1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
30  */
31 
32 #ifndef	_SYS_QUEUE_H_
33 #define	_SYS_QUEUE_H_
34 
35 /*
36  * This file defines five types of data structures: singly-linked lists,
37  * lists, simple queues, tail queues, and circular queues.
38  *
39  * A singly-linked list is headed by a single forward pointer. The
40  * elements are singly linked for minimum space and pointer manipulation
41  * overhead at the expense of O(n) removal for arbitrary elements. New
42  * elements can be added to the list after an existing element or at the
43  * head of the list.  Elements being removed from the head of the list
44  * should use the explicit macro for this purpose for optimum
45  * efficiency. A singly-linked list may only be traversed in the forward
46  * direction.  Singly-linked lists are ideal for applications with large
47  * datasets and few or no removals or for implementing a LIFO queue.
48  *
49  * A list is headed by a single forward pointer (or an array of forward
50  * pointers for a hash table header). The elements are doubly linked
51  * so that an arbitrary element can be removed without a need to
52  * traverse the list. New elements can be added to the list before
53  * or after an existing element or at the head of the list. A list
54  * may only be traversed in the forward direction.
55  *
56  * A simple queue is headed by a pair of pointers, one the head of the
57  * list and the other to the tail of the list. The elements are singly
58  * linked to save space, so elements can only be removed from the
59  * head of the list. New elements can be added to the list after
60  * an existing element, at the head of the list, or at the end of the
61  * list. A simple queue may only be traversed in the forward direction.
62  *
63  * A tail queue is headed by a pair of pointers, one to the head of the
64  * list and the other to the tail of the list. The elements are doubly
65  * linked so that an arbitrary element can be removed without a need to
66  * traverse the list. New elements can be added to the list before or
67  * after an existing element, at the head of the list, or at the end of
68  * the list. A tail queue may be traversed in either direction.
69  *
70  * A circle queue is headed by a pair of pointers, one to the head of the
71  * list and the other to the tail of the list. The elements are doubly
72  * linked so that an arbitrary element can be removed without a need to
73  * traverse the list. New elements can be added to the list before or after
74  * an existing element, at the head of the list, or at the end of the list.
75  * A circle queue may be traversed in either direction, but has a more
76  * complex end of list detection.
77  *
78  * For details on the use of these macros, see the queue(3) manual page.
79  */
80 
81 /*
82  * List definitions.
83  */
84 #define	LIST_HEAD(name, type)						\
85 struct name {								\
86 	struct type *lh_first;	/* first element */			\
87 }
88 
89 #define	LIST_HEAD_INITIALIZER(head)					\
90 	{ NULL }
91 
92 #define	LIST_ENTRY(type)						\
93 struct {								\
94 	struct type *le_next;	/* next element */			\
95 	struct type **le_prev;	/* address of previous next element */	\
96 }
97 
98 /*
99  * List functions.
100  */
101 #define	LIST_INIT(head) do {						\
102 	(head)->lh_first = NULL;					\
103 } while (/*CONSTCOND*/0)
104 
105 #define	LIST_INSERT_AFTER(listelm, elm, field) do {			\
106 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
107 		(listelm)->field.le_next->field.le_prev =		\
108 		    &(elm)->field.le_next;				\
109 	(listelm)->field.le_next = (elm);				\
110 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
111 } while (/*CONSTCOND*/0)
112 
113 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
114 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
115 	(elm)->field.le_next = (listelm);				\
116 	*(listelm)->field.le_prev = (elm);				\
117 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
118 } while (/*CONSTCOND*/0)
119 
120 #define	LIST_INSERT_HEAD(head, elm, field) do {				\
121 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
122 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
123 	(head)->lh_first = (elm);					\
124 	(elm)->field.le_prev = &(head)->lh_first;			\
125 } while (/*CONSTCOND*/0)
126 
127 #define	LIST_REMOVE(elm, field) do {					\
128 	if ((elm)->field.le_next != NULL)				\
129 		(elm)->field.le_next->field.le_prev = 			\
130 		    (elm)->field.le_prev;				\
131 	*(elm)->field.le_prev = (elm)->field.le_next;			\
132 } while (/*CONSTCOND*/0)
133 
134 #define	LIST_FOREACH(var, head, field)					\
135 	for ((var) = ((head)->lh_first);				\
136 		(var);							\
137 		(var) = ((var)->field.le_next))
138 
139 /*
140  * List access methods.
