2345     arm_cfft_instance_f32 Sint;      /**< Internal CFFT structure. */
2346     uint16_t fftLenRFFT;                        /**< length of the real sequence */
2347 	float32_t * pTwiddleRFFT;					/**< Twiddle factors real stage  */
2348   } arm_rfft_fast_instance_f32 ;
2349 
2350 arm_status arm_rfft_fast_init_f32 (
2351 	arm_rfft_fast_instance_f32 * S,
2352 	uint16_t fftLen);
2353 
2354 void arm_rfft_fast_f32(
2355   arm_rfft_fast_instance_f32 * S,
2356   float32_t * p, float32_t * pOut,
2357   uint8_t ifftFlag);
2358 
2359   /**
2360    * @brief Instance structure for the floating-point DCT4/IDCT4 function.
2361    */
2362 
2363   typedef struct
2364   {
2365     uint16_t N;                         /**< length of the DCT4. */
2366     uint16_t Nby2;                      /**< half of the length of the DCT4. */
2367     float32_t normalize;                /**< normalizing factor. */
2368     float32_t *pTwiddle;                /**< points to the twiddle factor table. */
2369     float32_t *pCosFactor;              /**< points to the cosFactor table. */
2370     arm_rfft_instance_f32 *pRfft;        /**< points to the real FFT instance. */
2371     arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
2372   } arm_dct4_instance_f32;
2373 
2374   /**
2375    * @brief  Initialization function for the floating-point DCT4/IDCT4.
2376    * @param[in,out] *S         points to an instance of floating-point DCT4/IDCT4 structure.
2377    * @param[in]     *S_RFFT    points to an instance of floating-point RFFT/RIFFT structure.
2378    * @param[in]     *S_CFFT    points to an instance of floating-point CFFT/CIFFT structure.
2379    * @param[in]     N          length of the DCT4.
2380    * @param[in]     Nby2       half of the length of the DCT4.
2381    * @param[in]     normalize  normalizing factor.
2382    * @return		arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
2383    */
2384 
2385   arm_status arm_dct4_init_f32(
2386   arm_dct4_instance_f32 * S,
2387   arm_rfft_instance_f32 * S_RFFT,
2388   arm_cfft_radix4_instance_f32 * S_CFFT,
2389   uint16_t N,
2390   uint16_t Nby2,
2391   float32_t normalize);
2392 
2393   /**
2394    * @brief Processing function for the floating-point DCT4/IDCT4.
2395    * @param[in]       *S             points to an instance of the floating-point DCT4/IDCT4 structure.
2396    * @param[in]       *pState        points to state buffer.
2397    * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer.
2398    * @return none.
2399    */
2400 
2401   void arm_dct4_f32(
2402   const arm_dct4_instance_f32 * S,
2403   float32_t * pState,
2404   float32_t * pInlineBuffer);
2405 
2406   /**
2407    * @brief Instance structure for the Q31 DCT4/IDCT4 function.
2408    */
2409 
2410   typedef struct
2411   {
2412     uint16_t N;                         /**< length of the DCT4. */
2413     uint16_t Nby2;                      /**< half of the length of the DCT4. */
2414     q31_t normalize;                    /**< normalizing factor. */
2415     q31_t *pTwiddle;                    /**< points to the twiddle factor table. */
2416     q31_t *pCosFactor;                  /**< points to the cosFactor table. */
2417     arm_rfft_instance_q31 *pRfft;        /**< points to the real FFT instance. */
2418     arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
2419   } arm_dct4_instance_q31;
2420 
2421   /**
2422    * @brief  Initialization function for the Q31 DCT4/IDCT4.
2423    * @param[in,out] *S         points to an instance of Q31 DCT4/IDCT4 structure.
2424    * @param[in]     *S_RFFT    points to an instance of Q31 RFFT/RIFFT structure
2425    * @param[in]     *S_CFFT    points to an instance of Q31 CFFT/CIFFT structure
2426    * @param[in]     N          length of the DCT4.
2427    * @param[in]     Nby2       half of the length of the DCT4.
2428    * @param[in]     normalize  normalizing factor.
2429    * @return		arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
2430    */
2431 
2432   arm_status arm_dct4_init_q31(
2433   arm_dct4_instance_q31 * S,
2434   arm_rfft_instance_q31 * S_RFFT,
2435   arm_cfft_radix4_instance_q31 * S_CFFT,
2436   uint16_t N,
2437   uint16_t Nby2,
2438   q31_t normalize);
2439 
2440   /**
2441    * @brief Processing function for the Q31 DCT4/IDCT4.
2442    * @param[in]       *S             points to an instance of the Q31 DCT4 structure.
2443    * @param[in]       *pState        points to state buffer.
2444    * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer.
2445    * @return none.
2446    */
2447 
2448   void arm_dct4_q31(
2449   const arm_dct4_instance_q31 * S,
2450   q31_t * pState,
2451   q31_t * pInlineBuffer);
2452 
2453   /**
2454    * @brief Instance structure for the Q15 DCT4/IDCT4 function.
2455    */
2456 
2457   typedef struct
2458   {
2459     uint16_t N;                         /**< length of the DCT4. */
2460     uint16_t Nby2;                      /**< half of the length of the DCT4. */
2461     q15_t normalize;                    /**< normalizing factor. */
2462     q15_t *pTwiddle;                    /**< points to the twiddle factor table. */
2463     q15_t *pCosFactor;                  /**< points to the cosFactor table. */
2464     arm_rfft_instance_q15 *pRfft;        /**< points to the real FFT instance. */
2465     arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
2466   } arm_dct4_instance_q15;
2467 
2468   /**
2469    * @brief  Initialization function for the Q15 DCT4/IDCT4.
2470    * @param[in,out] *S         points to an instance of Q15 DCT4/IDCT4 structure.
2471    * @param[in]     *S_RFFT    points to an instance of Q15 RFFT/RIFFT structure.
2472    * @param[in]     *S_CFFT    points to an instance of Q15 CFFT/CIFFT structure.
2473    * @param[in]     N          length of the DCT4.
2474    * @param[in]     Nby2       half of the length of the DCT4.
2475    * @param[in]     normalize  normalizing factor.
2476    * @return		arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
2477    */
2478 
2479   arm_status arm_dct4_init_q15(
2480   arm_dct4_instance_q15 * S,
2481   arm_rfft_instance_q15 * S_RFFT,
2482   arm_cfft_radix4_instance_q15 * S_CFFT,
2483   uint16_t N,
2484   uint16_t Nby2,
2485   q15_t normalize);
2486 
2487   /**
2488    * @brief Processing function for the Q15 DCT4/IDCT4.
2489    * @param[in]       *S             points to an instance of the Q15 DCT4 structure.
2490    * @param[in]       *pState        points to state buffer.
2491    * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer.
2492    * @return none.
2493    */
2494 
2495   void arm_dct4_q15(
2496   const arm_dct4_instance_q15 * S,
2497   q15_t * pState,
2498   q15_t * pInlineBuffer);
2499 
2500   /**
2501    * @brief Floating-point vector addition.
2502    * @param[in]       *pSrcA points to the first input vector
2503    * @param[in]       *pSrcB points to the second input vector
2504    * @param[out]      *pDst points to the output vector
2505    * @param[in]       blockSize number of samples in each vector
2506    * @return none.
2507    */
2508 
2509   void arm_add_f32(
2510   float32_t * pSrcA,
2511   float32_t * pSrcB,
2512   float32_t * pDst,
2513   uint32_t blockSize);
2514 
2515   /**
2516    * @brief Q7 vector addition.
2517    * @param[in]       *pSrcA points to the first input vector
2518    * @param[in]       *pSrcB points to the second input vector
2519    * @param[out]      *pDst points to the output vector
2520    * @param[in]       blockSize number of samples in each vector
2521    * @return none.
2522    */
2523 
2524   void arm_add_q7(
2525   q7_t * pSrcA,
2526   q7_t * pSrcB,
2527   q7_t * pDst,
2528   uint32_t blockSize);
2529 
2530   /**
2531    * @brief Q15 vector addition.
2532    * @param[in]       *pSrcA points to the first input vector
2533    * @param[in]       *pSrcB points to the second input vector
2534    * @param[out]      *pDst points to the output vector
2535    * @param[in]       blockSize number of samples in each vector
2536    * @return none.
2537    */
2538 
2539   void arm_add_q15(
2540   q15_t * pSrcA,
2541   q15_t * pSrcB,
2542   q15_t * pDst,
2543   uint32_t blockSize);
2544 
2545   /**
2546    * @brief Q31 vector addition.
2547    * @param[in]       *pSrcA points to the first input vector
2548    * @param[in]       *pSrcB points to the second input vector
2549    * @param[out]      *pDst points to the output vector
2550    * @param[in]       blockSize number of samples in each vector
2551    * @return none.
2552    */
2553 
2554   void arm_add_q31(
2555   q31_t * pSrcA,
2556   q31_t * pSrcB,
2557   q31_t * pDst,
2558   uint32_t blockSize);
2559 
2560   /**
2561    * @brief Floating-point vector subtraction.
2562    * @param[in]       *pSrcA points to the first input vector
2563    * @param[in]       *pSrcB points to the second input vector
2564    * @param[out]      *pDst points to the output vector
2565    * @param[in]       blockSize number of samples in each vector
2566    * @return none.
2567    */
2568 
2569   void arm_sub_f32(
2570   float32_t * pSrcA,
2571   float32_t * pSrcB,
2572   float32_t * pDst,
2573   uint32_t blockSize);
2574 
2575   /**
2576    * @brief Q7 vector subtraction.
2577    * @param[in]       *pSrcA points to the first input vector
2578    * @param[in]       *pSrcB points to the second input vector
2579    * @param[out]      *pDst points to the output vector
2580    * @param[in]       blockSize number of samples in each vector
2581    * @return none.
2582    */
2583 
2584   void arm_sub_q7(
2585   q7_t * pSrcA,
2586   q7_t * pSrcB,
2587   q7_t * pDst,
2588   uint32_t blockSize);
2589 
2590   /**
2591    * @brief Q15 vector subtraction.
2592    * @param[in]       *pSrcA points to the first input vector
2593    * @param[in]       *pSrcB points to the second input vector
2594    * @param[out]      *pDst points to the output vector
2595    * @param[in]       blockSize number of samples in each vector
2596    * @return none.
2597    */
2598 
2599   void arm_sub_q15(
2600   q15_t * pSrcA,
2601   q15_t * pSrcB,
2602   q15_t * pDst,
2603   uint32_t blockSize);
2604 
2605   /**
2606    * @brief Q31 vector subtraction.
2607    * @param[in]       *pSrcA points to the first input vector
2608    * @param[in]       *pSrcB points to the second input vector
2609    * @param[out]      *pDst points to the output vector
2610    * @param[in]       blockSize number of samples in each vector
2611    * @return none.
2612    */
2613 
2614   void arm_sub_q31(
2615   q31_t * pSrcA,
2616   q31_t * pSrcB,
2617   q31_t * pDst,
2618   uint32_t blockSize);
2619 
2620   /**
2621    * @brief Multiplies a floating-point vector by a scalar.
2622    * @param[in]       *pSrc points to the input vector
2623    * @param[in]       scale scale factor to be applied
2624    * @param[out]      *pDst points to the output vector
2625    * @param[in]       blockSize number of samples in the vector
2626    * @return none.
2627    */
2628 
2629   void arm_scale_f32(
2630   float32_t * pSrc,
2631   float32_t scale,
2632   float32_t * pDst,
2633   uint32_t blockSize);
2634 
2635   /**
2636    * @brief Multiplies a Q7 vector by a scalar.
2637    * @param[in]       *pSrc points to the input vector
2638    * @param[in]       scaleFract fractional portion of the scale value
2639    * @param[in]       shift number of bits to shift the result by
2640    * @param[out]      *pDst points to the output vector
2641    * @param[in]       blockSize number of samples in the vector
2642    * @return none.
2643    */
2644 
2645   void arm_scale_q7(
2646   q7_t * pSrc,
2647   q7_t scaleFract,
2648   int8_t shift,
2649   q7_t * pDst,
2650   uint32_t blockSize);
2651 
2652   /**
2653    * @brief Multiplies a Q15 vector by a scalar.
2654    * @param[in]       *pSrc points to the input vector
2655    * @param[in]       scaleFract fractional portion of the scale value
2656    * @param[in]       shift number of bits to shift the result by
2657    * @param[out]      *pDst points to the output vector
2658    * @param[in]       blockSize number of samples in the vector
2659    * @return none.
2660    */
2661 
2662   void arm_scale_q15(
2663   q15_t * pSrc,
2664   q15_t scaleFract,
2665   int8_t shift,
2666   q15_t * pDst,
2667   uint32_t blockSize);
2668 
2669   /**
2670    * @brief Multiplies a Q31 vector by a scalar.
2671    * @param[in]       *pSrc points to the input vector
2672    * @param[in]       scaleFract fractional portion of the scale value
2673    * @param[in]       shift number of bits to shift the result by
2674    * @param[out]      *pDst points to the output vector
2675    * @param[in]       blockSize number of samples in the vector
2676    * @return none.
2677    */
2678 
2679   void arm_scale_q31(
2680   q31_t * pSrc,
2681   q31_t scaleFract,
2682   int8_t shift,
2683   q31_t * pDst,
2684   uint32_t blockSize);
2685 
2686   /**
2687    * @brief Q7 vector absolute value.
2688    * @param[in]       *pSrc points to the input buffer
2689    * @param[out]      *pDst points to the output buffer
2690    * @param[in]       blockSize number of samples in each vector
2691    * @return none.
2692    */
2693 
2694   void arm_abs_q7(
2695   q7_t * pSrc,
2696   q7_t * pDst,
2697   uint32_t blockSize);
2698 
2699   /**
2700    * @brief Floating-point vector absolute value.
2701    * @param[in]       *pSrc points to the input buffer
2702    * @param[out]      *pDst points to the output buffer
2703    * @param[in]       blockSize number of samples in each vector
2704    * @return none.
2705    */
2706 
2707   void arm_abs_f32(
2708   float32_t * pSrc,
2709   float32_t * pDst,
2710   uint32_t blockSize);
2711 
2712   /**
2713    * @brief Q15 vector absolute value.
2714    * @param[in]       *pSrc points to the input buffer
2715    * @param[out]      *pDst points to the output buffer
2716    * @param[in]       blockSize number of samples in each vector
2717    * @return none.
2718    */
2719 
2720   void arm_abs_q15(
2721   q15_t * pSrc,
2722   q15_t * pDst,
2723   uint32_t blockSize);
2724 
2725   /**
2726    * @brief Q31 vector absolute value.
2727    * @param[in]       *pSrc points to the input buffer
2728    * @param[out]      *pDst points to the output buffer
2729    * @param[in]       blockSize number of samples in each vector
2730    * @return none.
2731    */
2732 
2733   void arm_abs_q31(
2734   q31_t * pSrc,
2735   q31_t * pDst,
2736   uint32_t blockSize);
2737 
2738   /**
2739    * @brief Dot product of floating-point vectors.
2740    * @param[in]       *pSrcA points to the first input vector
2741    * @param[in]       *pSrcB points to the second input vector
2742    * @param[in]       blockSize number of samples in each vector
2743    * @param[out]      *result output result returned here
2744    * @return none.
2745    */
2746 
2747   void arm_dot_prod_f32(
2748   float32_t * pSrcA,
2749   float32_t * pSrcB,
2750   uint32_t blockSize,
2751   float32_t * result);
2752 
2753   /**
2754    * @brief Dot product of Q7 vectors.
2755    * @param[in]       *pSrcA points to the first input vector
2756    * @param[in]       *pSrcB points to the second input vector
2757    * @param[in]       blockSize number of samples in each vector
2758    * @param[out]      *result output result returned here
2759    * @return none.
2760    */
2761 
2762   void arm_dot_prod_q7(
2763   q7_t * pSrcA,
2764   q7_t * pSrcB,
2765   uint32_t blockSize,
2766   q31_t * result);
2767 
2768   /**
2769    * @brief Dot product of Q15 vectors.
2770    * @param[in]       *pSrcA points to the first input vector
2771    * @param[in]       *pSrcB points to the second input vector
2772    * @param[in]       blockSize number of samples in each vector
2773    * @param[out]      *result output result returned here
2774    * @return none.
2775    */
2776 
2777   void arm_dot_prod_q15(
2778   q15_t * pSrcA,
2779   q15_t * pSrcB,
2780   uint32_t blockSize,
2781   q63_t * result);
2782 
2783   /**
2784    * @brief Dot product of Q31 vectors.
2785    * @param[in]       *pSrcA points to the first input vector
2786    * @param[in]       *pSrcB points to the second input vector
2787    * @param[in]       blockSize number of samples in each vector
2788    * @param[out]      *result output result returned here
2789    * @return none.
2790    */
2791 
2792   void arm_dot_prod_q31(
2793   q31_t * pSrcA,
2794   q31_t * pSrcB,
2795   uint32_t blockSize,
2796   q63_t * result);
2797 
2798   /**
2799    * @brief  Shifts the elements of a Q7 vector a specified number of bits.
2800    * @param[in]  *pSrc points to the input vector
2801    * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right.
2802    * @param[out]  *pDst points to the output vector
2803    * @param[in]  blockSize number of samples in the vector
2804    * @return none.
2805    */
2806 
2807   void arm_shift_q7(
2808   q7_t * pSrc,
2809   int8_t shiftBits,
2810   q7_t * pDst,
2811   uint32_t blockSize);
2812 
2813   /**
2814    * @brief  Shifts the elements of a Q15 vector a specified number of bits.
2815    * @param[in]  *pSrc points to the input vector
2816    * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right.
2817    * @param[out]  *pDst points to the output vector
2818    * @param[in]  blockSize number of samples in the vector
2819    * @return none.
2820    */
2821 
2822   void arm_shift_q15(
2823   q15_t * pSrc,
2824   int8_t shiftBits,
2825   q15_t * pDst,
2826   uint32_t blockSize);
2827 
2828   /**
2829    * @brief  Shifts the elements of a Q31 vector a specified number of bits.
2830    * @param[in]  *pSrc points to the input vector
2831    * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right.
2832    * @param[out]  *pDst points to the output vector
2833    * @param[in]  blockSize number of samples in the vector
2834    * @return none.
2835    */
2836 
2837   void arm_shift_q31(
2838   q31_t * pSrc,
2839   int8_t shiftBits,
2840   q31_t * pDst,
2841   uint32_t blockSize);
2842 
2843   /**
2844    * @brief  Adds a constant offset to a floating-point vector.
2845    * @param[in]  *pSrc points to the input vector
2846    * @param[in]  offset is the offset to be added
2847    * @param[out]  *pDst points to the output vector
2848    * @param[in]  blockSize number of samples in the vector
2849    * @return none.
2850    */
2851 
2852   void arm_offset_f32(
2853   float32_t * pSrc,
2854   float32_t offset,
2855   float32_t * pDst,
2856   uint32_t blockSize);
2857 
2858   /**
2859    * @brief  Adds a constant offset to a Q7 vector.
2860    * @param[in]  *pSrc points to the input vector
2861    * @param[in]  offset is the offset to be added
2862    * @param[out]  *pDst points to the output vector
2863    * @param[in]  blockSize number of samples in the vector
2864    * @return none.
2865    */
2866 
2867   void arm_offset_q7(
2868   q7_t * pSrc,
2869   q7_t offset,
2870   q7_t * pDst,
2871   uint32_t blockSize);
2872 
2873   /**
2874    * @brief  Adds a constant offset to a Q15 vector.
2875    * @param[in]  *pSrc points to the input vector
2876    * @param[in]  offset is the offset to be added
2877    * @param[out]  *pDst points to the output vector
2878    * @param[in]  blockSize number of samples in the vector
2879    * @return none.
2880    */
2881 
2882   void arm_offset_q15(
2883   q15_t * pSrc,
2884   q15_t offset,
2885   q15_t * pDst,
2886   uint32_t blockSize);
2887 
2888   /**
2889    * @brief  Adds a constant offset to a Q31 vector.
2890    * @param[in]  *pSrc points to the input vector
2891    * @param[in]  offset is the offset to be added
2892    * @param[out]  *pDst points to the output vector
2893    * @param[in]  blockSize number of samples in the vector
2894    * @return none.
2895    */
2896 
2897   void arm_offset_q31(
2898   q31_t * pSrc,
2899   q31_t offset,
2900   q31_t * pDst,
2901   uint32_t blockSize);
2902 
2903   /**
2904    * @brief  Negates the elements of a floating-point vector.
2905    * @param[in]  *pSrc points to the input vector
2906    * @param[out]  *pDst points to the output vector
2907    * @param[in]  blockSize number of samples in the vector
2908    * @return none.
2909    */
2910 
2911   void arm_negate_f32(
2912   float32_t * pSrc,
2913   float32_t * pDst,
2914   uint32_t blockSize);
2915 
2916   /**
2917    * @brief  Negates the elements of a Q7 vector.
2918    * @param[in]  *pSrc points to the input vector
2919    * @param[out]  *pDst points to the output vector
2920    * @param[in]  blockSize number of samples in the vector
2921    * @return none.
2922    */
2923 
2924   void arm_negate_q7(
2925   q7_t * pSrc,
2926   q7_t * pDst,
2927   uint32_t blockSize);
2928 
2929   /**
2930    * @brief  Negates the elements of a Q15 vector.
2931    * @param[in]  *pSrc points to the input vector
2932    * @param[out]  *pDst points to the output vector
2933    * @param[in]  blockSize number of samples in the vector
2934    * @return none.
2935    */
2936 
2937   void arm_negate_q15(
2938   q15_t * pSrc,
2939   q15_t * pDst,
2940   uint32_t blockSize);
2941 
2942   /**
2943    * @brief  Negates the elements of a Q31 vector.
2944    * @param[in]  *pSrc points to the input vector
2945    * @param[out]  *pDst points to the output vector
2946    * @param[in]  blockSize number of samples in the vector
2947    * @return none.
2948    */
2949 
2950   void arm_negate_q31(
2951   q31_t * pSrc,
2952   q31_t * pDst,
2953   uint32_t blockSize);
2954   /**
2955    * @brief  Copies the elements of a floating-point vector.
2956    * @param[in]  *pSrc input pointer
2957    * @param[out]  *pDst output pointer
2958    * @param[in]  blockSize number of samples to process
2959    * @return none.
2960    */
2961   void arm_copy_f32(
2962   float32_t * pSrc,
2963   float32_t * pDst,
2964   uint32_t blockSize);
2965 
2966   /**
2967    * @brief  Copies the elements of a Q7 vector.
2968    * @param[in]  *pSrc input pointer
2969    * @param[out]  *pDst output pointer
2970    * @param[in]  blockSize number of samples to process
2971    * @return none.
2972    */
2973   void arm_copy_q7(
2974   q7_t * pSrc,
2975   q7_t * pDst,
2976   uint32_t blockSize);
2977 
2978   /**
2979    * @brief  Copies the elements of a Q15 vector.
