1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15	"encoding/binary"
16	"runtime"
17	"syscall"
18	"unsafe"
19)
20
21/*
22 * Wrapped
23 */
24
25func Access(path string, mode uint32) (err error) {
26	return Faccessat(AT_FDCWD, path, mode, 0)
27}
28
29func Chmod(path string, mode uint32) (err error) {
30	return Fchmodat(AT_FDCWD, path, mode, 0)
31}
32
33func Chown(path string, uid int, gid int) (err error) {
34	return Fchownat(AT_FDCWD, path, uid, gid, 0)
35}
36
37func Creat(path string, mode uint32) (fd int, err error) {
38	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
39}
40
41//sys	FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
42//sys	fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
43
44func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
45	if pathname == "" {
46		return fanotifyMark(fd, flags, mask, dirFd, nil)
47	}
48	p, err := BytePtrFromString(pathname)
49	if err != nil {
50		return err
51	}
52	return fanotifyMark(fd, flags, mask, dirFd, p)
53}
54
55//sys	fchmodat(dirfd int, path string, mode uint32) (err error)
56
57func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
58	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
59	// and check the flags. Otherwise the mode would be applied to the symlink
60	// destination which is not what the user expects.
61	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
62		return EINVAL
63	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
64		return EOPNOTSUPP
65	}
66	return fchmodat(dirfd, path, mode)
67}
68
69//sys	ioctl(fd int, req uint, arg uintptr) (err error)
70
71// ioctl itself should not be exposed directly, but additional get/set
72// functions for specific types are permissible.
73// These are defined in ioctl.go and ioctl_linux.go.
74
75//sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
76
77func Link(oldpath string, newpath string) (err error) {
78	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
79}
80
81func Mkdir(path string, mode uint32) (err error) {
82	return Mkdirat(AT_FDCWD, path, mode)
83}
84
85func Mknod(path string, mode uint32, dev int) (err error) {
86	return Mknodat(AT_FDCWD, path, mode, dev)
87}
88
89func Open(path string, mode int, perm uint32) (fd int, err error) {
90	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
91}
92
93//sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
94
95func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
96	return openat(dirfd, path, flags|O_LARGEFILE, mode)
97}
98
99//sys	openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
100
101func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
102	return openat2(dirfd, path, how, SizeofOpenHow)
103}
104
105//sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
106
107func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
108	if len(fds) == 0 {
109		return ppoll(nil, 0, timeout, sigmask)
110	}
111	return ppoll(&fds[0], len(fds), timeout, sigmask)
112}
113
114//sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
115
116func Readlink(path string, buf []byte) (n int, err error) {
117	return Readlinkat(AT_FDCWD, path, buf)
118}
119
120func Rename(oldpath string, newpath string) (err error) {
121	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
122}
123
124func Rmdir(path string) error {
125	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
126}
127
128//sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
129
130func Symlink(oldpath string, newpath string) (err error) {
131	return Symlinkat(oldpath, AT_FDCWD, newpath)
132}
133
134func Unlink(path string) error {
135	return Unlinkat(AT_FDCWD, path, 0)
136}
137
138//sys	Unlinkat(dirfd int, path string, flags int) (err error)
139
140func Utimes(path string, tv []Timeval) error {
141	if tv == nil {
142		err := utimensat(AT_FDCWD, path, nil, 0)
143		if err != ENOSYS {
144			return err
145		}
146		return utimes(path, nil)
147	}
148	if len(tv) != 2 {
149		return EINVAL
150	}
151	var ts [2]Timespec
152	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
153	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
154	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
155	if err != ENOSYS {
156		return err
157	}
158	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
159}
160
161//sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
162
163func UtimesNano(path string, ts []Timespec) error {
164	if ts == nil {
165		err := utimensat(AT_FDCWD, path, nil, 0)
166		if err != ENOSYS {
167			return err
168		}
169		return utimes(path, nil)
170	}
171	if len(ts) != 2 {
172		return EINVAL
173	}
174	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
175	if err != ENOSYS {
176		return err
177	}
178	// If the utimensat syscall isn't available (utimensat was added to Linux
179	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
180	var tv [2]Timeval
181	for i := 0; i < 2; i++ {
182		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
183	}
184	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
185}
186
187func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
188	if ts == nil {
189		return utimensat(dirfd, path, nil, flags)
190	}
191	if len(ts) != 2 {
192		return EINVAL
193	}
194	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
195}
196
197func Futimesat(dirfd int, path string, tv []Timeval) error {
198	if tv == nil {
199		return futimesat(dirfd, path, nil)
200	}
201	if len(tv) != 2 {
202		return EINVAL
203	}
204	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
205}
206
207func Futimes(fd int, tv []Timeval) (err error) {
208	// Believe it or not, this is the best we can do on Linux
209	// (and is what glibc does).
