1 /*
2  * imdct.c
3  * Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
4  * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
5  *
6  * The ifft algorithms in this file have been largely inspired by Dan
7  * Bernstein's work, djbfft, available at http://cr.yp.to/djbfft.html
8  *
9  * This file is part of a52dec, a free ATSC A-52 stream decoder.
10  * See http://liba52.sourceforge.net/ for updates.
11  *
12  * a52dec is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * a52dec is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  */
26 
27 #include "config.h"
28 
29 #include <math.h>
30 #include <stdio.h>
31 #ifdef LIBA52_DJBFFT
32 #include <fftc4.h>
33 #endif
34 #ifndef M_PI
35 #define M_PI 3.1415926535897932384626433832795029
36 #endif
37 #include <inttypes.h>
38 
39 #include "a52.h"
40 #include "a52_internal.h"
41 #include "mm_accel.h"
42 
43 typedef struct complex_s {
44     sample_t real;
45     sample_t imag;
46 } complex_t;
47 
48 static uint8_t fftorder[] = {
49       0,128, 64,192, 32,160,224, 96, 16,144, 80,208,240,112, 48,176,
50       8,136, 72,200, 40,168,232,104,248,120, 56,184, 24,152,216, 88,
51       4,132, 68,196, 36,164,228,100, 20,148, 84,212,244,116, 52,180,
52     252,124, 60,188, 28,156,220, 92, 12,140, 76,204,236,108, 44,172,
53       2,130, 66,194, 34,162,226, 98, 18,146, 82,210,242,114, 50,178,
54      10,138, 74,202, 42,170,234,106,250,122, 58,186, 26,154,218, 90,
55     254,126, 62,190, 30,158,222, 94, 14,142, 78,206,238,110, 46,174,
56       6,134, 70,198, 38,166,230,102,246,118, 54,182, 22,150,214, 86
57 };
58 
59 /* Root values for IFFT */
60 static sample_t roots16[3];
61 static sample_t roots32[7];
62 static sample_t roots64[15];
63 static sample_t roots128[31];
64 
65 /* Twiddle factors for IMDCT */
66 static complex_t pre1[128];
67 static complex_t post1[64];
68 static complex_t pre2[64];
69 static complex_t post2[32];
70 
71 static sample_t a52_imdct_window[256];
72 
73 static void (* ifft128) (complex_t * buf);
74 static void (* ifft64) (complex_t * buf);
75 
ifft2(complex_t * buf)76 static inline void ifft2 (complex_t * buf)
77 {
78     double r, i;
79 
80     r = buf[0].real;
81     i = buf[0].imag;
82     buf[0].real += buf[1].real;
83     buf[0].imag += buf[1].imag;
84     buf[1].real = r - buf[1].real;
85     buf[1].imag = i - buf[1].imag;
86 }
87 
ifft4(complex_t * buf)88 static inline void ifft4 (complex_t * buf)
89 {
90     double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
91 
92     tmp1 = buf[0].real + buf[1].real;
93     tmp2 = buf[3].real + buf[2].real;
94     tmp3 = buf[0].imag + buf[1].imag;
95     tmp4 = buf[2].imag + buf[3].imag;
96     tmp5 = buf[0].real - buf[1].real;
97     tmp6 = buf[0].imag - buf[1].imag;
98     tmp7 = buf[2].imag - buf[3].imag;
99     tmp8 = buf[3].real - buf[2].real;
100 
101     buf[0].real = tmp1 + tmp2;
102     buf[0].imag = tmp3 + tmp4;
103     buf[2].real = tmp1 - tmp2;
104     buf[2].imag = tmp3 - tmp4;
105     buf[1].real = tmp5 + tmp7;
106     buf[1].imag = tmp6 + tmp8;
107     buf[3].real = tmp5 - tmp7;
108     buf[3].imag = tmp6 - tmp8;
109 }
110 
111 /* the basic split-radix ifft butterfly */
112 
113 #define BUTTERFLY(a0,a1,a2,a3,wr,wi) do {	\
114     tmp5 = a2.real * wr + a2.imag * wi;		\
115     tmp6 = a2.imag * wr - a2.real * wi;		\