2980    * @param[in]  *pSrc input pointer
2981    * @param[out]  *pDst output pointer
2982    * @param[in]  blockSize number of samples to process
2983    * @return none.
2984    */
2985   void arm_copy_q15(
2986   q15_t * pSrc,
2987   q15_t * pDst,
2988   uint32_t blockSize);
2989 
2990   /**
2991    * @brief  Copies the elements of a Q31 vector.
2992    * @param[in]  *pSrc input pointer
2993    * @param[out]  *pDst output pointer
2994    * @param[in]  blockSize number of samples to process
2995    * @return none.
2996    */
2997   void arm_copy_q31(
2998   q31_t * pSrc,
2999   q31_t * pDst,
3000   uint32_t blockSize);
3001   /**
3002    * @brief  Fills a constant value into a floating-point vector.
3003    * @param[in]  value input value to be filled
3004    * @param[out]  *pDst output pointer
3005    * @param[in]  blockSize number of samples to process
3006    * @return none.
3007    */
3008   void arm_fill_f32(
3009   float32_t value,
3010   float32_t * pDst,
3011   uint32_t blockSize);
3012 
3013   /**
3014    * @brief  Fills a constant value into a Q7 vector.
3015    * @param[in]  value input value to be filled
3016    * @param[out]  *pDst output pointer
3017    * @param[in]  blockSize number of samples to process
3018    * @return none.
3019    */
3020   void arm_fill_q7(
3021   q7_t value,
3022   q7_t * pDst,
3023   uint32_t blockSize);
3024 
3025   /**
3026    * @brief  Fills a constant value into a Q15 vector.
3027    * @param[in]  value input value to be filled
3028    * @param[out]  *pDst output pointer
3029    * @param[in]  blockSize number of samples to process
3030    * @return none.
3031    */
3032   void arm_fill_q15(
3033   q15_t value,
3034   q15_t * pDst,
3035   uint32_t blockSize);
3036 
3037   /**
3038    * @brief  Fills a constant value into a Q31 vector.
3039    * @param[in]  value input value to be filled
3040    * @param[out]  *pDst output pointer
3041    * @param[in]  blockSize number of samples to process
3042    * @return none.
3043    */
3044   void arm_fill_q31(
3045   q31_t value,
3046   q31_t * pDst,
3047   uint32_t blockSize);
3048 
3049 /**
3050  * @brief Convolution of floating-point sequences.
3051  * @param[in] *pSrcA points to the first input sequence.
3052  * @param[in] srcALen length of the first input sequence.
3053  * @param[in] *pSrcB points to the second input sequence.
3054  * @param[in] srcBLen length of the second input sequence.
3055  * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1.
3056  * @return none.
3057  */
3058 
3059   void arm_conv_f32(
3060   float32_t * pSrcA,
3061   uint32_t srcALen,
3062   float32_t * pSrcB,
3063   uint32_t srcBLen,
3064   float32_t * pDst);
3065 
3066 
3067   /**
3068    * @brief Convolution of Q15 sequences.
3069    * @param[in] *pSrcA points to the first input sequence.
3070    * @param[in] srcALen length of the first input sequence.
3071    * @param[in] *pSrcB points to the second input sequence.
3072    * @param[in] srcBLen length of the second input sequence.
3073    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3074    * @param[in]  *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3075    * @param[in]  *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
3076    * @return none.
3077    */
3078 
3079 
3080   void arm_conv_opt_q15(
3081   q15_t * pSrcA,
3082   uint32_t srcALen,
3083   q15_t * pSrcB,
3084   uint32_t srcBLen,
3085   q15_t * pDst,
3086   q15_t * pScratch1,
3087   q15_t * pScratch2);
3088 
3089 
3090 /**
3091  * @brief Convolution of Q15 sequences.
3092  * @param[in] *pSrcA points to the first input sequence.
3093  * @param[in] srcALen length of the first input sequence.
3094  * @param[in] *pSrcB points to the second input sequence.
3095  * @param[in] srcBLen length of the second input sequence.
3096  * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1.
3097  * @return none.
3098  */
3099 
3100   void arm_conv_q15(
3101   q15_t * pSrcA,
3102   uint32_t srcALen,
3103   q15_t * pSrcB,
3104   uint32_t srcBLen,
3105   q15_t * pDst);
3106 
3107   /**
3108    * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
3109    * @param[in] *pSrcA points to the first input sequence.
3110    * @param[in] srcALen length of the first input sequence.
3111    * @param[in] *pSrcB points to the second input sequence.
3112    * @param[in] srcBLen length of the second input sequence.
3113    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3114    * @return none.
3115    */
3116 
3117   void arm_conv_fast_q15(
3118 			  q15_t * pSrcA,
3119 			 uint32_t srcALen,
3120 			  q15_t * pSrcB,
3121 			 uint32_t srcBLen,
3122 			 q15_t * pDst);
3123 
3124   /**
3125    * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
3126    * @param[in] *pSrcA points to the first input sequence.
3127    * @param[in] srcALen length of the first input sequence.
3128    * @param[in] *pSrcB points to the second input sequence.
3129    * @param[in] srcBLen length of the second input sequence.
3130    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3131    * @param[in]  *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3132    * @param[in]  *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
3133    * @return none.
3134    */
3135 
3136   void arm_conv_fast_opt_q15(
3137   q15_t * pSrcA,
3138   uint32_t srcALen,
3139   q15_t * pSrcB,
3140   uint32_t srcBLen,
3141   q15_t * pDst,
3142   q15_t * pScratch1,
3143   q15_t * pScratch2);
3144 
3145 
3146 
3147   /**
3148    * @brief Convolution of Q31 sequences.
3149    * @param[in] *pSrcA points to the first input sequence.
3150    * @param[in] srcALen length of the first input sequence.
3151    * @param[in] *pSrcB points to the second input sequence.
3152    * @param[in] srcBLen length of the second input sequence.
3153    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3154    * @return none.
3155    */
3156 
3157   void arm_conv_q31(
3158   q31_t * pSrcA,
3159   uint32_t srcALen,
3160   q31_t * pSrcB,
3161   uint32_t srcBLen,
3162   q31_t * pDst);
3163 
3164   /**
3165    * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
3166    * @param[in] *pSrcA points to the first input sequence.
3167    * @param[in] srcALen length of the first input sequence.
3168    * @param[in] *pSrcB points to the second input sequence.
3169    * @param[in] srcBLen length of the second input sequence.
3170    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3171    * @return none.
3172    */
3173 
3174   void arm_conv_fast_q31(
3175   q31_t * pSrcA,
3176   uint32_t srcALen,
3177   q31_t * pSrcB,
3178   uint32_t srcBLen,
3179   q31_t * pDst);
3180 
3181 
3182     /**
3183    * @brief Convolution of Q7 sequences.
3184    * @param[in] *pSrcA points to the first input sequence.
3185    * @param[in] srcALen length of the first input sequence.
3186    * @param[in] *pSrcB points to the second input sequence.
3187    * @param[in] srcBLen length of the second input sequence.
3188    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3189    * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3190    * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
3191    * @return none.
3192    */
3193 
3194   void arm_conv_opt_q7(
3195   q7_t * pSrcA,
3196   uint32_t srcALen,
3197   q7_t * pSrcB,
3198   uint32_t srcBLen,
3199   q7_t * pDst,
3200   q15_t * pScratch1,
3201   q15_t * pScratch2);
3202 
3203 
3204 
3205   /**
3206    * @brief Convolution of Q7 sequences.
3207    * @param[in] *pSrcA points to the first input sequence.
3208    * @param[in] srcALen length of the first input sequence.
3209    * @param[in] *pSrcB points to the second input sequence.
3210    * @param[in] srcBLen length of the second input sequence.
3211    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3212    * @return none.
3213    */
3214 
3215   void arm_conv_q7(
3216   q7_t * pSrcA,
3217   uint32_t srcALen,
3218   q7_t * pSrcB,
3219   uint32_t srcBLen,
3220   q7_t * pDst);
3221 
3222 
3223   /**
3224    * @brief Partial convolution of floating-point sequences.
3225    * @param[in]       *pSrcA points to the first input sequence.
3226    * @param[in]       srcALen length of the first input sequence.
3227    * @param[in]       *pSrcB points to the second input sequence.
3228    * @param[in]       srcBLen length of the second input sequence.
3229    * @param[out]      *pDst points to the block of output data
3230    * @param[in]       firstIndex is the first output sample to start with.
3231    * @param[in]       numPoints is the number of output points to be computed.
3232    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3233    */
3234 
3235   arm_status arm_conv_partial_f32(
3236   float32_t * pSrcA,
3237   uint32_t srcALen,
3238   float32_t * pSrcB,
3239   uint32_t srcBLen,
3240   float32_t * pDst,
3241   uint32_t firstIndex,
3242   uint32_t numPoints);
3243 
3244     /**
3245    * @brief Partial convolution of Q15 sequences.
3246    * @param[in]       *pSrcA points to the first input sequence.
3247    * @param[in]       srcALen length of the first input sequence.
3248    * @param[in]       *pSrcB points to the second input sequence.
3249    * @param[in]       srcBLen length of the second input sequence.
3250    * @param[out]      *pDst points to the block of output data
3251    * @param[in]       firstIndex is the first output sample to start with.
3252    * @param[in]       numPoints is the number of output points to be computed.
3253    * @param[in]       * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3254    * @param[in]       * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
3255    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3256    */
3257 
3258   arm_status arm_conv_partial_opt_q15(
3259   q15_t * pSrcA,
3260   uint32_t srcALen,
3261   q15_t * pSrcB,
3262   uint32_t srcBLen,
3263   q15_t * pDst,
3264   uint32_t firstIndex,
3265   uint32_t numPoints,
3266   q15_t * pScratch1,
3267   q15_t * pScratch2);
3268 
3269 
3270 /**
3271    * @brief Partial convolution of Q15 sequences.
3272    * @param[in]       *pSrcA points to the first input sequence.
3273    * @param[in]       srcALen length of the first input sequence.
3274    * @param[in]       *pSrcB points to the second input sequence.
3275    * @param[in]       srcBLen length of the second input sequence.
3276    * @param[out]      *pDst points to the block of output data
3277    * @param[in]       firstIndex is the first output sample to start with.
3278    * @param[in]       numPoints is the number of output points to be computed.
3279    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3280    */
3281 
3282   arm_status arm_conv_partial_q15(
3283   q15_t * pSrcA,
3284   uint32_t srcALen,
3285   q15_t * pSrcB,
3286   uint32_t srcBLen,
3287   q15_t * pDst,
3288   uint32_t firstIndex,
3289   uint32_t numPoints);
3290 
3291   /**
3292    * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
3293    * @param[in]       *pSrcA points to the first input sequence.
3294    * @param[in]       srcALen length of the first input sequence.
3295    * @param[in]       *pSrcB points to the second input sequence.
3296    * @param[in]       srcBLen length of the second input sequence.
3297    * @param[out]      *pDst points to the block of output data
3298    * @param[in]       firstIndex is the first output sample to start with.
3299    * @param[in]       numPoints is the number of output points to be computed.
3300    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3301    */
3302 
3303   arm_status arm_conv_partial_fast_q15(
3304 				        q15_t * pSrcA,
3305 				       uint32_t srcALen,
3306 				        q15_t * pSrcB,
3307 				       uint32_t srcBLen,
3308 				       q15_t * pDst,
3309 				       uint32_t firstIndex,
3310 				       uint32_t numPoints);
3311 
3312 
3313   /**
3314    * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
3315    * @param[in]       *pSrcA points to the first input sequence.
3316    * @param[in]       srcALen length of the first input sequence.
3317    * @param[in]       *pSrcB points to the second input sequence.
3318    * @param[in]       srcBLen length of the second input sequence.
3319    * @param[out]      *pDst points to the block of output data
3320    * @param[in]       firstIndex is the first output sample to start with.
3321    * @param[in]       numPoints is the number of output points to be computed.
3322    * @param[in]       * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3323    * @param[in]       * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
3324    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3325    */
3326 
3327   arm_status arm_conv_partial_fast_opt_q15(
3328   q15_t * pSrcA,
3329   uint32_t srcALen,
3330   q15_t * pSrcB,
3331   uint32_t srcBLen,
3332   q15_t * pDst,
3333   uint32_t firstIndex,
3334   uint32_t numPoints,
3335   q15_t * pScratch1,
3336   q15_t * pScratch2);
3337 
3338 
3339   /**
3340    * @brief Partial convolution of Q31 sequences.
3341    * @param[in]       *pSrcA points to the first input sequence.
3342    * @param[in]       srcALen length of the first input sequence.
3343    * @param[in]       *pSrcB points to the second input sequence.
3344    * @param[in]       srcBLen length of the second input sequence.
3345    * @param[out]      *pDst points to the block of output data
3346    * @param[in]       firstIndex is the first output sample to start with.
3347    * @param[in]       numPoints is the number of output points to be computed.
3348    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3349    */
3350 
3351   arm_status arm_conv_partial_q31(
3352   q31_t * pSrcA,
3353   uint32_t srcALen,
3354   q31_t * pSrcB,
3355   uint32_t srcBLen,
3356   q31_t * pDst,
3357   uint32_t firstIndex,
3358   uint32_t numPoints);
3359 
3360 
3361   /**
3362    * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
3363    * @param[in]       *pSrcA points to the first input sequence.
3364    * @param[in]       srcALen length of the first input sequence.
3365    * @param[in]       *pSrcB points to the second input sequence.
3366    * @param[in]       srcBLen length of the second input sequence.
3367    * @param[out]      *pDst points to the block of output data
3368    * @param[in]       firstIndex is the first output sample to start with.
3369    * @param[in]       numPoints is the number of output points to be computed.
3370    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3371    */
3372 
3373   arm_status arm_conv_partial_fast_q31(
3374   q31_t * pSrcA,
3375   uint32_t srcALen,
3376   q31_t * pSrcB,
3377   uint32_t srcBLen,
3378   q31_t * pDst,
3379   uint32_t firstIndex,
3380   uint32_t numPoints);
3381 
3382 
3383   /**
3384    * @brief Partial convolution of Q7 sequences
3385    * @param[in]       *pSrcA points to the first input sequence.
3386    * @param[in]       srcALen length of the first input sequence.
3387    * @param[in]       *pSrcB points to the second input sequence.
3388    * @param[in]       srcBLen length of the second input sequence.
3389    * @param[out]      *pDst points to the block of output data
3390    * @param[in]       firstIndex is the first output sample to start with.
3391    * @param[in]       numPoints is the number of output points to be computed.
3392    * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3393    * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
3394    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3395    */
3396 
3397   arm_status arm_conv_partial_opt_q7(
3398   q7_t * pSrcA,
3399   uint32_t srcALen,
3400   q7_t * pSrcB,
3401   uint32_t srcBLen,
3402   q7_t * pDst,
3403   uint32_t firstIndex,
3404   uint32_t numPoints,
3405   q15_t * pScratch1,
3406   q15_t * pScratch2);
3407 
3408 
3409 /**
3410    * @brief Partial convolution of Q7 sequences.
3411    * @param[in]       *pSrcA points to the first input sequence.
3412    * @param[in]       srcALen length of the first input sequence.
3413    * @param[in]       *pSrcB points to the second input sequence.
3414    * @param[in]       srcBLen length of the second input sequence.
3415    * @param[out]      *pDst points to the block of output data
3416    * @param[in]       firstIndex is the first output sample to start with.
3417    * @param[in]       numPoints is the number of output points to be computed.
3418    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3419    */
3420 
3421   arm_status arm_conv_partial_q7(
3422   q7_t * pSrcA,
3423   uint32_t srcALen,
3424   q7_t * pSrcB,
3425   uint32_t srcBLen,
3426   q7_t * pDst,
3427   uint32_t firstIndex,
3428   uint32_t numPoints);
3429 
3430 
3431 
3432   /**
3433    * @brief Instance structure for the Q15 FIR decimator.
3434    */
3435 
3436   typedef struct
3437   {
3438     uint8_t M;                      /**< decimation factor. */
3439     uint16_t numTaps;               /**< number of coefficients in the filter. */
3440     q15_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numTaps.*/
3441     q15_t *pState;                   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
3442   } arm_fir_decimate_instance_q15;
3443 
3444   /**
3445    * @brief Instance structure for the Q31 FIR decimator.
3446    */
3447 
3448   typedef struct
3449   {
3450     uint8_t M;                  /**< decimation factor. */
3451     uint16_t numTaps;           /**< number of coefficients in the filter. */
3452     q31_t *pCoeffs;              /**< points to the coefficient array. The array is of length numTaps.*/
3453     q31_t *pState;               /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
3454 
3455   } arm_fir_decimate_instance_q31;
3456 
3457   /**
3458    * @brief Instance structure for the floating-point FIR decimator.
3459    */
3460 
3461   typedef struct
3462   {
3463     uint8_t M;                          /**< decimation factor. */
3464     uint16_t numTaps;                   /**< number of coefficients in the filter. */
3465     float32_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numTaps.*/
3466     float32_t *pState;                   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
3467 
3468   } arm_fir_decimate_instance_f32;
3469 
3470 
3471 
3472   /**
3473    * @brief Processing function for the floating-point FIR decimator.
3474    * @param[in] *S points to an instance of the floating-point FIR decimator structure.
3475    * @param[in] *pSrc points to the block of input data.
3476    * @param[out] *pDst points to the block of output data
3477    * @param[in] blockSize number of input samples to process per call.
3478    * @return none
3479    */
3480 
3481   void arm_fir_decimate_f32(
3482   const arm_fir_decimate_instance_f32 * S,
3483   float32_t * pSrc,
3484   float32_t * pDst,
3485   uint32_t blockSize);
3486 
3487 
3488   /**
3489    * @brief  Initialization function for the floating-point FIR decimator.
3490    * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
3491    * @param[in] numTaps  number of coefficients in the filter.
3492    * @param[in] M  decimation factor.
3493    * @param[in] *pCoeffs points to the filter coefficients.
3494    * @param[in] *pState points to the state buffer.
3495    * @param[in] blockSize number of input samples to process per call.
3496    * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3497    * <code>blockSize</code> is not a multiple of <code>M</code>.
3498    */
3499 
3500   arm_status arm_fir_decimate_init_f32(
3501   arm_fir_decimate_instance_f32 * S,
3502   uint16_t numTaps,
3503   uint8_t M,
3504   float32_t * pCoeffs,
3505   float32_t * pState,
3506   uint32_t blockSize);
3507 
3508   /**
3509    * @brief Processing function for the Q15 FIR decimator.
3510    * @param[in] *S points to an instance of the Q15 FIR decimator structure.
3511    * @param[in] *pSrc points to the block of input data.
3512    * @param[out] *pDst points to the block of output data
3513    * @param[in] blockSize number of input samples to process per call.
3514    * @return none
3515    */
3516 
3517   void arm_fir_decimate_q15(
3518   const arm_fir_decimate_instance_q15 * S,
3519   q15_t * pSrc,
3520   q15_t * pDst,
3521   uint32_t blockSize);
3522 
3523   /**
3524    * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
3525    * @param[in] *S points to an instance of the Q15 FIR decimator structure.
3526    * @param[in] *pSrc points to the block of input data.
3527    * @param[out] *pDst points to the block of output data
3528    * @param[in] blockSize number of input samples to process per call.
3529    * @return none
3530    */
3531 
3532   void arm_fir_decimate_fast_q15(
3533   const arm_fir_decimate_instance_q15 * S,
3534   q15_t * pSrc,
3535   q15_t * pDst,
3536   uint32_t blockSize);
3537 
3538 
3539 
3540   /**
3541    * @brief  Initialization function for the Q15 FIR decimator.
3542    * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
3543    * @param[in] numTaps  number of coefficients in the filter.
3544    * @param[in] M  decimation factor.
3545    * @param[in] *pCoeffs points to the filter coefficients.
3546    * @param[in] *pState points to the state buffer.
3547    * @param[in] blockSize number of input samples to process per call.
3548    * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3549    * <code>blockSize</code> is not a multiple of <code>M</code>.
3550    */
3551 
3552   arm_status arm_fir_decimate_init_q15(
3553   arm_fir_decimate_instance_q15 * S,
3554   uint16_t numTaps,
3555   uint8_t M,
3556   q15_t * pCoeffs,
3557   q15_t * pState,
3558   uint32_t blockSize);
3559 
3560   /**
3561    * @brief Processing function for the Q31 FIR decimator.
3562    * @param[in] *S points to an instance of the Q31 FIR decimator structure.
3563    * @param[in] *pSrc points to the block of input data.
3564    * @param[out] *pDst points to the block of output data
3565    * @param[in] blockSize number of input samples to process per call.
3566    * @return none
3567    */
3568 
3569   void arm_fir_decimate_q31(
3570   const arm_fir_decimate_instance_q31 * S,
3571   q31_t * pSrc,
3572   q31_t * pDst,
3573   uint32_t blockSize);
3574 
3575   /**
3576    * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
3577    * @param[in] *S points to an instance of the Q31 FIR decimator structure.
3578    * @param[in] *pSrc points to the block of input data.
3579    * @param[out] *pDst points to the block of output data
3580    * @param[in] blockSize number of input samples to process per call.
3581    * @return none
3582    */
3583 
3584   void arm_fir_decimate_fast_q31(
3585   arm_fir_decimate_instance_q31 * S,
3586   q31_t * pSrc,
3587   q31_t * pDst,
3588   uint32_t blockSize);
3589 
3590 
3591   /**
3592    * @brief  Initialization function for the Q31 FIR decimator.
3593    * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
3594    * @param[in] numTaps  number of coefficients in the filter.
3595    * @param[in] M  decimation factor.
3596    * @param[in] *pCoeffs points to the filter coefficients.
3597    * @param[in] *pState points to the state buffer.
3598    * @param[in] blockSize number of input samples to process per call.
3599    * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3600    * <code>blockSize</code> is not a multiple of <code>M</code>.
3601    */
3602 
3603   arm_status arm_fir_decimate_init_q31(
3604   arm_fir_decimate_instance_q31 * S,
3605   uint16_t numTaps,
3606   uint8_t M,
3607   q31_t * pCoeffs,
3608   q31_t * pState,
3609   uint32_t blockSize);
3610 
3611 
3612 
3613   /**
3614    * @brief Instance structure for the Q15 FIR interpolator.
3615    */
3616 
3617   typedef struct
3618   {
3619     uint8_t L;                      /**< upsample factor. */
3620     uint16_t phaseLength;           /**< length of each polyphase filter component. */
3621     q15_t *pCoeffs;                 /**< points to the coefficient array. The array is of length L*phaseLength. */
3622     q15_t *pState;                  /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
3623   } arm_fir_interpolate_instance_q15;
3624 
3625   /**
3626    * @brief Instance structure for the Q31 FIR interpolator.