141  */
142 #define	LIST_EMPTY(head)		((head)->lh_first == NULL)
143 #define	LIST_FIRST(head)		((head)->lh_first)
144 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
145 
146 
147 /*
148  * Singly-linked List definitions.
149  */
150 #define	SLIST_HEAD(name, type)						\
151 struct name {								\
152 	struct type *slh_first;	/* first element */			\
153 }
154 
155 #define	SLIST_HEAD_INITIALIZER(head)					\
156 	{ NULL }
157 
158 #define	SLIST_ENTRY(type)						\
159 struct {								\
160 	struct type *sle_next;	/* next element */			\
161 }
162 
163 /*
164  * Singly-linked List functions.
165  */
166 #define	SLIST_INIT(head) do {						\
167 	(head)->slh_first = NULL;					\
168 } while (/*CONSTCOND*/0)
169 
170 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
171 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
172 	(slistelm)->field.sle_next = (elm);				\
173 } while (/*CONSTCOND*/0)
174 
175 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
176 	(elm)->field.sle_next = (head)->slh_first;			\
177 	(head)->slh_first = (elm);					\
178 } while (/*CONSTCOND*/0)
179 
180 #define	SLIST_REMOVE_HEAD(head, field) do {				\
181 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
182 } while (/*CONSTCOND*/0)
183 
184 #define	SLIST_REMOVE(head, elm, type, field) do {			\
185 	if ((head)->slh_first == (elm)) {				\
186 		SLIST_REMOVE_HEAD((head), field);			\
187 	}								\
188 	else {								\
189 		struct type *curelm = (head)->slh_first;		\
190 		while(curelm->field.sle_next != (elm))			\
191 			curelm = curelm->field.sle_next;		\
192 		curelm->field.sle_next =				\
193 		    curelm->field.sle_next->field.sle_next;		\
194 	}								\
195 } while (/*CONSTCOND*/0)
196 
197 #define	SLIST_FOREACH(var, head, field)					\
198 	for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
199 
200 /*
201  * Singly-linked List access methods.
202  */
203 #define	SLIST_EMPTY(head)	((head)->slh_first == NULL)
204 #define	SLIST_FIRST(head)	((head)->slh_first)
205 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
206 
207 
208 /*
209  * Singly-linked Tail queue declarations.
210  */
211 #define	STAILQ_HEAD(name, type)					\
212 struct name {								\
213 	struct type *stqh_first;	/* first element */			\
214 	struct type **stqh_last;	/* addr of last next element */		\
215 }
216 
217 #define	STAILQ_HEAD_INITIALIZER(head)					\
218 	{ NULL, &(head).stqh_first }
219 
220 #define	STAILQ_ENTRY(type)						\
221 struct {								\
222 	struct type *stqe_next;	/* next element */			\
223 }
224 
225 /*
226  * Singly-linked Tail queue functions.
227  */
228 #define	STAILQ_INIT(head) do {						\
229 	(head)->stqh_first = NULL;					\
230 	(head)->stqh_last = &(head)->stqh_first;				\
231 } while (/*CONSTCOND*/0)
232 
233 #define	STAILQ_INSERT_HEAD(head, elm, field) do {			\
234 	if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)	\
235 		(head)->stqh_last = &(elm)->field.stqe_next;		\
236 	(head)->stqh_first = (elm);					\
237 } while (/*CONSTCOND*/0)
238 
239 #define	STAILQ_INSERT_TAIL(head, elm, field) do {			\
240 	(elm)->field.stqe_next = NULL;					\
241 	*(head)->stqh_last = (elm);					\
242 	(head)->stqh_last = &(elm)->field.stqe_next;			\
243 } while (/*CONSTCOND*/0)
244 
245 #define	STAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
246 	if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
247 		(head)->stqh_last = &(elm)->field.stqe_next;		\
248 	(listelm)->field.stqe_next = (elm);				\
249 } while (/*CONSTCOND*/0)
250 
251 #define	STAILQ_REMOVE_HEAD(head, field) do {				\
252 	if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
253 		(head)->stqh_last = &(head)->stqh_first;			\
254 } while (/*CONSTCOND*/0)
255 
256 #define	STAILQ_REMOVE(head, elm, type, field) do {			\
257 	if ((head)->stqh_first == (elm)) {				\
258 		STAILQ_REMOVE_HEAD((head), field);			\
259 	} else {							\
260 		struct type *curelm = (head)->stqh_first;		\
261 		while (curelm->field.stqe_next != (elm))			\
262 			curelm = curelm->field.stqe_next;		\
263 		if ((curelm->field.stqe_next =				\
264 			curelm->field.stqe_next->field.stqe_next) == NULL) \
265 			    (head)->stqh_last = &(curelm)->field.stqe_next; \
266 	}								\
267 } while (/*CONSTCOND*/0)
268 
269 #define	STAILQ_FOREACH(var, head, field)				\
270 	for ((var) = ((head)->stqh_first);				\
271 		(var);							\
272 		(var) = ((var)->field.stqe_next))
273 
274 #define	STAILQ_CONCAT(head1, head2) do {				\
275 	if (!STAILQ_EMPTY((head2))) {					\
276 		*(head1)->stqh_last = (head2)->stqh_first;		\
277 		(head1)->stqh_last = (head2)->stqh_last;		\
278 		STAILQ_INIT((head2));					\
279 	}								\
280 } while (/*CONSTCOND*/0)
281 
282 /*
283  * Singly-linked Tail queue access methods.
