1 // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10 
11 //! Integer trait and functions.
12 //!
13 //! ## Compatibility
14 //!
15 //! The `num-integer` crate is tested for rustc 1.8 and greater.
16 
17 #![doc(html_root_url = "https://docs.rs/num-integer/0.1")]
18 #![no_std]
19 #[cfg(feature = "std")]
20 extern crate std;
21 
22 extern crate num_traits as traits;
23 
24 use core::mem;
25 use core::ops::Add;
26 
27 use traits::{Num, Signed, Zero};
28 
29 mod roots;
30 pub use roots::Roots;
31 pub use roots::{cbrt, nth_root, sqrt};
32 
33 pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
34     /// Floored integer division.
35     ///
36     /// # Examples
37     ///
38     /// ~~~
39     /// # use num_integer::Integer;
40     /// assert!(( 8).div_floor(& 3) ==  2);
41     /// assert!(( 8).div_floor(&-3) == -3);
42     /// assert!((-8).div_floor(& 3) == -3);
43     /// assert!((-8).div_floor(&-3) ==  2);
44     ///
45     /// assert!(( 1).div_floor(& 2) ==  0);
46     /// assert!(( 1).div_floor(&-2) == -1);
47     /// assert!((-1).div_floor(& 2) == -1);
48     /// assert!((-1).div_floor(&-2) ==  0);
49     /// ~~~
div_floor(&self, other: &Self) -> Self50     fn div_floor(&self, other: &Self) -> Self;
51 
52     /// Floored integer modulo, satisfying:
53     ///
54     /// ~~~
55     /// # use num_integer::Integer;
56     /// # let n = 1; let d = 1;
57     /// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
58     /// ~~~
59     ///
60     /// # Examples
61     ///
62     /// ~~~
63     /// # use num_integer::Integer;
64     /// assert!(( 8).mod_floor(& 3) ==  2);
65     /// assert!(( 8).mod_floor(&-3) == -1);
66     /// assert!((-8).mod_floor(& 3) ==  1);
67     /// assert!((-8).mod_floor(&-3) == -2);
68     ///
69     /// assert!(( 1).mod_floor(& 2) ==  1);
70     /// assert!(( 1).mod_floor(&-2) == -1);
71     /// assert!((-1).mod_floor(& 2) ==  1);
72     /// assert!((-1).mod_floor(&-2) == -1);
73     /// ~~~
mod_floor(&self, other: &Self) -> Self74     fn mod_floor(&self, other: &Self) -> Self;
75 
76     /// Ceiled integer division.
77     ///
78     /// # Examples
79     ///
80     /// ~~~
81     /// # use num_integer::Integer;
82     /// assert_eq!(( 8).div_ceil( &3),  3);
83     /// assert_eq!(( 8).div_ceil(&-3), -2);
84     /// assert_eq!((-8).div_ceil( &3), -2);
85     /// assert_eq!((-8).div_ceil(&-3),  3);
86     ///
87     /// assert_eq!(( 1).div_ceil( &2), 1);
88     /// assert_eq!(( 1).div_ceil(&-2), 0);
89     /// assert_eq!((-1).div_ceil( &2), 0);
90     /// assert_eq!((-1).div_ceil(&-2), 1);
91     /// ~~~
div_ceil(&self, other: &Self) -> Self92     fn div_ceil(&self, other: &Self) -> Self {
93         let (q, r) = self.div_mod_floor(other);
94         if r.is_zero() {
95             q
96         } else {
97             q + Self::one()
98         }
99     }
100 
101     /// Greatest Common Divisor (GCD).
102     ///
103     /// # Examples
104     ///
105     /// ~~~
106     /// # use num_integer::Integer;
107     /// assert_eq!(6.gcd(&8), 2);
108     /// assert_eq!(7.gcd(&3), 1);
109     /// ~~~
gcd(&self, other: &Self) -> Self110     fn gcd(&self, other: &Self) -> Self;
111 
112     /// Lowest Common Multiple (LCM).
113     ///
114     /// # Examples
115     ///
116     /// ~~~
117     /// # use num_integer::Integer;
118     /// assert_eq!(7.lcm(&3), 21);
119     /// assert_eq!(2.lcm(&4), 4);
120     /// assert_eq!(0.lcm(&0), 0);
121     /// ~~~
lcm(&self, other: &Self) -> Self122     fn lcm(&self, other: &Self) -> Self;
123 
124     /// Greatest Common Divisor (GCD) and
125     /// Lowest Common Multiple (LCM) together.
126     ///
127     /// Potentially more efficient than calling `gcd` and `lcm`
128     /// individually for identical inputs.
129     ///
130     /// # Examples
131     ///
132     /// ~~~
133     /// # use num_integer::Integer;
134     /// assert_eq!(10.gcd_lcm(&4), (2, 20));
135     /// assert_eq!(8.gcd_lcm(&9), (1, 72));
136     /// ~~~
137     #[inline]
gcd_lcm(&self, other: &Self) -> (Self, Self)138     fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
139         (self.gcd(other), self.lcm(other))
140     }
141 
142     /// Greatest common divisor and Bézout coefficients.
143     ///
144     /// # Examples
145     ///
146     /// ~~~
147     /// # extern crate num_integer;
148     /// # extern crate num_traits;
149     /// # fn main() {
150     /// # use num_integer::{ExtendedGcd, Integer};
151     /// # use num_traits::NumAssign;
152     /// fn check<A: Copy + Integer + NumAssign>(a: A, b: A) -> bool {
153     ///     let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
154     ///     gcd == x * a + y * b
155     /// }
156     /// assert!(check(10isize, 4isize));
157     /// assert!(check(8isize,  9isize));
158     /// # }
159     /// ~~~
160     #[inline]
extended_gcd(&self, other: &Self) -> ExtendedGcd<Self> where Self: Clone,161     fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
162     where
163         Self: Clone,
164     {
165         let mut s = (Self::zero(), Self::one());
166         let mut t = (Self::one(), Self::zero());
167         let mut r = (other.clone(), self.clone());
168 
169         while !r.0.is_zero() {
170             let q = r.1.clone() / r.0.clone();
171             let f = |mut r: (Self, Self)| {
172                 mem::swap(&mut r.0, &mut r.1);
173                 r.0 = r.0 - q.clone() * r.1.clone();
174                 r
175             };
176             r = f(r);
177             s = f(s);
178             t = f(t);
179         }
180 
181         if r.1 >= Self::zero() {
182             ExtendedGcd {
183                 gcd: r.1,
184                 x: s.1,
185                 y: t.1,
186                 _hidden: (),
187             }
188         } else {
189             ExtendedGcd {
190                 gcd: Self::zero() - r.1,
191                 x: Self::zero() - s.1,
192                 y: Self::zero() - t.1,
193                 _hidden: (),
194             }
195         }
196     }
197 
198     /// Greatest common divisor, least common multiple, and Bézout coefficients.