3627    */
3628 
3629   typedef struct
3630   {
3631     uint8_t L;                      /**< upsample factor. */
3632     uint16_t phaseLength;           /**< length of each polyphase filter component. */
3633     q31_t *pCoeffs;                  /**< points to the coefficient array. The array is of length L*phaseLength. */
3634     q31_t *pState;                   /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
3635   } arm_fir_interpolate_instance_q31;
3636 
3637   /**
3638    * @brief Instance structure for the floating-point FIR interpolator.
3639    */
3640 
3641   typedef struct
3642   {
3643     uint8_t L;                     /**< upsample factor. */
3644     uint16_t phaseLength;          /**< length of each polyphase filter component. */
3645     float32_t *pCoeffs;             /**< points to the coefficient array. The array is of length L*phaseLength. */
3646     float32_t *pState;              /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
3647   } arm_fir_interpolate_instance_f32;
3648 
3649 
3650   /**
3651    * @brief Processing function for the Q15 FIR interpolator.
3652    * @param[in] *S        points to an instance of the Q15 FIR interpolator structure.
3653    * @param[in] *pSrc     points to the block of input data.
3654    * @param[out] *pDst    points to the block of output data.
3655    * @param[in] blockSize number of input samples to process per call.
3656    * @return none.
3657    */
3658 
3659   void arm_fir_interpolate_q15(
3660   const arm_fir_interpolate_instance_q15 * S,
3661   q15_t * pSrc,
3662   q15_t * pDst,
3663   uint32_t blockSize);
3664 
3665 
3666   /**
3667    * @brief  Initialization function for the Q15 FIR interpolator.
3668    * @param[in,out] *S        points to an instance of the Q15 FIR interpolator structure.
3669    * @param[in]     L         upsample factor.
3670    * @param[in]     numTaps   number of filter coefficients in the filter.
3671    * @param[in]     *pCoeffs  points to the filter coefficient buffer.
3672    * @param[in]     *pState   points to the state buffer.
3673    * @param[in]     blockSize number of input samples to process per call.
3674    * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3675    * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
3676    */
3677 
3678   arm_status arm_fir_interpolate_init_q15(
3679   arm_fir_interpolate_instance_q15 * S,
3680   uint8_t L,
3681   uint16_t numTaps,
3682   q15_t * pCoeffs,
3683   q15_t * pState,
3684   uint32_t blockSize);
3685 
3686   /**
3687    * @brief Processing function for the Q31 FIR interpolator.
3688    * @param[in] *S        points to an instance of the Q15 FIR interpolator structure.
3689    * @param[in] *pSrc     points to the block of input data.
3690    * @param[out] *pDst    points to the block of output data.
3691    * @param[in] blockSize number of input samples to process per call.
3692    * @return none.
3693    */
3694 
3695   void arm_fir_interpolate_q31(
3696   const arm_fir_interpolate_instance_q31 * S,
3697   q31_t * pSrc,
3698   q31_t * pDst,
3699   uint32_t blockSize);
3700 
3701   /**
3702    * @brief  Initialization function for the Q31 FIR interpolator.
3703    * @param[in,out] *S        points to an instance of the Q31 FIR interpolator structure.
3704    * @param[in]     L         upsample factor.
3705    * @param[in]     numTaps   number of filter coefficients in the filter.
3706    * @param[in]     *pCoeffs  points to the filter coefficient buffer.
3707    * @param[in]     *pState   points to the state buffer.
3708    * @param[in]     blockSize number of input samples to process per call.
3709    * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3710    * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
3711    */
3712 
3713   arm_status arm_fir_interpolate_init_q31(
3714   arm_fir_interpolate_instance_q31 * S,
3715   uint8_t L,
3716   uint16_t numTaps,
3717   q31_t * pCoeffs,
3718   q31_t * pState,
3719   uint32_t blockSize);
3720 
3721 
3722   /**
3723    * @brief Processing function for the floating-point FIR interpolator.
3724    * @param[in] *S        points to an instance of the floating-point FIR interpolator structure.
3725    * @param[in] *pSrc     points to the block of input data.
3726    * @param[out] *pDst    points to the block of output data.
3727    * @param[in] blockSize number of input samples to process per call.
3728    * @return none.
3729    */
3730 
3731   void arm_fir_interpolate_f32(
3732   const arm_fir_interpolate_instance_f32 * S,
3733   float32_t * pSrc,
3734   float32_t * pDst,
3735   uint32_t blockSize);
3736 
3737   /**
3738    * @brief  Initialization function for the floating-point FIR interpolator.
3739    * @param[in,out] *S        points to an instance of the floating-point FIR interpolator structure.
3740    * @param[in]     L         upsample factor.
3741    * @param[in]     numTaps   number of filter coefficients in the filter.
3742    * @param[in]     *pCoeffs  points to the filter coefficient buffer.
3743    * @param[in]     *pState   points to the state buffer.
3744    * @param[in]     blockSize number of input samples to process per call.
3745    * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3746    * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
3747    */
3748 
3749   arm_status arm_fir_interpolate_init_f32(
3750   arm_fir_interpolate_instance_f32 * S,
3751   uint8_t L,
3752   uint16_t numTaps,
3753   float32_t * pCoeffs,
3754   float32_t * pState,
3755   uint32_t blockSize);
3756 
3757   /**
3758    * @brief Instance structure for the high precision Q31 Biquad cascade filter.
3759    */
3760 
3761   typedef struct
3762   {
3763     uint8_t numStages;       /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
3764     q63_t *pState;           /**< points to the array of state coefficients.  The array is of length 4*numStages. */
3765     q31_t *pCoeffs;          /**< points to the array of coefficients.  The array is of length 5*numStages. */
3766     uint8_t postShift;       /**< additional shift, in bits, applied to each output sample. */
3767 
3768   } arm_biquad_cas_df1_32x64_ins_q31;
3769 
3770 
3771   /**
3772    * @param[in]  *S        points to an instance of the high precision Q31 Biquad cascade filter structure.
3773    * @param[in]  *pSrc     points to the block of input data.
3774    * @param[out] *pDst     points to the block of output data
3775    * @param[in]  blockSize number of samples to process.
3776    * @return none.
3777    */
3778 
3779   void arm_biquad_cas_df1_32x64_q31(
3780   const arm_biquad_cas_df1_32x64_ins_q31 * S,
3781   q31_t * pSrc,
3782   q31_t * pDst,
3783   uint32_t blockSize);
3784 
3785 
3786   /**
3787    * @param[in,out] *S           points to an instance of the high precision Q31 Biquad cascade filter structure.
3788    * @param[in]     numStages    number of 2nd order stages in the filter.
3789    * @param[in]     *pCoeffs     points to the filter coefficients.
3790    * @param[in]     *pState      points to the state buffer.
3791    * @param[in]     postShift    shift to be applied to the output. Varies according to the coefficients format
3792    * @return        none
3793    */
3794 
3795   void arm_biquad_cas_df1_32x64_init_q31(
3796   arm_biquad_cas_df1_32x64_ins_q31 * S,
3797   uint8_t numStages,
3798   q31_t * pCoeffs,
3799   q63_t * pState,
3800   uint8_t postShift);
3801 
3802 
3803 
3804   /**
3805    * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
3806    */
3807 
3808   typedef struct
3809   {
3810     uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
3811     float32_t *pState;         /**< points to the array of state coefficients.  The array is of length 2*numStages. */
3812     float32_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */
3813   } arm_biquad_cascade_df2T_instance_f32;
3814 
3815 
3816 
3817   /**
3818    * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
3819    */
3820 
3821   typedef struct
3822   {
3823     uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
3824     float32_t *pState;         /**< points to the array of state coefficients.  The array is of length 4*numStages. */
3825     float32_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */
3826   } arm_biquad_cascade_stereo_df2T_instance_f32;
3827 
3828 
3829 
3830   /**
3831    * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
3832    */
3833 
3834   typedef struct
3835   {
3836     uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
3837     float64_t *pState;         /**< points to the array of state coefficients.  The array is of length 2*numStages. */
3838     float64_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */
3839   } arm_biquad_cascade_df2T_instance_f64;
3840 
3841 
3842   /**
3843    * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
3844    * @param[in]  *S        points to an instance of the filter data structure.
3845    * @param[in]  *pSrc     points to the block of input data.
3846    * @param[out] *pDst     points to the block of output data
3847    * @param[in]  blockSize number of samples to process.
3848    * @return none.
3849    */
3850 
3851   void arm_biquad_cascade_df2T_f32(
3852   const arm_biquad_cascade_df2T_instance_f32 * S,
3853   float32_t * pSrc,
3854   float32_t * pDst,
3855   uint32_t blockSize);
3856 
3857 
3858   /**
3859    * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
3860    * @param[in]  *S        points to an instance of the filter data structure.
3861    * @param[in]  *pSrc     points to the block of input data.
3862    * @param[out] *pDst     points to the block of output data
3863    * @param[in]  blockSize number of samples to process.
3864    * @return none.
3865    */
3866 
3867   void arm_biquad_cascade_stereo_df2T_f32(
3868   const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
3869   float32_t * pSrc,
3870   float32_t * pDst,
3871   uint32_t blockSize);
3872 
3873   /**
3874    * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
3875    * @param[in]  *S        points to an instance of the filter data structure.
3876    * @param[in]  *pSrc     points to the block of input data.
3877    * @param[out] *pDst     points to the block of output data
3878    * @param[in]  blockSize number of samples to process.
3879    * @return none.
3880    */
3881 
3882   void arm_biquad_cascade_df2T_f64(
3883   const arm_biquad_cascade_df2T_instance_f64 * S,
3884   float64_t * pSrc,
3885   float64_t * pDst,
3886   uint32_t blockSize);
3887 
3888 
3889   /**
3890    * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter.
3891    * @param[in,out] *S           points to an instance of the filter data structure.
3892    * @param[in]     numStages    number of 2nd order stages in the filter.
3893    * @param[in]     *pCoeffs     points to the filter coefficients.
3894    * @param[in]     *pState      points to the state buffer.
3895    * @return        none
3896    */
3897 
3898   void arm_biquad_cascade_df2T_init_f32(
3899   arm_biquad_cascade_df2T_instance_f32 * S,
3900   uint8_t numStages,
3901   float32_t * pCoeffs,
3902   float32_t * pState);
3903 
3904 
3905   /**
3906    * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter.
3907    * @param[in,out] *S           points to an instance of the filter data structure.
3908    * @param[in]     numStages    number of 2nd order stages in the filter.
3909    * @param[in]     *pCoeffs     points to the filter coefficients.
3910    * @param[in]     *pState      points to the state buffer.
3911    * @return        none
3912    */
3913 
3914   void arm_biquad_cascade_stereo_df2T_init_f32(
3915   arm_biquad_cascade_stereo_df2T_instance_f32 * S,
3916   uint8_t numStages,
3917   float32_t * pCoeffs,
3918   float32_t * pState);
3919 
3920 
3921   /**
3922    * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter.
3923    * @param[in,out] *S           points to an instance of the filter data structure.
3924    * @param[in]     numStages    number of 2nd order stages in the filter.
3925    * @param[in]     *pCoeffs     points to the filter coefficients.
3926    * @param[in]     *pState      points to the state buffer.
3927    * @return        none
3928    */
3929 
3930   void arm_biquad_cascade_df2T_init_f64(
3931   arm_biquad_cascade_df2T_instance_f64 * S,
3932   uint8_t numStages,
3933   float64_t * pCoeffs,
3934   float64_t * pState);
3935 
3936 
3937 
3938   /**
3939    * @brief Instance structure for the Q15 FIR lattice filter.
3940    */
3941 
3942   typedef struct
3943   {
3944     uint16_t numStages;                          /**< number of filter stages. */
3945     q15_t *pState;                               /**< points to the state variable array. The array is of length numStages. */
3946     q15_t *pCoeffs;                              /**< points to the coefficient array. The array is of length numStages. */
3947   } arm_fir_lattice_instance_q15;
3948 
3949   /**
3950    * @brief Instance structure for the Q31 FIR lattice filter.
3951    */
3952 
3953   typedef struct
3954   {
3955     uint16_t numStages;                          /**< number of filter stages. */
3956     q31_t *pState;                               /**< points to the state variable array. The array is of length numStages. */
3957     q31_t *pCoeffs;                              /**< points to the coefficient array. The array is of length numStages. */
3958   } arm_fir_lattice_instance_q31;
3959 
3960   /**
3961    * @brief Instance structure for the floating-point FIR lattice filter.
3962    */
3963 
3964   typedef struct
3965   {
3966     uint16_t numStages;                  /**< number of filter stages. */
3967     float32_t *pState;                   /**< points to the state variable array. The array is of length numStages. */
3968     float32_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numStages. */
3969   } arm_fir_lattice_instance_f32;
3970 
3971   /**
3972    * @brief Initialization function for the Q15 FIR lattice filter.
3973    * @param[in] *S points to an instance of the Q15 FIR lattice structure.
3974    * @param[in] numStages  number of filter stages.
3975    * @param[in] *pCoeffs points to the coefficient buffer.  The array is of length numStages.
3976    * @param[in] *pState points to the state buffer.  The array is of length numStages.
3977    * @return none.
3978    */
3979 
3980   void arm_fir_lattice_init_q15(
3981   arm_fir_lattice_instance_q15 * S,
3982   uint16_t numStages,
3983   q15_t * pCoeffs,
3984   q15_t * pState);
3985 
3986 
3987   /**
3988    * @brief Processing function for the Q15 FIR lattice filter.
3989    * @param[in] *S points to an instance of the Q15 FIR lattice structure.
3990    * @param[in] *pSrc points to the block of input data.
3991    * @param[out] *pDst points to the block of output data.
3992    * @param[in] blockSize number of samples to process.
3993    * @return none.
3994    */
3995   void arm_fir_lattice_q15(
3996   const arm_fir_lattice_instance_q15 * S,
3997   q15_t * pSrc,
3998   q15_t * pDst,
3999   uint32_t blockSize);
4000 
4001   /**
4002    * @brief Initialization function for the Q31 FIR lattice filter.
4003    * @param[in] *S points to an instance of the Q31 FIR lattice structure.
4004    * @param[in] numStages  number of filter stages.
4005    * @param[in] *pCoeffs points to the coefficient buffer.  The array is of length numStages.
4006    * @param[in] *pState points to the state buffer.   The array is of length numStages.
4007    * @return none.
4008    */
4009 
4010   void arm_fir_lattice_init_q31(
4011   arm_fir_lattice_instance_q31 * S,
4012   uint16_t numStages,
4013   q31_t * pCoeffs,
4014   q31_t * pState);
4015 
4016 
4017   /**
4018    * @brief Processing function for the Q31 FIR lattice filter.
4019    * @param[in]  *S        points to an instance of the Q31 FIR lattice structure.
4020    * @param[in]  *pSrc     points to the block of input data.
4021    * @param[out] *pDst     points to the block of output data
4022    * @param[in]  blockSize number of samples to process.
4023    * @return none.
4024    */
4025 
4026   void arm_fir_lattice_q31(
4027   const arm_fir_lattice_instance_q31 * S,
4028   q31_t * pSrc,
4029   q31_t * pDst,
4030   uint32_t blockSize);
4031 
4032 /**
4033  * @brief Initialization function for the floating-point FIR lattice filter.
4034  * @param[in] *S points to an instance of the floating-point FIR lattice structure.
4035  * @param[in] numStages  number of filter stages.
4036  * @param[in] *pCoeffs points to the coefficient buffer.  The array is of length numStages.
4037  * @param[in] *pState points to the state buffer.  The array is of length numStages.
4038  * @return none.
4039  */
4040 
4041   void arm_fir_lattice_init_f32(
4042   arm_fir_lattice_instance_f32 * S,
4043   uint16_t numStages,
4044   float32_t * pCoeffs,
4045   float32_t * pState);
4046 
4047   /**
4048    * @brief Processing function for the floating-point FIR lattice filter.
4049    * @param[in]  *S        points to an instance of the floating-point FIR lattice structure.
4050    * @param[in]  *pSrc     points to the block of input data.
4051    * @param[out] *pDst     points to the block of output data
4052    * @param[in]  blockSize number of samples to process.
4053    * @return none.
4054    */
4055 
4056   void arm_fir_lattice_f32(
4057   const arm_fir_lattice_instance_f32 * S,
4058   float32_t * pSrc,
4059   float32_t * pDst,
4060   uint32_t blockSize);
4061 
4062   /**
4063    * @brief Instance structure for the Q15 IIR lattice filter.
4064    */
4065   typedef struct
4066   {
4067     uint16_t numStages;                         /**< number of stages in the filter. */
4068     q15_t *pState;                              /**< points to the state variable array. The array is of length numStages+blockSize. */
4069     q15_t *pkCoeffs;                            /**< points to the reflection coefficient array. The array is of length numStages. */
4070     q15_t *pvCoeffs;                            /**< points to the ladder coefficient array. The array is of length numStages+1. */
4071   } arm_iir_lattice_instance_q15;
4072 
4073   /**
4074    * @brief Instance structure for the Q31 IIR lattice filter.
4075    */
4076   typedef struct
4077   {
4078     uint16_t numStages;                         /**< number of stages in the filter. */
4079     q31_t *pState;                              /**< points to the state variable array. The array is of length numStages+blockSize. */
4080     q31_t *pkCoeffs;                            /**< points to the reflection coefficient array. The array is of length numStages. */
4081     q31_t *pvCoeffs;                            /**< points to the ladder coefficient array. The array is of length numStages+1. */
4082   } arm_iir_lattice_instance_q31;
4083 
4084   /**
4085    * @brief Instance structure for the floating-point IIR lattice filter.
4086    */
4087   typedef struct
4088   {
4089     uint16_t numStages;                         /**< number of stages in the filter. */
4090     float32_t *pState;                          /**< points to the state variable array. The array is of length numStages+blockSize. */
4091     float32_t *pkCoeffs;                        /**< points to the reflection coefficient array. The array is of length numStages. */
4092     float32_t *pvCoeffs;                        /**< points to the ladder coefficient array. The array is of length numStages+1. */
4093   } arm_iir_lattice_instance_f32;
4094 
4095   /**
4096    * @brief Processing function for the floating-point IIR lattice filter.
4097    * @param[in] *S points to an instance of the floating-point IIR lattice structure.
4098    * @param[in] *pSrc points to the block of input data.
4099    * @param[out] *pDst points to the block of output data.
4100    * @param[in] blockSize number of samples to process.
4101    * @return none.
4102    */
4103 
4104   void arm_iir_lattice_f32(
4105   const arm_iir_lattice_instance_f32 * S,
4106   float32_t * pSrc,
4107   float32_t * pDst,
4108   uint32_t blockSize);
4109 
4110   /**
4111    * @brief Initialization function for the floating-point IIR lattice filter.
4112    * @param[in] *S points to an instance of the floating-point IIR lattice structure.
4113    * @param[in] numStages number of stages in the filter.
4114    * @param[in] *pkCoeffs points to the reflection coefficient buffer.  The array is of length numStages.
4115    * @param[in] *pvCoeffs points to the ladder coefficient buffer.  The array is of length numStages+1.
4116    * @param[in] *pState points to the state buffer.  The array is of length numStages+blockSize-1.
4117    * @param[in] blockSize number of samples to process.
4118    * @return none.
4119    */
4120 
4121   void arm_iir_lattice_init_f32(
4122   arm_iir_lattice_instance_f32 * S,
4123   uint16_t numStages,
4124   float32_t * pkCoeffs,
4125   float32_t * pvCoeffs,
4126   float32_t * pState,
4127   uint32_t blockSize);
4128 
4129 
4130   /**
4131    * @brief Processing function for the Q31 IIR lattice filter.
4132    * @param[in] *S points to an instance of the Q31 IIR lattice structure.
4133    * @param[in] *pSrc points to the block of input data.
4134    * @param[out] *pDst points to the block of output data.
4135    * @param[in] blockSize number of samples to process.
4136    * @return none.
4137    */
4138 
4139   void arm_iir_lattice_q31(
4140   const arm_iir_lattice_instance_q31 * S,
4141   q31_t * pSrc,
4142   q31_t * pDst,
4143   uint32_t blockSize);
4144 
4145 
4146   /**
4147    * @brief Initialization function for the Q31 IIR lattice filter.
4148    * @param[in] *S points to an instance of the Q31 IIR lattice structure.
4149    * @param[in] numStages number of stages in the filter.
4150    * @param[in] *pkCoeffs points to the reflection coefficient buffer.  The array is of length numStages.
4151    * @param[in] *pvCoeffs points to the ladder coefficient buffer.  The array is of length numStages+1.
4152    * @param[in] *pState points to the state buffer.  The array is of length numStages+blockSize.
4153    * @param[in] blockSize number of samples to process.
4154    * @return none.
4155    */
4156 
4157   void arm_iir_lattice_init_q31(
4158   arm_iir_lattice_instance_q31 * S,
4159   uint16_t numStages,
4160   q31_t * pkCoeffs,
4161   q31_t * pvCoeffs,
4162   q31_t * pState,
4163   uint32_t blockSize);
4164 
4165 
4166   /**
4167    * @brief Processing function for the Q15 IIR lattice filter.
4168    * @param[in] *S points to an instance of the Q15 IIR lattice structure.
4169    * @param[in] *pSrc points to the block of input data.
4170    * @param[out] *pDst points to the block of output data.
4171    * @param[in] blockSize number of samples to process.
4172    * @return none.
4173    */
4174 
4175   void arm_iir_lattice_q15(
4176   const arm_iir_lattice_instance_q15 * S,
4177   q15_t * pSrc,
4178   q15_t * pDst,
4179   uint32_t blockSize);
4180 
4181 
4182 /**
4183  * @brief Initialization function for the Q15 IIR lattice filter.
4184  * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
4185  * @param[in] numStages  number of stages in the filter.
4186  * @param[in] *pkCoeffs points to reflection coefficient buffer.  The array is of length numStages.
4187  * @param[in] *pvCoeffs points to ladder coefficient buffer.  The array is of length numStages+1.
4188  * @param[in] *pState points to state buffer.  The array is of length numStages+blockSize.
4189  * @param[in] blockSize number of samples to process per call.
4190  * @return none.
4191  */
4192 
4193   void arm_iir_lattice_init_q15(
4194   arm_iir_lattice_instance_q15 * S,
4195   uint16_t numStages,
4196   q15_t * pkCoeffs,
4197   q15_t * pvCoeffs,
4198   q15_t * pState,
4199   uint32_t blockSize);
4200 
4201   /**
4202    * @brief Instance structure for the floating-point LMS filter.
4203    */
4204 
4205   typedef struct
4206   {
4207     uint16_t numTaps;    /**< number of coefficients in the filter. */
4208     float32_t *pState;   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4209     float32_t *pCoeffs;  /**< points to the coefficient array. The array is of length numTaps. */
4210     float32_t mu;        /**< step size that controls filter coefficient updates. */
4211   } arm_lms_instance_f32;
4212 
4213   /**
4214    * @brief Processing function for floating-point LMS filter.
4215    * @param[in]  *S points to an instance of the floating-point LMS filter structure.
4216    * @param[in]  *pSrc points to the block of input data.
