1 // Copyright 2016 Amanieu d'Antras
2 //
3 // Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
4 // http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
5 // http://opensource.org/licenses/MIT>, at your option. This file may not be
6 // copied, modified, or distributed except according to those terms.
7 
8 use crate::raw_mutex::RawMutex;
9 use lock_api;
10 
11 /// A mutual exclusion primitive useful for protecting shared data
12 ///
13 /// This mutex will block threads waiting for the lock to become available. The
14 /// mutex can also be statically initialized or created via a `new`
15 /// constructor. Each mutex has a type parameter which represents the data that
16 /// it is protecting. The data can only be accessed through the RAII guards
17 /// returned from `lock` and `try_lock`, which guarantees that the data is only
18 /// ever accessed when the mutex is locked.
19 ///
20 /// # Fairness
21 ///
22 /// A typical unfair lock can often end up in a situation where a single thread
23 /// quickly acquires and releases the same mutex in succession, which can starve
24 /// other threads waiting to acquire the mutex. While this improves throughput
25 /// because it doesn't force a context switch when a thread tries to re-acquire
26 /// a mutex it has just released, this can starve other threads.
27 ///
28 /// This mutex uses [eventual fairness](https://trac.webkit.org/changeset/203350)
29 /// to ensure that the lock will be fair on average without sacrificing
30 /// throughput. This is done by forcing a fair unlock on average every 0.5ms,
31 /// which will force the lock to go to the next thread waiting for the mutex.
32 ///
33 /// Additionally, any critical section longer than 1ms will always use a fair
34 /// unlock, which has a negligible impact on throughput considering the length
35 /// of the critical section.
36 ///
37 /// You can also force a fair unlock by calling `MutexGuard::unlock_fair` when
38 /// unlocking a mutex instead of simply dropping the `MutexGuard`.
39 ///
40 /// # Differences from the standard library `Mutex`
41 ///
42 /// - No poisoning, the lock is released normally on panic.
43 /// - Only requires 1 byte of space, whereas the standard library boxes the
44 ///   `Mutex` due to platform limitations.
45 /// - Can be statically constructed (requires the `const_fn` nightly feature).
46 /// - Does not require any drop glue when dropped.
47 /// - Inline fast path for the uncontended case.
48 /// - Efficient handling of micro-contention using adaptive spinning.
49 /// - Allows raw locking & unlocking without a guard.
50 /// - Supports eventual fairness so that the mutex is fair on average.
51 /// - Optionally allows making the mutex fair by calling `MutexGuard::unlock_fair`.
52 ///
53 /// # Examples
54 ///
55 /// ```
56 /// use parking_lot::Mutex;
57 /// use std::sync::{Arc, mpsc::channel};
58 /// use std::thread;
59 ///
60 /// const N: usize = 10;
61 ///
62 /// // Spawn a few threads to increment a shared variable (non-atomically), and
63 /// // let the main thread know once all increments are done.
64 /// //
65 /// // Here we're using an Arc to share memory among threads, and the data inside
66 /// // the Arc is protected with a mutex.
67 /// let data = Arc::new(Mutex::new(0));
68 ///
69 /// let (tx, rx) = channel();
70 /// for _ in 0..10 {
71 ///     let (data, tx) = (Arc::clone(&data), tx.clone());
72 ///     thread::spawn(move || {
73 ///         // The shared state can only be accessed once the lock is held.
74 ///         // Our non-atomic increment is safe because we're the only thread
75 ///         // which can access the shared state when the lock is held.
76 ///         let mut data = data.lock();
77 ///         *data += 1;
78 ///         if *data == N {
79 ///             tx.send(()).unwrap();
80 ///         }
81 ///         // the lock is unlocked here when `data` goes out of scope.
82 ///     });
83 /// }
84 ///
85 /// rx.recv().unwrap();
86 /// ```
87 pub type Mutex<T> = lock_api::Mutex<RawMutex, T>;
88 
89 /// Creates a new mutex in an unlocked state ready for use.