199     #[inline]
extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) where Self: Clone + Signed,200     fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self)
201     where
202         Self: Clone + Signed,
203     {
204         (self.extended_gcd(other), self.lcm(other))
205     }
206 
207     /// Deprecated, use `is_multiple_of` instead.
divides(&self, other: &Self) -> bool208     fn divides(&self, other: &Self) -> bool;
209 
210     /// Returns `true` if `self` is a multiple of `other`.
211     ///
212     /// # Examples
213     ///
214     /// ~~~
215     /// # use num_integer::Integer;
216     /// assert_eq!(9.is_multiple_of(&3), true);
217     /// assert_eq!(3.is_multiple_of(&9), false);
218     /// ~~~
is_multiple_of(&self, other: &Self) -> bool219     fn is_multiple_of(&self, other: &Self) -> bool;
220 
221     /// Returns `true` if the number is even.
222     ///
223     /// # Examples
224     ///
225     /// ~~~
226     /// # use num_integer::Integer;
227     /// assert_eq!(3.is_even(), false);
228     /// assert_eq!(4.is_even(), true);
229     /// ~~~
is_even(&self) -> bool230     fn is_even(&self) -> bool;
231 
232     /// Returns `true` if the number is odd.
233     ///
234     /// # Examples
235     ///
236     /// ~~~
237     /// # use num_integer::Integer;
238     /// assert_eq!(3.is_odd(), true);
239     /// assert_eq!(4.is_odd(), false);
240     /// ~~~
is_odd(&self) -> bool241     fn is_odd(&self) -> bool;
242 
243     /// Simultaneous truncated integer division and modulus.
244     /// Returns `(quotient, remainder)`.
245     ///
246     /// # Examples
247     ///
248     /// ~~~
249     /// # use num_integer::Integer;
250     /// assert_eq!(( 8).div_rem( &3), ( 2,  2));
251     /// assert_eq!(( 8).div_rem(&-3), (-2,  2));
252     /// assert_eq!((-8).div_rem( &3), (-2, -2));
253     /// assert_eq!((-8).div_rem(&-3), ( 2, -2));
254     ///
255     /// assert_eq!(( 1).div_rem( &2), ( 0,  1));
256     /// assert_eq!(( 1).div_rem(&-2), ( 0,  1));
257     /// assert_eq!((-1).div_rem( &2), ( 0, -1));
258     /// assert_eq!((-1).div_rem(&-2), ( 0, -1));
259     /// ~~~
div_rem(&self, other: &Self) -> (Self, Self)260     fn div_rem(&self, other: &Self) -> (Self, Self);
261 
262     /// Simultaneous floored integer division and modulus.
263     /// Returns `(quotient, remainder)`.
264     ///
265     /// # Examples
266     ///
267     /// ~~~
268     /// # use num_integer::Integer;
269     /// assert_eq!(( 8).div_mod_floor( &3), ( 2,  2));
270     /// assert_eq!(( 8).div_mod_floor(&-3), (-3, -1));
271     /// assert_eq!((-8).div_mod_floor( &3), (-3,  1));
272     /// assert_eq!((-8).div_mod_floor(&-3), ( 2, -2));
273     ///
274     /// assert_eq!(( 1).div_mod_floor( &2), ( 0,  1));
275     /// assert_eq!(( 1).div_mod_floor(&-2), (-1, -1));
276     /// assert_eq!((-1).div_mod_floor( &2), (-1,  1));
277     /// assert_eq!((-1).div_mod_floor(&-2), ( 0, -1));
278     /// ~~~
div_mod_floor(&self, other: &Self) -> (Self, Self)279     fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
280         (self.div_floor(other), self.mod_floor(other))
281     }
282 
283     /// Rounds up to nearest multiple of argument.
284     ///
285     /// # Notes
286     ///
287     /// For signed types, `a.next_multiple_of(b) = a.prev_multiple_of(b.neg())`.
288     ///
289     /// # Examples
290     ///
291     /// ~~~
292     /// # use num_integer::Integer;
293     /// assert_eq!(( 16).next_multiple_of(& 8),  16);
294     /// assert_eq!(( 23).next_multiple_of(& 8),  24);
295     /// assert_eq!(( 16).next_multiple_of(&-8),  16);
296     /// assert_eq!(( 23).next_multiple_of(&-8),  16);
297     /// assert_eq!((-16).next_multiple_of(& 8), -16);
298     /// assert_eq!((-23).next_multiple_of(& 8), -16);
299     /// assert_eq!((-16).next_multiple_of(&-8), -16);
300     /// assert_eq!((-23).next_multiple_of(&-8), -24);
301     /// ~~~
302     #[inline]
next_multiple_of(&self, other: &Self) -> Self where Self: Clone,303     fn next_multiple_of(&self, other: &Self) -> Self
304     where
305         Self: Clone,
306     {
307         let m = self.mod_floor(other);
308         self.clone()
309             + if m.is_zero() {
310                 Self::zero()
311             } else {
312                 other.clone() - m
313             }
314     }
315 
316     /// Rounds down to nearest multiple of argument.
317     ///
318     /// # Notes
319     ///
320     /// For signed types, `a.prev_multiple_of(b) = a.next_multiple_of(b.neg())`.