4217    * @param[in]  *pRef points to the block of reference data.
4218    * @param[out] *pOut points to the block of output data.
4219    * @param[out] *pErr points to the block of error data.
4220    * @param[in]  blockSize number of samples to process.
4221    * @return     none.
4222    */
4223 
4224   void arm_lms_f32(
4225   const arm_lms_instance_f32 * S,
4226   float32_t * pSrc,
4227   float32_t * pRef,
4228   float32_t * pOut,
4229   float32_t * pErr,
4230   uint32_t blockSize);
4231 
4232   /**
4233    * @brief Initialization function for floating-point LMS filter.
4234    * @param[in] *S points to an instance of the floating-point LMS filter structure.
4235    * @param[in] numTaps  number of filter coefficients.
4236    * @param[in] *pCoeffs points to the coefficient buffer.
4237    * @param[in] *pState points to state buffer.
4238    * @param[in] mu step size that controls filter coefficient updates.
4239    * @param[in] blockSize number of samples to process.
4240    * @return none.
4241    */
4242 
4243   void arm_lms_init_f32(
4244   arm_lms_instance_f32 * S,
4245   uint16_t numTaps,
4246   float32_t * pCoeffs,
4247   float32_t * pState,
4248   float32_t mu,
4249   uint32_t blockSize);
4250 
4251   /**
4252    * @brief Instance structure for the Q15 LMS filter.
4253    */
4254 
4255   typedef struct
4256   {
4257     uint16_t numTaps;    /**< number of coefficients in the filter. */
4258     q15_t *pState;       /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4259     q15_t *pCoeffs;      /**< points to the coefficient array. The array is of length numTaps. */
4260     q15_t mu;            /**< step size that controls filter coefficient updates. */
4261     uint32_t postShift;  /**< bit shift applied to coefficients. */
4262   } arm_lms_instance_q15;
4263 
4264 
4265   /**
4266    * @brief Initialization function for the Q15 LMS filter.
4267    * @param[in] *S points to an instance of the Q15 LMS filter structure.
4268    * @param[in] numTaps  number of filter coefficients.
4269    * @param[in] *pCoeffs points to the coefficient buffer.
4270    * @param[in] *pState points to the state buffer.
4271    * @param[in] mu step size that controls filter coefficient updates.
4272    * @param[in] blockSize number of samples to process.
4273    * @param[in] postShift bit shift applied to coefficients.
4274    * @return    none.
4275    */
4276 
4277   void arm_lms_init_q15(
4278   arm_lms_instance_q15 * S,
4279   uint16_t numTaps,
4280   q15_t * pCoeffs,
4281   q15_t * pState,
4282   q15_t mu,
4283   uint32_t blockSize,
4284   uint32_t postShift);
4285 
4286   /**
4287    * @brief Processing function for Q15 LMS filter.
4288    * @param[in] *S points to an instance of the Q15 LMS filter structure.
4289    * @param[in] *pSrc points to the block of input data.
4290    * @param[in] *pRef points to the block of reference data.
4291    * @param[out] *pOut points to the block of output data.
4292    * @param[out] *pErr points to the block of error data.
4293    * @param[in] blockSize number of samples to process.
4294    * @return none.
4295    */
4296 
4297   void arm_lms_q15(
4298   const arm_lms_instance_q15 * S,
4299   q15_t * pSrc,
4300   q15_t * pRef,
4301   q15_t * pOut,
4302   q15_t * pErr,
4303   uint32_t blockSize);
4304 
4305 
4306   /**
4307    * @brief Instance structure for the Q31 LMS filter.
4308    */
4309 
4310   typedef struct
4311   {
4312     uint16_t numTaps;    /**< number of coefficients in the filter. */
4313     q31_t *pState;       /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4314     q31_t *pCoeffs;      /**< points to the coefficient array. The array is of length numTaps. */
4315     q31_t mu;            /**< step size that controls filter coefficient updates. */
4316     uint32_t postShift;  /**< bit shift applied to coefficients. */
4317 
4318   } arm_lms_instance_q31;
4319 
4320   /**
4321    * @brief Processing function for Q31 LMS filter.
4322    * @param[in]  *S points to an instance of the Q15 LMS filter structure.
4323    * @param[in]  *pSrc points to the block of input data.
4324    * @param[in]  *pRef points to the block of reference data.
4325    * @param[out] *pOut points to the block of output data.
4326    * @param[out] *pErr points to the block of error data.
4327    * @param[in]  blockSize number of samples to process.
4328    * @return     none.
4329    */
4330 
4331   void arm_lms_q31(
4332   const arm_lms_instance_q31 * S,
4333   q31_t * pSrc,
4334   q31_t * pRef,
4335   q31_t * pOut,
4336   q31_t * pErr,
4337   uint32_t blockSize);
4338 
4339   /**
4340    * @brief Initialization function for Q31 LMS filter.
4341    * @param[in] *S points to an instance of the Q31 LMS filter structure.
4342    * @param[in] numTaps  number of filter coefficients.
4343    * @param[in] *pCoeffs points to coefficient buffer.
4344    * @param[in] *pState points to state buffer.
4345    * @param[in] mu step size that controls filter coefficient updates.
4346    * @param[in] blockSize number of samples to process.
4347    * @param[in] postShift bit shift applied to coefficients.
4348    * @return none.
4349    */
4350 
4351   void arm_lms_init_q31(
4352   arm_lms_instance_q31 * S,
4353   uint16_t numTaps,
4354   q31_t * pCoeffs,
4355   q31_t * pState,
4356   q31_t mu,
4357   uint32_t blockSize,
4358   uint32_t postShift);
4359 
4360   /**
4361    * @brief Instance structure for the floating-point normalized LMS filter.
4362    */
4363 
4364   typedef struct
4365   {
4366     uint16_t numTaps;     /**< number of coefficients in the filter. */
4367     float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4368     float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */
4369     float32_t mu;        /**< step size that control filter coefficient updates. */
4370     float32_t energy;    /**< saves previous frame energy. */
4371     float32_t x0;        /**< saves previous input sample. */
4372   } arm_lms_norm_instance_f32;
4373 
4374   /**
4375    * @brief Processing function for floating-point normalized LMS filter.
4376    * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
4377    * @param[in] *pSrc points to the block of input data.
4378    * @param[in] *pRef points to the block of reference data.
4379    * @param[out] *pOut points to the block of output data.
4380    * @param[out] *pErr points to the block of error data.
4381    * @param[in] blockSize number of samples to process.
4382    * @return none.
4383    */
4384 
4385   void arm_lms_norm_f32(
4386   arm_lms_norm_instance_f32 * S,
4387   float32_t * pSrc,
4388   float32_t * pRef,
4389   float32_t * pOut,
4390   float32_t * pErr,
4391   uint32_t blockSize);
4392 
4393   /**
4394    * @brief Initialization function for floating-point normalized LMS filter.
4395    * @param[in] *S points to an instance of the floating-point LMS filter structure.
4396    * @param[in] numTaps  number of filter coefficients.
4397    * @param[in] *pCoeffs points to coefficient buffer.
4398    * @param[in] *pState points to state buffer.
4399    * @param[in] mu step size that controls filter coefficient updates.
4400    * @param[in] blockSize number of samples to process.
4401    * @return none.
4402    */
4403 
4404   void arm_lms_norm_init_f32(
4405   arm_lms_norm_instance_f32 * S,
4406   uint16_t numTaps,
4407   float32_t * pCoeffs,
4408   float32_t * pState,
4409   float32_t mu,
4410   uint32_t blockSize);
4411 
4412 
4413   /**
4414    * @brief Instance structure for the Q31 normalized LMS filter.
4415    */
4416   typedef struct
4417   {
4418     uint16_t numTaps;     /**< number of coefficients in the filter. */
4419     q31_t *pState;        /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4420     q31_t *pCoeffs;       /**< points to the coefficient array. The array is of length numTaps. */
4421     q31_t mu;             /**< step size that controls filter coefficient updates. */
4422     uint8_t postShift;    /**< bit shift applied to coefficients. */
4423     q31_t *recipTable;    /**< points to the reciprocal initial value table. */
4424     q31_t energy;         /**< saves previous frame energy. */
4425     q31_t x0;             /**< saves previous input sample. */
4426   } arm_lms_norm_instance_q31;
4427 
4428   /**
4429    * @brief Processing function for Q31 normalized LMS filter.
4430    * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
4431    * @param[in] *pSrc points to the block of input data.
4432    * @param[in] *pRef points to the block of reference data.
4433    * @param[out] *pOut points to the block of output data.
4434    * @param[out] *pErr points to the block of error data.
4435    * @param[in] blockSize number of samples to process.
4436    * @return none.
4437    */
4438 
4439   void arm_lms_norm_q31(
4440   arm_lms_norm_instance_q31 * S,
4441   q31_t * pSrc,
4442   q31_t * pRef,
4443   q31_t * pOut,
4444   q31_t * pErr,
4445   uint32_t blockSize);
4446 
4447   /**
4448    * @brief Initialization function for Q31 normalized LMS filter.
4449    * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
4450    * @param[in] numTaps  number of filter coefficients.
4451    * @param[in] *pCoeffs points to coefficient buffer.
4452    * @param[in] *pState points to state buffer.
4453    * @param[in] mu step size that controls filter coefficient updates.
4454    * @param[in] blockSize number of samples to process.
4455    * @param[in] postShift bit shift applied to coefficients.
4456    * @return none.
4457    */
4458 
4459   void arm_lms_norm_init_q31(
4460   arm_lms_norm_instance_q31 * S,
4461   uint16_t numTaps,
4462   q31_t * pCoeffs,
4463   q31_t * pState,
4464   q31_t mu,
4465   uint32_t blockSize,
4466   uint8_t postShift);
4467 
4468   /**
4469    * @brief Instance structure for the Q15 normalized LMS filter.
4470    */
4471 
4472   typedef struct
4473   {
4474     uint16_t numTaps;    /**< Number of coefficients in the filter. */
4475     q15_t *pState;        /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4476     q15_t *pCoeffs;       /**< points to the coefficient array. The array is of length numTaps. */
4477     q15_t mu;            /**< step size that controls filter coefficient updates. */
4478     uint8_t postShift;   /**< bit shift applied to coefficients. */
4479     q15_t *recipTable;   /**< Points to the reciprocal initial value table. */
4480     q15_t energy;        /**< saves previous frame energy. */
4481     q15_t x0;            /**< saves previous input sample. */
4482   } arm_lms_norm_instance_q15;
4483 
4484   /**
4485    * @brief Processing function for Q15 normalized LMS filter.
4486    * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
4487    * @param[in] *pSrc points to the block of input data.
4488    * @param[in] *pRef points to the block of reference data.
4489    * @param[out] *pOut points to the block of output data.
4490    * @param[out] *pErr points to the block of error data.
4491    * @param[in] blockSize number of samples to process.
4492    * @return none.
4493    */
4494 
4495   void arm_lms_norm_q15(
4496   arm_lms_norm_instance_q15 * S,
4497   q15_t * pSrc,
4498   q15_t * pRef,
4499   q15_t * pOut,
4500   q15_t * pErr,
4501   uint32_t blockSize);
4502 
4503 
4504   /**
4505    * @brief Initialization function for Q15 normalized LMS filter.
4506    * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
4507    * @param[in] numTaps  number of filter coefficients.
4508    * @param[in] *pCoeffs points to coefficient buffer.
4509    * @param[in] *pState points to state buffer.
4510    * @param[in] mu step size that controls filter coefficient updates.
4511    * @param[in] blockSize number of samples to process.
4512    * @param[in] postShift bit shift applied to coefficients.
4513    * @return none.
4514    */
4515 
4516   void arm_lms_norm_init_q15(
4517   arm_lms_norm_instance_q15 * S,
4518   uint16_t numTaps,
4519   q15_t * pCoeffs,
4520   q15_t * pState,
4521   q15_t mu,
4522   uint32_t blockSize,
4523   uint8_t postShift);
4524 
4525   /**
4526    * @brief Correlation of floating-point sequences.
4527    * @param[in] *pSrcA points to the first input sequence.
4528    * @param[in] srcALen length of the first input sequence.
4529    * @param[in] *pSrcB points to the second input sequence.
4530    * @param[in] srcBLen length of the second input sequence.
4531    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4532    * @return none.
4533    */
4534 
4535   void arm_correlate_f32(
4536   float32_t * pSrcA,
4537   uint32_t srcALen,
4538   float32_t * pSrcB,
4539   uint32_t srcBLen,
4540   float32_t * pDst);
4541 
4542 
4543    /**
4544    * @brief Correlation of Q15 sequences
4545    * @param[in] *pSrcA points to the first input sequence.
4546    * @param[in] srcALen length of the first input sequence.
4547    * @param[in] *pSrcB points to the second input sequence.
4548    * @param[in] srcBLen length of the second input sequence.
4549    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4550    * @param[in]  *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
4551    * @return none.
4552    */
4553   void arm_correlate_opt_q15(
4554   q15_t * pSrcA,
4555   uint32_t srcALen,
4556   q15_t * pSrcB,
4557   uint32_t srcBLen,
4558   q15_t * pDst,
4559   q15_t * pScratch);
4560 
4561 
4562   /**
4563    * @brief Correlation of Q15 sequences.
4564    * @param[in] *pSrcA points to the first input sequence.
4565    * @param[in] srcALen length of the first input sequence.
4566    * @param[in] *pSrcB points to the second input sequence.
4567    * @param[in] srcBLen length of the second input sequence.
4568    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4569    * @return none.
4570    */
4571 
4572   void arm_correlate_q15(
4573   q15_t * pSrcA,
4574   uint32_t srcALen,
4575   q15_t * pSrcB,
4576   uint32_t srcBLen,
4577   q15_t * pDst);
4578 
4579   /**
4580    * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
4581    * @param[in] *pSrcA points to the first input sequence.
4582    * @param[in] srcALen length of the first input sequence.
4583    * @param[in] *pSrcB points to the second input sequence.
4584    * @param[in] srcBLen length of the second input sequence.
4585    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4586    * @return none.
4587    */
4588 
4589   void arm_correlate_fast_q15(
4590 			       q15_t * pSrcA,
4591 			      uint32_t srcALen,
4592 			       q15_t * pSrcB,
4593 			      uint32_t srcBLen,
4594 			      q15_t * pDst);
4595 
4596 
4597 
4598   /**
4599    * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
4600    * @param[in] *pSrcA points to the first input sequence.
4601    * @param[in] srcALen length of the first input sequence.
4602    * @param[in] *pSrcB points to the second input sequence.
4603    * @param[in] srcBLen length of the second input sequence.
4604    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4605    * @param[in]  *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
4606    * @return none.
4607    */
4608 
4609   void arm_correlate_fast_opt_q15(
4610   q15_t * pSrcA,
4611   uint32_t srcALen,
4612   q15_t * pSrcB,
4613   uint32_t srcBLen,
4614   q15_t * pDst,
4615   q15_t * pScratch);
4616 
4617   /**
4618    * @brief Correlation of Q31 sequences.
4619    * @param[in] *pSrcA points to the first input sequence.
4620    * @param[in] srcALen length of the first input sequence.
4621    * @param[in] *pSrcB points to the second input sequence.
4622    * @param[in] srcBLen length of the second input sequence.
4623    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4624    * @return none.
4625    */
4626 
4627   void arm_correlate_q31(
4628   q31_t * pSrcA,
4629   uint32_t srcALen,
4630   q31_t * pSrcB,
4631   uint32_t srcBLen,
4632   q31_t * pDst);
4633 
4634   /**
4635    * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
4636    * @param[in] *pSrcA points to the first input sequence.
4637    * @param[in] srcALen length of the first input sequence.
4638    * @param[in] *pSrcB points to the second input sequence.
4639    * @param[in] srcBLen length of the second input sequence.
4640    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4641    * @return none.
4642    */
4643 
4644   void arm_correlate_fast_q31(
4645   q31_t * pSrcA,
4646   uint32_t srcALen,
4647   q31_t * pSrcB,
4648   uint32_t srcBLen,
4649   q31_t * pDst);
4650 
4651 
4652 
4653  /**
4654    * @brief Correlation of Q7 sequences.
4655    * @param[in] *pSrcA points to the first input sequence.
4656    * @param[in] srcALen length of the first input sequence.
4657    * @param[in] *pSrcB points to the second input sequence.
4658    * @param[in] srcBLen length of the second input sequence.
4659    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4660    * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
4661    * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
4662    * @return none.
4663    */
4664 
4665   void arm_correlate_opt_q7(
4666   q7_t * pSrcA,
4667   uint32_t srcALen,
4668   q7_t * pSrcB,
4669   uint32_t srcBLen,
4670   q7_t * pDst,
4671   q15_t * pScratch1,
4672   q15_t * pScratch2);
4673 
4674 
4675   /**
4676    * @brief Correlation of Q7 sequences.
4677    * @param[in] *pSrcA points to the first input sequence.
4678    * @param[in] srcALen length of the first input sequence.
4679    * @param[in] *pSrcB points to the second input sequence.
4680    * @param[in] srcBLen length of the second input sequence.
4681    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4682    * @return none.
4683    */
4684 
4685   void arm_correlate_q7(
4686   q7_t * pSrcA,
4687   uint32_t srcALen,
4688   q7_t * pSrcB,
4689   uint32_t srcBLen,
4690   q7_t * pDst);
4691 
4692 
4693   /**
4694    * @brief Instance structure for the floating-point sparse FIR filter.
4695    */
4696   typedef struct
4697   {
4698     uint16_t numTaps;             /**< number of coefficients in the filter. */
4699     uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
4700     float32_t *pState;            /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
4701     float32_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
4702     uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
4703     int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
4704   } arm_fir_sparse_instance_f32;
4705 
4706   /**
4707    * @brief Instance structure for the Q31 sparse FIR filter.
4708    */
4709 
4710   typedef struct
4711   {
4712     uint16_t numTaps;             /**< number of coefficients in the filter. */
4713     uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
4714     q31_t *pState;                /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
4715     q31_t *pCoeffs;               /**< points to the coefficient array. The array is of length numTaps.*/
4716     uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
4717     int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
4718   } arm_fir_sparse_instance_q31;
4719 
4720   /**
4721    * @brief Instance structure for the Q15 sparse FIR filter.
4722    */
4723 
4724   typedef struct
4725   {
4726     uint16_t numTaps;             /**< number of coefficients in the filter. */
4727     uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
4728     q15_t *pState;                /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
4729     q15_t *pCoeffs;               /**< points to the coefficient array. The array is of length numTaps.*/
4730     uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
4731     int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
4732   } arm_fir_sparse_instance_q15;
4733 
4734   /**
4735    * @brief Instance structure for the Q7 sparse FIR filter.
4736    */
4737 
4738   typedef struct
4739   {
4740     uint16_t numTaps;             /**< number of coefficients in the filter. */
4741     uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
4742     q7_t *pState;                 /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
4743     q7_t *pCoeffs;                /**< points to the coefficient array. The array is of length numTaps.*/
4744     uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
4745     int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
4746   } arm_fir_sparse_instance_q7;
4747 
4748   /**
4749    * @brief Processing function for the floating-point sparse FIR filter.
4750    * @param[in]  *S          points to an instance of the floating-point sparse FIR structure.
4751    * @param[in]  *pSrc       points to the block of input data.
4752    * @param[out] *pDst       points to the block of output data
4753    * @param[in]  *pScratchIn points to a temporary buffer of size blockSize.
4754    * @param[in]  blockSize   number of input samples to process per call.
4755    * @return none.
4756    */
4757 
4758   void arm_fir_sparse_f32(
4759   arm_fir_sparse_instance_f32 * S,
4760   float32_t * pSrc,
4761   float32_t * pDst,
4762   float32_t * pScratchIn,
4763   uint32_t blockSize);
4764 
4765   /**
4766    * @brief  Initialization function for the floating-point sparse FIR filter.
4767    * @param[in,out] *S         points to an instance of the floating-point sparse FIR structure.
4768    * @param[in]     numTaps    number of nonzero coefficients in the filter.
4769    * @param[in]     *pCoeffs   points to the array of filter coefficients.
4770    * @param[in]     *pState    points to the state buffer.
4771    * @param[in]     *pTapDelay points to the array of offset times.
4772    * @param[in]     maxDelay   maximum offset time supported.
4773    * @param[in]     blockSize  number of samples that will be processed per block.
4774    * @return none
4775    */
4776 
4777   void arm_fir_sparse_init_f32(
4778   arm_fir_sparse_instance_f32 * S,
4779   uint16_t numTaps,
4780   float32_t * pCoeffs,
4781   float32_t * pState,
4782   int32_t * pTapDelay,
4783   uint16_t maxDelay,
4784   uint32_t blockSize);
4785 
4786   /**
4787    * @brief Processing function for the Q31 sparse FIR filter.
4788    * @param[in]  *S          points to an instance of the Q31 sparse FIR structure.
4789    * @param[in]  *pSrc       points to the block of input data.
4790    * @param[out] *pDst       points to the block of output data
4791    * @param[in]  *pScratchIn points to a temporary buffer of size blockSize.
4792    * @param[in]  blockSize   number of input samples to process per call.
4793    * @return none.
4794    */
4795 
4796   void arm_fir_sparse_q31(
4797   arm_fir_sparse_instance_q31 * S,
4798   q31_t * pSrc,
4799   q31_t * pDst,
4800   q31_t * pScratchIn,
4801   uint32_t blockSize);
4802 
4803   /**
4804    * @brief  Initialization function for the Q31 sparse FIR filter.
4805    * @param[in,out] *S         points to an instance of the Q31 sparse FIR structure.
4806    * @param[in]     numTaps    number of nonzero coefficients in the filter.
4807    * @param[in]     *pCoeffs   points to the array of filter coefficients.
4808    * @param[in]     *pState    points to the state buffer.
4809    * @param[in]     *pTapDelay points to the array of offset times.
4810    * @param[in]     maxDelay   maximum offset time supported.
4811    * @param[in]     blockSize  number of samples that will be processed per block.
4812    * @return none
4813    */
4814 
4815   void arm_fir_sparse_init_q31(
4816   arm_fir_sparse_instance_q31 * S,
4817   uint16_t numTaps,
4818   q31_t * pCoeffs,
4819   q31_t * pState,
4820   int32_t * pTapDelay,
4821   uint16_t maxDelay,
4822   uint32_t blockSize);
4823 
4824   /**
4825    * @brief Processing function for the Q15 sparse FIR filter.
4826    * @param[in]  *S           points to an instance of the Q15 sparse FIR structure.
4827    * @param[in]  *pSrc        points to the block of input data.
4828    * @param[out] *pDst        points to the block of output data
4829    * @param[in]  *pScratchIn  points to a temporary buffer of size blockSize.
4830    * @param[in]  *pScratchOut points to a temporary buffer of size blockSize.
4831    * @param[in]  blockSize    number of input samples to process per call.
4832    * @return none.
