1 #[cfg(target_arch = "x86")]
2 use core::arch::x86::*;
3 #[cfg(target_arch = "x86_64")]
4 use core::arch::x86_64::*;
5 
6 use crate::guts::{
7     assemble_count, count_high, count_low, final_block, flag_word, input_debug_asserts, Finalize,
8     Job, LastNode, Stride,
9 };
10 use crate::{Count, Word, BLOCKBYTES, IV, SIGMA};
11 use arrayref::{array_refs, mut_array_refs};
12 use core::cmp;
13 use core::mem;
14 
15 pub const DEGREE: usize = 4;
16 
17 #[inline(always)]
loadu(src: *const [Word; DEGREE]) -> __m256i18 unsafe fn loadu(src: *const [Word; DEGREE]) -> __m256i {
19     // This is an unaligned load, so the pointer cast is allowed.
20     _mm256_loadu_si256(src as *const __m256i)
21 }
22 
23 #[inline(always)]
storeu(src: __m256i, dest: *mut [Word; DEGREE])24 unsafe fn storeu(src: __m256i, dest: *mut [Word; DEGREE]) {
25     // This is an unaligned store, so the pointer cast is allowed.
26     _mm256_storeu_si256(dest as *mut __m256i, src)
27 }
28 
29 #[inline(always)]
loadu_128(mem_addr: &[u8; 16]) -> __m128i30 unsafe fn loadu_128(mem_addr: &[u8; 16]) -> __m128i {
31     _mm_loadu_si128(mem_addr.as_ptr() as *const __m128i)
32 }
33 
34 #[inline(always)]
add(a: __m256i, b: __m256i) -> __m256i35 unsafe fn add(a: __m256i, b: __m256i) -> __m256i {
36     _mm256_add_epi64(a, b)
37 }
38 
39 #[inline(always)]
eq(a: __m256i, b: __m256i) -> __m256i40 unsafe fn eq(a: __m256i, b: __m256i) -> __m256i {
41     _mm256_cmpeq_epi64(a, b)
42 }
43 
44 #[inline(always)]
and(a: __m256i, b: __m256i) -> __m256i45 unsafe fn and(a: __m256i, b: __m256i) -> __m256i {
46     _mm256_and_si256(a, b)
47 }
48 
49 #[inline(always)]
negate_and(a: __m256i, b: __m256i) -> __m256i50 unsafe fn negate_and(a: __m256i, b: __m256i) -> __m256i {
51     // Note that "and not" implies the reverse of the actual arg order.
52     _mm256_andnot_si256(a, b)
53 }
54 
55 #[inline(always)]
xor(a: __m256i, b: __m256i) -> __m256i56 unsafe fn xor(a: __m256i, b: __m256i) -> __m256i {
57     _mm256_xor_si256(a, b)
58 }
59 
60 #[inline(always)]
set1(x: u64) -> __m256i61 unsafe fn set1(x: u64) -> __m256i {
62     _mm256_set1_epi64x(x as i64)
63 }
64 
65 #[inline(always)]
set4(a: u64, b: u64, c: u64, d: u64) -> __m256i66 unsafe fn set4(a: u64, b: u64, c: u64, d: u64) -> __m256i {
67     _mm256_setr_epi64x(a as i64, b as i64, c as i64, d as i64)
68 }
69 
70 // Adapted from https://github.com/rust-lang-nursery/stdsimd/pull/479.
71 macro_rules! _MM_SHUFFLE {
72     ($z:expr, $y:expr, $x:expr, $w:expr) => {
73         ($z << 6) | ($y << 4) | ($x << 2) | $w
74     };
75 }
76 
77 // These rotations are the "simple version". For the "complicated version", see
78 // https://github.com/sneves/blake2-avx2/blob/b3723921f668df09ece52dcd225a36d4a4eea1d9/blake2b-common.h#L43-L46.
79 // For a discussion of the tradeoffs, see
80 // https://github.com/sneves/blake2-avx2/pull/5. In short:
81 // - This version performs better on modern x86 chips, Skylake and later.
82 // - LLVM is able to optimize this version to AVX-512 rotation instructions
83 //   when those are enabled.
84 
85 #[inline(always)]
rot32(x: __m256i) -> __m256i86 unsafe fn rot32(x: __m256i) -> __m256i {
87     _mm256_or_si256(_mm256_srli_epi64(x, 32), _mm256_slli_epi64(x, 64 - 32))
88 }
89 
90 #[inline(always)]
rot24(x: __m256i) -> __m256i91 unsafe fn rot24(x: __m256i) -> __m256i {
92     _mm256_or_si256(_mm256_srli_epi64(x, 24), _mm256_slli_epi64(x, 64 - 24))
93 }
94 
95 #[inline(always)]
rot16(x: __m256i) -> __m256i96 unsafe fn rot16(x: __m256i) -> __m256i {
97     _mm256_or_si256(_mm256_srli_epi64(x, 16), _mm256_slli_epi64(x, 64 - 16))
98 }
99 
100 #[inline(always)]
rot63(x: __m256i) -> __m256i101 unsafe fn rot63(x: __m256i) -> __m256i {
102     _mm256_or_si256(_mm256_srli_epi64(x, 63), _mm256_slli_epi64(x, 64 - 63))
103 }
104 
105 #[inline(always)]
g1(a: &mut __m256i, b: &mut __m256i, c: &mut __m256i, d: &mut __m256i, m: &mut __m256i)106 unsafe fn g1(a: &mut __m256i, b: &mut __m256i, c: &mut __m256i, d: &mut __m256i, m: &mut __m256i) {
107     *a = add(*a, *m);
108     *a = add(*a, *b);
109     *d = xor(*d, *a);
110     *d = rot32(*d);
111     *c = add(*c, *d);
112     *b = xor(*b, *c);
113     *b = rot24(*b);
114 }
115 
116 #[inline(always)]
g2(a: &mut __m256i, b: &mut __m256i, c: &mut __m256i, d: &mut __m256i, m: &mut __m256i)117 unsafe fn g2(a: &mut __m256i, b: &mut __m256i, c: &mut __m256i, d: &mut __m256i, m: &mut __m256i) {
118     *a = add(*a, *m);
119     *a = add(*a, *b);
120     *d = xor(*d, *a);
121     *d = rot16(*d);
122     *c = add(*c, *d);
123     *b = xor(*b, *c);
124     *b = rot63(*b);
125 }
126 
127 // Note the optimization here of leaving b as the unrotated row, rather than a.