116     tmp7 = a3.real * wr - a3.imag * wi;		\
117     tmp8 = a3.imag * wr + a3.real * wi;		\
118     tmp1 = tmp5 + tmp7;				\
119     tmp2 = tmp6 + tmp8;				\
120     tmp3 = tmp6 - tmp8;				\
121     tmp4 = tmp7 - tmp5;				\
122     a2.real = a0.real - tmp1;			\
123     a2.imag = a0.imag - tmp2;			\
124     a3.real = a1.real - tmp3;			\
125     a3.imag = a1.imag - tmp4;			\
126     a0.real += tmp1;				\
127     a0.imag += tmp2;				\
128     a1.real += tmp3;				\
129     a1.imag += tmp4;				\
130 } while (0)
131 
132 /* split-radix ifft butterfly, specialized for wr=1 wi=0 */
133 
134 #define BUTTERFLY_ZERO(a0,a1,a2,a3) do {	\
135     tmp1 = a2.real + a3.real;			\
136     tmp2 = a2.imag + a3.imag;			\
137     tmp3 = a2.imag - a3.imag;			\
138     tmp4 = a3.real - a2.real;			\
139     a2.real = a0.real - tmp1;			\
140     a2.imag = a0.imag - tmp2;			\
141     a3.real = a1.real - tmp3;			\
142     a3.imag = a1.imag - tmp4;			\
143     a0.real += tmp1;				\
144     a0.imag += tmp2;				\
145     a1.real += tmp3;				\
146     a1.imag += tmp4;				\
147 } while (0)
148 
149 /* split-radix ifft butterfly, specialized for wr=wi */
150 
151 #define BUTTERFLY_HALF(a0,a1,a2,a3,w) do {	\
152     tmp5 = (a2.real + a2.imag) * w;		\
153     tmp6 = (a2.imag - a2.real) * w;		\
154     tmp7 = (a3.real - a3.imag) * w;		\
155     tmp8 = (a3.imag + a3.real) * w;		\
156     tmp1 = tmp5 + tmp7;				\
157     tmp2 = tmp6 + tmp8;				\
158     tmp3 = tmp6 - tmp8;				\
159     tmp4 = tmp7 - tmp5;				\
160     a2.real = a0.real - tmp1;			\
161     a2.imag = a0.imag - tmp2;			\
162     a3.real = a1.real - tmp3;			\
163     a3.imag = a1.imag - tmp4;			\
164     a0.real += tmp1;				\
165     a0.imag += tmp2;				\
166     a1.real += tmp3;				\
167     a1.imag += tmp4;				\
168 } while (0)
169 
ifft8(complex_t * buf)170 static inline void ifft8 (complex_t * buf)
171 {
172     double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
173 
174     ifft4 (buf);
175     ifft2 (buf + 4);
176     ifft2 (buf + 6);
177     BUTTERFLY_ZERO (buf[0], buf[2], buf[4], buf[6]);
178     BUTTERFLY_HALF (buf[1], buf[3], buf[5], buf[7], roots16[1]);
179 }
180 
ifft_pass(complex_t * buf,sample_t * weight,int n)181 static void ifft_pass (complex_t * buf, sample_t * weight, int n)
182 {
183     complex_t * buf1;
184     complex_t * buf2;
185     complex_t * buf3;
186     double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
187     int i;
188 
189     buf++;
190     buf1 = buf + n;
191     buf2 = buf + 2 * n;
192     buf3 = buf + 3 * n;
193 
194     BUTTERFLY_ZERO (buf[-1], buf1[-1], buf2[-1], buf3[-1]);
195 
196     i = n - 1;
197 
198     do {
199 	BUTTERFLY (buf[0], buf1[0], buf2[0], buf3[0], weight[n], weight[2*i]);
200 	buf++;
201 	buf1++;
202 	buf2++;
203 	buf3++;
204 	weight++;
205     } while (--i);
206 }
207 
ifft16(complex_t * buf)208 static void ifft16 (complex_t * buf)
209 {
210     ifft8 (buf);
211     ifft4 (buf + 8);
212     ifft4 (buf + 12);
213     ifft_pass (buf, roots16 - 4, 4);
214 }
215 
ifft32(complex_t * buf)216 static void ifft32 (complex_t * buf)
217 {
218     ifft16 (buf);
219     ifft8 (buf + 16);
220     ifft8 (buf + 24);
221     ifft_pass (buf, roots32 - 8, 8);
222 }
223 
ifft64_c(complex_t * buf)224 static void ifft64_c (complex_t * buf)
225 {
226     ifft32 (buf);
