1package msgp
2
3import (
4	"io"
5	"math"
6	"sync"
7	"time"
8
9	"github.com/philhofer/fwd"
10)
11
12// where we keep old *Readers
13var readerPool = sync.Pool{New: func() interface{} { return &Reader{} }}
14
15// Type is a MessagePack wire type,
16// including this package's built-in
17// extension types.
18type Type byte
19
20// MessagePack Types
21//
22// The zero value of Type
23// is InvalidType.
24const (
25	InvalidType Type = iota
26
27	// MessagePack built-in types
28
29	StrType
30	BinType
31	MapType
32	ArrayType
33	Float64Type
34	Float32Type
35	BoolType
36	IntType
37	UintType
38	NilType
39	ExtensionType
40
41	// pseudo-types provided
42	// by extensions
43
44	Complex64Type
45	Complex128Type
46	TimeType
47
48	_maxtype
49)
50
51// String implements fmt.Stringer
52func (t Type) String() string {
53	switch t {
54	case StrType:
55		return "str"
56	case BinType:
57		return "bin"
58	case MapType:
59		return "map"
60	case ArrayType:
61		return "array"
62	case Float64Type:
63		return "float64"
64	case Float32Type:
65		return "float32"
66	case BoolType:
67		return "bool"
68	case UintType:
69		return "uint"
70	case IntType:
71		return "int"
72	case ExtensionType:
73		return "ext"
74	case NilType:
75		return "nil"
76	default:
77		return "<invalid>"
78	}
79}
80
81func freeR(m *Reader) {
82	readerPool.Put(m)
83}
84
85// Unmarshaler is the interface fulfilled
86// by objects that know how to unmarshal
87// themselves from MessagePack.
88// UnmarshalMsg unmarshals the object
89// from binary, returing any leftover
90// bytes and any errors encountered.
91type Unmarshaler interface {
92	UnmarshalMsg([]byte) ([]byte, error)
93}
94
95// Decodable is the interface fulfilled
96// by objects that know how to read
97// themselves from a *Reader.
98type Decodable interface {
99	DecodeMsg(*Reader) error
100}
101
102// Decode decodes 'd' from 'r'.
103func Decode(r io.Reader, d Decodable) error {
104	rd := NewReader(r)
105	err := d.DecodeMsg(rd)
106	freeR(rd)
107	return err
108}
109
110// NewReader returns a *Reader that
111// reads from the provided reader. The
112// reader will be buffered.
113func NewReader(r io.Reader) *Reader {
114	p := readerPool.Get().(*Reader)
115	if p.R == nil {
116		p.R = fwd.NewReader(r)
117	} else {
118		p.R.Reset(r)
119	}
120	return p
121}
122
123// NewReaderSize returns a *Reader with a buffer of the given size.
124// (This is vastly preferable to passing the decoder a reader that is already buffered.)
125func NewReaderSize(r io.Reader, sz int) *Reader {
126	return &Reader{R: fwd.NewReaderSize(r, sz)}
127}
128
129// Reader wraps an io.Reader and provides
130// methods to read MessagePack-encoded values
131// from it. Readers are buffered.
132type Reader struct {
133	// R is the buffered reader
134	// that the Reader uses
135	// to decode MessagePack.
136	// The Reader itself
137	// is stateless; all the
138	// buffering is done
139	// within R.
140	R       *fwd.Reader
141	scratch []byte
142}
143
144// Read implements `io.Reader`
145func (m *Reader) Read(p []byte) (int, error) {
146	return m.R.Read(p)
147}
148
149// CopyNext reads the next object from m without decoding it and writes it to w.
150// It avoids unnecessary copies internally.
151func (m *Reader) CopyNext(w io.Writer) (int64, error) {
152	sz, o, err := getNextSize(m.R)
153	if err != nil {
154		return 0, err
155	}
156
157	var n int64
158	// Opportunistic optimization: if we can fit the whole thing in the m.R
159	// buffer, then just get a pointer to that, and pass it to w.Write,
160	// avoiding an allocation.
161	if int(sz) <= m.R.BufferSize() {
162		var nn int
163		var buf []byte
164		buf, err = m.R.Next(int(sz))
165		if err != nil {
166			if err == io.ErrUnexpectedEOF {
167				err = ErrShortBytes
168			}
169			return 0, err
170		}
171		nn, err = w.Write(buf)
172		n += int64(nn)
173	} else {
174		// Fall back to io.CopyN.