128 // All the message loads below are adjusted to compensate for this. See
129 // discussion at https://github.com/sneves/blake2-avx2/pull/4
130 #[inline(always)]
diagonalize(a: &mut __m256i, _b: &mut __m256i, c: &mut __m256i, d: &mut __m256i)131 unsafe fn diagonalize(a: &mut __m256i, _b: &mut __m256i, c: &mut __m256i, d: &mut __m256i) {
132     *a = _mm256_permute4x64_epi64(*a, _MM_SHUFFLE!(2, 1, 0, 3));
133     *d = _mm256_permute4x64_epi64(*d, _MM_SHUFFLE!(1, 0, 3, 2));
134     *c = _mm256_permute4x64_epi64(*c, _MM_SHUFFLE!(0, 3, 2, 1));
135 }
136 
137 #[inline(always)]
undiagonalize(a: &mut __m256i, _b: &mut __m256i, c: &mut __m256i, d: &mut __m256i)138 unsafe fn undiagonalize(a: &mut __m256i, _b: &mut __m256i, c: &mut __m256i, d: &mut __m256i) {
139     *a = _mm256_permute4x64_epi64(*a, _MM_SHUFFLE!(0, 3, 2, 1));
140     *d = _mm256_permute4x64_epi64(*d, _MM_SHUFFLE!(1, 0, 3, 2));
141     *c = _mm256_permute4x64_epi64(*c, _MM_SHUFFLE!(2, 1, 0, 3));
142 }
143 
144 #[inline(always)]
compress_block( block: &[u8; BLOCKBYTES], words: &mut [Word; 8], count: Count, last_block: Word, last_node: Word, )145 unsafe fn compress_block(
146     block: &[u8; BLOCKBYTES],
147     words: &mut [Word; 8],
148     count: Count,
149     last_block: Word,
150     last_node: Word,
151 ) {
152     let (words_low, words_high) = mut_array_refs!(words, DEGREE, DEGREE);
153     let (iv_low, iv_high) = array_refs!(&IV, DEGREE, DEGREE);
154     let mut a = loadu(words_low);
155     let mut b = loadu(words_high);
156     let mut c = loadu(iv_low);
157     let flags = set4(count_low(count), count_high(count), last_block, last_node);
158     let mut d = xor(loadu(iv_high), flags);
159 
160     let msg_chunks = array_refs!(block, 16, 16, 16, 16, 16, 16, 16, 16);
161     let m0 = _mm256_broadcastsi128_si256(loadu_128(msg_chunks.0));
162     let m1 = _mm256_broadcastsi128_si256(loadu_128(msg_chunks.1));
163     let m2 = _mm256_broadcastsi128_si256(loadu_128(msg_chunks.2));
164     let m3 = _mm256_broadcastsi128_si256(loadu_128(msg_chunks.3));
165     let m4 = _mm256_broadcastsi128_si256(loadu_128(msg_chunks.4));
166     let m5 = _mm256_broadcastsi128_si256(loadu_128(msg_chunks.5));
167     let m6 = _mm256_broadcastsi128_si256(loadu_128(msg_chunks.6));
168     let m7 = _mm256_broadcastsi128_si256(loadu_128(msg_chunks.7));
169 
170     let iv0 = a;
171     let iv1 = b;
172     let mut t0;
173     let mut t1;
174     let mut b0;
175 
176     // round 1
177     t0 = _mm256_unpacklo_epi64(m0, m1);
178     t1 = _mm256_unpacklo_epi64(m2, m3);
179     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
180     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
181     t0 = _mm256_unpackhi_epi64(m0, m1);
182     t1 = _mm256_unpackhi_epi64(m2, m3);
183     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
184     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
185     diagonalize(&mut a, &mut b, &mut c, &mut d);
186     t0 = _mm256_unpacklo_epi64(m7, m4);
187     t1 = _mm256_unpacklo_epi64(m5, m6);
188     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
189     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
190     t0 = _mm256_unpackhi_epi64(m7, m4);
191     t1 = _mm256_unpackhi_epi64(m5, m6);
192     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
193     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
194     undiagonalize(&mut a, &mut b, &mut c, &mut d);
195 
196     // round 2
197     t0 = _mm256_unpacklo_epi64(m7, m2);
198     t1 = _mm256_unpackhi_epi64(m4, m6);
199     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
200     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
201     t0 = _mm256_unpacklo_epi64(m5, m4);
202     t1 = _mm256_alignr_epi8(m3, m7, 8);
203     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
204     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
205     diagonalize(&mut a, &mut b, &mut c, &mut d);
206     t0 = _mm256_unpackhi_epi64(m2, m0);
207     t1 = _mm256_blend_epi32(m5, m0, 0x33);
208     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
209     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
210     t0 = _mm256_alignr_epi8(m6, m1, 8);
211     t1 = _mm256_blend_epi32(m3, m1, 0x33);
212     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
213     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
214     undiagonalize(&mut a, &mut b, &mut c, &mut d);
215 
216     // round 3
217     t0 = _mm256_alignr_epi8(m6, m5, 8);
218     t1 = _mm256_unpackhi_epi64(m2, m7);
219     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
220     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
221     t0 = _mm256_unpacklo_epi64(m4, m0);
222     t1 = _mm256_blend_epi32(m6, m1, 0x33);
223     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
224     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
225     diagonalize(&mut a, &mut b, &mut c, &mut d);
226     t0 = _mm256_alignr_epi8(m5, m4, 8);
227     t1 = _mm256_unpackhi_epi64(m1, m3);
228     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
229     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
230     t0 = _mm256_unpacklo_epi64(m2, m7);
231     t1 = _mm256_blend_epi32(m0, m3, 0x33);
232     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
233     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
234     undiagonalize(&mut a, &mut b, &mut c, &mut d);
235 
236     // round 4