321     ///
322     /// # Examples
323     ///
324     /// ~~~
325     /// # use num_integer::Integer;
326     /// assert_eq!(( 16).prev_multiple_of(& 8),  16);
327     /// assert_eq!(( 23).prev_multiple_of(& 8),  16);
328     /// assert_eq!(( 16).prev_multiple_of(&-8),  16);
329     /// assert_eq!(( 23).prev_multiple_of(&-8),  24);
330     /// assert_eq!((-16).prev_multiple_of(& 8), -16);
331     /// assert_eq!((-23).prev_multiple_of(& 8), -24);
332     /// assert_eq!((-16).prev_multiple_of(&-8), -16);
333     /// assert_eq!((-23).prev_multiple_of(&-8), -16);
334     /// ~~~
335     #[inline]
prev_multiple_of(&self, other: &Self) -> Self where Self: Clone,336     fn prev_multiple_of(&self, other: &Self) -> Self
337     where
338         Self: Clone,
339     {
340         self.clone() - self.mod_floor(other)
341     }
342 }
343 
344 /// Greatest common divisor and Bézout coefficients
345 ///
346 /// ```no_build
347 /// let e = isize::extended_gcd(a, b);
348 /// assert_eq!(e.gcd, e.x*a + e.y*b);
349 /// ```
350 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
351 pub struct ExtendedGcd<A> {
352     pub gcd: A,
353     pub x: A,
354     pub y: A,
355     _hidden: (),
356 }
357 
358 /// Simultaneous integer division and modulus
359 #[inline]
div_rem<T: Integer>(x: T, y: T) -> (T, T)360 pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) {
361     x.div_rem(&y)
362 }
363 /// Floored integer division
364 #[inline]
div_floor<T: Integer>(x: T, y: T) -> T365 pub fn div_floor<T: Integer>(x: T, y: T) -> T {
366     x.div_floor(&y)
367 }
368 /// Floored integer modulus
369 #[inline]
mod_floor<T: Integer>(x: T, y: T) -> T370 pub fn mod_floor<T: Integer>(x: T, y: T) -> T {
371     x.mod_floor(&y)
372 }
373 /// Simultaneous floored integer division and modulus
374 #[inline]
div_mod_floor<T: Integer>(x: T, y: T) -> (T, T)375 pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) {
376     x.div_mod_floor(&y)
377 }
378 /// Ceiled integer division
379 #[inline]
div_ceil<T: Integer>(x: T, y: T) -> T380 pub fn div_ceil<T: Integer>(x: T, y: T) -> T {
381     x.div_ceil(&y)
382 }
383 
384 /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The
385 /// result is always positive.
386 #[inline(always)]
gcd<T: Integer>(x: T, y: T) -> T387 pub fn gcd<T: Integer>(x: T, y: T) -> T {
388     x.gcd(&y)
389 }
390 /// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
391 #[inline(always)]
lcm<T: Integer>(x: T, y: T) -> T392 pub fn lcm<T: Integer>(x: T, y: T) -> T {
393     x.lcm(&y)
394 }
395 
396 /// Calculates the Greatest Common Divisor (GCD) and
397 /// Lowest Common Multiple (LCM) of the number and `other`.
398 #[inline(always)]
gcd_lcm<T: Integer>(x: T, y: T) -> (T, T)399 pub fn gcd_lcm<T: Integer>(x: T, y: T) -> (T, T) {
400     x.gcd_lcm(&y)
401 }
402 
403 macro_rules! impl_integer_for_isize {
404     ($T:ty, $test_mod:ident) => {
405         impl Integer for $T {
406             /// Floored integer division
407             #[inline]
408             fn div_floor(&self, other: &Self) -> Self {
409                 // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
410                 // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
411                 let (d, r) = self.div_rem(other);
412                 if (r > 0 && *other < 0) || (r < 0 && *other > 0) {
413                     d - 1
414                 } else {
415                     d
416                 }
417             }
418 
419             /// Floored integer modulo
420             #[inline]
421             fn mod_floor(&self, other: &Self) -> Self {
422                 // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
423                 // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
424                 let r = *self % *other;
425                 if (r > 0 && *other < 0) || (r < 0 && *other > 0) {
426                     r + *other
427                 } else {
428                     r
429                 }
430             }
431 
432             /// Calculates `div_floor` and `mod_floor` simultaneously
433             #[inline]
434             fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
435                 // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
436                 // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
437                 let (d, r) = self.div_rem(other);
438                 if (r > 0 && *other < 0) || (r < 0 && *other > 0) {
439                     (d - 1, r + *other)
440                 } else {
441                     (d, r)
442                 }
443             }
444 
445             #[inline]
446             fn div_ceil(&self, other: &Self) -> Self {
447                 let (d, r) = self.div_rem(other);
448                 if (r > 0 && *other > 0) || (r < 0 && *other < 0) {
449                     d + 1
450                 } else {
451                     d
452                 }
453             }
454 
455             /// Calculates the Greatest Common Divisor (GCD) of the number and
456             /// `other`. The result is always positive.
457             #[inline]
458             fn gcd(&self, other: &Self) -> Self {
459                 // Use Stein's algorithm
460                 let mut m = *self;
461                 let mut n = *other;
462                 if m == 0 || n == 0 {
463                     return (m | n).abs();
464                 }
465 
466                 // find common factors of 2
467                 let shift = (m | n).trailing_zeros();
468 
469                 // The algorithm needs positive numbers, but the minimum value
470                 // can't be represented as a positive one.