175		// May avoid allocating if w is a ReaderFrom (e.g. bytes.Buffer)
176		n, err = io.CopyN(w, m.R, int64(sz))
177		if err == io.ErrUnexpectedEOF {
178			err = ErrShortBytes
179		}
180	}
181	if err != nil {
182		return n, err
183	} else if n < int64(sz) {
184		return n, io.ErrShortWrite
185	}
186
187	// for maps and slices, read elements
188	for x := uintptr(0); x < o; x++ {
189		var n2 int64
190		n2, err = m.CopyNext(w)
191		if err != nil {
192			return n, err
193		}
194		n += n2
195	}
196	return n, nil
197}
198
199// ReadFull implements `io.ReadFull`
200func (m *Reader) ReadFull(p []byte) (int, error) {
201	return m.R.ReadFull(p)
202}
203
204// Reset resets the underlying reader.
205func (m *Reader) Reset(r io.Reader) { m.R.Reset(r) }
206
207// Buffered returns the number of bytes currently in the read buffer.
208func (m *Reader) Buffered() int { return m.R.Buffered() }
209
210// BufferSize returns the capacity of the read buffer.
211func (m *Reader) BufferSize() int { return m.R.BufferSize() }
212
213// NextType returns the next object type to be decoded.
214func (m *Reader) NextType() (Type, error) {
215	p, err := m.R.Peek(1)
216	if err != nil {
217		return InvalidType, err
218	}
219	t := getType(p[0])
220	if t == InvalidType {
221		return t, InvalidPrefixError(p[0])
222	}
223	if t == ExtensionType {
224		v, err := m.peekExtensionType()
225		if err != nil {
226			return InvalidType, err
227		}
228		switch v {
229		case Complex64Extension:
230			return Complex64Type, nil
231		case Complex128Extension:
232			return Complex128Type, nil
233		case TimeExtension:
234			return TimeType, nil
235		}
236	}
237	return t, nil
238}
239
240// IsNil returns whether or not
241// the next byte is a null messagepack byte
242func (m *Reader) IsNil() bool {
243	p, err := m.R.Peek(1)
244	return err == nil && p[0] == mnil
245}
246
247// getNextSize returns the size of the next object on the wire.
248// returns (obj size, obj elements, error)
249// only maps and arrays have non-zero obj elements
250// for maps and arrays, obj size does not include elements
251//
252// use uintptr b/c it's guaranteed to be large enough
253// to hold whatever we can fit in memory.
254func getNextSize(r *fwd.Reader) (uintptr, uintptr, error) {
255	b, err := r.Peek(1)
256	if err != nil {
257		return 0, 0, err
258	}
259	lead := b[0]
260	spec := &sizes[lead]
261	size, mode := spec.size, spec.extra
262	if size == 0 {
263		return 0, 0, InvalidPrefixError(lead)
264	}
265	if mode >= 0 {
266		return uintptr(size), uintptr(mode), nil
267	}
268	b, err = r.Peek(int(size))
269	if err != nil {
270		return 0, 0, err
271	}
272	switch mode {
273	case extra8:
274		return uintptr(size) + uintptr(b[1]), 0, nil
275	case extra16:
276		return uintptr(size) + uintptr(big.Uint16(b[1:])), 0, nil
277	case extra32:
278		return uintptr(size) + uintptr(big.Uint32(b[1:])), 0, nil
279	case map16v:
280		return uintptr(size), 2 * uintptr(big.Uint16(b[1:])), nil
281	case map32v:
282		return uintptr(size), 2 * uintptr(big.Uint32(b[1:])), nil
283	case array16v:
284		return uintptr(size), uintptr(big.Uint16(b[1:])), nil
285	case array32v:
286		return uintptr(size), uintptr(big.Uint32(b[1:])), nil
287	default:
288		return 0, 0, fatal
289	}
290}
291
292// Skip skips over the next object, regardless of
293// its type. If it is an array or map, the whole array
294// or map will be skipped.