210	return Utimes("/proc/self/fd/"+itoa(fd), tv)
211}
212
213const ImplementsGetwd = true
214
215//sys	Getcwd(buf []byte) (n int, err error)
216
217func Getwd() (wd string, err error) {
218	var buf [PathMax]byte
219	n, err := Getcwd(buf[0:])
220	if err != nil {
221		return "", err
222	}
223	// Getcwd returns the number of bytes written to buf, including the NUL.
224	if n < 1 || n > len(buf) || buf[n-1] != 0 {
225		return "", EINVAL
226	}
227	return string(buf[0 : n-1]), nil
228}
229
230func Getgroups() (gids []int, err error) {
231	n, err := getgroups(0, nil)
232	if err != nil {
233		return nil, err
234	}
235	if n == 0 {
236		return nil, nil
237	}
238
239	// Sanity check group count. Max is 1<<16 on Linux.
240	if n < 0 || n > 1<<20 {
241		return nil, EINVAL
242	}
243
244	a := make([]_Gid_t, n)
245	n, err = getgroups(n, &a[0])
246	if err != nil {
247		return nil, err
248	}
249	gids = make([]int, n)
250	for i, v := range a[0:n] {
251		gids[i] = int(v)
252	}
253	return
254}
255
256func Setgroups(gids []int) (err error) {
257	if len(gids) == 0 {
258		return setgroups(0, nil)
259	}
260
261	a := make([]_Gid_t, len(gids))
262	for i, v := range gids {
263		a[i] = _Gid_t(v)
264	}
265	return setgroups(len(a), &a[0])
266}
267
268type WaitStatus uint32
269
270// Wait status is 7 bits at bottom, either 0 (exited),
271// 0x7F (stopped), or a signal number that caused an exit.
272// The 0x80 bit is whether there was a core dump.
273// An extra number (exit code, signal causing a stop)
274// is in the high bits. At least that's the idea.
275// There are various irregularities. For example, the
276// "continued" status is 0xFFFF, distinguishing itself
277// from stopped via the core dump bit.
278
279const (
280	mask    = 0x7F
281	core    = 0x80
282	exited  = 0x00
283	stopped = 0x7F
284	shift   = 8
285)
286
287func (w WaitStatus) Exited() bool { return w&mask == exited }
288
289func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
290
291func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
292
293func (w WaitStatus) Continued() bool { return w == 0xFFFF }
294
295func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
296
297func (w WaitStatus) ExitStatus() int {
298	if !w.Exited() {
299		return -1
300	}
301	return int(w>>shift) & 0xFF
302}
303
304func (w WaitStatus) Signal() syscall.Signal {
305	if !w.Signaled() {
306		return -1
307	}
308	return syscall.Signal(w & mask)
309}
310
311func (w WaitStatus) StopSignal() syscall.Signal {
312	if !w.Stopped() {
313		return -1
314	}
315	return syscall.Signal(w>>shift) & 0xFF
316}
317
318func (w WaitStatus) TrapCause() int {
319	if w.StopSignal() != SIGTRAP {
320		return -1
321	}
322	return int(w>>shift) >> 8
323}
324
325//sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
326
327func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
328	var status _C_int
329	wpid, err = wait4(pid, &status, options, rusage)
330	if wstatus != nil {
331		*wstatus = WaitStatus(status)
332	}
333	return
334}
335
336func Mkfifo(path string, mode uint32) error {
337	return Mknod(path, mode|S_IFIFO, 0)
338}
339
340func Mkfifoat(dirfd int, path string, mode uint32) error {
341	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
342}
343
344func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
345	if sa.Port < 0 || sa.Port > 0xFFFF {
346		return nil, 0, EINVAL
347	}
348	sa.raw.Family = AF_INET
349	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
350	p[0] = byte(sa.Port >> 8)
351	p[1] = byte(sa.Port)
352	for i := 0; i < len(sa.Addr); i++ {
353		sa.raw.Addr[i] = sa.Addr[i]
354	}
355	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
356}
357
358func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
359	if sa.Port < 0 || sa.Port > 0xFFFF {
360		return nil, 0, EINVAL
361	}
362	sa.raw.Family = AF_INET6
363	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
364	p[0] = byte(sa.Port >> 8)
365	p[1] = byte(sa.Port)
366	sa.raw.Scope_id = sa.ZoneId
367	for i := 0; i < len(sa.Addr); i++ {
368		sa.raw.Addr[i] = sa.Addr[i]
369	}
370	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
371}
372
373func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
374	name := sa.Name
375	n := len(name)
376	if n >= len(sa.raw.Path) {
377		return nil, 0, EINVAL
378	}
379	sa.raw.Family = AF_UNIX
380	for i := 0; i < n; i++ {
381		sa.raw.Path[i] = int8(name[i])
382	}
383	// length is family (uint16), name, NUL.
