1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date:        31. July 2014
5 * $Revision: 	V1.4.4
6 *
7 * Project: 	    CMSIS DSP Library
8 * Title:	    arm_mat_mult_q31.c
9 *
10 * Description:	 Q31 matrix multiplication.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 *   - Redistributions of source code must retain the above copyright
18 *     notice, this list of conditions and the following disclaimer.
19 *   - Redistributions in binary form must reproduce the above copyright
20 *     notice, this list of conditions and the following disclaimer in
21 *     the documentation and/or other materials provided with the
22 *     distribution.
23 *   - Neither the name of ARM LIMITED nor the names of its contributors
24 *     may be used to endorse or promote products derived from this
25 *     software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40 
41 #include "arm_math.h"
42 
43 /**
44  * @ingroup groupMatrix
45  */
46 
47 /**
48  * @addtogroup MatrixMult
49  * @{
50  */
51 
52 /**
53  * @brief Q31 matrix multiplication
54  * @param[in]       *pSrcA points to the first input matrix structure
55  * @param[in]       *pSrcB points to the second input matrix structure
56  * @param[out]      *pDst points to output matrix structure
57  * @return     		The function returns either
58  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
59  *
60  * @details
61  * <b>Scaling and Overflow Behavior:</b>
62  *
63  * \par
64  * The function is implemented using an internal 64-bit accumulator.
65  * The accumulator has a 2.62 format and maintains full precision of the intermediate
66  * multiplication results but provides only a single guard bit. There is no saturation
67  * on intermediate additions. Thus, if the accumulator overflows it wraps around and
68  * distorts the result. The input signals should be scaled down to avoid intermediate
69  * overflows. The input is thus scaled down by log2(numColsA) bits
70  * to avoid overflows, as a total of numColsA additions are performed internally.
71  * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
72  *
73  * \par
74  * See <code>arm_mat_mult_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
75  *
76  */
77 
arm_mat_mult_q31(const arm_matrix_instance_q31 * pSrcA,const arm_matrix_instance_q31 * pSrcB,arm_matrix_instance_q31 * pDst)78 arm_status arm_mat_mult_q31(
79   const arm_matrix_instance_q31 * pSrcA,
80   const arm_matrix_instance_q31 * pSrcB,
81   arm_matrix_instance_q31 * pDst)
82 {
83   q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
84   q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
85   q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A */
86   q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
87   q31_t *px;                                     /* Temporary output data matrix pointer */
88   q63_t sum;                                     /* Accumulator */
89   uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
90   uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
91   uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
92 
93 #ifndef ARM_MATH_CM0_FAMILY
94 
95   /* Run the below code for Cortex-M4 and Cortex-M3 */
96 
97   uint16_t col, i = 0u, j, row = numRowsA, colCnt;      /* loop counters */
98   arm_status status;                             /* status of matrix multiplication */
99   q31_t a0, a1, a2, a3, b0, b1, b2, b3;
100 
101 #ifdef ARM_MATH_MATRIX_CHECK
102 
103 
104   /* Check for matrix mismatch condition */
105   if((pSrcA->numCols != pSrcB->numRows) ||
106      (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
107   {
108     /* Set status as ARM_MATH_SIZE_MISMATCH */
109     status = ARM_MATH_SIZE_MISMATCH;
110   }
111   else
112 #endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
113 
114   {
115     /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
116     /* row loop */
117     do
118     {
119       /* Output pointer is set to starting address of the row being processed */
120       px = pOut + i;
121 
122       /* For every row wise process, the column loop counter is to be initiated */
123       col = numColsB;
124 
125       /* For every row wise process, the pIn2 pointer is set
126        ** to the starting address of the pSrcB data */
127       pIn2 = pSrcB->pData;
128 
129       j = 0u;
130 
131       /* column loop */
132       do
133       {
134         /* Set the variable sum, that acts as accumulator, to zero */
135         sum = 0;
136 
137         /* Initiate the pointer pIn1 to point to the starting address of pInA */
138         pIn1 = pInA;
139 
140         /* Apply loop unrolling and compute 4 MACs simultaneously. */
141         colCnt = numColsA >> 2;
142 
143 
144         /* matrix multiplication */
145         while(colCnt > 0u)
146         {
147           /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
148           /* Perform the multiply-accumulates */
149           b0 = *pIn2;
150           pIn2 += numColsB;
151 
152           a0 = *pIn1++;
153           a1 = *pIn1++;
154 
155           b1 = *pIn2;
156           pIn2 += numColsB;
157           b2 = *pIn2;
158           pIn2 += numColsB;
159 
160           sum += (q63_t) a0 *b0;
161           sum += (q63_t) a1 *b1;
162 
163           a2 = *pIn1++;
164           a3 = *pIn1++;
165 
166           b3 = *pIn2;
167           pIn2 += numColsB;
168 
169           sum += (q63_t) a2 *b2;
170           sum += (q63_t) a3 *b3;
171 
172           /* Decrement the loop counter */
173           colCnt--;
174         }
175 
176         /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.