237     t0 = _mm256_unpackhi_epi64(m3, m1);
238     t1 = _mm256_unpackhi_epi64(m6, m5);
239     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
240     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
241     t0 = _mm256_unpackhi_epi64(m4, m0);
242     t1 = _mm256_unpacklo_epi64(m6, m7);
243     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
244     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
245     diagonalize(&mut a, &mut b, &mut c, &mut d);
246     t0 = _mm256_alignr_epi8(m1, m7, 8);
247     t1 = _mm256_shuffle_epi32(m2, _MM_SHUFFLE!(1, 0, 3, 2));
248     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
249     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
250     t0 = _mm256_unpacklo_epi64(m4, m3);
251     t1 = _mm256_unpacklo_epi64(m5, m0);
252     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
253     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
254     undiagonalize(&mut a, &mut b, &mut c, &mut d);
255 
256     // round 5
257     t0 = _mm256_unpackhi_epi64(m4, m2);
258     t1 = _mm256_unpacklo_epi64(m1, m5);
259     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
260     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
261     t0 = _mm256_blend_epi32(m3, m0, 0x33);
262     t1 = _mm256_blend_epi32(m7, m2, 0x33);
263     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
264     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
265     diagonalize(&mut a, &mut b, &mut c, &mut d);
266     t0 = _mm256_alignr_epi8(m7, m1, 8);
267     t1 = _mm256_alignr_epi8(m3, m5, 8);
268     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
269     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
270     t0 = _mm256_unpackhi_epi64(m6, m0);
271     t1 = _mm256_unpacklo_epi64(m6, m4);
272     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
273     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
274     undiagonalize(&mut a, &mut b, &mut c, &mut d);
275 
276     // round 6
277     t0 = _mm256_unpacklo_epi64(m1, m3);
278     t1 = _mm256_unpacklo_epi64(m0, m4);
279     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
280     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
281     t0 = _mm256_unpacklo_epi64(m6, m5);
282     t1 = _mm256_unpackhi_epi64(m5, m1);
283     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
284     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
285     diagonalize(&mut a, &mut b, &mut c, &mut d);
286     t0 = _mm256_alignr_epi8(m2, m0, 8);
287     t1 = _mm256_unpackhi_epi64(m3, m7);
288     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
289     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
290     t0 = _mm256_unpackhi_epi64(m4, m6);
291     t1 = _mm256_alignr_epi8(m7, m2, 8);
292     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
293     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
294     undiagonalize(&mut a, &mut b, &mut c, &mut d);
295 
296     // round 7
297     t0 = _mm256_blend_epi32(m0, m6, 0x33);
298     t1 = _mm256_unpacklo_epi64(m7, m2);
299     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
300     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
301     t0 = _mm256_unpackhi_epi64(m2, m7);
302     t1 = _mm256_alignr_epi8(m5, m6, 8);
303     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
304     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
305     diagonalize(&mut a, &mut b, &mut c, &mut d);
306     t0 = _mm256_unpacklo_epi64(m4, m0);
307     t1 = _mm256_blend_epi32(m4, m3, 0x33);
308     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
309     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
310     t0 = _mm256_unpackhi_epi64(m5, m3);
311     t1 = _mm256_shuffle_epi32(m1, _MM_SHUFFLE!(1, 0, 3, 2));
312     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
313     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
314     undiagonalize(&mut a, &mut b, &mut c, &mut d);
315 
316     // round 8
317     t0 = _mm256_unpackhi_epi64(m6, m3);
318     t1 = _mm256_blend_epi32(m1, m6, 0x33);
319     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
320     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
321     t0 = _mm256_alignr_epi8(m7, m5, 8);
322     t1 = _mm256_unpackhi_epi64(m0, m4);
323     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
324     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
325     diagonalize(&mut a, &mut b, &mut c, &mut d);
326     t0 = _mm256_blend_epi32(m2, m1, 0x33);
327     t1 = _mm256_alignr_epi8(m4, m7, 8);
328     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
329     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
330     t0 = _mm256_unpacklo_epi64(m5, m0);
331     t1 = _mm256_unpacklo_epi64(m2, m3);
332     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
333     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
334     undiagonalize(&mut a, &mut b, &mut c, &mut d);
335 
336     // round 9
337     t0 = _mm256_unpacklo_epi64(m3, m7);
338     t1 = _mm256_alignr_epi8(m0, m5, 8);
339     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
340     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
341     t0 = _mm256_unpackhi_epi64(m7, m4);
342     t1 = _mm256_alignr_epi8(m4, m1, 8);
343     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
344     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
345     diagonalize(&mut a, &mut b, &mut c, &mut d);