384	sl := _Socklen(2)
385	if n > 0 {
386		sl += _Socklen(n) + 1
387	}
388	if sa.raw.Path[0] == '@' {
389		sa.raw.Path[0] = 0
390		// Don't count trailing NUL for abstract address.
391		sl--
392	}
393
394	return unsafe.Pointer(&sa.raw), sl, nil
395}
396
397// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
398type SockaddrLinklayer struct {
399	Protocol uint16
400	Ifindex  int
401	Hatype   uint16
402	Pkttype  uint8
403	Halen    uint8
404	Addr     [8]byte
405	raw      RawSockaddrLinklayer
406}
407
408func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
409	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
410		return nil, 0, EINVAL
411	}
412	sa.raw.Family = AF_PACKET
413	sa.raw.Protocol = sa.Protocol
414	sa.raw.Ifindex = int32(sa.Ifindex)
415	sa.raw.Hatype = sa.Hatype
416	sa.raw.Pkttype = sa.Pkttype
417	sa.raw.Halen = sa.Halen
418	for i := 0; i < len(sa.Addr); i++ {
419		sa.raw.Addr[i] = sa.Addr[i]
420	}
421	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
422}
423
424// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
425type SockaddrNetlink struct {
426	Family uint16
427	Pad    uint16
428	Pid    uint32
429	Groups uint32
430	raw    RawSockaddrNetlink
431}
432
433func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
434	sa.raw.Family = AF_NETLINK
435	sa.raw.Pad = sa.Pad
436	sa.raw.Pid = sa.Pid
437	sa.raw.Groups = sa.Groups
438	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
439}
440
441// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
442// using the HCI protocol.
443type SockaddrHCI struct {
444	Dev     uint16
445	Channel uint16
446	raw     RawSockaddrHCI
447}
448
449func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
450	sa.raw.Family = AF_BLUETOOTH
451	sa.raw.Dev = sa.Dev
452	sa.raw.Channel = sa.Channel
453	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
454}
455
456// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
457// using the L2CAP protocol.
458type SockaddrL2 struct {
459	PSM      uint16
460	CID      uint16
461	Addr     [6]uint8
462	AddrType uint8
463	raw      RawSockaddrL2
464}
465
466func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
467	sa.raw.Family = AF_BLUETOOTH
468	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
469	psm[0] = byte(sa.PSM)
470	psm[1] = byte(sa.PSM >> 8)
471	for i := 0; i < len(sa.Addr); i++ {
472		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
473	}
474	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
475	cid[0] = byte(sa.CID)
476	cid[1] = byte(sa.CID >> 8)
477	sa.raw.Bdaddr_type = sa.AddrType
478	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
479}
480
481// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
482// using the RFCOMM protocol.