4833    */
4834 
4835   void arm_fir_sparse_q15(
4836   arm_fir_sparse_instance_q15 * S,
4837   q15_t * pSrc,
4838   q15_t * pDst,
4839   q15_t * pScratchIn,
4840   q31_t * pScratchOut,
4841   uint32_t blockSize);
4842 
4843 
4844   /**
4845    * @brief  Initialization function for the Q15 sparse FIR filter.
4846    * @param[in,out] *S         points to an instance of the Q15 sparse FIR structure.
4847    * @param[in]     numTaps    number of nonzero coefficients in the filter.
4848    * @param[in]     *pCoeffs   points to the array of filter coefficients.
4849    * @param[in]     *pState    points to the state buffer.
4850    * @param[in]     *pTapDelay points to the array of offset times.
4851    * @param[in]     maxDelay   maximum offset time supported.
4852    * @param[in]     blockSize  number of samples that will be processed per block.
4853    * @return none
4854    */
4855 
4856   void arm_fir_sparse_init_q15(
4857   arm_fir_sparse_instance_q15 * S,
4858   uint16_t numTaps,
4859   q15_t * pCoeffs,
4860   q15_t * pState,
4861   int32_t * pTapDelay,
4862   uint16_t maxDelay,
4863   uint32_t blockSize);
4864 
4865   /**
4866    * @brief Processing function for the Q7 sparse FIR filter.
4867    * @param[in]  *S           points to an instance of the Q7 sparse FIR structure.
4868    * @param[in]  *pSrc        points to the block of input data.
4869    * @param[out] *pDst        points to the block of output data
4870    * @param[in]  *pScratchIn  points to a temporary buffer of size blockSize.
4871    * @param[in]  *pScratchOut points to a temporary buffer of size blockSize.
4872    * @param[in]  blockSize    number of input samples to process per call.
4873    * @return none.
4874    */
4875 
4876   void arm_fir_sparse_q7(
4877   arm_fir_sparse_instance_q7 * S,
4878   q7_t * pSrc,
4879   q7_t * pDst,
4880   q7_t * pScratchIn,
4881   q31_t * pScratchOut,
4882   uint32_t blockSize);
4883 
4884   /**
4885    * @brief  Initialization function for the Q7 sparse FIR filter.
4886    * @param[in,out] *S         points to an instance of the Q7 sparse FIR structure.
4887    * @param[in]     numTaps    number of nonzero coefficients in the filter.
4888    * @param[in]     *pCoeffs   points to the array of filter coefficients.
4889    * @param[in]     *pState    points to the state buffer.
4890    * @param[in]     *pTapDelay points to the array of offset times.
4891    * @param[in]     maxDelay   maximum offset time supported.
4892    * @param[in]     blockSize  number of samples that will be processed per block.
4893    * @return none
4894    */
4895 
4896   void arm_fir_sparse_init_q7(
4897   arm_fir_sparse_instance_q7 * S,
4898   uint16_t numTaps,
4899   q7_t * pCoeffs,
4900   q7_t * pState,
4901   int32_t * pTapDelay,
4902   uint16_t maxDelay,
4903   uint32_t blockSize);
4904 
4905 
4906   /*
4907    * @brief  Floating-point sin_cos function.
4908    * @param[in]  theta    input value in degrees
4909    * @param[out] *pSinVal points to the processed sine output.
4910    * @param[out] *pCosVal points to the processed cos output.
4911    * @return none.
4912    */
4913 
4914   void arm_sin_cos_f32(
4915   float32_t theta,
4916   float32_t * pSinVal,
4917   float32_t * pCcosVal);
4918 
4919   /*
4920    * @brief  Q31 sin_cos function.
4921    * @param[in]  theta    scaled input value in degrees
4922    * @param[out] *pSinVal points to the processed sine output.
4923    * @param[out] *pCosVal points to the processed cosine output.
4924    * @return none.
4925    */
4926 
4927   void arm_sin_cos_q31(
4928   q31_t theta,
4929   q31_t * pSinVal,
4930   q31_t * pCosVal);
4931 
4932 
4933   /**
4934    * @brief  Floating-point complex conjugate.
4935    * @param[in]  *pSrc points to the input vector
4936    * @param[out]  *pDst points to the output vector
4937    * @param[in]  numSamples number of complex samples in each vector
4938    * @return none.
4939    */
4940 
4941   void arm_cmplx_conj_f32(
4942   float32_t * pSrc,
4943   float32_t * pDst,
4944   uint32_t numSamples);
4945 
4946   /**
4947    * @brief  Q31 complex conjugate.
4948    * @param[in]  *pSrc points to the input vector
4949    * @param[out]  *pDst points to the output vector
4950    * @param[in]  numSamples number of complex samples in each vector
4951    * @return none.
4952    */
4953 
4954   void arm_cmplx_conj_q31(
4955   q31_t * pSrc,
4956   q31_t * pDst,
4957   uint32_t numSamples);
4958 
4959   /**
4960    * @brief  Q15 complex conjugate.
4961    * @param[in]  *pSrc points to the input vector
4962    * @param[out]  *pDst points to the output vector
4963    * @param[in]  numSamples number of complex samples in each vector
4964    * @return none.
4965    */
4966 
4967   void arm_cmplx_conj_q15(
4968   q15_t * pSrc,
4969   q15_t * pDst,
4970   uint32_t numSamples);
4971 
4972 
4973 
4974   /**
4975    * @brief  Floating-point complex magnitude squared
4976    * @param[in]  *pSrc points to the complex input vector
4977    * @param[out]  *pDst points to the real output vector
4978    * @param[in]  numSamples number of complex samples in the input vector
4979    * @return none.
4980    */
4981 
4982   void arm_cmplx_mag_squared_f32(
4983   float32_t * pSrc,
4984   float32_t * pDst,
4985   uint32_t numSamples);
4986 
4987   /**
4988    * @brief  Q31 complex magnitude squared
4989    * @param[in]  *pSrc points to the complex input vector
4990    * @param[out]  *pDst points to the real output vector
4991    * @param[in]  numSamples number of complex samples in the input vector
4992    * @return none.
4993    */
4994 
4995   void arm_cmplx_mag_squared_q31(
4996   q31_t * pSrc,
4997   q31_t * pDst,
4998   uint32_t numSamples);
4999 
5000   /**
5001    * @brief  Q15 complex magnitude squared
5002    * @param[in]  *pSrc points to the complex input vector
5003    * @param[out]  *pDst points to the real output vector
5004    * @param[in]  numSamples number of complex samples in the input vector
5005    * @return none.
5006    */
5007 
5008   void arm_cmplx_mag_squared_q15(
5009   q15_t * pSrc,
5010   q15_t * pDst,
5011   uint32_t numSamples);
5012 
5013 
5014  /**
5015    * @ingroup groupController
5016    */
5017 
5018   /**
5019    * @defgroup PID PID Motor Control
5020    *
5021    * A Proportional Integral Derivative (PID) controller is a generic feedback control
5022    * loop mechanism widely used in industrial control systems.
5023    * A PID controller is the most commonly used type of feedback controller.
5024    *
5025    * This set of functions implements (PID) controllers
5026    * for Q15, Q31, and floating-point data types.  The functions operate on a single sample
5027    * of data and each call to the function returns a single processed value.
5028    * <code>S</code> points to an instance of the PID control data structure.  <code>in</code>
5029    * is the input sample value. The functions return the output value.
5030    *
5031    * \par Algorithm:
5032    * <pre>
5033    *    y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
5034    *    A0 = Kp + Ki + Kd
5035    *    A1 = (-Kp ) - (2 * Kd )
5036    *    A2 = Kd  </pre>
5037    *
5038    * \par
5039    * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
5040    *
5041    * \par
5042    * \image html PID.gif "Proportional Integral Derivative Controller"
5043    *
5044    * \par
5045    * The PID controller calculates an "error" value as the difference between
5046    * the measured output and the reference input.
5047    * The controller attempts to minimize the error by adjusting the process control inputs.
5048    * The proportional value determines the reaction to the current error,
5049    * the integral value determines the reaction based on the sum of recent errors,
5050    * and the derivative value determines the reaction based on the rate at which the error has been changing.
5051    *
5052    * \par Instance Structure
5053    * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
5054    * A separate instance structure must be defined for each PID Controller.
5055    * There are separate instance structure declarations for each of the 3 supported data types.
5056    *
5057    * \par Reset Functions
5058    * There is also an associated reset function for each data type which clears the state array.
5059    *
5060    * \par Initialization Functions
5061    * There is also an associated initialization function for each data type.
5062    * The initialization function performs the following operations:
5063    * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
5064    * - Zeros out the values in the state buffer.
5065    *
5066    * \par
5067    * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
5068    *
5069    * \par Fixed-Point Behavior
5070    * Care must be taken when using the fixed-point versions of the PID Controller functions.
5071    * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
5072    * Refer to the function specific documentation below for usage guidelines.
5073    */
5074 
5075   /**
5076    * @addtogroup PID
5077    * @{
5078    */
5079 
5080   /**
5081    * @brief  Process function for the floating-point PID Control.
5082    * @param[in,out] *S is an instance of the floating-point PID Control structure
5083    * @param[in] in input sample to process
5084    * @return out processed output sample.
5085    */
5086 
5087 
arm_pid_f32(arm_pid_instance_f32 * S,float32_t in)5088   static __INLINE float32_t arm_pid_f32(
5089   arm_pid_instance_f32 * S,
5090   float32_t in)
5091   {
5092     float32_t out;
5093 
5094     /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]  */
5095     out = (S->A0 * in) +
5096       (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
5097 
5098     /* Update state */
5099     S->state[1] = S->state[0];
5100     S->state[0] = in;
5101     S->state[2] = out;
5102 
5103     /* return to application */
5104     return (out);
5105 
5106   }
5107 
5108   /**
5109    * @brief  Process function for the Q31 PID Control.
5110    * @param[in,out] *S points to an instance of the Q31 PID Control structure
5111    * @param[in] in input sample to process
5112    * @return out processed output sample.
5113    *
5114    * <b>Scaling and Overflow Behavior:</b>
5115    * \par
5116    * The function is implemented using an internal 64-bit accumulator.
5117    * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
5118    * Thus, if the accumulator result overflows it wraps around rather than clip.
5119    * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
5120    * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
5121    */
5122 
arm_pid_q31(arm_pid_instance_q31 * S,q31_t in)5123   static __INLINE q31_t arm_pid_q31(
5124   arm_pid_instance_q31 * S,
5125   q31_t in)
5126   {
5127     q63_t acc;
5128     q31_t out;
5129 
5130     /* acc = A0 * x[n]  */
5131     acc = (q63_t) S->A0 * in;
5132 
5133     /* acc += A1 * x[n-1] */
5134     acc += (q63_t) S->A1 * S->state[0];
5135 
5136     /* acc += A2 * x[n-2]  */
5137     acc += (q63_t) S->A2 * S->state[1];
5138 
5139     /* convert output to 1.31 format to add y[n-1] */
5140     out = (q31_t) (acc >> 31u);
5141 
5142     /* out += y[n-1] */
5143     out += S->state[2];
5144 
5145     /* Update state */
5146     S->state[1] = S->state[0];
5147     S->state[0] = in;
5148     S->state[2] = out;
5149 
5150     /* return to application */
5151     return (out);
5152 
5153   }
5154 
5155   /**
5156    * @brief  Process function for the Q15 PID Control.
5157    * @param[in,out] *S points to an instance of the Q15 PID Control structure
5158    * @param[in] in input sample to process
5159    * @return out processed output sample.
5160    *
5161    * <b>Scaling and Overflow Behavior:</b>
5162    * \par
5163    * The function is implemented using a 64-bit internal accumulator.
5164    * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
5165    * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
5166    * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
5167    * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
5168    * Lastly, the accumulator is saturated to yield a result in 1.15 format.
5169    */
5170 
arm_pid_q15(arm_pid_instance_q15 * S,q15_t in)5171   static __INLINE q15_t arm_pid_q15(
5172   arm_pid_instance_q15 * S,
5173   q15_t in)
5174   {
5175     q63_t acc;
5176     q15_t out;
5177 
5178 #ifndef ARM_MATH_CM0_FAMILY
5179     __SIMD32_TYPE *vstate;
5180 
5181     /* Implementation of PID controller */
5182 
5183     /* acc = A0 * x[n]  */
5184     acc = (q31_t) __SMUAD(S->A0, in);
5185 
5186     /* acc += A1 * x[n-1] + A2 * x[n-2]  */
5187     vstate = __SIMD32_CONST(S->state);
5188     acc = __SMLALD(S->A1, (q31_t) *vstate, acc);
5189 
5190 #else
5191     /* acc = A0 * x[n]  */
5192     acc = ((q31_t) S->A0) * in;
5193 
5194     /* acc += A1 * x[n-1] + A2 * x[n-2]  */
5195     acc += (q31_t) S->A1 * S->state[0];
5196     acc += (q31_t) S->A2 * S->state[1];
5197 
5198 #endif
5199 
5200     /* acc += y[n-1] */
5201     acc += (q31_t) S->state[2] << 15;
5202 
5203     /* saturate the output */
5204     out = (q15_t) (__SSAT((acc >> 15), 16));
5205 
5206     /* Update state */
5207     S->state[1] = S->state[0];
5208     S->state[0] = in;
5209     S->state[2] = out;
5210 
5211     /* return to application */
5212     return (out);
5213 
5214   }
5215 
5216   /**
5217    * @} end of PID group
5218    */
5219 
5220 
5221   /**
5222    * @brief Floating-point matrix inverse.
5223    * @param[in]  *src points to the instance of the input floating-point matrix structure.
5224    * @param[out] *dst points to the instance of the output floating-point matrix structure.
5225    * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
5226    * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
5227    */
5228 
5229   arm_status arm_mat_inverse_f32(
5230   const arm_matrix_instance_f32 * src,
5231   arm_matrix_instance_f32 * dst);
5232 
5233 
5234   /**
5235    * @brief Floating-point matrix inverse.
5236    * @param[in]  *src points to the instance of the input floating-point matrix structure.
5237    * @param[out] *dst points to the instance of the output floating-point matrix structure.
5238    * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
5239    * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
5240    */
5241 
5242   arm_status arm_mat_inverse_f64(
5243   const arm_matrix_instance_f64 * src,
5244   arm_matrix_instance_f64 * dst);
5245 
5246 
5247 
5248   /**
5249    * @ingroup groupController
5250    */
5251 
5252 
5253   /**
5254    * @defgroup clarke Vector Clarke Transform
5255    * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
5256    * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
5257    * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
5258    * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
5259    * \image html clarke.gif Stator current space vector and its components in (a,b).
5260    * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
5261    * can be calculated using only <code>Ia</code> and <code>Ib</code>.
5262    *
5263    * The function operates on a single sample of data and each call to the function returns the processed output.
5264    * The library provides separate functions for Q31 and floating-point data types.
5265    * \par Algorithm
5266    * \image html clarkeFormula.gif
5267    * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
5268    * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
5269    * \par Fixed-Point Behavior
5270    * Care must be taken when using the Q31 version of the Clarke transform.
5271    * In particular, the overflow and saturation behavior of the accumulator used must be considered.
5272    * Refer to the function specific documentation below for usage guidelines.
5273    */
5274 
5275   /**
5276    * @addtogroup clarke
5277    * @{
5278    */
5279 
5280   /**
5281    *
5282    * @brief  Floating-point Clarke transform
5283    * @param[in]       Ia       input three-phase coordinate <code>a</code>
5284    * @param[in]       Ib       input three-phase coordinate <code>b</code>
5285    * @param[out]      *pIalpha points to output two-phase orthogonal vector axis alpha
5286    * @param[out]      *pIbeta  points to output two-phase orthogonal vector axis beta
5287    * @return none.
5288    */
5289 
arm_clarke_f32(float32_t Ia,float32_t Ib,float32_t * pIalpha,float32_t * pIbeta)5290   static __INLINE void arm_clarke_f32(
5291   float32_t Ia,
5292   float32_t Ib,
5293   float32_t * pIalpha,
5294   float32_t * pIbeta)
5295   {
5296     /* Calculate pIalpha using the equation, pIalpha = Ia */
5297     *pIalpha = Ia;
5298 
5299     /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
5300     *pIbeta =
5301       ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
5302 
5303   }
5304 
5305   /**
5306    * @brief  Clarke transform for Q31 version
5307    * @param[in]       Ia       input three-phase coordinate <code>a</code>
5308    * @param[in]       Ib       input three-phase coordinate <code>b</code>
5309    * @param[out]      *pIalpha points to output two-phase orthogonal vector axis alpha
5310    * @param[out]      *pIbeta  points to output two-phase orthogonal vector axis beta
5311    * @return none.
5312    *
5313    * <b>Scaling and Overflow Behavior:</b>
5314    * \par
5315    * The function is implemented using an internal 32-bit accumulator.
5316    * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
5317    * There is saturation on the addition, hence there is no risk of overflow.
5318    */
5319 
arm_clarke_q31(q31_t Ia,q31_t Ib,q31_t * pIalpha,q31_t * pIbeta)5320   static __INLINE void arm_clarke_q31(
5321   q31_t Ia,
5322   q31_t Ib,
5323   q31_t * pIalpha,
5324   q31_t * pIbeta)
5325   {
5326     q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
5327 
5328     /* Calculating pIalpha from Ia by equation pIalpha = Ia */
5329     *pIalpha = Ia;
5330 
5331     /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
5332     product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
5333 
5334     /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
5335     product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
5336 
5337     /* pIbeta is calculated by adding the intermediate products */
5338     *pIbeta = __QADD(product1, product2);
5339   }
5340 
5341   /**
5342    * @} end of clarke group
5343    */
5344 
5345   /**
5346    * @brief  Converts the elements of the Q7 vector to Q31 vector.
5347    * @param[in]  *pSrc     input pointer
5348    * @param[out]  *pDst    output pointer
5349    * @param[in]  blockSize number of samples to process
5350    * @return none.
5351    */
5352   void arm_q7_to_q31(
5353   q7_t * pSrc,
5354   q31_t * pDst,
5355   uint32_t blockSize);
5356 
5357 
5358 
5359 
5360   /**
5361    * @ingroup groupController
5362    */
5363 
5364   /**
5365    * @defgroup inv_clarke Vector Inverse Clarke Transform
5366    * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
5367    *
5368    * The function operates on a single sample of data and each call to the function returns the processed output.
5369    * The library provides separate functions for Q31 and floating-point data types.
5370    * \par Algorithm
5371    * \image html clarkeInvFormula.gif
5372    * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
5373    * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
5374    * \par Fixed-Point Behavior
5375    * Care must be taken when using the Q31 version of the Clarke transform.
5376    * In particular, the overflow and saturation behavior of the accumulator used must be considered.
5377    * Refer to the function specific documentation below for usage guidelines.
5378    */
5379 
5380   /**
5381    * @addtogroup inv_clarke
5382    * @{
5383    */
5384 
5385    /**
5386    * @brief  Floating-point Inverse Clarke transform
5387    * @param[in]       Ialpha  input two-phase orthogonal vector axis alpha
5388    * @param[in]       Ibeta   input two-phase orthogonal vector axis beta
5389    * @param[out]      *pIa    points to output three-phase coordinate <code>a</code>
5390    * @param[out]      *pIb    points to output three-phase coordinate <code>b</code>
5391    * @return none.
5392    */
5393 
5394 
arm_inv_clarke_f32(float32_t Ialpha,float32_t Ibeta,float32_t * pIa,float32_t * pIb)5395   static __INLINE void arm_inv_clarke_f32(
5396   float32_t Ialpha,
5397   float32_t Ibeta,
5398   float32_t * pIa,
5399   float32_t * pIb)
5400   {
5401     /* Calculating pIa from Ialpha by equation pIa = Ialpha */
5402     *pIa = Ialpha;
5403 
5404     /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
5405     *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
5406 
5407   }
5408 
5409   /**
5410    * @brief  Inverse Clarke transform for Q31 version
5411    * @param[in]       Ialpha  input two-phase orthogonal vector axis alpha
5412    * @param[in]       Ibeta   input two-phase orthogonal vector axis beta
5413    * @param[out]      *pIa    points to output three-phase coordinate <code>a</code>
5414    * @param[out]      *pIb    points to output three-phase coordinate <code>b</code>
5415    * @return none.
5416    *
5417    * <b>Scaling and Overflow Behavior:</b>
5418    * \par
5419    * The function is implemented using an internal 32-bit accumulator.
5420    * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
5421    * There is saturation on the subtraction, hence there is no risk of overflow.
5422    */
5423 
arm_inv_clarke_q31(q31_t Ialpha,q31_t Ibeta,q31_t * pIa,q31_t * pIb)5424   static __INLINE void arm_inv_clarke_q31(
5425   q31_t Ialpha,
5426   q31_t Ibeta,
5427   q31_t * pIa,
5428   q31_t * pIb)
5429   {
5430     q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
5431 
5432     /* Calculating pIa from Ialpha by equation pIa = Ialpha */
5433     *pIa = Ialpha;
5434 
5435     /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
5436     product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
5437 
5438     /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
5439     product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
5440 
5441     /* pIb is calculated by subtracting the products */
5442     *pIb = __QSUB(product2, product1);
5443 
5444   }
5445 
5446   /**
5447    * @} end of inv_clarke group
5448    */
5449 
5450   /**
5451    * @brief  Converts the elements of the Q7 vector to Q15 vector.
5452    * @param[in]  *pSrc     input pointer
5453    * @param[out] *pDst     output pointer
5454    * @param[in]  blockSize number of samples to process
5455    * @return none.
5456    */
5457   void arm_q7_to_q15(
5458   q7_t * pSrc,
5459   q15_t * pDst,
5460   uint32_t blockSize);
5461 
5462 
5463 
5464   /**
5465    * @ingroup groupController
5466    */
5467 
5468   /**
5469    * @defgroup park Vector Park Transform
5470    *
5471    * Forward Park transform converts the input two-coordinate vector to flux and torque components.
5472    * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
5473    * from the stationary to the moving reference frame and control the spatial relationship between
5474    * the stator vector current and rotor flux vector.
5475    * If we consider the d axis aligned with the rotor flux, the diagram below shows the
5476    * current vector and the relationship from the two reference frames:
5477    * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
5478    *
5479    * The function operates on a single sample of data and each call to the function returns the processed output.
5480    * The library provides separate functions for Q31 and floating-point data types.
5481    * \par Algorithm
5482    * \image html parkFormula.gif
5483    * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
5484    * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
5485    * cosine and sine values of theta (rotor flux position).
5486    * \par Fixed-Point Behavior
5487    * Care must be taken when using the Q31 version of the Park transform.
5488    * In particular, the overflow and saturation behavior of the accumulator used must be considered.
5489    * Refer to the function specific documentation below for usage guidelines.
5490    */
5491 
5492   /**
5493    * @addtogroup park
5494    * @{
5495    */
5496 
5497   /**
5498    * @brief Floating-point Park transform
5499    * @param[in]       Ialpha input two-phase vector coordinate alpha
5500    * @param[in]       Ibeta  input two-phase vector coordinate beta
5501    * @param[out]      *pId   points to output	rotor reference frame d
5502    * @param[out]      *pIq   points to output	rotor reference frame q
5503    * @param[in]       sinVal sine value of rotation angle theta
5504    * @param[in]       cosVal cosine value of rotation angle theta
5505    * @return none.