295func (m *Reader) Skip() error {
296	var (
297		v   uintptr // bytes
298		o   uintptr // objects
299		err error
300		p   []byte
301	)
302
303	// we can use the faster
304	// method if we have enough
305	// buffered data
306	if m.R.Buffered() >= 5 {
307		p, err = m.R.Peek(5)
308		if err != nil {
309			return err
310		}
311		v, o, err = getSize(p)
312		if err != nil {
313			return err
314		}
315	} else {
316		v, o, err = getNextSize(m.R)
317		if err != nil {
318			return err
319		}
320	}
321
322	// 'v' is always non-zero
323	// if err == nil
324	_, err = m.R.Skip(int(v))
325	if err != nil {
326		return err
327	}
328
329	// for maps and slices, skip elements
330	for x := uintptr(0); x < o; x++ {
331		err = m.Skip()
332		if err != nil {
333			return err
334		}
335	}
336	return nil
337}
338
339// ReadMapHeader reads the next object
340// as a map header and returns the size
341// of the map and the number of bytes written.
342// It will return a TypeError{} if the next
343// object is not a map.
344func (m *Reader) ReadMapHeader() (sz uint32, err error) {
345	var p []byte
346	var lead byte
347	p, err = m.R.Peek(1)
348	if err != nil {
349		return
350	}
351	lead = p[0]
352	if isfixmap(lead) {
353		sz = uint32(rfixmap(lead))
354		_, err = m.R.Skip(1)
355		return
356	}
357	switch lead {
358	case mmap16:
359		p, err = m.R.Next(3)
360		if err != nil {
361			return
362		}
363		sz = uint32(big.Uint16(p[1:]))
364		return
365	case mmap32:
366		p, err = m.R.Next(5)
367		if err != nil {
368			return
369		}
370		sz = big.Uint32(p[1:])
371		return
372	default:
373		err = badPrefix(MapType, lead)
374		return
375	}
376}
377
378// ReadMapKey reads either a 'str' or 'bin' field from
379// the reader and returns the value as a []byte. It uses
380// scratch for storage if it is large enough.
381func (m *Reader) ReadMapKey(scratch []byte) ([]byte, error) {
382	out, err := m.ReadStringAsBytes(scratch)
383	if err != nil {
384		if tperr, ok := err.(TypeError); ok && tperr.Encoded == BinType {
385			return m.ReadBytes(scratch)
386		}
387		return nil, err
388	}
389	return out, nil
390}
391
392// MapKeyPtr returns a []byte pointing to the contents
393// of a valid map key. The key cannot be empty, and it
394// must be shorter than the total buffer size of the
395// *Reader. Additionally, the returned slice is only
396// valid until the next *Reader method call. Users
397// should exercise extreme care when using this
398// method; writing into the returned slice may
399// corrupt future reads.
400func (m *Reader) ReadMapKeyPtr() ([]byte, error) {
401	p, err := m.R.Peek(1)
402	if err != nil {
403		return nil, err
404	}
405	lead := p[0]
406	var read int
407	if isfixstr(lead) {
408		read = int(rfixstr(lead))
409		m.R.Skip(1)
410		goto fill
411	}
412	switch lead {
413	case mstr8, mbin8:
414		p, err = m.R.Next(2)
415		if err != nil {
416			return nil, err
417		}
418		read = int(p[1])
419	case mstr16, mbin16:
420		p, err = m.R.Next(3)
421		if err != nil {
422			return nil, err
423		}
424		read = int(big.Uint16(p[1:]))
425	case mstr32, mbin32:
426		p, err = m.R.Next(5)
427		if err != nil {
428			return nil, err
429		}
430		read = int(big.Uint32(p[1:]))
431	default:
432		return nil, badPrefix(StrType, lead)
433	}
434fill:
435	if read == 0 {
436		return nil, ErrShortBytes
437	}
438	return m.R.Next(read)
439}
440
441// ReadArrayHeader reads the next object as an
442// array header and returns the size of the array
443// and the number of bytes read.