483//
484// Server example:
485//
486//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
487//      _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
488//      	Channel: 1,
489//      	Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
490//      })
491//      _ = Listen(fd, 1)
492//      nfd, sa, _ := Accept(fd)
493//      fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
494//      Read(nfd, buf)
495//
496// Client example:
497//
498//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
499//      _ = Connect(fd, &SockaddrRFCOMM{
500//      	Channel: 1,
501//      	Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
502//      })
503//      Write(fd, []byte(`hello`))
504type SockaddrRFCOMM struct {
505	// Addr represents a bluetooth address, byte ordering is little-endian.
506	Addr [6]uint8
507
508	// Channel is a designated bluetooth channel, only 1-30 are available for use.
509	// Since Linux 2.6.7 and further zero value is the first available channel.
510	Channel uint8
511
512	raw RawSockaddrRFCOMM
513}
514
515func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
516	sa.raw.Family = AF_BLUETOOTH
517	sa.raw.Channel = sa.Channel
518	sa.raw.Bdaddr = sa.Addr
519	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
520}
521
522// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
523// The RxID and TxID fields are used for transport protocol addressing in
524// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
525// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
526//
527// The SockaddrCAN struct must be bound to the socket file descriptor
528// using Bind before the CAN socket can be used.
529//
530//      // Read one raw CAN frame
531//      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
532//      addr := &SockaddrCAN{Ifindex: index}
533//      Bind(fd, addr)
534//      frame := make([]byte, 16)
535//      Read(fd, frame)
536//
537// The full SocketCAN documentation can be found in the linux kernel
538// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
539type SockaddrCAN struct {
540	Ifindex int
541	RxID    uint32
542	TxID    uint32
543	raw     RawSockaddrCAN
544}
545
546func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
547	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
548		return nil, 0, EINVAL
549	}
550	sa.raw.Family = AF_CAN
551	sa.raw.Ifindex = int32(sa.Ifindex)
552	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
553	for i := 0; i < 4; i++ {
554		sa.raw.Addr[i] = rx[i]
555	}
556	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
557	for i := 0; i < 4; i++ {
558		sa.raw.Addr[i+4] = tx[i]
559	}
560	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
561}
562
563// SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
564// protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
565// on the purposes of the fields, check the official linux kernel documentation
566// available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
567type SockaddrCANJ1939 struct {
568	Ifindex int
569	Name    uint64
570	PGN     uint32
571	Addr    uint8
572	raw     RawSockaddrCAN
573}
574
575func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
576	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
577		return nil, 0, EINVAL
578	}
579	sa.raw.Family = AF_CAN
580	sa.raw.Ifindex = int32(sa.Ifindex)
581	n := (*[8]byte)(unsafe.Pointer(&sa.Name))
582	for i := 0; i < 8; i++ {
583		sa.raw.Addr[i] = n[i]
584	}
585	p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
586	for i := 0; i < 4; i++ {
587		sa.raw.Addr[i+8] = p[i]
588	}
589	sa.raw.Addr[12] = sa.Addr
590	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
591}
592
593// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
594// SockaddrALG enables userspace access to the Linux kernel's cryptography
595// subsystem. The Type and Name fields specify which type of hash or cipher
596// should be used with a given socket.
597//
598// To create a file descriptor that provides access to a hash or cipher, both
599// Bind and Accept must be used. Once the setup process is complete, input
600// data can be written to the socket, processed by the kernel, and then read
601// back as hash output or ciphertext.
602//
603// Here is an example of using an AF_ALG socket with SHA1 hashing.
604// The initial socket setup process is as follows:
605//
606//      // Open a socket to perform SHA1 hashing.
607//      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
608//      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
609//      unix.Bind(fd, addr)
610//      // Note: unix.Accept does not work at this time; must invoke accept()
611//      // manually using unix.Syscall.
612//      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
613//
614// Once a file descriptor has been returned from Accept, it may be used to
615// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
616// may be re-used repeatedly with subsequent Write and Read operations.
617//
618// When hashing a small byte slice or string, a single Write and Read may
619// be used:
620//
621//      // Assume hashfd is already configured using the setup process.
622//      hash := os.NewFile(hashfd, "sha1")
623//      // Hash an input string and read the results. Each Write discards
624//      // previous hash state. Read always reads the current state.
625//      b := make([]byte, 20)
626//      for i := 0; i < 2; i++ {
627//          io.WriteString(hash, "Hello, world.")