346     t0 = _mm256_unpacklo_epi64(m5, m6);
347     t1 = _mm256_unpackhi_epi64(m6, m0);
348     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
349     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
350     t0 = _mm256_alignr_epi8(m1, m2, 8);
351     t1 = _mm256_alignr_epi8(m2, m3, 8);
352     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
353     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
354     undiagonalize(&mut a, &mut b, &mut c, &mut d);
355 
356     // round 10
357     t0 = _mm256_unpacklo_epi64(m5, m4);
358     t1 = _mm256_unpackhi_epi64(m3, m0);
359     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
360     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
361     t0 = _mm256_unpacklo_epi64(m1, m2);
362     t1 = _mm256_blend_epi32(m2, m3, 0x33);
363     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
364     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
365     diagonalize(&mut a, &mut b, &mut c, &mut d);
366     t0 = _mm256_unpackhi_epi64(m6, m7);
367     t1 = _mm256_unpackhi_epi64(m4, m1);
368     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
369     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
370     t0 = _mm256_blend_epi32(m5, m0, 0x33);
371     t1 = _mm256_unpacklo_epi64(m7, m6);
372     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
373     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
374     undiagonalize(&mut a, &mut b, &mut c, &mut d);
375 
376     // round 11
377     t0 = _mm256_unpacklo_epi64(m0, m1);
378     t1 = _mm256_unpacklo_epi64(m2, m3);
379     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
380     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
381     t0 = _mm256_unpackhi_epi64(m0, m1);
382     t1 = _mm256_unpackhi_epi64(m2, m3);
383     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
384     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
385     diagonalize(&mut a, &mut b, &mut c, &mut d);
386     t0 = _mm256_unpacklo_epi64(m7, m4);
387     t1 = _mm256_unpacklo_epi64(m5, m6);
388     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
389     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
390     t0 = _mm256_unpackhi_epi64(m7, m4);
391     t1 = _mm256_unpackhi_epi64(m5, m6);
392     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
393     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
394     undiagonalize(&mut a, &mut b, &mut c, &mut d);
395 
396     // round 12
397     t0 = _mm256_unpacklo_epi64(m7, m2);
398     t1 = _mm256_unpackhi_epi64(m4, m6);
399     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
400     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
401     t0 = _mm256_unpacklo_epi64(m5, m4);
402     t1 = _mm256_alignr_epi8(m3, m7, 8);
403     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
404     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
405     diagonalize(&mut a, &mut b, &mut c, &mut d);
406     t0 = _mm256_unpackhi_epi64(m2, m0);
407     t1 = _mm256_blend_epi32(m5, m0, 0x33);
408     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
409     g1(&mut a, &mut b, &mut c, &mut d, &mut b0);
410     t0 = _mm256_alignr_epi8(m6, m1, 8);
411     t1 = _mm256_blend_epi32(m3, m1, 0x33);
412     b0 = _mm256_blend_epi32(t0, t1, 0xF0);
413     g2(&mut a, &mut b, &mut c, &mut d, &mut b0);
414     undiagonalize(&mut a, &mut b, &mut c, &mut d);
415 
416     a = xor(a, c);
417     b = xor(b, d);
418     a = xor(a, iv0);
419     b = xor(b, iv1);
420 
421     storeu(a, words_low);
422     storeu(b, words_high);
423 }
424 
425 #[target_feature(enable = "avx2")]
compress1_loop( input: &[u8], words: &mut [Word; 8], mut count: Count, last_node: LastNode, finalize: Finalize, stride: Stride, )426 pub unsafe fn compress1_loop(
427     input: &[u8],
428     words: &mut [Word; 8],
429     mut count: Count,
430     last_node: LastNode,
431     finalize: Finalize,
432     stride: Stride,
433 ) {
434     input_debug_asserts(input, finalize);
435 
436     let mut local_words = *words;
437 
438     let mut fin_offset = input.len().saturating_sub(1);
439     fin_offset -= fin_offset % stride.padded_blockbytes();
440     let mut buf = [0; BLOCKBYTES];
441     let (fin_block, fin_len, _) = final_block(input, fin_offset, &mut buf, stride);
442     let fin_last_block = flag_word(finalize.yes());
443     let fin_last_node = flag_word(finalize.yes() && last_node.yes());
444 
445     let mut offset = 0;
446     loop {
447         let block;
448         let count_delta;
449         let last_block;
450         let last_node;
451         if offset == fin_offset {
452             block = fin_block;
453             count_delta = fin_len;
454             last_block = fin_last_block;
455             last_node = fin_last_node;
456         } else {
457             // This unsafe cast avoids bounds checks. There's guaranteed to be
458             // enough input because `offset < fin_offset`.
459             block = &*(input.as_ptr().add(offset) as *const [u8; BLOCKBYTES]);
460             count_delta = BLOCKBYTES;
461             last_block = flag_word(false);
462             last_node = flag_word(false);
463         };
464 
465         count = count.wrapping_add(count_delta as Count);
466         compress_block(block, &mut local_words, count, last_block, last_node);
467 
468         // Check for termination before bumping the offset, to avoid overflow.