444func (m *Reader) ReadArrayHeader() (sz uint32, err error) {
445	var lead byte
446	var p []byte
447	p, err = m.R.Peek(1)
448	if err != nil {
449		return
450	}
451	lead = p[0]
452	if isfixarray(lead) {
453		sz = uint32(rfixarray(lead))
454		_, err = m.R.Skip(1)
455		return
456	}
457	switch lead {
458	case marray16:
459		p, err = m.R.Next(3)
460		if err != nil {
461			return
462		}
463		sz = uint32(big.Uint16(p[1:]))
464		return
465
466	case marray32:
467		p, err = m.R.Next(5)
468		if err != nil {
469			return
470		}
471		sz = big.Uint32(p[1:])
472		return
473
474	default:
475		err = badPrefix(ArrayType, lead)
476		return
477	}
478}
479
480// ReadNil reads a 'nil' MessagePack byte from the reader
481func (m *Reader) ReadNil() error {
482	p, err := m.R.Peek(1)
483	if err != nil {
484		return err
485	}
486	if p[0] != mnil {
487		return badPrefix(NilType, p[0])
488	}
489	_, err = m.R.Skip(1)
490	return err
491}
492
493// ReadFloat64 reads a float64 from the reader.
494// (If the value on the wire is encoded as a float32,
495// it will be up-cast to a float64.)
496func (m *Reader) ReadFloat64() (f float64, err error) {
497	var p []byte
498	p, err = m.R.Peek(9)
499	if err != nil {
500		// we'll allow a coversion from float32 to float64,
501		// since we don't lose any precision
502		if err == io.EOF && len(p) > 0 && p[0] == mfloat32 {
503			ef, err := m.ReadFloat32()
504			return float64(ef), err
505		}
506		return
507	}
508	if p[0] != mfloat64 {
509		// see above
510		if p[0] == mfloat32 {
511			ef, err := m.ReadFloat32()
512			return float64(ef), err
513		}
514		err = badPrefix(Float64Type, p[0])
515		return
516	}
517	f = math.Float64frombits(getMuint64(p))
518	_, err = m.R.Skip(9)
519	return
520}
521
522// ReadFloat32 reads a float32 from the reader
523func (m *Reader) ReadFloat32() (f float32, err error) {
524	var p []byte
525	p, err = m.R.Peek(5)
526	if err != nil {
527		return
528	}
529	if p[0] != mfloat32 {
530		err = badPrefix(Float32Type, p[0])
531		return
532	}
533	f = math.Float32frombits(getMuint32(p))
534	_, err = m.R.Skip(5)
535	return
536}
537
538// ReadBool reads a bool from the reader
539func (m *Reader) ReadBool() (b bool, err error) {
540	var p []byte
541	p, err = m.R.Peek(1)
542	if err != nil {
543		return
544	}
545	switch p[0] {
546	case mtrue:
547		b = true
548	case mfalse:
549	default:
550		err = badPrefix(BoolType, p[0])
551		return
552	}
553	_, err = m.R.Skip(1)
554	return
555}
556
557// ReadInt64 reads an int64 from the reader
558func (m *Reader) ReadInt64() (i int64, err error) {
559	var p []byte
560	var lead byte
561	p, err = m.R.Peek(1)
562	if err != nil {
563		return
564	}
565	lead = p[0]
566
567	if isfixint(lead) {
568		i = int64(rfixint(lead))
569		_, err = m.R.Skip(1)
570		return
571	} else if isnfixint(lead) {
572		i = int64(rnfixint(lead))
573		_, err = m.R.Skip(1)
574		return
575	}
576
577	switch lead {
578	case mint8:
579		p, err = m.R.Next(2)
580		if err != nil {
581			return
582		}
583		i = int64(getMint8(p))
584		return
585
586	case mint16:
587		p, err = m.R.Next(3)
588		if err != nil {
589			return
590		}
591		i = int64(getMint16(p))
592		return
593
594	case mint32:
595		p, err = m.R.Next(5)
596		if err != nil {
597			return
598		}
599		i = int64(getMint32(p))
600		return
601
602	case mint64:
603		p, err = m.R.Next(9)
604		if err != nil {
605			return
606		}
607		i = getMint64(p)
608		return
609
610	default:
611		err = badPrefix(IntType, lead)
612		return
613	}
614}
615
616// ReadInt32 reads an int32 from the reader
617func (m *Reader) ReadInt32() (i int32, err error) {
618	var in int64
619	in, err = m.ReadInt64()