471                 // It's also a power of two, so the gcd can be
472                 // calculated by bitshifting in that case
473 
474                 // Assuming two's complement, the number created by the shift
475                 // is positive for all numbers except gcd = abs(min value)
476                 // The call to .abs() causes a panic in debug mode
477                 if m == Self::min_value() || n == Self::min_value() {
478                     return (1 << shift).abs();
479                 }
480 
481                 // guaranteed to be positive now, rest like unsigned algorithm
482                 m = m.abs();
483                 n = n.abs();
484 
485                 // divide n and m by 2 until odd
486                 m >>= m.trailing_zeros();
487                 n >>= n.trailing_zeros();
488 
489                 while m != n {
490                     if m > n {
491                         m -= n;
492                         m >>= m.trailing_zeros();
493                     } else {
494                         n -= m;
495                         n >>= n.trailing_zeros();
496                     }
497                 }
498                 m << shift
499             }
500 
501             #[inline]
502             fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) {
503                 let egcd = self.extended_gcd(other);
504                 // should not have to recalculate abs
505                 let lcm = if egcd.gcd.is_zero() {
506                     Self::zero()
507                 } else {
508                     (*self * (*other / egcd.gcd)).abs()
509                 };
510                 (egcd, lcm)
511             }
512 
513             /// Calculates the Lowest Common Multiple (LCM) of the number and
514             /// `other`.
515             #[inline]
516             fn lcm(&self, other: &Self) -> Self {
517                 self.gcd_lcm(other).1
518             }
519 
520             /// Calculates the Greatest Common Divisor (GCD) and
521             /// Lowest Common Multiple (LCM) of the number and `other`.
522             #[inline]
523             fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
524                 if self.is_zero() && other.is_zero() {
525                     return (Self::zero(), Self::zero());
526                 }
527                 let gcd = self.gcd(other);
528                 // should not have to recalculate abs
529                 let lcm = (*self * (*other / gcd)).abs();
530                 (gcd, lcm)
531             }
532 
533             /// Deprecated, use `is_multiple_of` instead.
534             #[inline]
535             fn divides(&self, other: &Self) -> bool {
536                 self.is_multiple_of(other)
537             }
538 
539             /// Returns `true` if the number is a multiple of `other`.
540             #[inline]
541             fn is_multiple_of(&self, other: &Self) -> bool {
542                 *self % *other == 0
543             }
544 
545             /// Returns `true` if the number is divisible by `2`
546             #[inline]
547             fn is_even(&self) -> bool {
548                 (*self) & 1 == 0
549             }
550 
551             /// Returns `true` if the number is not divisible by `2`
552             #[inline]
553             fn is_odd(&self) -> bool {
554                 !self.is_even()
555             }
556 
557             /// Simultaneous truncated integer division and modulus.
558             #[inline]
559             fn div_rem(&self, other: &Self) -> (Self, Self) {
560                 (*self / *other, *self % *other)
561             }
562         }
563 
564         #[cfg(test)]
565         mod $test_mod {
566             use core::mem;
567             use Integer;
568 
569             /// Checks that the division rule holds for:
570             ///
571             /// - `n`: numerator (dividend)
572             /// - `d`: denominator (divisor)
573             /// - `qr`: quotient and remainder
574             #[cfg(test)]
575             fn test_division_rule((n, d): ($T, $T), (q, r): ($T, $T)) {
576                 assert_eq!(d * q + r, n);
577             }
578 
579             #[test]
580             fn test_div_rem() {
581                 fn test_nd_dr(nd: ($T, $T), qr: ($T, $T)) {
582                     let (n, d) = nd;
583                     let separate_div_rem = (n / d, n % d);
584                     let combined_div_rem = n.div_rem(&d);
585 
586                     assert_eq!(separate_div_rem, qr);
587                     assert_eq!(combined_div_rem, qr);
588 
589                     test_division_rule(nd, separate_div_rem);
590                     test_division_rule(nd, combined_div_rem);
591                 }
592 
593                 test_nd_dr((8, 3), (2, 2));
594                 test_nd_dr((8, -3), (-2, 2));
595                 test_nd_dr((-8, 3), (-2, -2));
596                 test_nd_dr((-8, -3), (2, -2));
597 
598                 test_nd_dr((1, 2), (0, 1));
599                 test_nd_dr((1, -2), (0, 1));
600                 test_nd_dr((-1, 2), (0, -1));
601                 test_nd_dr((-1, -2), (0, -1));
602             }
603 
604             #[test]
605             fn test_div_mod_floor() {
606                 fn test_nd_dm(nd: ($T, $T), dm: ($T, $T)) {
607                     let (n, d) = nd;
608                     let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
609                     let combined_div_mod_floor = n.div_mod_floor(&d);
610 
611                     assert_eq!(separate_div_mod_floor, dm);
612                     assert_eq!(combined_div_mod_floor, dm);
613 
614                     test_division_rule(nd, separate_div_mod_floor);
615                     test_division_rule(nd, combined_div_mod_floor);
616                 }
617 
618                 test_nd_dm((8, 3), (2, 2));
619                 test_nd_dm((8, -3), (-3, -1));
620                 test_nd_dm((-8, 3), (-3, 1));
621                 test_nd_dm((-8, -3), (2, -2));
622 
623                 test_nd_dm((1, 2), (0, 1));
624                 test_nd_dm((1, -2), (-1, -1));
625                 test_nd_dm((-1, 2), (-1, 1));
626                 test_nd_dm((-1, -2), (0, -1));
627             }
628 
629             #[test]
630             fn test_gcd() {
631                 assert_eq!((10 as $T).gcd(&2), 2 as $T);
632                 assert_eq!((10 as $T).gcd(&3), 1 as $T);
633                 assert_eq!((0 as $T).gcd(&3), 3 as $T);
634                 assert_eq!((3 as $T).gcd(&3), 3 as $T);
635                 assert_eq!((56 as $T).gcd(&42), 14 as $T);
636                 assert_eq!((3 as $T).gcd(&-3), 3 as $T);