284  */
285 #define	STAILQ_EMPTY(head)	((head)->stqh_first == NULL)
286 #define	STAILQ_FIRST(head)	((head)->stqh_first)
287 #define	STAILQ_NEXT(elm, field)	((elm)->field.stqe_next)
288 
289 
290 /*
291  * Simple queue definitions.
292  */
293 #define	SIMPLEQ_HEAD(name, type)					\
294 struct name {								\
295 	struct type *sqh_first;	/* first element */			\
296 	struct type **sqh_last;	/* addr of last next element */		\
297 }
298 
299 #define	SIMPLEQ_HEAD_INITIALIZER(head)					\
300 	{ NULL, &(head).sqh_first }
301 
302 #define	SIMPLEQ_ENTRY(type)						\
303 struct {								\
304 	struct type *sqe_next;	/* next element */			\
305 }
306 
307 /*
308  * Simple queue functions.
309  */
310 #define	SIMPLEQ_INIT(head) do {						\
311 	(head)->sqh_first = NULL;					\
312 	(head)->sqh_last = &(head)->sqh_first;				\
313 } while (/*CONSTCOND*/0)
314 
315 #define	SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
316 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
317 		(head)->sqh_last = &(elm)->field.sqe_next;		\
318 	(head)->sqh_first = (elm);					\
319 } while (/*CONSTCOND*/0)
320 
321 #define	SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
322 	(elm)->field.sqe_next = NULL;					\
323 	*(head)->sqh_last = (elm);					\
324 	(head)->sqh_last = &(elm)->field.sqe_next;			\
325 } while (/*CONSTCOND*/0)
326 
327 #define	SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
328 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
329 		(head)->sqh_last = &(elm)->field.sqe_next;		\
330 	(listelm)->field.sqe_next = (elm);				\
331 } while (/*CONSTCOND*/0)
332 
333 #define	SIMPLEQ_REMOVE_HEAD(head, field) do {				\
334 	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
335 		(head)->sqh_last = &(head)->sqh_first;			\
336 } while (/*CONSTCOND*/0)
337 
338 #define	SIMPLEQ_REMOVE(head, elm, type, field) do {			\
339 	if ((head)->sqh_first == (elm)) {				\
340 		SIMPLEQ_REMOVE_HEAD((head), field);			\
341 	} else {							\
342 		struct type *curelm = (head)->sqh_first;		\
343 		while (curelm->field.sqe_next != (elm))			\
344 			curelm = curelm->field.sqe_next;		\
345 		if ((curelm->field.sqe_next =				\
346 			curelm->field.sqe_next->field.sqe_next) == NULL) \
347 			    (head)->sqh_last = &(curelm)->field.sqe_next; \
348 	}								\
349 } while (/*CONSTCOND*/0)
350 
351 #define	SIMPLEQ_FOREACH(var, head, field)				\
352 	for ((var) = ((head)->sqh_first);				\
353 		(var);							\
354 		(var) = ((var)->field.sqe_next))
355 
356 /*
357  * Simple queue access methods.