628//          hash.Read(b)
629//          fmt.Println(hex.EncodeToString(b))
630//      }
631//      // Output:
632//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
633//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
634//
635// For hashing larger byte slices, or byte streams such as those read from
636// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
637// the hash digest instead of creating a new one for a given chunk and finalizing it.
638//
639//      // Assume hashfd and addr are already configured using the setup process.
640//      hash := os.NewFile(hashfd, "sha1")
641//      // Hash the contents of a file.
642//      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
643//      b := make([]byte, 4096)
644//      for {
645//          n, err := f.Read(b)
646//          if err == io.EOF {
647//              break
648//          }
649//          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
650//      }
651//      hash.Read(b)
652//      fmt.Println(hex.EncodeToString(b))
653//      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
654//
655// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
656type SockaddrALG struct {
657	Type    string
658	Name    string
659	Feature uint32
660	Mask    uint32
661	raw     RawSockaddrALG
662}
663
664func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
665	// Leave room for NUL byte terminator.
666	if len(sa.Type) > 13 {
667		return nil, 0, EINVAL
668	}
669	if len(sa.Name) > 63 {
670		return nil, 0, EINVAL
671	}
672
673	sa.raw.Family = AF_ALG
674	sa.raw.Feat = sa.Feature
675	sa.raw.Mask = sa.Mask
676
677	typ, err := ByteSliceFromString(sa.Type)
678	if err != nil {
679		return nil, 0, err
680	}
681	name, err := ByteSliceFromString(sa.Name)
682	if err != nil {
683		return nil, 0, err
684	}
685
686	copy(sa.raw.Type[:], typ)
687	copy(sa.raw.Name[:], name)
688
689	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
690}
691
692// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
693// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
694// bidirectional communication between a hypervisor and its guest virtual
695// machines.
696type SockaddrVM struct {
697	// CID and Port specify a context ID and port address for a VM socket.
698	// Guests have a unique CID, and hosts may have a well-known CID of:
699	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
700	//  - VMADDR_CID_LOCAL: refers to local communication (loopback).
701	//  - VMADDR_CID_HOST: refers to other processes on the host.
702	CID   uint32
703	Port  uint32
704	Flags uint8
705	raw   RawSockaddrVM
706}
707
708func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
709	sa.raw.Family = AF_VSOCK
710	sa.raw.Port = sa.Port
711	sa.raw.Cid = sa.CID
712	sa.raw.Flags = sa.Flags
713
714	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
715}
716
717type SockaddrXDP struct {
718	Flags        uint16
719	Ifindex      uint32
720	QueueID      uint32
721	SharedUmemFD uint32
722	raw          RawSockaddrXDP
723}
724
725func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
726	sa.raw.Family = AF_XDP
727	sa.raw.Flags = sa.Flags
728	sa.raw.Ifindex = sa.Ifindex
729	sa.raw.Queue_id = sa.QueueID
730	sa.raw.Shared_umem_fd = sa.SharedUmemFD
731
732	return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
733}
734
735// This constant mirrors the #define of PX_PROTO_OE in
736// linux/if_pppox.h. We're defining this by hand here instead of
737// autogenerating through mkerrors.sh because including
738// linux/if_pppox.h causes some declaration conflicts with other
739// includes (linux/if_pppox.h includes linux/in.h, which conflicts
740// with netinet/in.h). Given that we only need a single zero constant
741// out of that file, it's cleaner to just define it by hand here.
742const px_proto_oe = 0
743
744type SockaddrPPPoE struct {
745	SID    uint16
746	Remote []byte
747	Dev    string
748	raw    RawSockaddrPPPoX
749}
750
751func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
752	if len(sa.Remote) != 6 {
753		return nil, 0, EINVAL
754	}
755	if len(sa.Dev) > IFNAMSIZ-1 {
756		return nil, 0, EINVAL
757	}
758
759	*(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
760	// This next field is in host-endian byte order. We can't use the
761	// same unsafe pointer cast as above, because this value is not
762	// 32-bit aligned and some architectures don't allow unaligned
763	// access.
764	//
765	// However, the value of px_proto_oe is 0, so we can use
766	// encoding/binary helpers to write the bytes without worrying
767	// about the ordering.