637                 assert_eq!((-6 as $T).gcd(&3), 3 as $T);
638                 assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
639             }
640 
641             #[test]
642             fn test_gcd_cmp_with_euclidean() {
643                 fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
644                     while m != 0 {
645                         mem::swap(&mut m, &mut n);
646                         m %= n;
647                     }
648 
649                     n.abs()
650                 }
651 
652                 // gcd(-128, b) = 128 is not representable as positive value
653                 // for i8
654                 for i in -127..127 {
655                     for j in -127..127 {
656                         assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
657                     }
658                 }
659 
660                 // last value
661                 // FIXME: Use inclusive ranges for above loop when implemented
662                 let i = 127;
663                 for j in -127..127 {
664                     assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
665                 }
666                 assert_eq!(127.gcd(&127), 127);
667             }
668 
669             #[test]
670             fn test_gcd_min_val() {
671                 let min = <$T>::min_value();
672                 let max = <$T>::max_value();
673                 let max_pow2 = max / 2 + 1;
674                 assert_eq!(min.gcd(&max), 1 as $T);
675                 assert_eq!(max.gcd(&min), 1 as $T);
676                 assert_eq!(min.gcd(&max_pow2), max_pow2);
677                 assert_eq!(max_pow2.gcd(&min), max_pow2);
678                 assert_eq!(min.gcd(&42), 2 as $T);
679                 assert_eq!((42 as $T).gcd(&min), 2 as $T);
680             }
681 
682             #[test]
683             #[should_panic]
684             fn test_gcd_min_val_min_val() {
685                 let min = <$T>::min_value();
686                 assert!(min.gcd(&min) >= 0);
687             }
688 
689             #[test]
690             #[should_panic]
691             fn test_gcd_min_val_0() {
692                 let min = <$T>::min_value();
693                 assert!(min.gcd(&0) >= 0);
694             }
695 
696             #[test]
697             #[should_panic]
698             fn test_gcd_0_min_val() {
699                 let min = <$T>::min_value();
700                 assert!((0 as $T).gcd(&min) >= 0);
701             }
702 
703             #[test]
704             fn test_lcm() {
705                 assert_eq!((1 as $T).lcm(&0), 0 as $T);
706                 assert_eq!((0 as $T).lcm(&1), 0 as $T);
707                 assert_eq!((1 as $T).lcm(&1), 1 as $T);
708                 assert_eq!((-1 as $T).lcm(&1), 1 as $T);
709                 assert_eq!((1 as $T).lcm(&-1), 1 as $T);
710                 assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
711                 assert_eq!((8 as $T).lcm(&9), 72 as $T);
712                 assert_eq!((11 as $T).lcm(&5), 55 as $T);
713             }
714 
715             #[test]
716             fn test_gcd_lcm() {
717                 use core::iter::once;
718                 for i in once(0)
719                     .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
720                     .chain(once(-128))
721                 {
722                     for j in once(0)
723                         .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
724                         .chain(once(-128))
725                     {
726                         assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j)));
727                     }
728                 }
729             }
730 
731             #[test]
732             fn test_extended_gcd_lcm() {
733                 use core::fmt::Debug;
734                 use traits::NumAssign;
735                 use ExtendedGcd;
736 
737                 fn check<A: Copy + Debug + Integer + NumAssign>(a: A, b: A) {
738                     let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
739                     assert_eq!(gcd, x * a + y * b);
740                 }
741 
742                 use core::iter::once;
743                 for i in once(0)
744                     .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
745                     .chain(once(-128))
746                 {
747                     for j in once(0)
748                         .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
749                         .chain(once(-128))
750                     {
751                         check(i, j);
752                         let (ExtendedGcd { gcd, .. }, lcm) = i.extended_gcd_lcm(&j);
753                         assert_eq!((gcd, lcm), (i.gcd(&j), i.lcm(&j)));
754                     }
755                 }
756             }
757 
758             #[test]
759             fn test_even() {
760                 assert_eq!((-4 as $T).is_even(), true);
761                 assert_eq!((-3 as $T).is_even(), false);
762                 assert_eq!((-2 as $T).is_even(), true);
763                 assert_eq!((-1 as $T).is_even(), false);
764                 assert_eq!((0 as $T).is_even(), true);
765                 assert_eq!((1 as $T).is_even(), false);
766                 assert_eq!((2 as $T).is_even(), true);
767                 assert_eq!((3 as $T).is_even(), false);
768                 assert_eq!((4 as $T).is_even(), true);
769             }
770 
771             #[test]
772             fn test_odd() {
773                 assert_eq!((-4 as $T).is_odd(), false);
774                 assert_eq!((-3 as $T).is_odd(), true);
775                 assert_eq!((-2 as $T).is_odd(), false);
776                 assert_eq!((-1 as $T).is_odd(), true);
777                 assert_eq!((0 as $T).is_odd(), false);
778                 assert_eq!((1 as $T).is_odd(), true);
779                 assert_eq!((2 as $T).is_odd(), false);
780                 assert_eq!((3 as $T).is_odd(), true);
781                 assert_eq!((4 as $T).is_odd(), false);
782             }
783         }
784     };
785 }
786 
787 impl_integer_for_isize!(i8, test_integer_i8);
788 impl_integer_for_isize!(i16, test_integer_i16);
789 impl_integer_for_isize!(i32, test_integer_i32);
790 impl_integer_for_isize!(i64, test_integer_i64);
791 impl_integer_for_isize!(isize, test_integer_isize);
792 #[cfg(has_i128)]
793 impl_integer_for_isize!(i128, test_integer_i128);
794 
795 macro_rules! impl_integer_for_usize {
796     ($T:ty, $test_mod:ident) => {
797         impl Integer for $T {
798             /// Unsigned integer division. Returns the same result as `div` (`/`).