469         if offset == fin_offset {
470             break;
471         }
472 
473         offset += stride.padded_blockbytes();
474     }
475 
476     *words = local_words;
477 }
478 
479 // Performance note: Factoring out a G function here doesn't hurt performance,
480 // unlike in the case of BLAKE2s where it hurts substantially. In fact, on my
481 // machine, it helps a tiny bit. But the difference it tiny, so I'm going to
482 // stick to the approach used by https://github.com/sneves/blake2-avx2
483 // until/unless I can be sure the (tiny) improvement is consistent across
484 // different Intel microarchitectures. Smaller code size is nice, but a
485 // divergence between the BLAKE2b and BLAKE2s implementations is less nice.
486 #[inline(always)]
round(v: &mut [__m256i; 16], m: &[__m256i; 16], r: usize)487 unsafe fn round(v: &mut [__m256i; 16], m: &[__m256i; 16], r: usize) {
488     v[0] = add(v[0], m[SIGMA[r][0] as usize]);
489     v[1] = add(v[1], m[SIGMA[r][2] as usize]);
490     v[2] = add(v[2], m[SIGMA[r][4] as usize]);
491     v[3] = add(v[3], m[SIGMA[r][6] as usize]);
492     v[0] = add(v[0], v[4]);
493     v[1] = add(v[1], v[5]);
494     v[2] = add(v[2], v[6]);
495     v[3] = add(v[3], v[7]);
496     v[12] = xor(v[12], v[0]);
497     v[13] = xor(v[13], v[1]);
498     v[14] = xor(v[14], v[2]);
499     v[15] = xor(v[15], v[3]);
500     v[12] = rot32(v[12]);
501     v[13] = rot32(v[13]);
502     v[14] = rot32(v[14]);
503     v[15] = rot32(v[15]);
504     v[8] = add(v[8], v[12]);
505     v[9] = add(v[9], v[13]);
506     v[10] = add(v[10], v[14]);
507     v[11] = add(v[11], v[15]);
508     v[4] = xor(v[4], v[8]);
509     v[5] = xor(v[5], v[9]);
510     v[6] = xor(v[6], v[10]);
511     v[7] = xor(v[7], v[11]);
512     v[4] = rot24(v[4]);
513     v[5] = rot24(v[5]);
514     v[6] = rot24(v[6]);
515     v[7] = rot24(v[7]);
516     v[0] = add(v[0], m[SIGMA[r][1] as usize]);
517     v[1] = add(v[1], m[SIGMA[r][3] as usize]);
518     v[2] = add(v[2], m[SIGMA[r][5] as usize]);
519     v[3] = add(v[3], m[SIGMA[r][7] as usize]);
520     v[0] = add(v[0], v[4]);
521     v[1] = add(v[1], v[5]);
522     v[2] = add(v[2], v[6]);
523     v[3] = add(v[3], v[7]);
524     v[12] = xor(v[12], v[0]);
525     v[13] = xor(v[13], v[1]);
526     v[14] = xor(v[14], v[2]);
527     v[15] = xor(v[15], v[3]);
528     v[12] = rot16(v[12]);
529     v[13] = rot16(v[13]);
530     v[14] = rot16(v[14]);
531     v[15] = rot16(v[15]);
532     v[8] = add(v[8], v[12]);
533     v[9] = add(v[9], v[13]);
534     v[10] = add(v[10], v[14]);
535     v[11] = add(v[11], v[15]);
536     v[4] = xor(v[4], v[8]);
537     v[5] = xor(v[5], v[9]);
538     v[6] = xor(v[6], v[10]);
539     v[7] = xor(v[7], v[11]);
540     v[4] = rot63(v[4]);
541     v[5] = rot63(v[5]);
542     v[6] = rot63(v[6]);
543     v[7] = rot63(v[7]);
544 
545     v[0] = add(v[0], m[SIGMA[r][8] as usize]);
546     v[1] = add(v[1], m[SIGMA[r][10] as usize]);
547     v[2] = add(v[2], m[SIGMA[r][12] as usize]);
548     v[3] = add(v[3], m[SIGMA[r][14] as usize]);
549     v[0] = add(v[0], v[5]);
550     v[1] = add(v[1], v[6]);
551     v[2] = add(v[2], v[7]);
552     v[3] = add(v[3], v[4]);
553     v[15] = xor(v[15], v[0]);
554     v[12] = xor(v[12], v[1]);
555     v[13] = xor(v[13], v[2]);
556     v[14] = xor(v[14], v[3]);
557     v[15] = rot32(v[15]);
558     v[12] = rot32(v[12]);
559     v[13] = rot32(v[13]);
560     v[14] = rot32(v[14]);
561     v[10] = add(v[10], v[15]);
562     v[11] = add(v[11], v[12]);
563     v[8] = add(v[8], v[13]);
564     v[9] = add(v[9], v[14]);
565     v[5] = xor(v[5], v[10]);
566     v[6] = xor(v[6], v[11]);
567     v[7] = xor(v[7], v[8]);
568     v[4] = xor(v[4], v[9]);
569     v[5] = rot24(v[5]);
570     v[6] = rot24(v[6]);
571     v[7] = rot24(v[7]);
572     v[4] = rot24(v[4]);
573     v[0] = add(v[0], m[SIGMA[r][9] as usize]);
574     v[1] = add(v[1], m[SIGMA[r][11] as usize]);
575     v[2] = add(v[2], m[SIGMA[r][13] as usize]);
576     v[3] = add(v[3], m[SIGMA[r][15] as usize]);
577     v[0] = add(v[0], v[5]);
578     v[1] = add(v[1], v[6]);
579     v[2] = add(v[2], v[7]);
580     v[3] = add(v[3], v[4]);
581     v[15] = xor(v[15], v[0]);
582     v[12] = xor(v[12], v[1]);
583     v[13] = xor(v[13], v[2]);
584     v[14] = xor(v[14], v[3]);
585     v[15] = rot16(v[15]);
586     v[12] = rot16(v[12]);
587     v[13] = rot16(v[13]);
588     v[14] = rot16(v[14]);
589     v[10] = add(v[10], v[15]);
590     v[11] = add(v[11], v[12]);
591     v[8] = add(v[8], v[13]);
592     v[9] = add(v[9], v[14]);
593     v[5] = xor(v[5], v[10]);
594     v[6] = xor(v[6], v[11]);
595     v[7] = xor(v[7], v[8]);
596     v[4] = xor(v[4], v[9]);
597     v[5] = rot63(v[5]);
598     v[6] = rot63(v[6]);
599     v[7] = rot63(v[7]);
600     v[4] = rot63(v[4]);
601 }
602 
603 // We'd rather make this a regular function with #[inline(always)], but for
604 // some reason that blows up compile times by about 10 seconds, at least in
605 // some cases (BLAKE2b avx2.rs). This macro seems to get the same performance
606 // result, without the compile time issue.