768	binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
769	// This field is deliberately big-endian, unlike the previous
770	// one. The kernel expects SID to be in network byte order.
771	binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
772	copy(sa.raw[8:14], sa.Remote)
773	for i := 14; i < 14+IFNAMSIZ; i++ {
774		sa.raw[i] = 0
775	}
776	copy(sa.raw[14:], sa.Dev)
777	return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
778}
779
780// SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
781// For more information on TIPC, see: http://tipc.sourceforge.net/.
782type SockaddrTIPC struct {
783	// Scope is the publication scopes when binding service/service range.
784	// Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
785	Scope int
786
787	// Addr is the type of address used to manipulate a socket. Addr must be
788	// one of:
789	//  - *TIPCSocketAddr: "id" variant in the C addr union
790	//  - *TIPCServiceRange: "nameseq" variant in the C addr union
791	//  - *TIPCServiceName: "name" variant in the C addr union
792	//
793	// If nil, EINVAL will be returned when the structure is used.
794	Addr TIPCAddr
795
796	raw RawSockaddrTIPC
797}
798
799// TIPCAddr is implemented by types that can be used as an address for
800// SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
801// and *TIPCServiceName.
802type TIPCAddr interface {
803	tipcAddrtype() uint8
804	tipcAddr() [12]byte
805}
806
807func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
808	var out [12]byte
809	copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
810	return out
811}
812
813func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
814
815func (sa *TIPCServiceRange) tipcAddr() [12]byte {
816	var out [12]byte
817	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
818	return out
819}
820
821func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
822
823func (sa *TIPCServiceName) tipcAddr() [12]byte {
824	var out [12]byte
825	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
826	return out
827}
828
829func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
830
831func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
832	if sa.Addr == nil {
833		return nil, 0, EINVAL
834	}
835
836	sa.raw.Family = AF_TIPC
837	sa.raw.Scope = int8(sa.Scope)
838	sa.raw.Addrtype = sa.Addr.tipcAddrtype()
839	sa.raw.Addr = sa.Addr.tipcAddr()
840
841	return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
842}
843
844// SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
845type SockaddrL2TPIP struct {
846	Addr   [4]byte
847	ConnId uint32
848	raw    RawSockaddrL2TPIP
849}
850
851func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
852	sa.raw.Family = AF_INET
853	sa.raw.Conn_id = sa.ConnId
854	for i := 0; i < len(sa.Addr); i++ {
855		sa.raw.Addr[i] = sa.Addr[i]
856	}
857	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
858}
859
860// SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
861type SockaddrL2TPIP6 struct {
862	Addr   [16]byte
863	ZoneId uint32
864	ConnId uint32
865	raw    RawSockaddrL2TPIP6
866}
867
868func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
869	sa.raw.Family = AF_INET6
870	sa.raw.Conn_id = sa.ConnId
871	sa.raw.Scope_id = sa.ZoneId
872	for i := 0; i < len(sa.Addr); i++ {
873		sa.raw.Addr[i] = sa.Addr[i]
874	}
875	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
876}
877
878// SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
879type SockaddrIUCV struct {
880	UserID string
881	Name   string
882	raw    RawSockaddrIUCV
883}
884
885func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
886	sa.raw.Family = AF_IUCV
887	// These are EBCDIC encoded by the kernel, but we still need to pad them
888	// with blanks. Initializing with blanks allows the caller to feed in either
889	// a padded or an unpadded string.
890	for i := 0; i < 8; i++ {
891		sa.raw.Nodeid[i] = ' '
892		sa.raw.User_id[i] = ' '
893		sa.raw.Name[i] = ' '
894	}
895	if len(sa.UserID) > 8 || len(sa.Name) > 8 {
896		return nil, 0, EINVAL
897	}
898	for i, b := range []byte(sa.UserID[:]) {
899		sa.raw.User_id[i] = int8(b)
900	}
901	for i, b := range []byte(sa.Name[:]) {
902		sa.raw.Name[i] = int8(b)
903	}
904	return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
905}
906
907var socketProtocol = func(fd int) (int, error) {
908	return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
909}
910
911func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
912	switch rsa.Addr.Family {
913	case AF_NETLINK:
914		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
915		sa := new(SockaddrNetlink)
916		sa.Family = pp.Family
917		sa.Pad = pp.Pad
918		sa.Pid = pp.Pid
919		sa.Groups = pp.Groups
920		return sa, nil
921
922	case AF_PACKET:
923		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
924		sa := new(SockaddrLinklayer)
925		sa.Protocol = pp.Protocol
926		sa.Ifindex = int(pp.Ifindex)
927		sa.Hatype = pp.Hatype
928		sa.Pkttype = pp.Pkttype
929		sa.Halen = pp.Halen
930		for i := 0; i < len(sa.Addr); i++ {
931			sa.Addr[i] = pp.Addr[i]
932		}
933		return sa, nil
934
935	case AF_UNIX:
936		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
937		sa := new(SockaddrUnix)
938		if pp.Path[0] == 0 {
939			// "Abstract" Unix domain socket.