5506    *
5507    * The function implements the forward Park transform.
5508    *
5509    */
5510 
arm_park_f32(float32_t Ialpha,float32_t Ibeta,float32_t * pId,float32_t * pIq,float32_t sinVal,float32_t cosVal)5511   static __INLINE void arm_park_f32(
5512   float32_t Ialpha,
5513   float32_t Ibeta,
5514   float32_t * pId,
5515   float32_t * pIq,
5516   float32_t sinVal,
5517   float32_t cosVal)
5518   {
5519     /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
5520     *pId = Ialpha * cosVal + Ibeta * sinVal;
5521 
5522     /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
5523     *pIq = -Ialpha * sinVal + Ibeta * cosVal;
5524 
5525   }
5526 
5527   /**
5528    * @brief  Park transform for Q31 version
5529    * @param[in]       Ialpha input two-phase vector coordinate alpha
5530    * @param[in]       Ibeta  input two-phase vector coordinate beta
5531    * @param[out]      *pId   points to output rotor reference frame d
5532    * @param[out]      *pIq   points to output rotor reference frame q
5533    * @param[in]       sinVal sine value of rotation angle theta
5534    * @param[in]       cosVal cosine value of rotation angle theta
5535    * @return none.
5536    *
5537    * <b>Scaling and Overflow Behavior:</b>
5538    * \par
5539    * The function is implemented using an internal 32-bit accumulator.
5540    * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
5541    * There is saturation on the addition and subtraction, hence there is no risk of overflow.
5542    */
5543 
5544 
arm_park_q31(q31_t Ialpha,q31_t Ibeta,q31_t * pId,q31_t * pIq,q31_t sinVal,q31_t cosVal)5545   static __INLINE void arm_park_q31(
5546   q31_t Ialpha,
5547   q31_t Ibeta,
5548   q31_t * pId,
5549   q31_t * pIq,
5550   q31_t sinVal,
5551   q31_t cosVal)
5552   {
5553     q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
5554     q31_t product3, product4;                    /* Temporary variables used to store intermediate results */
5555 
5556     /* Intermediate product is calculated by (Ialpha * cosVal) */
5557     product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
5558 
5559     /* Intermediate product is calculated by (Ibeta * sinVal) */
5560     product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
5561 
5562 
5563     /* Intermediate product is calculated by (Ialpha * sinVal) */
5564     product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
5565 
5566     /* Intermediate product is calculated by (Ibeta * cosVal) */
5567     product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
5568 
5569     /* Calculate pId by adding the two intermediate products 1 and 2 */
5570     *pId = __QADD(product1, product2);
5571 
5572     /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
5573     *pIq = __QSUB(product4, product3);
5574   }
5575 
5576   /**
5577    * @} end of park group
5578    */
5579 
5580   /**
5581    * @brief  Converts the elements of the Q7 vector to floating-point vector.
5582    * @param[in]  *pSrc is input pointer
5583    * @param[out]  *pDst is output pointer
5584    * @param[in]  blockSize is the number of samples to process
5585    * @return none.
5586    */
5587   void arm_q7_to_float(
5588   q7_t * pSrc,
5589   float32_t * pDst,
5590   uint32_t blockSize);
5591 
5592 
5593   /**
5594    * @ingroup groupController
5595    */
5596 
5597   /**
5598    * @defgroup inv_park Vector Inverse Park transform
5599    * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
5600    *
5601    * The function operates on a single sample of data and each call to the function returns the processed output.
5602    * The library provides separate functions for Q31 and floating-point data types.
5603    * \par Algorithm
5604    * \image html parkInvFormula.gif
5605    * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
5606    * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
5607    * cosine and sine values of theta (rotor flux position).
5608    * \par Fixed-Point Behavior
5609    * Care must be taken when using the Q31 version of the Park transform.
5610    * In particular, the overflow and saturation behavior of the accumulator used must be considered.
5611    * Refer to the function specific documentation below for usage guidelines.
5612    */
5613 
5614   /**
5615    * @addtogroup inv_park
5616    * @{
5617    */
5618 
5619    /**
5620    * @brief  Floating-point Inverse Park transform
5621    * @param[in]       Id        input coordinate of rotor reference frame d
5622    * @param[in]       Iq        input coordinate of rotor reference frame q
5623    * @param[out]      *pIalpha  points to output two-phase orthogonal vector axis alpha
5624    * @param[out]      *pIbeta   points to output two-phase orthogonal vector axis beta
5625    * @param[in]       sinVal    sine value of rotation angle theta
5626    * @param[in]       cosVal    cosine value of rotation angle theta
5627    * @return none.
5628    */
5629 
arm_inv_park_f32(float32_t Id,float32_t Iq,float32_t * pIalpha,float32_t * pIbeta,float32_t sinVal,float32_t cosVal)5630   static __INLINE void arm_inv_park_f32(
5631   float32_t Id,
5632   float32_t Iq,
5633   float32_t * pIalpha,
5634   float32_t * pIbeta,
5635   float32_t sinVal,
5636   float32_t cosVal)
5637   {
5638     /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
5639     *pIalpha = Id * cosVal - Iq * sinVal;
5640 
5641     /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
5642     *pIbeta = Id * sinVal + Iq * cosVal;
5643 
5644   }
5645 
5646 
5647   /**
5648    * @brief  Inverse Park transform for	Q31 version
5649    * @param[in]       Id        input coordinate of rotor reference frame d
5650    * @param[in]       Iq        input coordinate of rotor reference frame q
5651    * @param[out]      *pIalpha  points to output two-phase orthogonal vector axis alpha
5652    * @param[out]      *pIbeta   points to output two-phase orthogonal vector axis beta
5653    * @param[in]       sinVal    sine value of rotation angle theta
5654    * @param[in]       cosVal    cosine value of rotation angle theta
5655    * @return none.
5656    *
5657    * <b>Scaling and Overflow Behavior:</b>
5658    * \par
5659    * The function is implemented using an internal 32-bit accumulator.
5660    * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
5661    * There is saturation on the addition, hence there is no risk of overflow.
5662    */
5663 
5664 
arm_inv_park_q31(q31_t Id,q31_t Iq,q31_t * pIalpha,q31_t * pIbeta,q31_t sinVal,q31_t cosVal)5665   static __INLINE void arm_inv_park_q31(
5666   q31_t Id,
5667   q31_t Iq,
5668   q31_t * pIalpha,
5669   q31_t * pIbeta,
5670   q31_t sinVal,
5671   q31_t cosVal)
5672   {
5673     q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
5674     q31_t product3, product4;                    /* Temporary variables used to store intermediate results */
5675 
5676     /* Intermediate product is calculated by (Id * cosVal) */
5677     product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
5678 
5679     /* Intermediate product is calculated by (Iq * sinVal) */
5680     product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
5681 
5682 
5683     /* Intermediate product is calculated by (Id * sinVal) */
5684     product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
5685 
5686     /* Intermediate product is calculated by (Iq * cosVal) */
5687     product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
5688 
5689     /* Calculate pIalpha by using the two intermediate products 1 and 2 */
5690     *pIalpha = __QSUB(product1, product2);
5691 
5692     /* Calculate pIbeta by using the two intermediate products 3 and 4 */
5693     *pIbeta = __QADD(product4, product3);
5694 
5695   }
5696 
5697   /**
5698    * @} end of Inverse park group
5699    */
5700 
5701 
5702   /**
5703    * @brief  Converts the elements of the Q31 vector to floating-point vector.
5704    * @param[in]  *pSrc is input pointer
5705    * @param[out]  *pDst is output pointer
5706    * @param[in]  blockSize is the number of samples to process
5707    * @return none.
5708    */
5709   void arm_q31_to_float(
5710   q31_t * pSrc,
5711   float32_t * pDst,
5712   uint32_t blockSize);
5713 
5714   /**
5715    * @ingroup groupInterpolation
5716    */
5717 
5718   /**
5719    * @defgroup LinearInterpolate Linear Interpolation
5720    *
5721    * Linear interpolation is a method of curve fitting using linear polynomials.
5722    * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
5723    *
5724    * \par
5725    * \image html LinearInterp.gif "Linear interpolation"
5726    *
5727    * \par
5728    * A  Linear Interpolate function calculates an output value(y), for the input(x)
5729    * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
5730    *
5731    * \par Algorithm:
5732    * <pre>
5733    *       y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
5734    *       where x0, x1 are nearest values of input x
5735    *             y0, y1 are nearest values to output y
5736    * </pre>
5737    *
5738    * \par
5739    * This set of functions implements Linear interpolation process
5740    * for Q7, Q15, Q31, and floating-point data types.  The functions operate on a single
5741    * sample of data and each call to the function returns a single processed value.
5742    * <code>S</code> points to an instance of the Linear Interpolate function data structure.
5743    * <code>x</code> is the input sample value. The functions returns the output value.
5744    *
5745    * \par
5746    * if x is outside of the table boundary, Linear interpolation returns first value of the table
5747    * if x is below input range and returns last value of table if x is above range.
5748    */
5749 
5750   /**
5751    * @addtogroup LinearInterpolate
5752    * @{
5753    */
5754 
5755   /**
5756    * @brief  Process function for the floating-point Linear Interpolation Function.
5757    * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
5758    * @param[in] x input sample to process
5759    * @return y processed output sample.
5760    *
5761    */
5762 
arm_linear_interp_f32(arm_linear_interp_instance_f32 * S,float32_t x)5763   static __INLINE float32_t arm_linear_interp_f32(
5764   arm_linear_interp_instance_f32 * S,
5765   float32_t x)
5766   {
5767 
5768     float32_t y;
5769     float32_t x0, x1;                            /* Nearest input values */
5770     float32_t y0, y1;                            /* Nearest output values */
5771     float32_t xSpacing = S->xSpacing;            /* spacing between input values */
5772     int32_t i;                                   /* Index variable */
5773     float32_t *pYData = S->pYData;               /* pointer to output table */
5774 
5775     /* Calculation of index */
5776     i = (int32_t) ((x - S->x1) / xSpacing);
5777 
5778     if(i < 0)
5779     {
5780       /* Iniatilize output for below specified range as least output value of table */
5781       y = pYData[0];
5782     }
5783     else if((uint32_t)i >= S->nValues)
5784     {
5785       /* Iniatilize output for above specified range as last output value of table */
5786       y = pYData[S->nValues - 1];
5787     }
5788     else
5789     {
5790       /* Calculation of nearest input values */
5791       x0 = S->x1 + i * xSpacing;
5792       x1 = S->x1 + (i + 1) * xSpacing;
5793 
5794       /* Read of nearest output values */
5795       y0 = pYData[i];
5796       y1 = pYData[i + 1];
5797 
5798       /* Calculation of output */
5799       y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
5800 
5801     }
5802 
5803     /* returns output value */
5804     return (y);
5805   }
5806 
5807    /**
5808    *
5809    * @brief  Process function for the Q31 Linear Interpolation Function.
5810    * @param[in] *pYData  pointer to Q31 Linear Interpolation table
5811    * @param[in] x input sample to process
5812    * @param[in] nValues number of table values
5813    * @return y processed output sample.
5814    *
5815    * \par
5816    * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
5817    * This function can support maximum of table size 2^12.
5818    *
5819    */
5820 
5821 
arm_linear_interp_q31(q31_t * pYData,q31_t x,uint32_t nValues)5822   static __INLINE q31_t arm_linear_interp_q31(
5823   q31_t * pYData,
5824   q31_t x,
5825   uint32_t nValues)
5826   {
5827     q31_t y;                                     /* output */
5828     q31_t y0, y1;                                /* Nearest output values */
5829     q31_t fract;                                 /* fractional part */
5830     int32_t index;                               /* Index to read nearest output values */
5831 
5832     /* Input is in 12.20 format */
5833     /* 12 bits for the table index */
5834     /* Index value calculation */
5835     index = ((x & 0xFFF00000) >> 20);
5836 
5837     if(index >= (int32_t)(nValues - 1))
5838     {
5839       return (pYData[nValues - 1]);
5840     }
5841     else if(index < 0)
5842     {
5843       return (pYData[0]);
5844     }
5845     else
5846     {
5847 
5848       /* 20 bits for the fractional part */
5849       /* shift left by 11 to keep fract in 1.31 format */
5850       fract = (x & 0x000FFFFF) << 11;
5851 
5852       /* Read two nearest output values from the index in 1.31(q31) format */
5853       y0 = pYData[index];
5854       y1 = pYData[index + 1u];
5855 
5856       /* Calculation of y0 * (1-fract) and y is in 2.30 format */
5857       y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
5858 
5859       /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
5860       y += ((q31_t) (((q63_t) y1 * fract) >> 32));
5861 
5862       /* Convert y to 1.31 format */
5863       return (y << 1u);
5864 
5865     }
5866 
5867   }
5868 
5869   /**
5870    *
5871    * @brief  Process function for the Q15 Linear Interpolation Function.
5872    * @param[in] *pYData  pointer to Q15 Linear Interpolation table
5873    * @param[in] x input sample to process
5874    * @param[in] nValues number of table values
5875    * @return y processed output sample.
5876    *
5877    * \par
5878    * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
5879    * This function can support maximum of table size 2^12.
5880    *
5881    */
5882 
5883 
arm_linear_interp_q15(q15_t * pYData,q31_t x,uint32_t nValues)5884   static __INLINE q15_t arm_linear_interp_q15(
5885   q15_t * pYData,
5886   q31_t x,
5887   uint32_t nValues)
5888   {
5889     q63_t y;                                     /* output */
5890     q15_t y0, y1;                                /* Nearest output values */
5891     q31_t fract;                                 /* fractional part */
5892     int32_t index;                               /* Index to read nearest output values */
5893 
5894     /* Input is in 12.20 format */
5895     /* 12 bits for the table index */
5896     /* Index value calculation */
5897     index = ((x & 0xFFF00000) >> 20u);
5898 
5899     if(index >= (int32_t)(nValues - 1))
5900     {
5901       return (pYData[nValues - 1]);
5902     }
5903     else if(index < 0)
5904     {
5905       return (pYData[0]);
5906     }
5907     else
5908     {
5909       /* 20 bits for the fractional part */
5910       /* fract is in 12.20 format */
5911       fract = (x & 0x000FFFFF);
5912 
5913       /* Read two nearest output values from the index */
5914       y0 = pYData[index];
5915       y1 = pYData[index + 1u];
5916 
5917       /* Calculation of y0 * (1-fract) and y is in 13.35 format */
5918       y = ((q63_t) y0 * (0xFFFFF - fract));
5919 
5920       /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
5921       y += ((q63_t) y1 * (fract));
5922 
5923       /* convert y to 1.15 format */
5924       return (y >> 20);
5925     }
5926 
5927 
5928   }
5929 
5930   /**
5931    *
5932    * @brief  Process function for the Q7 Linear Interpolation Function.
5933    * @param[in] *pYData  pointer to Q7 Linear Interpolation table
5934    * @param[in] x input sample to process
5935    * @param[in] nValues number of table values
5936    * @return y processed output sample.
5937    *
5938    * \par
5939    * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
5940    * This function can support maximum of table size 2^12.
5941    */
5942 
5943 
arm_linear_interp_q7(q7_t * pYData,q31_t x,uint32_t nValues)5944   static __INLINE q7_t arm_linear_interp_q7(
5945   q7_t * pYData,
5946   q31_t x,
5947   uint32_t nValues)
5948   {
5949     q31_t y;                                     /* output */
5950     q7_t y0, y1;                                 /* Nearest output values */
5951     q31_t fract;                                 /* fractional part */
5952     uint32_t index;                              /* Index to read nearest output values */
5953 
5954     /* Input is in 12.20 format */
5955     /* 12 bits for the table index */
5956     /* Index value calculation */
5957     if (x < 0)
5958     {
5959       return (pYData[0]);
5960     }
5961     index = (x >> 20) & 0xfff;
5962 
5963 
5964     if(index >= (nValues - 1))
5965     {
5966       return (pYData[nValues - 1]);
5967     }
5968     else
5969     {
5970 
5971       /* 20 bits for the fractional part */
5972       /* fract is in 12.20 format */
5973       fract = (x & 0x000FFFFF);
5974 
5975       /* Read two nearest output values from the index and are in 1.7(q7) format */
5976       y0 = pYData[index];
5977       y1 = pYData[index + 1u];
5978 
5979       /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
5980       y = ((y0 * (0xFFFFF - fract)));
5981 
5982       /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
5983       y += (y1 * fract);
5984 
5985       /* convert y to 1.7(q7) format */
5986       return (y >> 20u);
5987 
5988     }
5989 
5990   }
5991   /**
5992    * @} end of LinearInterpolate group
5993    */
5994 
5995   /**
5996    * @brief  Fast approximation to the trigonometric sine function for floating-point data.
5997    * @param[in] x input value in radians.
5998    * @return  sin(x).
5999    */
6000 
6001   float32_t arm_sin_f32(
6002   float32_t x);
6003 
6004   /**
6005    * @brief  Fast approximation to the trigonometric sine function for Q31 data.
6006    * @param[in] x Scaled input value in radians.
6007    * @return  sin(x).
6008    */
6009 
6010   q31_t arm_sin_q31(
6011   q31_t x);
6012 
6013   /**
6014    * @brief  Fast approximation to the trigonometric sine function for Q15 data.
6015    * @param[in] x Scaled input value in radians.
6016    * @return  sin(x).
6017    */
6018 
6019   q15_t arm_sin_q15(
6020   q15_t x);
6021 
6022   /**
6023    * @brief  Fast approximation to the trigonometric cosine function for floating-point data.
6024    * @param[in] x input value in radians.
6025    * @return  cos(x).
6026    */
6027 
6028   float32_t arm_cos_f32(
6029   float32_t x);
6030 
6031   /**
6032    * @brief Fast approximation to the trigonometric cosine function for Q31 data.
6033    * @param[in] x Scaled input value in radians.
6034    * @return  cos(x).
6035    */
6036 
6037   q31_t arm_cos_q31(
6038   q31_t x);
6039 
6040   /**
6041    * @brief  Fast approximation to the trigonometric cosine function for Q15 data.
6042    * @param[in] x Scaled input value in radians.
6043    * @return  cos(x).
6044    */
6045 
6046   q15_t arm_cos_q15(
6047   q15_t x);
6048 
6049 
6050   /**
6051    * @ingroup groupFastMath
6052    */
6053 
6054 
6055   /**
6056    * @defgroup SQRT Square Root
6057    *
6058    * Computes the square root of a number.
6059    * There are separate functions for Q15, Q31, and floating-point data types.
6060    * The square root function is computed using the Newton-Raphson algorithm.
6061    * This is an iterative algorithm of the form:
6062    * <pre>
6063    *      x1 = x0 - f(x0)/f'(x0)
6064    * </pre>
6065    * where <code>x1</code> is the current estimate,
6066    * <code>x0</code> is the previous estimate, and
6067    * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
6068    * For the square root function, the algorithm reduces to:
6069    * <pre>
6070    *     x0 = in/2                         [initial guess]
6071    *     x1 = 1/2 * ( x0 + in / x0)        [each iteration]
6072    * </pre>
6073    */
6074 
6075 
6076   /**
6077    * @addtogroup SQRT
6078    * @{
6079    */
6080 
6081   /**
6082    * @brief  Floating-point square root function.
6083    * @param[in]  in     input value.
6084    * @param[out] *pOut  square root of input value.
6085    * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
6086    * <code>in</code> is negative value and returns zero output for negative values.
6087    */
6088 
arm_sqrt_f32(float32_t in,float32_t * pOut)6089   static __INLINE arm_status arm_sqrt_f32(
6090   float32_t in,
6091   float32_t * pOut)
6092   {
6093     if(in > 0)
6094     {
6095 
6096 //      #if __FPU_USED
6097 #if (__FPU_USED == 1) && defined ( __CC_ARM   )
6098       *pOut = __sqrtf(in);
6099 #else
6100       *pOut = sqrtf(in);
6101 #endif
6102 
6103       return (ARM_MATH_SUCCESS);
6104     }
6105     else
6106     {
6107       *pOut = 0.0f;
6108       return (ARM_MATH_ARGUMENT_ERROR);
6109     }
6110 
6111   }
6112 
6113 
6114   /**
6115    * @brief Q31 square root function.
6116    * @param[in]   in    input value.  The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
6117    * @param[out]  *pOut square root of input value.
6118    * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
6119    * <code>in</code> is negative value and returns zero output for negative values.
6120    */
6121   arm_status arm_sqrt_q31(
6122   q31_t in,
6123   q31_t * pOut);
6124 
6125   /**
6126    * @brief  Q15 square root function.
6127    * @param[in]   in     input value.  The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
6128    * @param[out]  *pOut  square root of input value.
6129    * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
6130    * <code>in</code> is negative value and returns zero output for negative values.
6131    */
6132   arm_status arm_sqrt_q15(
6133   q15_t in,
6134   q15_t * pOut);
6135 
6136   /**
6137    * @} end of SQRT group
6138    */
6139 
6140 
6141 
6142 
6143 
6144 
6145   /**
6146    * @brief floating-point Circular write function.
6147    */
6148 
arm_circularWrite_f32(int32_t * circBuffer,int32_t L,uint16_t * writeOffset,int32_t bufferInc,const int32_t * src,int32_t srcInc,uint32_t blockSize)6149   static __INLINE void arm_circularWrite_f32(
6150   int32_t * circBuffer,
6151   int32_t L,
6152   uint16_t * writeOffset,
6153   int32_t bufferInc,
6154   const int32_t * src,
6155   int32_t srcInc,
6156   uint32_t blockSize)
6157   {
6158     uint32_t i = 0u;
6159     int32_t wOffset;
6160 
6161     /* Copy the value of Index pointer that points
6162      * to the current location where the input samples to be copied */
6163     wOffset = *writeOffset;
6164 
6165     /* Loop over the blockSize */
6166     i = blockSize;
6167 
6168     while(i > 0u)
6169     {
6170       /* copy the input sample to the circular buffer */
6171       circBuffer[wOffset] = *src;
6172 
6173       /* Update the input pointer */
6174       src += srcInc;
6175 
6176       /* Circularly update wOffset.  Watch out for positive and negative value */
6177       wOffset += bufferInc;
6178       if(wOffset >= L)
6179         wOffset -= L;
6180 
6181       /* Decrement the loop counter */
6182       i--;
6183     }
6184 
6185     /* Update the index pointer */
6186     *writeOffset = wOffset;
6187   }
6188 
6189 
6190 
6191   /**
6192    * @brief floating-point Circular Read function.