799             #[inline]
800             fn div_floor(&self, other: &Self) -> Self {
801                 *self / *other
802             }
803 
804             /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
805             #[inline]
806             fn mod_floor(&self, other: &Self) -> Self {
807                 *self % *other
808             }
809 
810             #[inline]
811             fn div_ceil(&self, other: &Self) -> Self {
812                 *self / *other + (0 != *self % *other) as Self
813             }
814 
815             /// Calculates the Greatest Common Divisor (GCD) of the number and `other`
816             #[inline]
817             fn gcd(&self, other: &Self) -> Self {
818                 // Use Stein's algorithm
819                 let mut m = *self;
820                 let mut n = *other;
821                 if m == 0 || n == 0 {
822                     return m | n;
823                 }
824 
825                 // find common factors of 2
826                 let shift = (m | n).trailing_zeros();
827 
828                 // divide n and m by 2 until odd
829                 m >>= m.trailing_zeros();
830                 n >>= n.trailing_zeros();
831 
832                 while m != n {
833                     if m > n {
834                         m -= n;
835                         m >>= m.trailing_zeros();
836                     } else {
837                         n -= m;
838                         n >>= n.trailing_zeros();
839                     }
840                 }
841                 m << shift
842             }
843 
844             #[inline]
845             fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) {
846                 let egcd = self.extended_gcd(other);
847                 // should not have to recalculate abs
848                 let lcm = if egcd.gcd.is_zero() {
849                     Self::zero()
850                 } else {
851                     *self * (*other / egcd.gcd)
852                 };
853                 (egcd, lcm)
854             }
855 
856             /// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
857             #[inline]
858             fn lcm(&self, other: &Self) -> Self {
859                 self.gcd_lcm(other).1
860             }
861 
862             /// Calculates the Greatest Common Divisor (GCD) and
863             /// Lowest Common Multiple (LCM) of the number and `other`.
864             #[inline]
865             fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
866                 if self.is_zero() && other.is_zero() {
867                     return (Self::zero(), Self::zero());
868                 }
869                 let gcd = self.gcd(other);
870                 let lcm = *self * (*other / gcd);
871                 (gcd, lcm)
872             }
873 
874             /// Deprecated, use `is_multiple_of` instead.
875             #[inline]
876             fn divides(&self, other: &Self) -> bool {
877                 self.is_multiple_of(other)
878             }
879 
880             /// Returns `true` if the number is a multiple of `other`.
881             #[inline]
882             fn is_multiple_of(&self, other: &Self) -> bool {
883                 *self % *other == 0
884             }
885 
886             /// Returns `true` if the number is divisible by `2`.
887             #[inline]
888             fn is_even(&self) -> bool {
889                 *self % 2 == 0
890             }
891 
892             /// Returns `true` if the number is not divisible by `2`.
893             #[inline]
894             fn is_odd(&self) -> bool {
895                 !self.is_even()
896             }
897 
898             /// Simultaneous truncated integer division and modulus.
899             #[inline]
900             fn div_rem(&self, other: &Self) -> (Self, Self) {
901                 (*self / *other, *self % *other)
902             }
903         }
904 
905         #[cfg(test)]
906         mod $test_mod {
907             use core::mem;
908             use Integer;
909 
910             #[test]
911             fn test_div_mod_floor() {
912                 assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T);
913                 assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T);
914                 assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T));
915                 assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T);
916                 assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T);
917                 assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T));
918                 assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T);
919                 assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T);
920                 assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T));
921             }
922 
923             #[test]
924             fn test_gcd() {
925                 assert_eq!((10 as $T).gcd(&2), 2 as $T);
926                 assert_eq!((10 as $T).gcd(&3), 1 as $T);
927                 assert_eq!((0 as $T).gcd(&3), 3 as $T);
928                 assert_eq!((3 as $T).gcd(&3), 3 as $T);
929                 assert_eq!((56 as $T).gcd(&42), 14 as $T);
930             }
931 
932             #[test]
933             fn test_gcd_cmp_with_euclidean() {
934                 fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
935                     while m != 0 {
936                         mem::swap(&mut m, &mut n);
937                         m %= n;
938                     }
939                     n
940                 }
941 
942                 for i in 0..255 {
943                     for j in 0..255 {
944                         assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
945                     }
946                 }
947 
948                 // last value
949                 // FIXME: Use inclusive ranges for above loop when implemented
950                 let i = 255;
951                 for j in 0..255 {
952                     assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
953                 }
954                 assert_eq!(255.gcd(&255), 255);
955             }
956 
957             #[test]
958             fn test_lcm() {
959                 assert_eq!((1 as $T).lcm(&0), 0 as $T);
960                 assert_eq!((0 as $T).lcm(&1), 0 as $T);
961                 assert_eq!((1 as $T).lcm(&1), 1 as $T);
962                 assert_eq!((8 as $T).lcm(&9), 72 as $T);
963                 assert_eq!((11 as $T).lcm(&5), 55 as $T);
964                 assert_eq!((15 as $T).lcm(&17), 255 as $T);
965             }
966 
967             #[test]
968             fn test_gcd_lcm() {
969                 for i in (0..).take(256) {
970                     for j in (0..).take(256) {
971                         assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j)));
972                     }
973                 }
974             }
975 
976             #[test]
977             fn test_is_multiple_of() {
978                 assert!((6 as $T).is_multiple_of(&(6 as $T)));
979                 assert!((6 as $T).is_multiple_of(&(3 as $T)));
980                 assert!((6 as $T).is_multiple_of(&(1 as $T)));
981             }
982 
983             #[test]
984             fn test_even() {
985                 assert_eq!((0 as $T).is_even(), true);
986                 assert_eq!((1 as $T).is_even(), false);
987                 assert_eq!((2 as $T).is_even(), true);
988                 assert_eq!((3 as $T).is_even(), false);
989                 assert_eq!((4 as $T).is_even(), true);
990             }
991 
992             #[test]
993             fn test_odd() {
994                 assert_eq!((0 as $T).is_odd(), false);
995                 assert_eq!((1 as $T).is_odd(), true);
996                 assert_eq!((2 as $T).is_odd(), false);
997                 assert_eq!((3 as $T).is_odd(), true);
998                 assert_eq!((4 as $T).is_odd(), false);
999             }
1000         }
1001     };
1002 }
1003 
1004 impl_integer_for_usize!(u8, test_integer_u8);
1005 impl_integer_for_usize!(u16, test_integer_u16);
1006 impl_integer_for_usize!(u32, test_integer_u32);
1007 impl_integer_for_usize!(u64, test_integer_u64);
1008 impl_integer_for_usize!(usize, test_integer_usize);
1009 #[cfg(has_i128)]
1010 impl_integer_for_usize!(u128, test_integer_u128);
1011 
1012 /// An iterator over binomial coefficients.