940			// Rewrite leading NUL as @ for textual display.
941			// (This is the standard convention.)
942			// Not friendly to overwrite in place,
943			// but the callers below don't care.
944			pp.Path[0] = '@'
945		}
946
947		// Assume path ends at NUL.
948		// This is not technically the Linux semantics for
949		// abstract Unix domain sockets--they are supposed
950		// to be uninterpreted fixed-size binary blobs--but
951		// everyone uses this convention.
952		n := 0
953		for n < len(pp.Path) && pp.Path[n] != 0 {
954			n++
955		}
956		bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
957		sa.Name = string(bytes)
958		return sa, nil
959
960	case AF_INET:
961		proto, err := socketProtocol(fd)
962		if err != nil {
963			return nil, err
964		}
965
966		switch proto {
967		case IPPROTO_L2TP:
968			pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
969			sa := new(SockaddrL2TPIP)
970			sa.ConnId = pp.Conn_id
971			for i := 0; i < len(sa.Addr); i++ {
972				sa.Addr[i] = pp.Addr[i]
973			}
974			return sa, nil
975		default:
976			pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
977			sa := new(SockaddrInet4)
978			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
979			sa.Port = int(p[0])<<8 + int(p[1])
980			for i := 0; i < len(sa.Addr); i++ {
981				sa.Addr[i] = pp.Addr[i]
982			}
983			return sa, nil
984		}
985
986	case AF_INET6:
987		proto, err := socketProtocol(fd)
988		if err != nil {
989			return nil, err
990		}
991
992		switch proto {
993		case IPPROTO_L2TP:
994			pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
995			sa := new(SockaddrL2TPIP6)
996			sa.ConnId = pp.Conn_id
997			sa.ZoneId = pp.Scope_id
998			for i := 0; i < len(sa.Addr); i++ {
999				sa.Addr[i] = pp.Addr[i]
1000			}
1001			return sa, nil
1002		default:
1003			pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
1004			sa := new(SockaddrInet6)
1005			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1006			sa.Port = int(p[0])<<8 + int(p[1])
1007			sa.ZoneId = pp.Scope_id
1008			for i := 0; i < len(sa.Addr); i++ {
1009				sa.Addr[i] = pp.Addr[i]
1010			}
1011			return sa, nil
1012		}
1013
1014	case AF_VSOCK:
1015		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
1016		sa := &SockaddrVM{
1017			CID:   pp.Cid,
1018			Port:  pp.Port,
1019			Flags: pp.Flags,
1020		}
1021		return sa, nil
1022	case AF_BLUETOOTH:
1023		proto, err := socketProtocol(fd)
1024		if err != nil {
1025			return nil, err
1026		}
1027		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
1028		switch proto {
1029		case BTPROTO_L2CAP:
1030			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
1031			sa := &SockaddrL2{
1032				PSM:      pp.Psm,
1033				CID:      pp.Cid,
1034				Addr:     pp.Bdaddr,
1035				AddrType: pp.Bdaddr_type,
1036			}
1037			return sa, nil
1038		case BTPROTO_RFCOMM:
1039			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
1040			sa := &SockaddrRFCOMM{
1041				Channel: pp.Channel,
1042				Addr:    pp.Bdaddr,
1043			}
1044			return sa, nil
1045		}
1046	case AF_XDP:
1047		pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
1048		sa := &SockaddrXDP{
1049			Flags:        pp.Flags,
1050			Ifindex:      pp.Ifindex,
1051			QueueID:      pp.Queue_id,
1052			SharedUmemFD: pp.Shared_umem_fd,
1053		}
1054		return sa, nil
1055	case AF_PPPOX:
1056		pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
1057		if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
1058			return nil, EINVAL
1059		}
1060		sa := &SockaddrPPPoE{
1061			SID:    binary.BigEndian.Uint16(pp[6:8]),
1062			Remote: pp[8:14],
1063		}
1064		for i := 14; i < 14+IFNAMSIZ; i++ {
1065			if pp[i] == 0 {
1066				sa.Dev = string(pp[14:i])
1067				break
1068			}
1069		}
1070		return sa, nil
1071	case AF_TIPC:
1072		pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
1073
1074		sa := &SockaddrTIPC{
1075			Scope: int(pp.Scope),
1076		}
1077
1078		// Determine which union variant is present in pp.Addr by checking
1079		// pp.Addrtype.