227     ifft16 (buf + 32);
228     ifft16 (buf + 48);
229     ifft_pass (buf, roots64 - 16, 16);
230 }
231 
ifft128_c(complex_t * buf)232 static void ifft128_c (complex_t * buf)
233 {
234     ifft32 (buf);
235     ifft16 (buf + 32);
236     ifft16 (buf + 48);
237     ifft_pass (buf, roots64 - 16, 16);
238 
239     ifft32 (buf + 64);
240     ifft32 (buf + 96);
241     ifft_pass (buf, roots128 - 32, 32);
242 }
243 
a52_imdct_512(sample_t * data,sample_t * delay,sample_t bias)244 void a52_imdct_512 (sample_t * data, sample_t * delay, sample_t bias)
245 {
246     int i, k;
247     sample_t t_r, t_i, a_r, a_i, b_r, b_i, w_1, w_2;
248     const sample_t * window = a52_imdct_window;
249     complex_t buf[128];
250 
251     for (i = 0; i < 128; i++) {
252 	k = fftorder[i];
253 	t_r = pre1[i].real;
254 	t_i = pre1[i].imag;
255 
256 	buf[i].real = t_i * data[255-k] + t_r * data[k];
257 	buf[i].imag = t_r * data[255-k] - t_i * data[k];
258     }
259 
260     ifft128 (buf);
261 
262     /* Post IFFT complex multiply plus IFFT complex conjugate*/
263     /* Window and convert to real valued signal */
264     for (i = 0; i < 64; i++) {
265 	/* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
266 	t_r = post1[i].real;
267 	t_i = post1[i].imag;
268 
269 	a_r = t_r * buf[i].real     + t_i * buf[i].imag;
270 	a_i = t_i * buf[i].real     - t_r * buf[i].imag;
271 	b_r = t_i * buf[127-i].real + t_r * buf[127-i].imag;
272 	b_i = t_r * buf[127-i].real - t_i * buf[127-i].imag;
273 
274 	w_1 = window[2*i];
275 	w_2 = window[255-2*i];
276 	data[2*i]     = delay[2*i] * w_2 - a_r * w_1 + bias;
277 	data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias;
278 	delay[2*i] = a_i;
279 
280 	w_1 = window[2*i+1];
281 	w_2 = window[254-2*i];
282 	data[2*i+1]   = delay[2*i+1] * w_2 + b_r * w_1 + bias;
283 	data[254-2*i] = delay[2*i+1] * w_1 - b_r * w_2 + bias;
284 	delay[2*i+1] = b_i;
285     }
286 }
287 
a52_imdct_256(sample_t * data,sample_t * delay,sample_t bias)288 void a52_imdct_256(sample_t * data, sample_t * delay, sample_t bias)
289 {
290     int i, k;
291     sample_t t_r, t_i, a_r, a_i, b_r, b_i, c_r, c_i, d_r, d_i, w_1, w_2;
292     const sample_t * window = a52_imdct_window;
293     complex_t buf1[64], buf2[64];
294 
295     /* Pre IFFT complex multiply plus IFFT cmplx conjugate */
296     for (i = 0; i < 64; i++) {
297 	k = fftorder[i];
298 	t_r = pre2[i].real;
299 	t_i = pre2[i].imag;
300 
301 	buf1[i].real = t_i * data[254-k] + t_r * data[k];
302 	buf1[i].imag = t_r * data[254-k] - t_i * data[k];
303 
304 	buf2[i].real = t_i * data[255-k] + t_r * data[k+1];
305 	buf2[i].imag = t_r * data[255-k] - t_i * data[k+1];
306     }
307 
308     ifft64 (buf1);
309     ifft64 (buf2);
310 
311     /* Post IFFT complex multiply */
312     /* Window and convert to real valued signal */
313     for (i = 0; i < 32; i++) {
314 	/* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
315 	t_r = post2[i].real;
316 	t_i = post2[i].imag;
317 
318 	a_r = t_r * buf1[i].real    + t_i * buf1[i].imag;
319 	a_i = t_i * buf1[i].real    - t_r * buf1[i].imag;
320 	b_r = t_i * buf1[63-i].real + t_r * buf1[63-i].imag;
321 	b_i = t_r * buf1[63-i].real - t_i * buf1[63-i].imag;
322 
323 	c_r = t_r * buf2[i].real    + t_i * buf2[i].imag;
324 	c_i = t_i * buf2[i].real    - t_r * buf2[i].imag;