607 macro_rules! compress4_transposed {
608     (
609         $h_vecs:expr,
610         $msg_vecs:expr,
611         $count_low:expr,
612         $count_high:expr,
613         $lastblock:expr,
614         $lastnode:expr,
615     ) => {
616         let h_vecs: &mut [__m256i; 8] = $h_vecs;
617         let msg_vecs: &[__m256i; 16] = $msg_vecs;
618         let count_low: __m256i = $count_low;
619         let count_high: __m256i = $count_high;
620         let lastblock: __m256i = $lastblock;
621         let lastnode: __m256i = $lastnode;
622 
623         let mut v = [
624             h_vecs[0],
625             h_vecs[1],
626             h_vecs[2],
627             h_vecs[3],
628             h_vecs[4],
629             h_vecs[5],
630             h_vecs[6],
631             h_vecs[7],
632             set1(IV[0]),
633             set1(IV[1]),
634             set1(IV[2]),
635             set1(IV[3]),
636             xor(set1(IV[4]), count_low),
637             xor(set1(IV[5]), count_high),
638             xor(set1(IV[6]), lastblock),
639             xor(set1(IV[7]), lastnode),
640         ];
641 
642         round(&mut v, &msg_vecs, 0);
643         round(&mut v, &msg_vecs, 1);
644         round(&mut v, &msg_vecs, 2);
645         round(&mut v, &msg_vecs, 3);
646         round(&mut v, &msg_vecs, 4);
647         round(&mut v, &msg_vecs, 5);
648         round(&mut v, &msg_vecs, 6);
649         round(&mut v, &msg_vecs, 7);
650         round(&mut v, &msg_vecs, 8);
651         round(&mut v, &msg_vecs, 9);
652         round(&mut v, &msg_vecs, 10);
653         round(&mut v, &msg_vecs, 11);
654 
655         h_vecs[0] = xor(xor(h_vecs[0], v[0]), v[8]);
656         h_vecs[1] = xor(xor(h_vecs[1], v[1]), v[9]);
657         h_vecs[2] = xor(xor(h_vecs[2], v[2]), v[10]);
658         h_vecs[3] = xor(xor(h_vecs[3], v[3]), v[11]);
659         h_vecs[4] = xor(xor(h_vecs[4], v[4]), v[12]);
660         h_vecs[5] = xor(xor(h_vecs[5], v[5]), v[13]);
661         h_vecs[6] = xor(xor(h_vecs[6], v[6]), v[14]);
662         h_vecs[7] = xor(xor(h_vecs[7], v[7]), v[15]);
663     };
664 }
665 
666 #[inline(always)]
interleave128(a: __m256i, b: __m256i) -> (__m256i, __m256i)667 unsafe fn interleave128(a: __m256i, b: __m256i) -> (__m256i, __m256i) {
668     (
669         _mm256_permute2x128_si256(a, b, 0x20),
670         _mm256_permute2x128_si256(a, b, 0x31),
671     )
672 }
673 
674 // There are several ways to do a transposition. We could do it naively, with 8 separate
675 // _mm256_set_epi64x instructions, referencing each of the 64 words explicitly. Or we could copy
676 // the vecs into contiguous storage and then use gather instructions. This third approach is to use
677 // a series of unpack instructions to interleave the vectors. In my benchmarks, interleaving is the
678 // fastest approach. To test this, run `cargo +nightly bench --bench libtest load_4` in the
679 // https://github.com/oconnor663/bao_experiments repo.
680 #[inline(always)]
transpose_vecs( vec_a: __m256i, vec_b: __m256i, vec_c: __m256i, vec_d: __m256i, ) -> [__m256i; DEGREE]681 unsafe fn transpose_vecs(
682     vec_a: __m256i,
683     vec_b: __m256i,
684     vec_c: __m256i,
685     vec_d: __m256i,
686 ) -> [__m256i; DEGREE] {
687     // Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is 11/33.
688     let ab_02 = _mm256_unpacklo_epi64(vec_a, vec_b);
689     let ab_13 = _mm256_unpackhi_epi64(vec_a, vec_b);
690     let cd_02 = _mm256_unpacklo_epi64(vec_c, vec_d);
691     let cd_13 = _mm256_unpackhi_epi64(vec_c, vec_d);
692 
693     // Interleave 128-bit lanes.