358  */
359 #define	SIMPLEQ_EMPTY(head)		((head)->sqh_first == NULL)
360 #define	SIMPLEQ_FIRST(head)		((head)->sqh_first)
361 #define	SIMPLEQ_NEXT(elm, field)	((elm)->field.sqe_next)
362 
363 
364 /*
365  * Tail queue definitions.
366  */
367 #define	_TAILQ_HEAD(name, type, qual)					\
368 struct name {								\
369 	qual type *tqh_first;		/* first element */		\
370 	qual type *qual *tqh_last;	/* addr of last next element */	\
371 }
372 #define TAILQ_HEAD(name, type)	_TAILQ_HEAD(name, struct type,)
373 
374 #define	TAILQ_HEAD_INITIALIZER(head)					\
375 	{ NULL, &(head).tqh_first }
376 
377 #define	_TAILQ_ENTRY(type, qual)					\
378 struct {								\
379 	qual type *tqe_next;		/* next element */		\
380 	qual type *qual *tqe_prev;	/* address of previous next element */\
381 }
382 #define TAILQ_ENTRY(type)	_TAILQ_ENTRY(struct type,)
383 
384 /*
385  * Tail queue functions.
386  */
387 #define	TAILQ_INIT(head) do {						\
388 	(head)->tqh_first = NULL;					\
389 	(head)->tqh_last = &(head)->tqh_first;				\
390 } while (/*CONSTCOND*/0)
391 
392 #define	TAILQ_INSERT_HEAD(head, elm, field) do {			\
393 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
394 		(head)->tqh_first->field.tqe_prev =			\
395 		    &(elm)->field.tqe_next;				\
396 	else								\
397 		(head)->tqh_last = &(elm)->field.tqe_next;		\
398 	(head)->tqh_first = (elm);					\
399 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
400 } while (/*CONSTCOND*/0)
401 
402 #define	TAILQ_INSERT_TAIL(head, elm, field) do {			\
403 	(elm)->field.tqe_next = NULL;					\
404 	(elm)->field.tqe_prev = (head)->tqh_last;			\
405 	*(head)->tqh_last = (elm);					\
406 	(head)->tqh_last = &(elm)->field.tqe_next;			\
407 } while (/*CONSTCOND*/0)
408 
409 #define	TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
410 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
411 		(elm)->field.tqe_next->field.tqe_prev = 		\
412 		    &(elm)->field.tqe_next;				\
413 	else								\
414 		(head)->tqh_last = &(elm)->field.tqe_next;		\
415 	(listelm)->field.tqe_next = (elm);				\
416 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
417 } while (/*CONSTCOND*/0)
418 
419 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
420 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
421 	(elm)->field.tqe_next = (listelm);				\
422 	*(listelm)->field.tqe_prev = (elm);				\
423 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
424 } while (/*CONSTCOND*/0)
425 
426 #define	TAILQ_REMOVE(head, elm, field) do {				\
427 	if (((elm)->field.tqe_next) != NULL)				\
428 		(elm)->field.tqe_next->field.tqe_prev = 		\
429 		    (elm)->field.tqe_prev;				\
430 	else								\
431 		(head)->tqh_last = (elm)->field.tqe_prev;		\
432 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
433 } while (/*CONSTCOND*/0)
434 
435 #define	TAILQ_FOREACH(var, head, field)					\
436 	for ((var) = ((head)->tqh_first);				\
437 		(var);							\
438 		(var) = ((var)->field.tqe_next))
439 
440 #define	TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
441 	for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));	\
442 		(var);							\
443 		(var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
444 
445 #define	TAILQ_CONCAT(head1, head2, field) do {				\
446 	if (!TAILQ_EMPTY(head2)) {					\
447 		*(head1)->tqh_last = (head2)->tqh_first;		\
448 		(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;	\
449 		(head1)->tqh_last = (head2)->tqh_last;			\
450 		TAILQ_INIT((head2));					\
451 	}								\
452 } while (/*CONSTCOND*/0)
453 
454 /*
455  * Tail queue access methods.
456  */
457 #define	TAILQ_EMPTY(head)		((head)->tqh_first == NULL)
458 #define	TAILQ_FIRST(head)		((head)->tqh_first)
459 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
460 
461 #define	TAILQ_LAST(head, headname) \
462 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
463 #define	TAILQ_PREV(elm, headname, field) \
464 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
465 
466 
467 /*
468  * Circular queue definitions.