6193    */
arm_circularRead_f32(int32_t * circBuffer,int32_t L,int32_t * readOffset,int32_t bufferInc,int32_t * dst,int32_t * dst_base,int32_t dst_length,int32_t dstInc,uint32_t blockSize)6194   static __INLINE void arm_circularRead_f32(
6195   int32_t * circBuffer,
6196   int32_t L,
6197   int32_t * readOffset,
6198   int32_t bufferInc,
6199   int32_t * dst,
6200   int32_t * dst_base,
6201   int32_t dst_length,
6202   int32_t dstInc,
6203   uint32_t blockSize)
6204   {
6205     uint32_t i = 0u;
6206     int32_t rOffset, dst_end;
6207 
6208     /* Copy the value of Index pointer that points
6209      * to the current location from where the input samples to be read */
6210     rOffset = *readOffset;
6211     dst_end = (int32_t)(dst_base + dst_length);
6212 
6213     /* Loop over the blockSize */
6214     i = blockSize;
6215 
6216     while(i > 0u)
6217     {
6218       /* copy the sample from the circular buffer to the destination buffer */
6219       *dst = circBuffer[rOffset];
6220 
6221       /* Update the input pointer */
6222       dst += dstInc;
6223 
6224       if(dst == (int32_t *) dst_end)
6225       {
6226         dst = dst_base;
6227       }
6228 
6229       /* Circularly update rOffset.  Watch out for positive and negative value  */
6230       rOffset += bufferInc;
6231 
6232       if(rOffset >= L)
6233       {
6234         rOffset -= L;
6235       }
6236 
6237       /* Decrement the loop counter */
6238       i--;
6239     }
6240 
6241     /* Update the index pointer */
6242     *readOffset = rOffset;
6243   }
6244 
6245   /**
6246    * @brief Q15 Circular write function.
6247    */
6248 
arm_circularWrite_q15(q15_t * circBuffer,int32_t L,uint16_t * writeOffset,int32_t bufferInc,const q15_t * src,int32_t srcInc,uint32_t blockSize)6249   static __INLINE void arm_circularWrite_q15(
6250   q15_t * circBuffer,
6251   int32_t L,
6252   uint16_t * writeOffset,
6253   int32_t bufferInc,
6254   const q15_t * src,
6255   int32_t srcInc,
6256   uint32_t blockSize)
6257   {
6258     uint32_t i = 0u;
6259     int32_t wOffset;
6260 
6261     /* Copy the value of Index pointer that points
6262      * to the current location where the input samples to be copied */
6263     wOffset = *writeOffset;
6264 
6265     /* Loop over the blockSize */
6266     i = blockSize;
6267 
6268     while(i > 0u)
6269     {
6270       /* copy the input sample to the circular buffer */
6271       circBuffer[wOffset] = *src;
6272 
6273       /* Update the input pointer */
6274       src += srcInc;
6275 
6276       /* Circularly update wOffset.  Watch out for positive and negative value */
6277       wOffset += bufferInc;
6278       if(wOffset >= L)
6279         wOffset -= L;
6280 
6281       /* Decrement the loop counter */
6282       i--;
6283     }
6284 
6285     /* Update the index pointer */
6286     *writeOffset = wOffset;
6287   }
6288 
6289 
6290 
6291   /**
6292    * @brief Q15 Circular Read function.
6293    */
arm_circularRead_q15(q15_t * circBuffer,int32_t L,int32_t * readOffset,int32_t bufferInc,q15_t * dst,q15_t * dst_base,int32_t dst_length,int32_t dstInc,uint32_t blockSize)6294   static __INLINE void arm_circularRead_q15(
6295   q15_t * circBuffer,
6296   int32_t L,
6297   int32_t * readOffset,
6298   int32_t bufferInc,
6299   q15_t * dst,
6300   q15_t * dst_base,
6301   int32_t dst_length,
6302   int32_t dstInc,
6303   uint32_t blockSize)
6304   {
6305     uint32_t i = 0;
6306     int32_t rOffset, dst_end;
6307 
6308     /* Copy the value of Index pointer that points
6309      * to the current location from where the input samples to be read */
6310     rOffset = *readOffset;
6311 
6312     dst_end = (int32_t) (dst_base + dst_length);
6313 
6314     /* Loop over the blockSize */
6315     i = blockSize;
6316 
6317     while(i > 0u)
6318     {
6319       /* copy the sample from the circular buffer to the destination buffer */
6320       *dst = circBuffer[rOffset];
6321 
6322       /* Update the input pointer */
6323       dst += dstInc;
6324 
6325       if(dst == (q15_t *) dst_end)
6326       {
6327         dst = dst_base;
6328       }
6329 
6330       /* Circularly update wOffset.  Watch out for positive and negative value */
6331       rOffset += bufferInc;
6332 
6333       if(rOffset >= L)
6334       {
6335         rOffset -= L;
6336       }
6337 
6338       /* Decrement the loop counter */
6339       i--;
6340     }
6341 
6342     /* Update the index pointer */
6343     *readOffset = rOffset;
6344   }
6345 
6346 
6347   /**
6348    * @brief Q7 Circular write function.
6349    */
6350 
arm_circularWrite_q7(q7_t * circBuffer,int32_t L,uint16_t * writeOffset,int32_t bufferInc,const q7_t * src,int32_t srcInc,uint32_t blockSize)6351   static __INLINE void arm_circularWrite_q7(
6352   q7_t * circBuffer,
6353   int32_t L,
6354   uint16_t * writeOffset,
6355   int32_t bufferInc,
6356   const q7_t * src,
6357   int32_t srcInc,
6358   uint32_t blockSize)
6359   {
6360     uint32_t i = 0u;
6361     int32_t wOffset;
6362 
6363     /* Copy the value of Index pointer that points
6364      * to the current location where the input samples to be copied */
6365     wOffset = *writeOffset;
6366 
6367     /* Loop over the blockSize */
6368     i = blockSize;
6369 
6370     while(i > 0u)
6371     {
6372       /* copy the input sample to the circular buffer */
6373       circBuffer[wOffset] = *src;
6374 
6375       /* Update the input pointer */
6376       src += srcInc;
6377 
6378       /* Circularly update wOffset.  Watch out for positive and negative value */
6379       wOffset += bufferInc;
6380       if(wOffset >= L)
6381         wOffset -= L;
6382 
6383       /* Decrement the loop counter */
6384       i--;
6385     }
6386 
6387     /* Update the index pointer */
6388     *writeOffset = wOffset;
6389   }
6390 
6391 
6392 
6393   /**
6394    * @brief Q7 Circular Read function.
6395    */
arm_circularRead_q7(q7_t * circBuffer,int32_t L,int32_t * readOffset,int32_t bufferInc,q7_t * dst,q7_t * dst_base,int32_t dst_length,int32_t dstInc,uint32_t blockSize)6396   static __INLINE void arm_circularRead_q7(
6397   q7_t * circBuffer,
6398   int32_t L,
6399   int32_t * readOffset,
6400   int32_t bufferInc,
6401   q7_t * dst,
6402   q7_t * dst_base,
6403   int32_t dst_length,
6404   int32_t dstInc,
6405   uint32_t blockSize)
6406   {
6407     uint32_t i = 0;
6408     int32_t rOffset, dst_end;
6409 
6410     /* Copy the value of Index pointer that points
6411      * to the current location from where the input samples to be read */
6412     rOffset = *readOffset;
6413 
6414     dst_end = (int32_t) (dst_base + dst_length);
6415 
6416     /* Loop over the blockSize */
6417     i = blockSize;
6418 
6419     while(i > 0u)
6420     {
6421       /* copy the sample from the circular buffer to the destination buffer */
6422       *dst = circBuffer[rOffset];
6423 
6424       /* Update the input pointer */
6425       dst += dstInc;
6426 
6427       if(dst == (q7_t *) dst_end)
6428       {
6429         dst = dst_base;
6430       }
6431 
6432       /* Circularly update rOffset.  Watch out for positive and negative value */
6433       rOffset += bufferInc;
6434 
6435       if(rOffset >= L)
6436       {
6437         rOffset -= L;
6438       }
6439 
6440       /* Decrement the loop counter */
6441       i--;
6442     }
6443 
6444     /* Update the index pointer */
6445     *readOffset = rOffset;
6446   }
6447 
6448 
6449   /**
6450    * @brief  Sum of the squares of the elements of a Q31 vector.
6451    * @param[in]  *pSrc is input pointer
6452    * @param[in]  blockSize is the number of samples to process
6453    * @param[out]  *pResult is output value.
6454    * @return none.
6455    */
6456 
6457   void arm_power_q31(
6458   q31_t * pSrc,
6459   uint32_t blockSize,
6460   q63_t * pResult);
6461 
6462   /**
6463    * @brief  Sum of the squares of the elements of a floating-point vector.
6464    * @param[in]  *pSrc is input pointer
6465    * @param[in]  blockSize is the number of samples to process
6466    * @param[out]  *pResult is output value.
6467    * @return none.
6468    */
6469 
6470   void arm_power_f32(
6471   float32_t * pSrc,
6472   uint32_t blockSize,
6473   float32_t * pResult);
6474 
6475   /**
6476    * @brief  Sum of the squares of the elements of a Q15 vector.
6477    * @param[in]  *pSrc is input pointer
6478    * @param[in]  blockSize is the number of samples to process
6479    * @param[out]  *pResult is output value.
6480    * @return none.
6481    */
6482 
6483   void arm_power_q15(
6484   q15_t * pSrc,
6485   uint32_t blockSize,
6486   q63_t * pResult);
6487 
6488   /**
6489    * @brief  Sum of the squares of the elements of a Q7 vector.
6490    * @param[in]  *pSrc is input pointer
6491    * @param[in]  blockSize is the number of samples to process
6492    * @param[out]  *pResult is output value.
6493    * @return none.
6494    */
6495 
6496   void arm_power_q7(
6497   q7_t * pSrc,
6498   uint32_t blockSize,
6499   q31_t * pResult);
6500 
6501   /**
6502    * @brief  Mean value of a Q7 vector.
6503    * @param[in]  *pSrc is input pointer
6504    * @param[in]  blockSize is the number of samples to process
6505    * @param[out]  *pResult is output value.
6506    * @return none.
6507    */
6508 
6509   void arm_mean_q7(
6510   q7_t * pSrc,
6511   uint32_t blockSize,
6512   q7_t * pResult);
6513 
6514   /**
6515    * @brief  Mean value of a Q15 vector.
6516    * @param[in]  *pSrc is input pointer
6517    * @param[in]  blockSize is the number of samples to process
6518    * @param[out]  *pResult is output value.
6519    * @return none.
6520    */
6521   void arm_mean_q15(
6522   q15_t * pSrc,
6523   uint32_t blockSize,
6524   q15_t * pResult);
6525 
6526   /**
6527    * @brief  Mean value of a Q31 vector.
6528    * @param[in]  *pSrc is input pointer
6529    * @param[in]  blockSize is the number of samples to process
6530    * @param[out]  *pResult is output value.
6531    * @return none.
6532    */
6533   void arm_mean_q31(
6534   q31_t * pSrc,
6535   uint32_t blockSize,
6536   q31_t * pResult);
6537 
6538   /**
6539    * @brief  Mean value of a floating-point vector.
6540    * @param[in]  *pSrc is input pointer
6541    * @param[in]  blockSize is the number of samples to process
6542    * @param[out]  *pResult is output value.
6543    * @return none.
6544    */
6545   void arm_mean_f32(
6546   float32_t * pSrc,
6547   uint32_t blockSize,
6548   float32_t * pResult);
6549 
6550   /**
6551    * @brief  Variance of the elements of a floating-point vector.
6552    * @param[in]  *pSrc is input pointer
6553    * @param[in]  blockSize is the number of samples to process
6554    * @param[out]  *pResult is output value.
6555    * @return none.
6556    */
6557 
6558   void arm_var_f32(
6559   float32_t * pSrc,
6560   uint32_t blockSize,
6561   float32_t * pResult);
6562 
6563   /**
6564    * @brief  Variance of the elements of a Q31 vector.
6565    * @param[in]  *pSrc is input pointer
6566    * @param[in]  blockSize is the number of samples to process
6567    * @param[out]  *pResult is output value.
6568    * @return none.
6569    */
6570 
6571   void arm_var_q31(
6572   q31_t * pSrc,
6573   uint32_t blockSize,
6574   q31_t * pResult);
6575 
6576   /**
6577    * @brief  Variance of the elements of a Q15 vector.
6578    * @param[in]  *pSrc is input pointer
6579    * @param[in]  blockSize is the number of samples to process
6580    * @param[out]  *pResult is output value.
6581    * @return none.
6582    */
6583 
6584   void arm_var_q15(
6585   q15_t * pSrc,
6586   uint32_t blockSize,
6587   q15_t * pResult);
6588 
6589   /**
6590    * @brief  Root Mean Square of the elements of a floating-point vector.
6591    * @param[in]  *pSrc is input pointer
6592    * @param[in]  blockSize is the number of samples to process
6593    * @param[out]  *pResult is output value.
6594    * @return none.
6595    */
6596 
6597   void arm_rms_f32(
6598   float32_t * pSrc,
6599   uint32_t blockSize,
6600   float32_t * pResult);
6601 
6602   /**
6603    * @brief  Root Mean Square of the elements of a Q31 vector.
6604    * @param[in]  *pSrc is input pointer
6605    * @param[in]  blockSize is the number of samples to process
6606    * @param[out]  *pResult is output value.
6607    * @return none.
6608    */
6609 
6610   void arm_rms_q31(
6611   q31_t * pSrc,
6612   uint32_t blockSize,
6613   q31_t * pResult);
6614 
6615   /**
6616    * @brief  Root Mean Square of the elements of a Q15 vector.
6617    * @param[in]  *pSrc is input pointer
6618    * @param[in]  blockSize is the number of samples to process
6619    * @param[out]  *pResult is output value.
6620    * @return none.
6621    */
6622 
6623   void arm_rms_q15(
6624   q15_t * pSrc,
6625   uint32_t blockSize,
6626   q15_t * pResult);
6627 
6628   /**
6629    * @brief  Standard deviation of the elements of a floating-point vector.
6630    * @param[in]  *pSrc is input pointer
6631    * @param[in]  blockSize is the number of samples to process
6632    * @param[out]  *pResult is output value.
6633    * @return none.
6634    */
6635 
6636   void arm_std_f32(
6637   float32_t * pSrc,
6638   uint32_t blockSize,
6639   float32_t * pResult);
6640 
6641   /**
6642    * @brief  Standard deviation of the elements of a Q31 vector.
6643    * @param[in]  *pSrc is input pointer
6644    * @param[in]  blockSize is the number of samples to process
6645    * @param[out]  *pResult is output value.
6646    * @return none.
6647    */
6648 
6649   void arm_std_q31(
6650   q31_t * pSrc,
6651   uint32_t blockSize,
6652   q31_t * pResult);
6653 
6654   /**
6655    * @brief  Standard deviation of the elements of a Q15 vector.
6656    * @param[in]  *pSrc is input pointer
6657    * @param[in]  blockSize is the number of samples to process
6658    * @param[out]  *pResult is output value.
6659    * @return none.
6660    */
6661 
6662   void arm_std_q15(
6663   q15_t * pSrc,
6664   uint32_t blockSize,
6665   q15_t * pResult);
6666 
6667   /**
6668    * @brief  Floating-point complex magnitude
6669    * @param[in]  *pSrc points to the complex input vector
6670    * @param[out]  *pDst points to the real output vector
6671    * @param[in]  numSamples number of complex samples in the input vector
6672    * @return none.
6673    */
6674 
6675   void arm_cmplx_mag_f32(
6676   float32_t * pSrc,
6677   float32_t * pDst,
6678   uint32_t numSamples);
6679 
6680   /**
6681    * @brief  Q31 complex magnitude
6682    * @param[in]  *pSrc points to the complex input vector
6683    * @param[out]  *pDst points to the real output vector
6684    * @param[in]  numSamples number of complex samples in the input vector
6685    * @return none.
6686    */
6687 
6688   void arm_cmplx_mag_q31(
6689   q31_t * pSrc,
6690   q31_t * pDst,
6691   uint32_t numSamples);
6692 
6693   /**
6694    * @brief  Q15 complex magnitude
6695    * @param[in]  *pSrc points to the complex input vector
6696    * @param[out]  *pDst points to the real output vector
6697    * @param[in]  numSamples number of complex samples in the input vector
6698    * @return none.
6699    */
6700 
6701   void arm_cmplx_mag_q15(
6702   q15_t * pSrc,
6703   q15_t * pDst,
6704   uint32_t numSamples);
6705 
6706   /**
6707    * @brief  Q15 complex dot product
6708    * @param[in]  *pSrcA points to the first input vector
6709    * @param[in]  *pSrcB points to the second input vector
6710    * @param[in]  numSamples number of complex samples in each vector
6711    * @param[out]  *realResult real part of the result returned here
6712    * @param[out]  *imagResult imaginary part of the result returned here
6713    * @return none.
6714    */
6715 
6716   void arm_cmplx_dot_prod_q15(
6717   q15_t * pSrcA,
6718   q15_t * pSrcB,
6719   uint32_t numSamples,
6720   q31_t * realResult,
6721   q31_t * imagResult);
6722 
6723   /**
6724    * @brief  Q31 complex dot product
6725    * @param[in]  *pSrcA points to the first input vector
6726    * @param[in]  *pSrcB points to the second input vector
6727    * @param[in]  numSamples number of complex samples in each vector
6728    * @param[out]  *realResult real part of the result returned here
6729    * @param[out]  *imagResult imaginary part of the result returned here
6730    * @return none.
6731    */
6732 
6733   void arm_cmplx_dot_prod_q31(
6734   q31_t * pSrcA,
6735   q31_t * pSrcB,
6736   uint32_t numSamples,
6737   q63_t * realResult,
6738   q63_t * imagResult);
6739 
6740   /**
6741    * @brief  Floating-point complex dot product
6742    * @param[in]  *pSrcA points to the first input vector
6743    * @param[in]  *pSrcB points to the second input vector
6744    * @param[in]  numSamples number of complex samples in each vector
6745    * @param[out]  *realResult real part of the result returned here
6746    * @param[out]  *imagResult imaginary part of the result returned here
6747    * @return none.
6748    */
6749 
6750   void arm_cmplx_dot_prod_f32(
6751   float32_t * pSrcA,
6752   float32_t * pSrcB,
6753   uint32_t numSamples,
6754   float32_t * realResult,
6755   float32_t * imagResult);
6756 
6757   /**
6758    * @brief  Q15 complex-by-real multiplication
6759    * @param[in]  *pSrcCmplx points to the complex input vector
6760    * @param[in]  *pSrcReal points to the real input vector
6761    * @param[out]  *pCmplxDst points to the complex output vector
6762    * @param[in]  numSamples number of samples in each vector
6763    * @return none.
6764    */
6765 
6766   void arm_cmplx_mult_real_q15(
6767   q15_t * pSrcCmplx,
6768   q15_t * pSrcReal,
6769   q15_t * pCmplxDst,
6770   uint32_t numSamples);
6771 
6772   /**
6773    * @brief  Q31 complex-by-real multiplication
6774    * @param[in]  *pSrcCmplx points to the complex input vector
6775    * @param[in]  *pSrcReal points to the real input vector
6776    * @param[out]  *pCmplxDst points to the complex output vector
6777    * @param[in]  numSamples number of samples in each vector
6778    * @return none.
6779    */
6780 
6781   void arm_cmplx_mult_real_q31(
6782   q31_t * pSrcCmplx,
6783   q31_t * pSrcReal,
6784   q31_t * pCmplxDst,
6785   uint32_t numSamples);
6786 
6787   /**
6788    * @brief  Floating-point complex-by-real multiplication
6789    * @param[in]  *pSrcCmplx points to the complex input vector
6790    * @param[in]  *pSrcReal points to the real input vector
6791    * @param[out]  *pCmplxDst points to the complex output vector
6792    * @param[in]  numSamples number of samples in each vector
6793    * @return none.
6794    */
6795 
6796   void arm_cmplx_mult_real_f32(
6797   float32_t * pSrcCmplx,
6798   float32_t * pSrcReal,
6799   float32_t * pCmplxDst,
6800   uint32_t numSamples);
6801 
6802   /**
6803    * @brief  Minimum value of a Q7 vector.
6804    * @param[in]  *pSrc is input pointer
6805    * @param[in]  blockSize is the number of samples to process
6806    * @param[out]  *result is output pointer
6807    * @param[in]  index is the array index of the minimum value in the input buffer.
6808    * @return none.
6809    */
6810 
6811   void arm_min_q7(
6812   q7_t * pSrc,
6813   uint32_t blockSize,
6814   q7_t * result,
6815   uint32_t * index);
6816 
6817   /**
6818    * @brief  Minimum value of a Q15 vector.
6819    * @param[in]  *pSrc is input pointer
6820    * @param[in]  blockSize is the number of samples to process
6821    * @param[out]  *pResult is output pointer
6822    * @param[in]  *pIndex is the array index of the minimum value in the input buffer.
6823    * @return none.
6824    */
6825 
6826   void arm_min_q15(
6827   q15_t * pSrc,
6828   uint32_t blockSize,
6829   q15_t * pResult,
6830   uint32_t * pIndex);
6831 
6832   /**
6833    * @brief  Minimum value of a Q31 vector.
6834    * @param[in]  *pSrc is input pointer
6835    * @param[in]  blockSize is the number of samples to process
6836    * @param[out]  *pResult is output pointer
6837    * @param[out]  *pIndex is the array index of the minimum value in the input buffer.
6838    * @return none.
6839    */
6840   void arm_min_q31(
6841   q31_t * pSrc,
6842   uint32_t blockSize,
6843   q31_t * pResult,
6844   uint32_t * pIndex);
6845 
6846   /**
6847    * @brief  Minimum value of a floating-point vector.
6848    * @param[in]  *pSrc is input pointer
6849    * @param[in]  blockSize is the number of samples to process
6850    * @param[out]  *pResult is output pointer
6851    * @param[out]  *pIndex is the array index of the minimum value in the input buffer.
6852    * @return none.
6853    */
6854 
6855   void arm_min_f32(
6856   float32_t * pSrc,
6857   uint32_t blockSize,
6858   float32_t * pResult,
6859   uint32_t * pIndex);
6860 
6861 /**
6862  * @brief Maximum value of a Q7 vector.
6863  * @param[in]       *pSrc points to the input buffer
6864  * @param[in]       blockSize length of the input vector
6865  * @param[out]      *pResult maximum value returned here
6866  * @param[out]      *pIndex index of maximum value returned here
6867  * @return none.
6868  */
6869 
6870   void arm_max_q7(
6871   q7_t * pSrc,
6872   uint32_t blockSize,
6873   q7_t * pResult,
6874   uint32_t * pIndex);
6875 
6876 /**
6877  * @brief Maximum value of a Q15 vector.
6878  * @param[in]       *pSrc points to the input buffer
6879  * @param[in]       blockSize length of the input vector
6880  * @param[out]      *pResult maximum value returned here
6881  * @param[out]      *pIndex index of maximum value returned here
6882  * @return none.