90 ///
91 /// This allows creating a mutex in a constant context on stable Rust.
const_mutex<T>(val: T) -> Mutex<T>92 pub const fn const_mutex<T>(val: T) -> Mutex<T> {
93     Mutex::const_new(<RawMutex as lock_api::RawMutex>::INIT, val)
94 }
95 
96 /// An RAII implementation of a "scoped lock" of a mutex. When this structure is
97 /// dropped (falls out of scope), the lock will be unlocked.
98 ///
99 /// The data protected by the mutex can be accessed through this guard via its
100 /// `Deref` and `DerefMut` implementations.
101 pub type MutexGuard<'a, T> = lock_api::MutexGuard<'a, RawMutex, T>;
102 
103 /// An RAII mutex guard returned by `MutexGuard::map`, which can point to a
104 /// subfield of the protected data.
105 ///
106 /// The main difference between `MappedMutexGuard` and `MutexGuard` is that the
107 /// former doesn't support temporarily unlocking and re-locking, since that
108 /// could introduce soundness issues if the locked object is modified by another
109 /// thread.
110 pub type MappedMutexGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawMutex, T>;
111 
112 #[cfg(test)]
113 mod tests {
114     use crate::{Condvar, Mutex};
115     use std::sync::atomic::{AtomicUsize, Ordering};
116     use std::sync::mpsc::channel;
117     use std::sync::Arc;
118     use std::thread;
119 
120     #[cfg(feature = "serde")]
121     use bincode::{deserialize, serialize};
122 
123     struct Packet<T>(Arc<(Mutex<T>, Condvar)>);
124 
125     #[derive(Eq, PartialEq, Debug)]
126     struct NonCopy(i32);
127 
128     unsafe impl<T: Send> Send for Packet<T> {}
129     unsafe impl<T> Sync for Packet<T> {}
130 
131     #[test]
smoke()132     fn smoke() {
133         let m = Mutex::new(());
134         drop(m.lock());
135         drop(m.lock());
136     }
137 
138     #[test]
lots_and_lots()139     fn lots_and_lots() {
140         const J: u32 = 1000;
141         const K: u32 = 3;
142 
143         let m = Arc::new(Mutex::new(0));
144 
145         fn inc(m: &Mutex<u32>) {
146             for _ in 0..J {
147                 *m.lock() += 1;
148             }
149         }
150 
151         let (tx, rx) = channel();
152         for _ in 0..K {
153             let tx2 = tx.clone();
154             let m2 = m.clone();
155             thread::spawn(move || {
156                 inc(&m2);
157                 tx2.send(()).unwrap();
158             });
159             let tx2 = tx.clone();
160             let m2 = m.clone();
161             thread::spawn(move || {
162                 inc(&m2);
163                 tx2.send(()).unwrap();
164             });
165         }
166 
167         drop(tx);
168         for _ in 0..2 * K {
169             rx.recv().unwrap();
170         }
171         assert_eq!(*m.lock(), J * K * 2);
172     }
173 
174     #[test]
try_lock()175     fn try_lock() {
176         let m = Mutex::new(());
177         *m.try_lock().unwrap() = ();
178     }
179 
180     #[test]
test_into_inner()181     fn test_into_inner() {
182         let m = Mutex::new(NonCopy(10));
183         assert_eq!(m.into_inner(), NonCopy(10));
184     }
185 
186     #[test]
test_into_inner_drop()187     fn test_into_inner_drop() {
188         struct Foo(Arc<AtomicUsize>);
189         impl Drop for Foo {
190             fn drop(&mut self) {
191                 self.0.fetch_add(1, Ordering::SeqCst);
192             }
193         }
194         let num_drops = Arc::new(AtomicUsize::new(0));
195         let m = Mutex::new(Foo(num_drops.clone()));
196         assert_eq!(num_drops.load(Ordering::SeqCst), 0);
197         {
198             let _inner = m.into_inner();
199             assert_eq!(num_drops.load(Ordering::SeqCst), 0);
200         }