469  */
470 #define	CIRCLEQ_HEAD(name, type)					\
471 struct name {								\
472 	struct type *cqh_first;		/* first element */		\
473 	struct type *cqh_last;		/* last element */		\
474 }
475 
476 #define	CIRCLEQ_HEAD_INITIALIZER(head)					\
477 	{ (void *)&head, (void *)&head }
478 
479 #define	CIRCLEQ_ENTRY(type)						\
480 struct {								\
481 	struct type *cqe_next;		/* next element */		\
482 	struct type *cqe_prev;		/* previous element */		\
483 }
484 
485 /*
486  * Circular queue functions.
487  */
488 #define	CIRCLEQ_INIT(head) do {						\
489 	(head)->cqh_first = (void *)(head);				\
490 	(head)->cqh_last = (void *)(head);				\
491 } while (/*CONSTCOND*/0)
492 
493 #define	CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
494 	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
495 	(elm)->field.cqe_prev = (listelm);				\
496 	if ((listelm)->field.cqe_next == (void *)(head))		\
497 		(head)->cqh_last = (elm);				\
498 	else								\
499 		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
500 	(listelm)->field.cqe_next = (elm);				\
501 } while (/*CONSTCOND*/0)
502 
503 #define	CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
504 	(elm)->field.cqe_next = (listelm);				\
505 	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
506 	if ((listelm)->field.cqe_prev == (void *)(head))		\
507 		(head)->cqh_first = (elm);				\
508 	else								\
509 		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
510 	(listelm)->field.cqe_prev = (elm);				\
511 } while (/*CONSTCOND*/0)
512 
513 #define	CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
514 	(elm)->field.cqe_next = (head)->cqh_first;			\
515 	(elm)->field.cqe_prev = (void *)(head);				\
516 	if ((head)->cqh_last == (void *)(head))				\
517 		(head)->cqh_last = (elm);				\
518 	else								\
519 		(head)->cqh_first->field.cqe_prev = (elm);		\
520 	(head)->cqh_first = (elm);					\
521 } while (/*CONSTCOND*/0)
522 
523 #define	CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
524 	(elm)->field.cqe_next = (void *)(head);				\
525 	(elm)->field.cqe_prev = (head)->cqh_last;			\
526 	if ((head)->cqh_first == (void *)(head))			\
527 		(head)->cqh_first = (elm);				\
528 	else								\
529 		(head)->cqh_last->field.cqe_next = (elm);		\
530 	(head)->cqh_last = (elm);					\
531 } while (/*CONSTCOND*/0)
532 
533 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
534 	if ((elm)->field.cqe_next == (void *)(head))			\
535 		(head)->cqh_last = (elm)->field.cqe_prev;		\
536 	else								\
537 		(elm)->field.cqe_next->field.cqe_prev =			\
538 		    (elm)->field.cqe_prev;				\
539 	if ((elm)->field.cqe_prev == (void *)(head))			\
540 		(head)->cqh_first = (elm)->field.cqe_next;		\
541 	else								\
542 		(elm)->field.cqe_prev->field.cqe_next =			\
543 		    (elm)->field.cqe_next;				\
544 } while (/*CONSTCOND*/0)
545 
546 #define	CIRCLEQ_FOREACH(var, head, field)				\
547 	for ((var) = ((head)->cqh_first);				\
548 		(var) != (const void *)(head);				\
549 		(var) = ((var)->field.cqe_next))
550 
551 #define	CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
552 	for ((var) = ((head)->cqh_last);				\
553 		(var) != (const void *)(head);				\
554 		(var) = ((var)->field.cqe_prev))
555 
556 /*
557  * Circular queue access methods.
558  */
559 #define	CIRCLEQ_EMPTY(head)		((head)->cqh_first == (void *)(head))
560 #define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
561 #define	CIRCLEQ_LAST(head)		((head)->cqh_last)
562 #define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
563 #define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
564 
565 #define CIRCLEQ_LOOP_NEXT(head, elm, field)				\
566 	(((elm)->field.cqe_next == (void *)(head))			\
567 	    ? ((head)->cqh_first)					\
568 	    : (elm->field.cqe_next))
569 #define CIRCLEQ_LOOP_PREV(head, elm, field)				\
570 	(((elm)->field.cqe_prev == (void *)(head))			\
571 	    ? ((head)->cqh_last)					\
572 	    : (elm->field.cqe_prev))
573 
574 #endif	/* sys/queue.h */
575