6883  */
6884 
6885   void arm_max_q15(
6886   q15_t * pSrc,
6887   uint32_t blockSize,
6888   q15_t * pResult,
6889   uint32_t * pIndex);
6890 
6891 /**
6892  * @brief Maximum value of a Q31 vector.
6893  * @param[in]       *pSrc points to the input buffer
6894  * @param[in]       blockSize length of the input vector
6895  * @param[out]      *pResult maximum value returned here
6896  * @param[out]      *pIndex index of maximum value returned here
6897  * @return none.
6898  */
6899 
6900   void arm_max_q31(
6901   q31_t * pSrc,
6902   uint32_t blockSize,
6903   q31_t * pResult,
6904   uint32_t * pIndex);
6905 
6906 /**
6907  * @brief Maximum value of a floating-point vector.
6908  * @param[in]       *pSrc points to the input buffer
6909  * @param[in]       blockSize length of the input vector
6910  * @param[out]      *pResult maximum value returned here
6911  * @param[out]      *pIndex index of maximum value returned here
6912  * @return none.
6913  */
6914 
6915   void arm_max_f32(
6916   float32_t * pSrc,
6917   uint32_t blockSize,
6918   float32_t * pResult,
6919   uint32_t * pIndex);
6920 
6921   /**
6922    * @brief  Q15 complex-by-complex multiplication
6923    * @param[in]  *pSrcA points to the first input vector
6924    * @param[in]  *pSrcB points to the second input vector
6925    * @param[out]  *pDst  points to the output vector
6926    * @param[in]  numSamples number of complex samples in each vector
6927    * @return none.
6928    */
6929 
6930   void arm_cmplx_mult_cmplx_q15(
6931   q15_t * pSrcA,
6932   q15_t * pSrcB,
6933   q15_t * pDst,
6934   uint32_t numSamples);
6935 
6936   /**
6937    * @brief  Q31 complex-by-complex multiplication
6938    * @param[in]  *pSrcA points to the first input vector
6939    * @param[in]  *pSrcB points to the second input vector
6940    * @param[out]  *pDst  points to the output vector
6941    * @param[in]  numSamples number of complex samples in each vector
6942    * @return none.
6943    */
6944 
6945   void arm_cmplx_mult_cmplx_q31(
6946   q31_t * pSrcA,
6947   q31_t * pSrcB,
6948   q31_t * pDst,
6949   uint32_t numSamples);
6950 
6951   /**
6952    * @brief  Floating-point complex-by-complex multiplication
6953    * @param[in]  *pSrcA points to the first input vector
6954    * @param[in]  *pSrcB points to the second input vector
6955    * @param[out]  *pDst  points to the output vector
6956    * @param[in]  numSamples number of complex samples in each vector
6957    * @return none.
6958    */
6959 
6960   void arm_cmplx_mult_cmplx_f32(
6961   float32_t * pSrcA,
6962   float32_t * pSrcB,
6963   float32_t * pDst,
6964   uint32_t numSamples);
6965 
6966   /**
6967    * @brief Converts the elements of the floating-point vector to Q31 vector.
6968    * @param[in]       *pSrc points to the floating-point input vector
6969    * @param[out]      *pDst points to the Q31 output vector
6970    * @param[in]       blockSize length of the input vector
6971    * @return none.
6972    */
6973   void arm_float_to_q31(
6974   float32_t * pSrc,
6975   q31_t * pDst,
6976   uint32_t blockSize);
6977 
6978   /**
6979    * @brief Converts the elements of the floating-point vector to Q15 vector.
6980    * @param[in]       *pSrc points to the floating-point input vector
6981    * @param[out]      *pDst points to the Q15 output vector
6982    * @param[in]       blockSize length of the input vector
6983    * @return          none
6984    */
6985   void arm_float_to_q15(
6986   float32_t * pSrc,
6987   q15_t * pDst,
6988   uint32_t blockSize);
6989 
6990   /**
6991    * @brief Converts the elements of the floating-point vector to Q7 vector.
6992    * @param[in]       *pSrc points to the floating-point input vector
6993    * @param[out]      *pDst points to the Q7 output vector
6994    * @param[in]       blockSize length of the input vector
6995    * @return          none
6996    */
6997   void arm_float_to_q7(
6998   float32_t * pSrc,
6999   q7_t * pDst,
7000   uint32_t blockSize);
7001 
7002 
7003   /**
7004    * @brief  Converts the elements of the Q31 vector to Q15 vector.
7005    * @param[in]  *pSrc is input pointer
7006    * @param[out]  *pDst is output pointer
7007    * @param[in]  blockSize is the number of samples to process
7008    * @return none.
7009    */
7010   void arm_q31_to_q15(
7011   q31_t * pSrc,
7012   q15_t * pDst,
7013   uint32_t blockSize);
7014 
7015   /**
7016    * @brief  Converts the elements of the Q31 vector to Q7 vector.
7017    * @param[in]  *pSrc is input pointer
7018    * @param[out]  *pDst is output pointer
7019    * @param[in]  blockSize is the number of samples to process
7020    * @return none.
7021    */
7022   void arm_q31_to_q7(
7023   q31_t * pSrc,
7024   q7_t * pDst,
7025   uint32_t blockSize);
7026 
7027   /**
7028    * @brief  Converts the elements of the Q15 vector to floating-point vector.
7029    * @param[in]  *pSrc is input pointer
7030    * @param[out]  *pDst is output pointer
7031    * @param[in]  blockSize is the number of samples to process
7032    * @return none.
7033    */
7034   void arm_q15_to_float(
7035   q15_t * pSrc,
7036   float32_t * pDst,
7037   uint32_t blockSize);
7038 
7039 
7040   /**
7041    * @brief  Converts the elements of the Q15 vector to Q31 vector.
7042    * @param[in]  *pSrc is input pointer
7043    * @param[out]  *pDst is output pointer
7044    * @param[in]  blockSize is the number of samples to process
7045    * @return none.
7046    */
7047   void arm_q15_to_q31(
7048   q15_t * pSrc,
7049   q31_t * pDst,
7050   uint32_t blockSize);
7051 
7052 
7053   /**
7054    * @brief  Converts the elements of the Q15 vector to Q7 vector.
7055    * @param[in]  *pSrc is input pointer
7056    * @param[out]  *pDst is output pointer
7057    * @param[in]  blockSize is the number of samples to process
7058    * @return none.
7059    */
7060   void arm_q15_to_q7(
7061   q15_t * pSrc,
7062   q7_t * pDst,
7063   uint32_t blockSize);
7064 
7065 
7066   /**
7067    * @ingroup groupInterpolation
7068    */
7069 
7070   /**
7071    * @defgroup BilinearInterpolate Bilinear Interpolation
7072    *
7073    * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
7074    * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
7075    * determines values between the grid points.
7076    * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
7077    * Bilinear interpolation is often used in image processing to rescale images.
7078    * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
7079    *
7080    * <b>Algorithm</b>
7081    * \par
7082    * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
7083    * For floating-point, the instance structure is defined as:
7084    * <pre>
7085    *   typedef struct
7086    *   {
7087    *     uint16_t numRows;
7088    *     uint16_t numCols;
7089    *     float32_t *pData;
7090    * } arm_bilinear_interp_instance_f32;
7091    * </pre>
7092    *
7093    * \par
7094    * where <code>numRows</code> specifies the number of rows in the table;
7095    * <code>numCols</code> specifies the number of columns in the table;
7096    * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
7097    * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
7098    * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
7099    *
7100    * \par
7101    * Let <code>(x, y)</code> specify the desired interpolation point.  Then define:
7102    * <pre>
7103    *     XF = floor(x)
7104    *     YF = floor(y)
7105    * </pre>
7106    * \par
7107    * The interpolated output point is computed as:
7108    * <pre>
7109    *  f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
7110    *           + f(XF+1, YF) * (x-XF)*(1-(y-YF))
7111    *           + f(XF, YF+1) * (1-(x-XF))*(y-YF)
7112    *           + f(XF+1, YF+1) * (x-XF)*(y-YF)
7113    * </pre>
7114    * Note that the coordinates (x, y) contain integer and fractional components.
7115    * The integer components specify which portion of the table to use while the
7116    * fractional components control the interpolation processor.
7117    *
7118    * \par
7119    * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
7120    */
7121 
7122   /**
7123    * @addtogroup BilinearInterpolate
7124    * @{
7125    */
7126 
7127   /**
7128   *
7129   * @brief  Floating-point bilinear interpolation.
7130   * @param[in,out] *S points to an instance of the interpolation structure.
7131   * @param[in] X interpolation coordinate.
7132   * @param[in] Y interpolation coordinate.
7133   * @return out interpolated value.
7134   */
7135 
7136 
arm_bilinear_interp_f32(const arm_bilinear_interp_instance_f32 * S,float32_t X,float32_t Y)7137   static __INLINE float32_t arm_bilinear_interp_f32(
7138   const arm_bilinear_interp_instance_f32 * S,
7139   float32_t X,
7140   float32_t Y)
7141   {
7142     float32_t out;
7143     float32_t f00, f01, f10, f11;
7144     float32_t *pData = S->pData;
7145     int32_t xIndex, yIndex, index;
7146     float32_t xdiff, ydiff;
7147     float32_t b1, b2, b3, b4;
7148 
7149     xIndex = (int32_t) X;
7150     yIndex = (int32_t) Y;
7151 
7152     /* Care taken for table outside boundary */
7153     /* Returns zero output when values are outside table boundary */
7154     if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
7155        || yIndex > (S->numCols - 1))
7156     {
7157       return (0);
7158     }
7159 
7160     /* Calculation of index for two nearest points in X-direction */
7161     index = (xIndex - 1) + (yIndex - 1) * S->numCols;
7162 
7163 
7164     /* Read two nearest points in X-direction */
7165     f00 = pData[index];
7166     f01 = pData[index + 1];
7167 
7168     /* Calculation of index for two nearest points in Y-direction */
7169     index = (xIndex - 1) + (yIndex) * S->numCols;
7170 
7171 
7172     /* Read two nearest points in Y-direction */
7173     f10 = pData[index];
7174     f11 = pData[index + 1];
7175 
7176     /* Calculation of intermediate values */
7177     b1 = f00;
7178     b2 = f01 - f00;
7179     b3 = f10 - f00;
7180     b4 = f00 - f01 - f10 + f11;
7181 
7182     /* Calculation of fractional part in X */
7183     xdiff = X - xIndex;
7184 
7185     /* Calculation of fractional part in Y */
7186     ydiff = Y - yIndex;
7187 
7188     /* Calculation of bi-linear interpolated output */
7189     out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
7190 
7191     /* return to application */
7192     return (out);
7193 
7194   }
7195 
7196   /**
7197   *
7198   * @brief  Q31 bilinear interpolation.
7199   * @param[in,out] *S points to an instance of the interpolation structure.
7200   * @param[in] X interpolation coordinate in 12.20 format.
7201   * @param[in] Y interpolation coordinate in 12.20 format.
7202   * @return out interpolated value.
7203   */
7204 
arm_bilinear_interp_q31(arm_bilinear_interp_instance_q31 * S,q31_t X,q31_t Y)7205   static __INLINE q31_t arm_bilinear_interp_q31(
7206   arm_bilinear_interp_instance_q31 * S,
7207   q31_t X,
7208   q31_t Y)
7209   {
7210     q31_t out;                                   /* Temporary output */
7211     q31_t acc = 0;                               /* output */
7212     q31_t xfract, yfract;                        /* X, Y fractional parts */
7213     q31_t x1, x2, y1, y2;                        /* Nearest output values */
7214     int32_t rI, cI;                              /* Row and column indices */
7215     q31_t *pYData = S->pData;                    /* pointer to output table values */
7216     uint32_t nCols = S->numCols;                 /* num of rows */
7217 
7218 
7219     /* Input is in 12.20 format */
7220     /* 12 bits for the table index */
7221     /* Index value calculation */
7222     rI = ((X & 0xFFF00000) >> 20u);
7223 
7224     /* Input is in 12.20 format */
7225     /* 12 bits for the table index */
7226     /* Index value calculation */
7227     cI = ((Y & 0xFFF00000) >> 20u);
7228 
7229     /* Care taken for table outside boundary */
7230     /* Returns zero output when values are outside table boundary */
7231     if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
7232     {
7233       return (0);
7234     }
7235 
7236     /* 20 bits for the fractional part */
7237     /* shift left xfract by 11 to keep 1.31 format */
7238     xfract = (X & 0x000FFFFF) << 11u;
7239 
7240     /* Read two nearest output values from the index */
7241     x1 = pYData[(rI) + nCols * (cI)];
7242     x2 = pYData[(rI) + nCols * (cI) + 1u];
7243 
7244     /* 20 bits for the fractional part */
7245     /* shift left yfract by 11 to keep 1.31 format */
7246     yfract = (Y & 0x000FFFFF) << 11u;
7247 
7248     /* Read two nearest output values from the index */
7249     y1 = pYData[(rI) + nCols * (cI + 1)];
7250     y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
7251 
7252     /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
7253     out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
7254     acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
7255 
7256     /* x2 * (xfract) * (1-yfract)  in 3.29(q29) and adding to acc */
7257     out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
7258     acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
7259 
7260     /* y1 * (1 - xfract) * (yfract)  in 3.29(q29) and adding to acc */
7261     out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
7262     acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
7263 
7264     /* y2 * (xfract) * (yfract)  in 3.29(q29) and adding to acc */
7265     out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
7266     acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
7267 
7268     /* Convert acc to 1.31(q31) format */
7269     return (acc << 2u);
7270 
7271   }
7272 
7273   /**
7274   * @brief  Q15 bilinear interpolation.
7275   * @param[in,out] *S points to an instance of the interpolation structure.
7276   * @param[in] X interpolation coordinate in 12.20 format.
7277   * @param[in] Y interpolation coordinate in 12.20 format.
7278   * @return out interpolated value.
7279   */
7280 
arm_bilinear_interp_q15(arm_bilinear_interp_instance_q15 * S,q31_t X,q31_t Y)7281   static __INLINE q15_t arm_bilinear_interp_q15(
7282   arm_bilinear_interp_instance_q15 * S,
7283   q31_t X,
7284   q31_t Y)
7285   {
7286     q63_t acc = 0;                               /* output */
7287     q31_t out;                                   /* Temporary output */
7288     q15_t x1, x2, y1, y2;                        /* Nearest output values */
7289     q31_t xfract, yfract;                        /* X, Y fractional parts */
7290     int32_t rI, cI;                              /* Row and column indices */
7291     q15_t *pYData = S->pData;                    /* pointer to output table values */
7292     uint32_t nCols = S->numCols;                 /* num of rows */
7293 
7294     /* Input is in 12.20 format */
7295     /* 12 bits for the table index */
7296     /* Index value calculation */
7297     rI = ((X & 0xFFF00000) >> 20);
7298 
7299     /* Input is in 12.20 format */
7300     /* 12 bits for the table index */
7301     /* Index value calculation */
7302     cI = ((Y & 0xFFF00000) >> 20);
7303 
7304     /* Care taken for table outside boundary */
7305     /* Returns zero output when values are outside table boundary */
7306     if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
7307     {
7308       return (0);
7309     }
7310 
7311     /* 20 bits for the fractional part */
7312     /* xfract should be in 12.20 format */
7313     xfract = (X & 0x000FFFFF);
7314 
7315     /* Read two nearest output values from the index */
7316     x1 = pYData[(rI) + nCols * (cI)];
7317     x2 = pYData[(rI) + nCols * (cI) + 1u];
7318 
7319 
7320     /* 20 bits for the fractional part */
7321     /* yfract should be in 12.20 format */
7322     yfract = (Y & 0x000FFFFF);
7323 
7324     /* Read two nearest output values from the index */
7325     y1 = pYData[(rI) + nCols * (cI + 1)];
7326     y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
7327 
7328     /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
7329 
7330     /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
7331     /* convert 13.35 to 13.31 by right shifting  and out is in 1.31 */
7332     out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
7333     acc = ((q63_t) out * (0xFFFFF - yfract));
7334 
7335     /* x2 * (xfract) * (1-yfract)  in 1.51 and adding to acc */
7336     out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
7337     acc += ((q63_t) out * (xfract));
7338 
7339     /* y1 * (1 - xfract) * (yfract)  in 1.51 and adding to acc */
7340     out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
7341     acc += ((q63_t) out * (yfract));
7342 
7343     /* y2 * (xfract) * (yfract)  in 1.51 and adding to acc */
7344     out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
7345     acc += ((q63_t) out * (yfract));
7346 
7347     /* acc is in 13.51 format and down shift acc by 36 times */
7348     /* Convert out to 1.15 format */
7349     return (acc >> 36);
7350 
7351   }
7352 
7353   /**
7354   * @brief  Q7 bilinear interpolation.
7355   * @param[in,out] *S points to an instance of the interpolation structure.
7356   * @param[in] X interpolation coordinate in 12.20 format.
7357   * @param[in] Y interpolation coordinate in 12.20 format.
7358   * @return out interpolated value.
7359   */
7360 
arm_bilinear_interp_q7(arm_bilinear_interp_instance_q7 * S,q31_t X,q31_t Y)7361   static __INLINE q7_t arm_bilinear_interp_q7(
7362   arm_bilinear_interp_instance_q7 * S,
7363   q31_t X,
7364   q31_t Y)
7365   {
7366     q63_t acc = 0;                               /* output */
7367     q31_t out;                                   /* Temporary output */
7368     q31_t xfract, yfract;                        /* X, Y fractional parts */
7369     q7_t x1, x2, y1, y2;                         /* Nearest output values */
7370     int32_t rI, cI;                              /* Row and column indices */
7371     q7_t *pYData = S->pData;                     /* pointer to output table values */
7372     uint32_t nCols = S->numCols;                 /* num of rows */
7373 
7374     /* Input is in 12.20 format */
7375     /* 12 bits for the table index */
7376     /* Index value calculation */
7377     rI = ((X & 0xFFF00000) >> 20);
7378 
7379     /* Input is in 12.20 format */
7380     /* 12 bits for the table index */
7381     /* Index value calculation */
7382     cI = ((Y & 0xFFF00000) >> 20);
7383 
7384     /* Care taken for table outside boundary */
7385     /* Returns zero output when values are outside table boundary */
7386     if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
7387     {
7388       return (0);
7389     }
7390 
7391     /* 20 bits for the fractional part */
7392     /* xfract should be in 12.20 format */
7393     xfract = (X & 0x000FFFFF);
7394 
7395     /* Read two nearest output values from the index */
7396     x1 = pYData[(rI) + nCols * (cI)];
7397     x2 = pYData[(rI) + nCols * (cI) + 1u];
7398 
7399 
7400     /* 20 bits for the fractional part */
7401     /* yfract should be in 12.20 format */
7402     yfract = (Y & 0x000FFFFF);
7403 
7404     /* Read two nearest output values from the index */
7405     y1 = pYData[(rI) + nCols * (cI + 1)];
7406     y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
7407 
7408     /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
7409     out = ((x1 * (0xFFFFF - xfract)));
7410     acc = (((q63_t) out * (0xFFFFF - yfract)));
7411 
7412     /* x2 * (xfract) * (1-yfract)  in 2.22 and adding to acc */
7413     out = ((x2 * (0xFFFFF - yfract)));
7414     acc += (((q63_t) out * (xfract)));
7415 
7416     /* y1 * (1 - xfract) * (yfract)  in 2.22 and adding to acc */
7417     out = ((y1 * (0xFFFFF - xfract)));
7418     acc += (((q63_t) out * (yfract)));
7419 
7420     /* y2 * (xfract) * (yfract)  in 2.22 and adding to acc */
7421     out = ((y2 * (yfract)));
7422     acc += (((q63_t) out * (xfract)));
7423 
7424     /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
7425     return (acc >> 40);
7426 
7427   }
7428 
7429   /**
7430    * @} end of BilinearInterpolate group
7431    */
7432 
7433 
7434 //SMMLAR
7435 #define multAcc_32x32_keep32_R(a, x, y) \
7436     a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
7437 
7438 //SMMLSR
7439 #define multSub_32x32_keep32_R(a, x, y) \
7440     a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
7441 
7442 //SMMULR
7443 #define mult_32x32_keep32_R(a, x, y) \
7444     a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
7445 
7446 //SMMLA
7447 #define multAcc_32x32_keep32(a, x, y) \
7448     a += (q31_t) (((q63_t) x * y) >> 32)
7449 
7450 //SMMLS
7451 #define multSub_32x32_keep32(a, x, y) \
7452     a -= (q31_t) (((q63_t) x * y) >> 32)
7453 
7454 //SMMUL
7455 #define mult_32x32_keep32(a, x, y) \
7456     a = (q31_t) (((q63_t) x * y ) >> 32)
7457 
7458 
7459 #if defined ( __CC_ARM ) //Keil
7460 
7461 //Enter low optimization region - place directly above function definition
7462     #ifdef ARM_MATH_CM4
7463       #define LOW_OPTIMIZATION_ENTER \
7464          _Pragma ("push")         \
7465          _Pragma ("O1")
7466     #else
7467       #define LOW_OPTIMIZATION_ENTER
7468     #endif
7469 
7470 //Exit low optimization region - place directly after end of function definition
7471     #ifdef ARM_MATH_CM4
7472       #define LOW_OPTIMIZATION_EXIT \
7473          _Pragma ("pop")
7474     #else
7475       #define LOW_OPTIMIZATION_EXIT
7476     #endif
7477 
7478 //Enter low optimization region - place directly above function definition
7479   #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7480 
7481 //Exit low optimization region - place directly after end of function definition
7482   #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7483 
7484 #elif defined(__ICCARM__) //IAR
7485 
7486 //Enter low optimization region - place directly above function definition
7487     #ifdef ARM_MATH_CM4
7488       #define LOW_OPTIMIZATION_ENTER \
7489          _Pragma ("optimize=low")
7490     #else
7491       #define LOW_OPTIMIZATION_ENTER
7492     #endif
7493 
7494 //Exit low optimization region - place directly after end of function definition
7495   #define LOW_OPTIMIZATION_EXIT
7496 
7497 //Enter low optimization region - place directly above function definition
7498     #ifdef ARM_MATH_CM4
7499       #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
7500          _Pragma ("optimize=low")
7501     #else
7502       #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7503     #endif
7504 
7505 //Exit low optimization region - place directly after end of function definition
7506   #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7507 
7508 #elif defined(__GNUC__)
7509 
7510   #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
7511 
7512   #define LOW_OPTIMIZATION_EXIT
7513 
7514   #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7515 
7516   #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7517 
7518 #elif defined(__CSMC__)		// Cosmic
7519 
7520 #define LOW_OPTIMIZATION_ENTER
7521 #define LOW_OPTIMIZATION_EXIT
7522 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7523 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7524 
7525 #endif
7526 
7527 
7528 #ifdef	__cplusplus
7529 }
7530 #endif
7531 
7532 
7533 #endif /* _ARM_MATH_H */
7534 
7535 /**
7536  *
7537  * End of file.
7538  */
7539