620	if in > math.MaxInt32 || in < math.MinInt32 {
621		err = IntOverflow{Value: in, FailedBitsize: 32}
622		return
623	}
624	i = int32(in)
625	return
626}
627
628// ReadInt16 reads an int16 from the reader
629func (m *Reader) ReadInt16() (i int16, err error) {
630	var in int64
631	in, err = m.ReadInt64()
632	if in > math.MaxInt16 || in < math.MinInt16 {
633		err = IntOverflow{Value: in, FailedBitsize: 16}
634		return
635	}
636	i = int16(in)
637	return
638}
639
640// ReadInt8 reads an int8 from the reader
641func (m *Reader) ReadInt8() (i int8, err error) {
642	var in int64
643	in, err = m.ReadInt64()
644	if in > math.MaxInt8 || in < math.MinInt8 {
645		err = IntOverflow{Value: in, FailedBitsize: 8}
646		return
647	}
648	i = int8(in)
649	return
650}
651
652// ReadInt reads an int from the reader
653func (m *Reader) ReadInt() (i int, err error) {
654	if smallint {
655		var in int32
656		in, err = m.ReadInt32()
657		i = int(in)
658		return
659	}
660	var in int64
661	in, err = m.ReadInt64()
662	i = int(in)
663	return
664}
665
666// ReadUint64 reads a uint64 from the reader
667func (m *Reader) ReadUint64() (u uint64, err error) {
668	var p []byte
669	var lead byte
670	p, err = m.R.Peek(1)
671	if err != nil {
672		return
673	}
674	lead = p[0]
675	if isfixint(lead) {
676		u = uint64(rfixint(lead))
677		_, err = m.R.Skip(1)
678		return
679	}
680	switch lead {
681	case muint8:
682		p, err = m.R.Next(2)
683		if err != nil {
684			return
685		}
686		u = uint64(getMuint8(p))
687		return
688
689	case muint16:
690		p, err = m.R.Next(3)
691		if err != nil {
692			return
693		}
694		u = uint64(getMuint16(p))
695		return
696
697	case muint32:
698		p, err = m.R.Next(5)
699		if err != nil {
700			return
701		}
702		u = uint64(getMuint32(p))
703		return
704
705	case muint64:
706		p, err = m.R.Next(9)
707		if err != nil {
708			return
709		}
710		u = getMuint64(p)
711		return
712
713	default:
714		err = badPrefix(UintType, lead)
715		return
716
717	}
718}
719
720// ReadUint32 reads a uint32 from the reader
721func (m *Reader) ReadUint32() (u uint32, err error) {
722	var in uint64
723	in, err = m.ReadUint64()
724	if in > math.MaxUint32 {
725		err = UintOverflow{Value: in, FailedBitsize: 32}
726		return
727	}
728	u = uint32(in)
729	return
730}
731
732// ReadUint16 reads a uint16 from the reader
733func (m *Reader) ReadUint16() (u uint16, err error) {
734	var in uint64
735	in, err = m.ReadUint64()
736	if in > math.MaxUint16 {
737		err = UintOverflow{Value: in, FailedBitsize: 16}
738		return
739	}
740	u = uint16(in)
741	return
742}
743
744// ReadUint8 reads a uint8 from the reader
745func (m *Reader) ReadUint8() (u uint8, err error) {
746	var in uint64
747	in, err = m.ReadUint64()
748	if in > math.MaxUint8 {
749		err = UintOverflow{Value: in, FailedBitsize: 8}
750		return
751	}
752	u = uint8(in)
753	return
754}
755
756// ReadUint reads a uint from the reader
757func (m *Reader) ReadUint() (u uint, err error) {
758	if smallint {
759		var un uint32
760		un, err = m.ReadUint32()
761		u = uint(un)
762		return
763	}
764	var un uint64
765	un, err = m.ReadUint64()
766	u = uint(un)
767	return
768}
769
770// ReadByte is analogous to ReadUint8.
771//
772// NOTE: this is *not* an implementation
773// of io.ByteReader.
774func (m *Reader) ReadByte() (b byte, err error) {
775	var in uint64
776	in, err = m.ReadUint64()
777	if in > math.MaxUint8 {
778		err = UintOverflow{Value: in, FailedBitsize: 8}
779		return
780	}
781	b = byte(in)
782	return
783}
784
785// ReadBytes reads a MessagePack 'bin' object
786// from the reader and returns its value. It may
787// use 'scratch' for storage if it is non-nil.