1013 pub struct IterBinomial<T> {
1014     a: T,
1015     n: T,
1016     k: T,
1017 }
1018 
1019 impl<T> IterBinomial<T>
1020 where
1021     T: Integer,
1022 {
1023     /// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n.
1024     ///
1025     /// Note that this might overflow, depending on `T`. For the primitive
1026     /// integer types, the following n are the largest ones for which there will
1027     /// be no overflow:
1028     ///
1029     /// type | n
1030     /// -----|---
1031     /// u8   | 10
1032     /// i8   |  9
1033     /// u16  | 18
1034     /// i16  | 17
1035     /// u32  | 34
1036     /// i32  | 33
1037     /// u64  | 67
1038     /// i64  | 66
1039     ///
1040     /// For larger n, `T` should be a bigint type.
new(n: T) -> IterBinomial<T>1041     pub fn new(n: T) -> IterBinomial<T> {
1042         IterBinomial {
1043             k: T::zero(),
1044             a: T::one(),
1045             n: n,
1046         }
1047     }
1048 }
1049 
1050 impl<T> Iterator for IterBinomial<T>
1051 where
1052     T: Integer + Clone,
1053 {
1054     type Item = T;
1055 
next(&mut self) -> Option<T>1056     fn next(&mut self) -> Option<T> {
1057         if self.k > self.n {
1058             return None;
1059         }
1060         self.a = if !self.k.is_zero() {
1061             multiply_and_divide(
1062                 self.a.clone(),
1063                 self.n.clone() - self.k.clone() + T::one(),
1064                 self.k.clone(),
1065             )
1066         } else {
1067             T::one()
1068         };
1069         self.k = self.k.clone() + T::one();
1070         Some(self.a.clone())
1071     }
1072 }
1073 
1074 /// Calculate r * a / b, avoiding overflows and fractions.
1075 ///
1076 /// Assumes that b divides r * a evenly.
multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T1077 fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T {
1078     // See http://blog.plover.com/math/choose-2.html for the idea.
1079     let g = gcd(r.clone(), b.clone());
1080     r / g.clone() * (a / (b / g))
1081 }
1082 
1083 /// Calculate the binomial coefficient.
1084 ///
1085 /// Note that this might overflow, depending on `T`. For the primitive integer
1086 /// types, the following n are the largest ones possible such that there will
1087 /// be no overflow for any k:
1088 ///
1089 /// type | n
1090 /// -----|---
1091 /// u8   | 10
1092 /// i8   |  9
1093 /// u16  | 18
1094 /// i16  | 17
1095 /// u32  | 34
1096 /// i32  | 33
1097 /// u64  | 67
1098 /// i64  | 66
1099 ///
1100 /// For larger n, consider using a bigint type for `T`.
binomial<T: Integer + Clone>(mut n: T, k: T) -> T1101 pub fn binomial<T: Integer + Clone>(mut n: T, k: T) -> T {
1102     // See http://blog.plover.com/math/choose.html for the idea.
1103     if k > n {
1104         return T::zero();
1105     }
1106     if k > n.clone() - k.clone() {
1107         return binomial(n.clone(), n - k);
1108     }
1109     let mut r = T::one();
1110     let mut d = T::one();
1111     loop {
1112         if d > k {
1113             break;
1114         }
1115         r = multiply_and_divide(r, n.clone(), d.clone());
1116         n = n - T::one();
1117         d = d + T::one();
1118     }
1119     r
1120 }
1121 
1122 /// Calculate the multinomial coefficient.
multinomial<T: Integer + Clone>(k: &[T]) -> T where for<'a> T: Add<&'a T, Output = T>,1123 pub fn multinomial<T: Integer + Clone>(k: &[T]) -> T
1124 where
1125     for<'a> T: Add<&'a T, Output = T>,
1126 {
1127     let mut r = T::one();
1128     let mut p = T::zero();
1129     for i in k {
1130         p = p + i;
1131         r = r * binomial(p.clone(), i.clone());
1132     }
1133     r
1134 }
1135 
1136 #[test]
test_lcm_overflow()1137 fn test_lcm_overflow() {
1138     macro_rules! check {
1139         ($t:ty, $x:expr, $y:expr, $r:expr) => {{
1140             let x: $t = $x;
1141             let y: $t = $y;
1142             let o = x.checked_mul(y);
1143             assert!(
1144                 o.is_none(),
1145                 "sanity checking that {} input {} * {} overflows",
1146                 stringify!($t),
1147                 x,
1148                 y
1149             );
1150             assert_eq!(x.lcm(&y), $r);
1151             assert_eq!(y.lcm(&x), $r);
1152         }};
1153     }
1154 
1155     // Original bug (Issue #166)
1156     check!(i64, 46656000000000000, 600, 46656000000000000);
1157 
1158     check!(i8, 0x40, 0x04, 0x40);
1159     check!(u8, 0x80, 0x02, 0x80);
1160     check!(i16, 0x40_00, 0x04, 0x40_00);
1161     check!(u16, 0x80_00, 0x02, 0x80_00);
1162     check!(i32, 0x4000_0000, 0x04, 0x4000_0000);
1163     check!(u32, 0x8000_0000, 0x02, 0x8000_0000);
1164     check!(i64, 0x4000_0000_0000_0000, 0x04, 0x4000_0000_0000_0000);
1165     check!(u64, 0x8000_0000_0000_0000, 0x02, 0x8000_0000_0000_0000);
1166 }
1167 
1168 #[test]
test_iter_binomial()1169 fn test_iter_binomial() {
1170     macro_rules! check_simple {
1171         ($t:ty) => {{
1172             let n: $t = 3;
1173             let expected = [1, 3, 3, 1];
1174             for (b, &e) in IterBinomial::new(n).zip(&expected) {
1175                 assert_eq!(b, e);
1176             }
1177         }};
1178     }
1179 
1180     check_simple!(u8);
1181     check_simple!(i8);
1182     check_simple!(u16);
1183     check_simple!(i16);
1184     check_simple!(u32);
1185     check_simple!(i32);
1186     check_simple!(u64);
1187     check_simple!(i64);
1188 
1189     macro_rules! check_binomial {
1190         ($t:ty, $n:expr) => {{
1191             let n: $t = $n;
1192             let mut k: $t = 0;
1193             for b in IterBinomial::new(n) {
1194                 assert_eq!(b, binomial(n, k));
1195                 k += 1;
1196             }
1197         }};
1198     }
1199 
1200     // Check the largest n for which there is no overflow.
