1 use crate::convert::*;
2 use crate::operations::folded_multiply;
3 #[cfg(feature = "specialize")]
4 use crate::HasherExt;
5 use core::hash::Hasher;
6 use crate::RandomState;
7 use crate::random_state::PI;
8 
9 ///This constant come from Kunth's prng (Empirically it works better than those from splitmix32).
10 pub(crate) const MULTIPLE: u64 = 6364136223846793005;
11 const ROT: u32 = 23; //17
12 
13 /// A `Hasher` for hashing an arbitrary stream of bytes.
14 ///
15 /// Instances of [`AHasher`] represent state that is updated while hashing data.
16 ///
17 /// Each method updates the internal state based on the new data provided. Once
18 /// all of the data has been provided, the resulting hash can be obtained by calling
19 /// `finish()`
20 ///
21 /// [Clone] is also provided in case you wish to calculate hashes for two different items that
22 /// start with the same data.
23 ///
24 #[derive(Debug, Clone)]
25 pub struct AHasher {
26     buffer: u64,
27     pad: u64,
28     extra_keys: [u64; 2],
29 }
30 
31 impl AHasher {
32     /// Creates a new hasher keyed to the provided key.
33     #[inline]
34     #[allow(dead_code)] // Is not called if non-fallback hash is used.
new_with_keys(key1: u128, key2: u128) -> AHasher35     pub fn new_with_keys(key1: u128, key2: u128) -> AHasher {
36         let pi: [u128; 2] = PI.convert();
37         let key1: [u64; 2] = (key1 ^ pi[0]).convert();
38         let key2: [u64; 2] = (key2 ^ pi[1]).convert();
39         AHasher {
40             buffer: key1[0],
41             pad: key1[1],
42             extra_keys: key2,
43         }
44     }
45 
46     #[inline]
47     #[allow(dead_code)] // Is not called if non-fallback hash is used.
from_random_state(rand_state: &RandomState) -> AHasher48     pub(crate) fn from_random_state(rand_state: &RandomState) -> AHasher  {
49         AHasher {
50             buffer: rand_state.k0,
51             pad: rand_state.k1,
52             extra_keys: [rand_state.k2, rand_state.k3],
53         }
54     }
55 
56     /// This update function has the goal of updating the buffer with a single multiply
57     /// FxHash does this but is vulnerable to attack. To avoid this input needs to be masked to with an
58     /// unpredictable value. Other hashes such as murmurhash have taken this approach but were found vulnerable
59     /// to attack. The attack was based on the idea of reversing the pre-mixing (Which is necessarily
60     /// reversible otherwise bits would be lost) then placing a difference in the highest bit before the
61     /// multiply used to mix the data. Because a multiply can never affect the bits to the right of it, a
62     /// subsequent update that also differed in this bit could result in a predictable collision.
63     ///
64     /// This version avoids this vulnerability while still only using a single multiply. It takes advantage
65     /// of the fact that when a 64 bit multiply is performed the upper 64 bits are usually computed and thrown
66     /// away. Instead it creates two 128 bit values where the upper 64 bits are zeros and multiplies them.
67     /// (The compiler is smart enough to turn this into a 64 bit multiplication in the assembly)
68     /// Then the upper bits are xored with the lower bits to produce a single 64 bit result.
69     ///
70     /// To understand why this is a good scrambling function it helps to understand multiply-with-carry PRNGs:
71     /// https://en.wikipedia.org/wiki/Multiply-with-carry_pseudorandom_number_generator
72     /// If the multiple is chosen well, this creates a long period, decent quality PRNG.
73     /// Notice that this function is equivalent to this except the `buffer`/`state` is being xored with each
74     /// new block of data. In the event that data is all zeros, it is exactly equivalent to a MWC PRNG.
75     ///
76     /// This is impervious to attack because every bit buffer at the end is dependent on every bit in
77     /// `new_data ^ buffer`. For example suppose two inputs differed in only the 5th bit. Then when the
78     /// multiplication is performed the `result` will differ in bits 5-69. More specifically it will differ by
79     /// 2^5 * MULTIPLE. However in the next step bits 65-128 are turned into a separate 64 bit value. So the
80     /// differing bits will be in the lower 6 bits of this value. The two intermediate values that differ in
81     /// bits 5-63 and in bits 0-5 respectively get added together. Producing an output that differs in every
82     /// bit. The addition carries in the multiplication and at the end additionally mean that the even if an
83     /// attacker somehow knew part of (but not all) the contents of the buffer before hand,
84     /// they would not be able to predict any of the bits in the buffer at the end.
85     #[inline(always)]
update(&mut self, new_data: u64)86     fn update(&mut self, new_data: u64) {
87         self.buffer = folded_multiply(new_data ^ self.buffer, MULTIPLE);
88     }
89 
90     /// Similar to the above this function performs an update using a "folded multiply".
91     /// However it takes in 128 bits of data instead of 64. Both halves must be masked.
92     ///
93     /// This makes it impossible for an attacker to place a single bit difference between
94     /// two blocks so as to cancel each other.