788func (m *Reader) ReadBytes(scratch []byte) (b []byte, err error) {
789	var p []byte
790	var lead byte
791	p, err = m.R.Peek(2)
792	if err != nil {
793		return
794	}
795	lead = p[0]
796	var read int64
797	switch lead {
798	case mbin8:
799		read = int64(p[1])
800		m.R.Skip(2)
801	case mbin16:
802		p, err = m.R.Next(3)
803		if err != nil {
804			return
805		}
806		read = int64(big.Uint16(p[1:]))
807	case mbin32:
808		p, err = m.R.Next(5)
809		if err != nil {
810			return
811		}
812		read = int64(big.Uint32(p[1:]))
813	default:
814		err = badPrefix(BinType, lead)
815		return
816	}
817	if int64(cap(scratch)) < read {
818		b = make([]byte, read)
819	} else {
820		b = scratch[0:read]
821	}
822	_, err = m.R.ReadFull(b)
823	return
824}
825
826// ReadBytesHeader reads the size header
827// of a MessagePack 'bin' object. The user
828// is responsible for dealing with the next
829// 'sz' bytes from the reader in an application-specific
830// way.
831func (m *Reader) ReadBytesHeader() (sz uint32, err error) {
832	var p []byte
833	p, err = m.R.Peek(1)
834	if err != nil {
835		return
836	}
837	switch p[0] {
838	case mbin8:
839		p, err = m.R.Next(2)
840		if err != nil {
841			return
842		}
843		sz = uint32(p[1])
844		return
845	case mbin16:
846		p, err = m.R.Next(3)
847		if err != nil {
848			return
849		}
850		sz = uint32(big.Uint16(p[1:]))
851		return
852	case mbin32:
853		p, err = m.R.Next(5)
854		if err != nil {
855			return
856		}
857		sz = uint32(big.Uint32(p[1:]))
858		return
859	default:
860		err = badPrefix(BinType, p[0])
861		return
862	}
863}
864
865// ReadExactBytes reads a MessagePack 'bin'-encoded
866// object off of the wire into the provided slice. An
867// ArrayError will be returned if the object is not
868// exactly the length of the input slice.
869func (m *Reader) ReadExactBytes(into []byte) error {
870	p, err := m.R.Peek(2)
871	if err != nil {
872		return err
873	}
874	lead := p[0]
875	var read int64 // bytes to read
876	var skip int   // prefix size to skip
877	switch lead {
878	case mbin8:
879		read = int64(p[1])
880		skip = 2
881	case mbin16:
882		p, err = m.R.Peek(3)
883		if err != nil {
884			return err
885		}
886		read = int64(big.Uint16(p[1:]))
887		skip = 3
888	case mbin32:
889		p, err = m.R.Peek(5)
890		if err != nil {
891			return err
892		}
893		read = int64(big.Uint32(p[1:]))
894		skip = 5
895	default:
896		return badPrefix(BinType, lead)
897	}
898	if read != int64(len(into)) {
899		return ArrayError{Wanted: uint32(len(into)), Got: uint32(read)}
900	}
901	m.R.Skip(skip)
902	_, err = m.R.ReadFull(into)
903	return err
904}
905
906// ReadStringAsBytes reads a MessagePack 'str' (utf-8) string
907// and returns its value as bytes. It may use 'scratch' for storage
908// if it is non-nil.
909func (m *Reader) ReadStringAsBytes(scratch []byte) (b []byte, err error) {
910	var p []byte
911	var lead byte
912	p, err = m.R.Peek(1)
913	if err != nil {
914		return
915	}
916	lead = p[0]
917	var read int64
918
919	if isfixstr(lead) {
920		read = int64(rfixstr(lead))
921		m.R.Skip(1)
922		goto fill
923	}
924
925	switch lead {
926	case mstr8:
927		p, err = m.R.Next(2)
928		if err != nil {
929			return
930		}
931		read = int64(uint8(p[1]))
932	case mstr16:
933		p, err = m.R.Next(3)
934		if err != nil {
935			return
936		}
937		read = int64(big.Uint16(p[1:]))
938	case mstr32:
939		p, err = m.R.Next(5)
940		if err != nil {
941			return
942		}
943		read = int64(big.Uint32(p[1:]))
944	default:
945		err = badPrefix(StrType, lead)
946		return
947	}
948fill:
949	if int64(cap(scratch)) < read {
950		b = make([]byte, read)
951	} else {
952		b = scratch[0:read]
953	}
954	_, err = m.R.ReadFull(b)
955	return
956}
957
958// ReadStringHeader reads a string header
959// off of the wire. The user is then responsible
960// for dealing with the next 'sz' bytes from
961// the reader in an application-specific manner.