694     let (abcd_0, abcd_2) = interleave128(ab_02, cd_02);
695     let (abcd_1, abcd_3) = interleave128(ab_13, cd_13);
696 
697     [abcd_0, abcd_1, abcd_2, abcd_3]
698 }
699 
700 #[inline(always)]
transpose_state_vecs(jobs: &[Job; DEGREE]) -> [__m256i; 8]701 unsafe fn transpose_state_vecs(jobs: &[Job; DEGREE]) -> [__m256i; 8] {
702     // Load all the state words into transposed vectors, where the first vector
703     // has the first word of each state, etc. Transposing once at the beginning
704     // and once at the end is more efficient that repeating it for each block.
705     let words0 = array_refs!(&jobs[0].words, DEGREE, DEGREE);
706     let words1 = array_refs!(&jobs[1].words, DEGREE, DEGREE);
707     let words2 = array_refs!(&jobs[2].words, DEGREE, DEGREE);
708     let words3 = array_refs!(&jobs[3].words, DEGREE, DEGREE);
709     let [h0, h1, h2, h3] = transpose_vecs(
710         loadu(words0.0),
711         loadu(words1.0),
712         loadu(words2.0),
713         loadu(words3.0),
714     );
715     let [h4, h5, h6, h7] = transpose_vecs(
716         loadu(words0.1),
717         loadu(words1.1),
718         loadu(words2.1),
719         loadu(words3.1),
720     );
721     [h0, h1, h2, h3, h4, h5, h6, h7]
722 }
723 
724 #[inline(always)]
untranspose_state_vecs(h_vecs: &[__m256i; 8], jobs: &mut [Job; DEGREE])725 unsafe fn untranspose_state_vecs(h_vecs: &[__m256i; 8], jobs: &mut [Job; DEGREE]) {
726     // Un-transpose the updated state vectors back into the caller's arrays.
727     let [job0, job1, job2, job3] = jobs;
728     let words0 = mut_array_refs!(&mut job0.words, DEGREE, DEGREE);
729     let words1 = mut_array_refs!(&mut job1.words, DEGREE, DEGREE);
730     let words2 = mut_array_refs!(&mut job2.words, DEGREE, DEGREE);
731     let words3 = mut_array_refs!(&mut job3.words, DEGREE, DEGREE);
732     let out = transpose_vecs(h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3]);
733     storeu(out[0], words0.0);
734     storeu(out[1], words1.0);
735     storeu(out[2], words2.0);
736     storeu(out[3], words3.0);
737     let out = transpose_vecs(h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7]);
738     storeu(out[0], words0.1);
739     storeu(out[1], words1.1);
740     storeu(out[2], words2.1);
741     storeu(out[3], words3.1);
742 }
743 
744 #[inline(always)]
transpose_msg_vecs(blocks: [*const [u8; BLOCKBYTES]; DEGREE]) -> [__m256i; 16]745 unsafe fn transpose_msg_vecs(blocks: [*const [u8; BLOCKBYTES]; DEGREE]) -> [__m256i; 16] {
746     // These input arrays have no particular alignment, so we use unaligned
747     // loads to read from them.
748     let block0 = blocks[0] as *const [Word; DEGREE];
749     let block1 = blocks[1] as *const [Word; DEGREE];
750     let block2 = blocks[2] as *const [Word; DEGREE];
751     let block3 = blocks[3] as *const [Word; DEGREE];
752     let [m0, m1, m2, m3] = transpose_vecs(
753         loadu(block0.add(0)),
754         loadu(block1.add(0)),
755         loadu(block2.add(0)),
756         loadu(block3.add(0)),
757     );
758     let [m4, m5, m6, m7] = transpose_vecs(
759         loadu(block0.add(1)),
760         loadu(block1.add(1)),
761         loadu(block2.add(1)),
762         loadu(block3.add(1)),
763     );
764     let [m8, m9, m10, m11] = transpose_vecs(
765         loadu(block0.add(2)),
766         loadu(block1.add(2)),
767         loadu(block2.add(2)),
768         loadu(block3.add(2)),
769     );
770     let [m12, m13, m14, m15] = transpose_vecs(
771         loadu(block0.add(3)),
772         loadu(block1.add(3)),
773         loadu(block2.add(3)),
774         loadu(block3.add(3)),
775     );
776     [
777         m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15,
778     ]
779 }
780 
781 #[inline(always)]
load_counts(jobs: &[Job; DEGREE]) -> (__m256i, __m256i)782 unsafe fn load_counts(jobs: &[Job; DEGREE]) -> (__m256i, __m256i) {
783     (
784         set4(
785             count_low(jobs[0].count),
786             count_low(jobs[1].count),
787             count_low(jobs[2].count),
788             count_low(jobs[3].count),
789         ),
790         set4(
791             count_high(jobs[0].count),
792             count_high(jobs[1].count),
793             count_high(jobs[2].count),
794             count_high(jobs[3].count),
795         ),
796     )
797 }
798 
799 #[inline(always)]
store_counts(jobs: &mut [Job; DEGREE], low: __m256i, high: __m256i)800 unsafe fn store_counts(jobs: &mut [Job; DEGREE], low: __m256i, high: __m256i) {
801     let low_ints: [Word; DEGREE] = mem::transmute(low);
802     let high_ints: [Word; DEGREE] = mem::transmute(high);
803     for i in 0..DEGREE {
804         jobs[i].count = assemble_count(low_ints[i], high_ints[i]);
805     }
806 }
807 
808 #[inline(always)]
add_to_counts(lo: &mut __m256i, hi: &mut __m256i, delta: __m256i)809 unsafe fn add_to_counts(lo: &mut __m256i, hi: &mut __m256i, delta: __m256i) {
810     // If the low counts reach zero, that means they wrapped, unless the delta
811     // was also zero.