95     ///
96     /// However this is not sufficient. to prevent (a,b) from hashing the same as (b,a) the buffer itself must
97     /// be updated between calls in a way that does not commute. To achieve this XOR and Rotate are used.
98     /// Add followed by xor is not the same as xor followed by add, and rotate ensures that the same out bits
99     /// can't be changed by the same set of input bits. To cancel this sequence with subsequent input would require
100     /// knowing the keys.
101     #[inline(always)]
large_update(&mut self, new_data: u128)102     fn large_update(&mut self, new_data: u128) {
103         let block: [u64; 2] = new_data.convert();
104         let combined = folded_multiply(block[0] ^ self.extra_keys[0], block[1] ^ self.extra_keys[1]);
105         self.buffer = (combined.wrapping_add(self.buffer) ^ self.pad).rotate_left(ROT);
106     }
107 }
108 
109 #[cfg(feature = "specialize")]
110 impl HasherExt for AHasher {
111     #[inline]
hash_u64(self, value: u64) -> u64112     fn hash_u64(self, value: u64) -> u64 {
113         let rot = (self.pad & 64) as u32;
114         folded_multiply(value ^ self.buffer, MULTIPLE).rotate_left(rot)
115     }
116 
117     #[inline]
short_finish(&self) -> u64118     fn short_finish(&self) -> u64 {
119         self.buffer.wrapping_add(self.pad)
120     }
121 }
122 
123 /// Provides [Hasher] methods to hash all of the primitive types.
124 ///
125 /// [Hasher]: core::hash::Hasher
126 impl Hasher for AHasher {
127     #[inline]
write_u8(&mut self, i: u8)128     fn write_u8(&mut self, i: u8) {
129         self.update(i as u64);
130     }
131 
132     #[inline]
write_u16(&mut self, i: u16)133     fn write_u16(&mut self, i: u16) {
134         self.update(i as u64);
135     }
136 
137     #[inline]
write_u32(&mut self, i: u32)138     fn write_u32(&mut self, i: u32) {
139         self.update(i as u64);
140     }
141 
142     #[inline]
write_u64(&mut self, i: u64)143     fn write_u64(&mut self, i: u64) {
144         self.update(i as u64);
145     }
146 
147     #[inline]
write_u128(&mut self, i: u128)148     fn write_u128(&mut self, i: u128) {
149         self.large_update(i);
150     }
151 
152     #[inline]
write_usize(&mut self, i: usize)153     fn write_usize(&mut self, i: usize) {
154         self.write_u64(i as u64);
155     }
156 
157     #[inline]
158     #[allow(clippy::collapsible_if)]
write(&mut self, input: &[u8])159     fn write(&mut self, input: &[u8]) {
160         let mut data = input;
161         let length = data.len() as u64;
162         //Needs to be an add rather than an xor because otherwise it could be canceled with carefully formed input.
163         self.buffer = self.buffer.wrapping_add(length).wrapping_mul(MULTIPLE);
164         //A 'binary search' on sizes reduces the number of comparisons.
165         if data.len() > 8 {
166             if data.len() > 16 {
167                 let tail = data.read_last_u128();
168                 self.large_update(tail);
169                 while data.len() > 16 {
170                     let (block, rest) = data.read_u128();
171                     self.large_update(block);
172                     data = rest;
173                 }
174             } else {
175                 self.large_update([data.read_u64().0, data.read_last_u64()].convert());
176             }
177         } else {
178             if data.len() >= 2 {
179                 if data.len() >= 4 {
180                     let block = [data.read_u32().0 as u64, data.read_last_u32() as u64];
181                     self.large_update(block.convert());
182                 } else {
183                     let value = [data.read_u16().0 as u32, data[data.len() - 1] as u32];
184                     self.update(value.convert());
185                 }
186             } else {
187                 if data.len() > 0 {
188                     self.update(data[0] as u64);
189                 }
190             }
191         }
192     }
193     #[inline]
finish(&self) -> u64194     fn finish(&self) -> u64 {
195         let rot = (self.buffer & 63) as u32;
196         folded_multiply(self.buffer, self.pad).rotate_left(rot)
197     }
198 }
199 
200 #[cfg(test)]
201 mod tests {
202     use crate::convert::Convert;
203     use crate::fallback_hash::*;
204 
205     #[test]
test_hash()206     fn test_hash() {
207         let mut hasher = AHasher::new_with_keys(0, 0);
208         let value: u64 = 1 << 32;
209         hasher.update(value);
210         let result = hasher.buffer;
211         let mut hasher = AHasher::new_with_keys(0, 0);
212         let value2: u64 = 1;
213         hasher.update(value2);
214         let result2 = hasher.buffer;
215         let result: [u8; 8] = result.convert();
216         let result2: [u8; 8] = result2.convert();
217         assert_ne!(hex::encode(result), hex::encode(result2));
218     }
219 
220     #[test]
test_conversion()221     fn test_conversion() {
222         let input: &[u8] = "dddddddd".as_bytes();
223         let bytes: u64 = as_array!(input, 8).convert();
224         assert_eq!(bytes, 0x6464646464646464);
225     }
226 }
227