962func (m *Reader) ReadStringHeader() (sz uint32, err error) {
963	var p []byte
964	p, err = m.R.Peek(1)
965	if err != nil {
966		return
967	}
968	lead := p[0]
969	if isfixstr(lead) {
970		sz = uint32(rfixstr(lead))
971		m.R.Skip(1)
972		return
973	}
974	switch lead {
975	case mstr8:
976		p, err = m.R.Next(2)
977		if err != nil {
978			return
979		}
980		sz = uint32(p[1])
981		return
982	case mstr16:
983		p, err = m.R.Next(3)
984		if err != nil {
985			return
986		}
987		sz = uint32(big.Uint16(p[1:]))
988		return
989	case mstr32:
990		p, err = m.R.Next(5)
991		if err != nil {
992			return
993		}
994		sz = big.Uint32(p[1:])
995		return
996	default:
997		err = badPrefix(StrType, lead)
998		return
999	}
1000}
1001
1002// ReadString reads a utf-8 string from the reader
1003func (m *Reader) ReadString() (s string, err error) {
1004	var p []byte
1005	var lead byte
1006	var read int64
1007	p, err = m.R.Peek(1)
1008	if err != nil {
1009		return
1010	}
1011	lead = p[0]
1012
1013	if isfixstr(lead) {
1014		read = int64(rfixstr(lead))
1015		m.R.Skip(1)
1016		goto fill
1017	}
1018
1019	switch lead {
1020	case mstr8:
1021		p, err = m.R.Next(2)
1022		if err != nil {
1023			return
1024		}
1025		read = int64(uint8(p[1]))
1026	case mstr16:
1027		p, err = m.R.Next(3)
1028		if err != nil {
1029			return
1030		}
1031		read = int64(big.Uint16(p[1:]))
1032	case mstr32:
1033		p, err = m.R.Next(5)
1034		if err != nil {
1035			return
1036		}
1037		read = int64(big.Uint32(p[1:]))
1038	default:
1039		err = badPrefix(StrType, lead)
1040		return
1041	}
1042fill:
1043	if read == 0 {
1044		s, err = "", nil
1045		return
1046	}
1047	// reading into the memory
1048	// that will become the string
1049	// itself has vastly superior
1050	// worst-case performance, because
1051	// the reader buffer doesn't have
1052	// to be large enough to hold the string.
1053	// the idea here is to make it more
1054	// difficult for someone malicious
1055	// to cause the system to run out of
1056	// memory by sending very large strings.
1057	//
1058	// NOTE: this works because the argument
1059	// passed to (*fwd.Reader).ReadFull escapes
1060	// to the heap; its argument may, in turn,
1061	// be passed to the underlying reader, and
1062	// thus escape analysis *must* conclude that
1063	// 'out' escapes.
1064	out := make([]byte, read)
1065	_, err = m.R.ReadFull(out)
1066	if err != nil {
1067		return
1068	}
1069	s = UnsafeString(out)
1070	return
1071}
1072
1073// ReadComplex64 reads a complex64 from the reader
1074func (m *Reader) ReadComplex64() (f complex64, err error) {
1075	var p []byte
1076	p, err = m.R.Peek(10)
1077	if err != nil {
1078		return
1079	}
1080	if p[0] != mfixext8 {
1081		err = badPrefix(Complex64Type, p[0])
1082		return
1083	}
1084	if int8(p[1]) != Complex64Extension {
1085		err = errExt(int8(p[1]), Complex64Extension)
1086		return
1087	}
1088	f = complex(math.Float32frombits(big.Uint32(p[2:])),
1089		math.Float32frombits(big.Uint32(p[6:])))
1090	_, err = m.R.Skip(10)
1091	return
1092}
1093
1094// ReadComplex128 reads a complex128 from the reader
1095func (m *Reader) ReadComplex128() (f complex128, err error) {
1096	var p []byte
1097	p, err = m.R.Peek(18)
1098	if err != nil {
1099		return
1100	}
1101	if p[0] != mfixext16 {
1102		err = badPrefix(Complex128Type, p[0])
1103		return
1104	}
1105	if int8(p[1]) != Complex128Extension {
1106		err = errExt(int8(p[1]), Complex128Extension)
1107		return
1108	}
1109	f = complex(math.Float64frombits(big.Uint64(p[2:])),
1110		math.Float64frombits(big.Uint64(p[10:])))
1111	_, err = m.R.Skip(18)
1112	return
1113}
1114
1115// ReadMapStrIntf reads a MessagePack map into a map[string]interface{}.