325 	d_r = t_i * buf2[63-i].real + t_r * buf2[63-i].imag;
326 	d_i = t_r * buf2[63-i].real - t_i * buf2[63-i].imag;
327 
328 	w_1 = window[2*i];
329 	w_2 = window[255-2*i];
330 	data[2*i]     = delay[2*i] * w_2 - a_r * w_1 + bias;
331 	data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias;
332 	delay[2*i] = c_i;
333 
334 	w_1 = window[128+2*i];
335 	w_2 = window[127-2*i];
336 	data[128+2*i] = delay[127-2*i] * w_2 + a_i * w_1 + bias;
337 	data[127-2*i] = delay[127-2*i] * w_1 - a_i * w_2 + bias;
338 	delay[127-2*i] = c_r;
339 
340 	w_1 = window[2*i+1];
341 	w_2 = window[254-2*i];
342 	data[2*i+1]   = delay[2*i+1] * w_2 - b_i * w_1 + bias;
343 	data[254-2*i] = delay[2*i+1] * w_1 + b_i * w_2 + bias;
344 	delay[2*i+1] = d_r;
345 
346 	w_1 = window[129+2*i];
347 	w_2 = window[126-2*i];
348 	data[129+2*i] = delay[126-2*i] * w_2 + b_r * w_1 + bias;
349 	data[126-2*i] = delay[126-2*i] * w_1 - b_r * w_2 + bias;
350 	delay[126-2*i] = d_i;
351     }
352 }
353 
besselI0(double x)354 static double besselI0 (double x)
355 {
356     double bessel = 1;
357     int i = 100;
358 
359     do
360 	bessel = bessel * x / (i * i) + 1;
361     while (--i);
362     return bessel;
363 }
364 
a52_imdct_init(uint32_t mm_accel)365 void a52_imdct_init (uint32_t mm_accel)
366 {
367     int i, k;
368     double sum;
369 
370     /* compute imdct window - kaiser-bessel derived window, alpha = 5.0 */
371     sum = 0;
372     for (i = 0; i < 256; i++) {
373 	sum += besselI0 (i * (256 - i) * (5 * M_PI / 256) * (5 * M_PI / 256));
374 	a52_imdct_window[i] = sum;
375     }
376     sum++;
377     for (i = 0; i < 256; i++)
378 	a52_imdct_window[i] = sqrt (a52_imdct_window[i] / sum);
379 
380     for (i = 0; i < 3; i++)
381 	roots16[i] = cos ((M_PI / 8) * (i + 1));
382 
383     for (i = 0; i < 7; i++)
384 	roots32[i] = cos ((M_PI / 16) * (i + 1));
385 
386     for (i = 0; i < 15; i++)
387 	roots64[i] = cos ((M_PI / 32) * (i + 1));
388 
389     for (i = 0; i < 31; i++)
390 	roots128[i] = cos ((M_PI / 64) * (i + 1));
391 
392     for (i = 0; i < 64; i++) {
393 	k = fftorder[i] / 2 + 64;
394 	pre1[i].real = cos ((M_PI / 256) * (k - 0.25));
395 	pre1[i].imag = sin ((M_PI / 256) * (k - 0.25));
396     }
397 
398     for (i = 64; i < 128; i++) {
399 	k = fftorder[i] / 2 + 64;
400 	pre1[i].real = -cos ((M_PI / 256) * (k - 0.25));
401 	pre1[i].imag = -sin ((M_PI / 256) * (k - 0.25));
402     }
403 
404     for (i = 0; i < 64; i++) {
405 	post1[i].real = cos ((M_PI / 256) * (i + 0.5));
406 	post1[i].imag = sin ((M_PI / 256) * (i + 0.5));
407     }
408 
409     for (i = 0; i < 64; i++) {
410 	k = fftorder[i] / 4;
411 	pre2[i].real = cos ((M_PI / 128) * (k - 0.25));
412 	pre2[i].imag = sin ((M_PI / 128) * (k - 0.25));
413     }
414 
415     for (i = 0; i < 32; i++) {
416 	post2[i].real = cos ((M_PI / 128) * (i + 0.5));
417 	post2[i].imag = sin ((M_PI / 128) * (i + 0.5));
418     }
419 
420 #ifdef LIBA52_DJBFFT
421     if (mm_accel & MM_ACCEL_DJBFFT) {
422 	fprintf (stderr, "Using djbfft for IMDCT transform\n");
423 	ifft128 = (void (*) (complex_t *)) fftc4_un128;
424 	ifft64 = (void (*) (complex_t *)) fftc4_un64;
425     } else
426 #endif
427     {
428 	fprintf (stderr, "No accelerated IMDCT transform found\n");
429 	ifft128 = ifft128_c;
430 	ifft64 = ifft64_c;
431     }
432 }
433