812     *lo = add(*lo, delta);
813     let lo_reached_zero = eq(*lo, set1(0));
814     let delta_was_zero = eq(delta, set1(0));
815     let hi_inc = and(set1(1), negate_and(delta_was_zero, lo_reached_zero));
816     *hi = add(*hi, hi_inc);
817 }
818 
819 #[inline(always)]
flags_vec(flags: [bool; DEGREE]) -> __m256i820 unsafe fn flags_vec(flags: [bool; DEGREE]) -> __m256i {
821     set4(
822         flag_word(flags[0]),
823         flag_word(flags[1]),
824         flag_word(flags[2]),
825         flag_word(flags[3]),
826     )
827 }
828 
829 #[target_feature(enable = "avx2")]
compress4_loop(jobs: &mut [Job; DEGREE], finalize: Finalize, stride: Stride)830 pub unsafe fn compress4_loop(jobs: &mut [Job; DEGREE], finalize: Finalize, stride: Stride) {
831     // If we're not finalizing, there can't be a partial block at the end.
832     for job in jobs.iter() {
833         input_debug_asserts(job.input, finalize);
834     }
835 
836     let msg_ptrs = [
837         jobs[0].input.as_ptr(),
838         jobs[1].input.as_ptr(),
839         jobs[2].input.as_ptr(),
840         jobs[3].input.as_ptr(),
841     ];
842     let mut h_vecs = transpose_state_vecs(&jobs);
843     let (mut counts_lo, mut counts_hi) = load_counts(&jobs);
844 
845     // Prepare the final blocks (note, which could be empty if the input is
846     // empty). Do all this before entering the main loop.
847     let min_len = jobs.iter().map(|job| job.input.len()).min().unwrap();
848     let mut fin_offset = min_len.saturating_sub(1);
849     fin_offset -= fin_offset % stride.padded_blockbytes();
850     // Performance note, making these buffers mem::uninitialized() seems to
851     // cause problems in the optimizer.
852     let mut buf0: [u8; BLOCKBYTES] = [0; BLOCKBYTES];
853     let mut buf1: [u8; BLOCKBYTES] = [0; BLOCKBYTES];
854     let mut buf2: [u8; BLOCKBYTES] = [0; BLOCKBYTES];
855     let mut buf3: [u8; BLOCKBYTES] = [0; BLOCKBYTES];
856     let (block0, len0, finalize0) = final_block(jobs[0].input, fin_offset, &mut buf0, stride);
857     let (block1, len1, finalize1) = final_block(jobs[1].input, fin_offset, &mut buf1, stride);
858     let (block2, len2, finalize2) = final_block(jobs[2].input, fin_offset, &mut buf2, stride);
859     let (block3, len3, finalize3) = final_block(jobs[3].input, fin_offset, &mut buf3, stride);
860     let fin_blocks: [*const [u8; BLOCKBYTES]; DEGREE] = [block0, block1, block2, block3];
861     let fin_counts_delta = set4(len0 as Word, len1 as Word, len2 as Word, len3 as Word);
862     let fin_last_block;
863     let fin_last_node;
864     if finalize.yes() {
865         fin_last_block = flags_vec([finalize0, finalize1, finalize2, finalize3]);
866         fin_last_node = flags_vec([
867             finalize0 && jobs[0].last_node.yes(),
868             finalize1 && jobs[1].last_node.yes(),
869             finalize2 && jobs[2].last_node.yes(),
870             finalize3 && jobs[3].last_node.yes(),
871         ]);
872     } else {
873         fin_last_block = set1(0);
874         fin_last_node = set1(0);
875     }
876 
877     // The main loop.
878     let mut offset = 0;
879     loop {
880         let blocks;
881         let counts_delta;
882         let last_block;
883         let last_node;
884         if offset == fin_offset {
885             blocks = fin_blocks;
886             counts_delta = fin_counts_delta;
887             last_block = fin_last_block;
888             last_node = fin_last_node;
889         } else {
890             blocks = [
891                 msg_ptrs[0].add(offset) as *const [u8; BLOCKBYTES],
892                 msg_ptrs[1].add(offset) as *const [u8; BLOCKBYTES],
893                 msg_ptrs[2].add(offset) as *const [u8; BLOCKBYTES],
894                 msg_ptrs[3].add(offset) as *const [u8; BLOCKBYTES],
895             ];
896             counts_delta = set1(BLOCKBYTES as Word);
897             last_block = set1(0);
898             last_node = set1(0);
899         };
900 
901         let m_vecs = transpose_msg_vecs(blocks);
902         add_to_counts(&mut counts_lo, &mut counts_hi, counts_delta);
903         compress4_transposed!(
904             &mut h_vecs,
905             &m_vecs,
906             counts_lo,
907             counts_hi,
908             last_block,
909             last_node,
910         );
911 
912         // Check for termination before bumping the offset, to avoid overflow.
913         if offset == fin_offset {
914             break;
915         }
916 
917         offset += stride.padded_blockbytes();
918     }
919 
920     // Write out the results.
921     untranspose_state_vecs(&h_vecs, &mut *jobs);
922     store_counts(&mut *jobs, counts_lo, counts_hi);
923     let max_consumed = offset.saturating_add(stride.padded_blockbytes());
924     for job in jobs.iter_mut() {
925         let consumed = cmp::min(max_consumed, job.input.len());
926         job.input = &job.input[consumed..];
927     }
928 }
929