1116// (You must pass a non-nil map into the function.)
1117func (m *Reader) ReadMapStrIntf(mp map[string]interface{}) (err error) {
1118	var sz uint32
1119	sz, err = m.ReadMapHeader()
1120	if err != nil {
1121		return
1122	}
1123	for key := range mp {
1124		delete(mp, key)
1125	}
1126	for i := uint32(0); i < sz; i++ {
1127		var key string
1128		var val interface{}
1129		key, err = m.ReadString()
1130		if err != nil {
1131			return
1132		}
1133		val, err = m.ReadIntf()
1134		if err != nil {
1135			return
1136		}
1137		mp[key] = val
1138	}
1139	return
1140}
1141
1142// ReadTime reads a time.Time object from the reader.
1143// The returned time's location will be set to time.Local.
1144func (m *Reader) ReadTime() (t time.Time, err error) {
1145	var p []byte
1146	p, err = m.R.Peek(15)
1147	if err != nil {
1148		return
1149	}
1150	if p[0] != mext8 || p[1] != 12 {
1151		err = badPrefix(TimeType, p[0])
1152		return
1153	}
1154	if int8(p[2]) != TimeExtension {
1155		err = errExt(int8(p[2]), TimeExtension)
1156		return
1157	}
1158	sec, nsec := getUnix(p[3:])
1159	t = time.Unix(sec, int64(nsec)).Local()
1160	_, err = m.R.Skip(15)
1161	return
1162}
1163
1164// ReadIntf reads out the next object as a raw interface{}.
1165// Arrays are decoded as []interface{}, and maps are decoded
1166// as map[string]interface{}. Integers are decoded as int64
1167// and unsigned integers are decoded as uint64.
1168func (m *Reader) ReadIntf() (i interface{}, err error) {
1169	var t Type
1170	t, err = m.NextType()
1171	if err != nil {
1172		return
1173	}
1174	switch t {
1175	case BoolType:
1176		i, err = m.ReadBool()
1177		return
1178
1179	case IntType:
1180		i, err = m.ReadInt64()
1181		return
1182
1183	case UintType:
1184		i, err = m.ReadUint64()
1185		return
1186
1187	case BinType:
1188		i, err = m.ReadBytes(nil)
1189		return
1190
1191	case StrType:
1192		i, err = m.ReadString()
1193		return
1194
1195	case Complex64Type:
1196		i, err = m.ReadComplex64()
1197		return
1198
1199	case Complex128Type:
1200		i, err = m.ReadComplex128()
1201		return
1202
1203	case TimeType:
1204		i, err = m.ReadTime()
1205		return
1206
1207	case ExtensionType:
1208		var t int8
1209		t, err = m.peekExtensionType()
1210		if err != nil {
1211			return
1212		}
1213		f, ok := extensionReg[t]
1214		if ok {
1215			e := f()
1216			err = m.ReadExtension(e)
1217			i = e
1218			return
1219		}
1220		var e RawExtension
1221		e.Type = t
1222		err = m.ReadExtension(&e)
1223		i = &e
1224		return
1225
1226	case MapType:
1227		mp := make(map[string]interface{})
1228		err = m.ReadMapStrIntf(mp)
1229		i = mp
1230		return
1231
1232	case NilType:
1233		err = m.ReadNil()
1234		i = nil
1235		return
1236
1237	case Float32Type:
1238		i, err = m.ReadFloat32()
1239		return
1240
1241	case Float64Type:
1242		i, err = m.ReadFloat64()
1243		return
1244
1245	case ArrayType:
1246		var sz uint32
1247		sz, err = m.ReadArrayHeader()
1248
1249		if err != nil {
1250			return
1251		}
1252		out := make([]interface{}, int(sz))
1253		for j := range out {
1254			out[j], err = m.ReadIntf()
1255			if err != nil {
1256				return
1257			}
1258		}
1259		i = out
1260		return
1261
1262	default:
1263		return nil, fatal // unreachable
1264	}
1265}
1266