1201     check_binomial!(u8, 10);
1202     check_binomial!(i8, 9);
1203     check_binomial!(u16, 18);
1204     check_binomial!(i16, 17);
1205     check_binomial!(u32, 34);
1206     check_binomial!(i32, 33);
1207     check_binomial!(u64, 67);
1208     check_binomial!(i64, 66);
1209 }
1210 
1211 #[test]
test_binomial()1212 fn test_binomial() {
1213     macro_rules! check {
1214         ($t:ty, $x:expr, $y:expr, $r:expr) => {{
1215             let x: $t = $x;
1216             let y: $t = $y;
1217             let expected: $t = $r;
1218             assert_eq!(binomial(x, y), expected);
1219             if y <= x {
1220                 assert_eq!(binomial(x, x - y), expected);
1221             }
1222         }};
1223     }
1224     check!(u8, 9, 4, 126);
1225     check!(u8, 0, 0, 1);
1226     check!(u8, 2, 3, 0);
1227 
1228     check!(i8, 9, 4, 126);
1229     check!(i8, 0, 0, 1);
1230     check!(i8, 2, 3, 0);
1231 
1232     check!(u16, 100, 2, 4950);
1233     check!(u16, 14, 4, 1001);
1234     check!(u16, 0, 0, 1);
1235     check!(u16, 2, 3, 0);
1236 
1237     check!(i16, 100, 2, 4950);
1238     check!(i16, 14, 4, 1001);
1239     check!(i16, 0, 0, 1);
1240     check!(i16, 2, 3, 0);
1241 
1242     check!(u32, 100, 2, 4950);
1243     check!(u32, 35, 11, 417225900);
1244     check!(u32, 14, 4, 1001);
1245     check!(u32, 0, 0, 1);
1246     check!(u32, 2, 3, 0);
1247 
1248     check!(i32, 100, 2, 4950);
1249     check!(i32, 35, 11, 417225900);
1250     check!(i32, 14, 4, 1001);
1251     check!(i32, 0, 0, 1);
1252     check!(i32, 2, 3, 0);
1253 
1254     check!(u64, 100, 2, 4950);
1255     check!(u64, 35, 11, 417225900);
1256     check!(u64, 14, 4, 1001);
1257     check!(u64, 0, 0, 1);
1258     check!(u64, 2, 3, 0);
1259 
1260     check!(i64, 100, 2, 4950);
1261     check!(i64, 35, 11, 417225900);
1262     check!(i64, 14, 4, 1001);
1263     check!(i64, 0, 0, 1);
1264     check!(i64, 2, 3, 0);
1265 }
1266 
1267 #[test]
test_multinomial()1268 fn test_multinomial() {
1269     macro_rules! check_binomial {
1270         ($t:ty, $k:expr) => {{
1271             let n: $t = $k.iter().fold(0, |acc, &x| acc + x);
1272             let k: &[$t] = $k;
1273             assert_eq!(k.len(), 2);
1274             assert_eq!(multinomial(k), binomial(n, k[0]));
1275         }};
1276     }
1277 
1278     check_binomial!(u8, &[4, 5]);
1279 
1280     check_binomial!(i8, &[4, 5]);
1281 
1282     check_binomial!(u16, &[2, 98]);
1283     check_binomial!(u16, &[4, 10]);
1284 
1285     check_binomial!(i16, &[2, 98]);
1286     check_binomial!(i16, &[4, 10]);
1287 
1288     check_binomial!(u32, &[2, 98]);
1289     check_binomial!(u32, &[11, 24]);
1290     check_binomial!(u32, &[4, 10]);
1291 
1292     check_binomial!(i32, &[2, 98]);
1293     check_binomial!(i32, &[11, 24]);
1294     check_binomial!(i32, &[4, 10]);
1295 
1296     check_binomial!(u64, &[2, 98]);
1297     check_binomial!(u64, &[11, 24]);
1298     check_binomial!(u64, &[4, 10]);
1299 
1300     check_binomial!(i64, &[2, 98]);
1301     check_binomial!(i64, &[11, 24]);
1302     check_binomial!(i64, &[4, 10]);
1303 
1304     macro_rules! check_multinomial {
1305         ($t:ty, $k:expr, $r:expr) => {{
1306             let k: &[$t] = $k;
1307             let expected: $t = $r;
1308             assert_eq!(multinomial(k), expected);
1309         }};
1310     }
1311 
1312     check_multinomial!(u8, &[2, 1, 2], 30);
1313     check_multinomial!(u8, &[2, 3, 0], 10);
1314 
1315     check_multinomial!(i8, &[2, 1, 2], 30);
1316     check_multinomial!(i8, &[2, 3, 0], 10);
1317 
1318     check_multinomial!(u16, &[2, 1, 2], 30);
1319     check_multinomial!(u16, &[2, 3, 0], 10);
1320 
1321     check_multinomial!(i16, &[2, 1, 2], 30);
1322     check_multinomial!(i16, &[2, 3, 0], 10);
1323 
1324     check_multinomial!(u32, &[2, 1, 2], 30);
1325     check_multinomial!(u32, &[2, 3, 0], 10);
1326 
1327     check_multinomial!(i32, &[2, 1, 2], 30);
1328     check_multinomial!(i32, &[2, 3, 0], 10);
1329 
1330     check_multinomial!(u64, &[2, 1, 2], 30);
1331     check_multinomial!(u64, &[2, 3, 0], 10);
1332 
1333     check_multinomial!(i64, &[2, 1, 2], 30);
1334     check_multinomial!(i64, &[2, 3, 0], 10);
1335 
1336     check_multinomial!(u64, &[], 1);
1337     check_multinomial!(u64, &[0], 1);
1338     check_multinomial!(u64, &[12345], 1);
1339 }
1340