201         assert_eq!(num_drops.load(Ordering::SeqCst), 1);
202     }
203 
204     #[test]
test_get_mut()205     fn test_get_mut() {
206         let mut m = Mutex::new(NonCopy(10));
207         *m.get_mut() = NonCopy(20);
208         assert_eq!(m.into_inner(), NonCopy(20));
209     }
210 
211     #[test]
test_mutex_arc_condvar()212     fn test_mutex_arc_condvar() {
213         let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
214         let packet2 = Packet(packet.0.clone());
215         let (tx, rx) = channel();
216         let _t = thread::spawn(move || {
217             // wait until parent gets in
218             rx.recv().unwrap();
219             let &(ref lock, ref cvar) = &*packet2.0;
220             let mut lock = lock.lock();
221             *lock = true;
222             cvar.notify_one();
223         });
224 
225         let &(ref lock, ref cvar) = &*packet.0;
226         let mut lock = lock.lock();
227         tx.send(()).unwrap();
228         assert!(!*lock);
229         while !*lock {
230             cvar.wait(&mut lock);
231         }
232     }
233 
234     #[test]
test_mutex_arc_nested()235     fn test_mutex_arc_nested() {
236         // Tests nested mutexes and access
237         // to underlying data.
238         let arc = Arc::new(Mutex::new(1));
239         let arc2 = Arc::new(Mutex::new(arc));
240         let (tx, rx) = channel();
241         let _t = thread::spawn(move || {
242             let lock = arc2.lock();
243             let lock2 = lock.lock();
244             assert_eq!(*lock2, 1);
245             tx.send(()).unwrap();
246         });
247         rx.recv().unwrap();
248     }
249 
250     #[test]
test_mutex_arc_access_in_unwind()251     fn test_mutex_arc_access_in_unwind() {
252         let arc = Arc::new(Mutex::new(1));
253         let arc2 = arc.clone();
254         let _ = thread::spawn(move || {
255             struct Unwinder {
256                 i: Arc<Mutex<i32>>,
257             }
258             impl Drop for Unwinder {
259                 fn drop(&mut self) {
260                     *self.i.lock() += 1;
261                 }
262             }
263             let _u = Unwinder { i: arc2 };
264             panic!();
265         })
266         .join();
267         let lock = arc.lock();
268         assert_eq!(*lock, 2);
269     }
270 
271     #[test]
test_mutex_unsized()272     fn test_mutex_unsized() {
273         let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
274         {
275             let b = &mut *mutex.lock();
276             b[0] = 4;
277             b[2] = 5;
278         }
279         let comp: &[i32] = &[4, 2, 5];
280         assert_eq!(&*mutex.lock(), comp);
281     }
282 
283     #[test]
test_mutexguard_sync()284     fn test_mutexguard_sync() {
285         fn sync<T: Sync>(_: T) {}
286 
287         let mutex = Mutex::new(());
288         sync(mutex.lock());
289     }
290 
291     #[test]
test_mutex_debug()292     fn test_mutex_debug() {
293         let mutex = Mutex::new(vec![0u8, 10]);
294 
295         assert_eq!(format!("{:?}", mutex), "Mutex { data: [0, 10] }");
296         let _lock = mutex.lock();
297         assert_eq!(format!("{:?}", mutex), "Mutex { data: <locked> }");
298     }
299 
300     #[cfg(feature = "serde")]
301     #[test]
test_serde()302     fn test_serde() {
303         let contents: Vec<u8> = vec![0, 1, 2];
304         let mutex = Mutex::new(contents.clone());
305 
306         let serialized = serialize(&mutex).unwrap();
307         let deserialized: Mutex<Vec<u8>> = deserialize(&serialized).unwrap();
308 
309         assert_eq!(*(mutex.lock()), *(deserialized.lock()));
310         assert_eq!(contents, *(deserialized.lock()));
311     }
312 }
313