177          ** No loop unrolling is used. */
178         colCnt = numColsA % 0x4u;
179 
180         while(colCnt > 0u)
181         {
182           /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
183           /* Perform the multiply-accumulates */
184           sum += (q63_t) * pIn1++ * *pIn2;
185           pIn2 += numColsB;
186 
187           /* Decrement the loop counter */
188           colCnt--;
189         }
190 
191         /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
192         *px++ = (q31_t) (sum >> 31);
193 
194         /* Update the pointer pIn2 to point to the  starting address of the next column */
195         j++;
196         pIn2 = (pSrcB->pData) + j;
197 
198         /* Decrement the column loop counter */
199         col--;
200 
201       } while(col > 0u);
202 
203 #else
204 
205   /* Run the below code for Cortex-M0 */
206 
207   q31_t *pInB = pSrcB->pData;                    /* input data matrix pointer B */
208   uint16_t col, i = 0u, row = numRowsA, colCnt;  /* loop counters */
209   arm_status status;                             /* status of matrix multiplication */
210 
211 
212 #ifdef ARM_MATH_MATRIX_CHECK
213 
214   /* Check for matrix mismatch condition */
215   if((pSrcA->numCols != pSrcB->numRows) ||
216      (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
217   {
218     /* Set status as ARM_MATH_SIZE_MISMATCH */
219     status = ARM_MATH_SIZE_MISMATCH;
220   }
221   else
222 #endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
223 
224   {
225     /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
226     /* row loop */
227     do
228     {
229       /* Output pointer is set to starting address of the row being processed */
230       px = pOut + i;
231 
232       /* For every row wise process, the column loop counter is to be initiated */
233       col = numColsB;
234 
235       /* For every row wise process, the pIn2 pointer is set
236        ** to the starting address of the pSrcB data */
237       pIn2 = pSrcB->pData;
238 
239       /* column loop */
240       do
241       {
242         /* Set the variable sum, that acts as accumulator, to zero */
243         sum = 0;
244 
245         /* Initiate the pointer pIn1 to point to the starting address of pInA */
246         pIn1 = pInA;
247 
248         /* Matrix A columns number of MAC operations are to be performed */
249         colCnt = numColsA;
250 
251         /* matrix multiplication */
252         while(colCnt > 0u)
253         {
254           /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
255           /* Perform the multiply-accumulates */
256           sum += (q63_t) * pIn1++ * *pIn2;
257           pIn2 += numColsB;
258 
259           /* Decrement the loop counter */
260           colCnt--;
261         }
262 
263         /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
264         *px++ = (q31_t) clip_q63_to_q31(sum >> 31);
265 
266         /* Decrement the column loop counter */
267         col--;
268 
269         /* Update the pointer pIn2 to point to the  starting address of the next column */
270         pIn2 = pInB + (numColsB - col);
271 
272       } while(col > 0u);
273 
274 #endif
275 
276       /* Update the pointer pInA to point to the  starting address of the next row */
277       i = i + numColsB;
278       pInA = pInA + numColsA;
279 
280       /* Decrement the row loop counter */
281       row--;
282 
283     } while(row > 0u);
284 
285     /* set status as ARM_MATH_SUCCESS */
286     status = ARM_MATH_SUCCESS;
287   }
288   /* Return to application */
289   return (status);
290 }
291 
292 /**
293  * @} end of MatrixMult group
294  */
295