1080		switch pp.Addrtype {
1081		case TIPC_SERVICE_RANGE:
1082			sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
1083		case TIPC_SERVICE_ADDR:
1084			sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
1085		case TIPC_SOCKET_ADDR:
1086			sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
1087		default:
1088			return nil, EINVAL
1089		}
1090
1091		return sa, nil
1092	case AF_IUCV:
1093		pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
1094
1095		var user [8]byte
1096		var name [8]byte
1097
1098		for i := 0; i < 8; i++ {
1099			user[i] = byte(pp.User_id[i])
1100			name[i] = byte(pp.Name[i])
1101		}
1102
1103		sa := &SockaddrIUCV{
1104			UserID: string(user[:]),
1105			Name:   string(name[:]),
1106		}
1107		return sa, nil
1108
1109	case AF_CAN:
1110		proto, err := socketProtocol(fd)
1111		if err != nil {
1112			return nil, err
1113		}
1114
1115		pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
1116
1117		switch proto {
1118		case CAN_J1939:
1119			sa := &SockaddrCANJ1939{
1120				Ifindex: int(pp.Ifindex),
1121			}
1122			name := (*[8]byte)(unsafe.Pointer(&sa.Name))
1123			for i := 0; i < 8; i++ {
1124				name[i] = pp.Addr[i]
1125			}
1126			pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
1127			for i := 0; i < 4; i++ {
1128				pgn[i] = pp.Addr[i+8]
1129			}
1130			addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
1131			addr[0] = pp.Addr[12]
1132			return sa, nil
1133		default:
1134			sa := &SockaddrCAN{
1135				Ifindex: int(pp.Ifindex),
1136			}
1137			rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
1138			for i := 0; i < 4; i++ {
1139				rx[i] = pp.Addr[i]
1140			}
1141			tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
1142			for i := 0; i < 4; i++ {
1143				tx[i] = pp.Addr[i+4]
1144			}
1145			return sa, nil
1146		}
1147	}
1148	return nil, EAFNOSUPPORT
1149}
1150
1151func Accept(fd int) (nfd int, sa Sockaddr, err error) {
1152	var rsa RawSockaddrAny
1153	var len _Socklen = SizeofSockaddrAny
1154	nfd, err = accept(fd, &rsa, &len)
1155	if err != nil {
1156		return
1157	}
1158	sa, err = anyToSockaddr(fd, &rsa)
1159	if err != nil {
1160		Close(nfd)
1161		nfd = 0
1162	}
1163	return
1164}
1165
1166func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
1167	var rsa RawSockaddrAny
1168	var len _Socklen = SizeofSockaddrAny
1169	nfd, err = accept4(fd, &rsa, &len, flags)
1170	if err != nil {
1171		return
1172	}
1173	if len > SizeofSockaddrAny {
1174		panic("RawSockaddrAny too small")
1175	}
1176	sa, err = anyToSockaddr(fd, &rsa)
1177	if err != nil {
1178		Close(nfd)
1179		nfd = 0
1180	}
1181	return
1182}
1183
1184func Getsockname(fd int) (sa Sockaddr, err error) {
1185	var rsa RawSockaddrAny
1186	var len _Socklen = SizeofSockaddrAny
1187	if err = getsockname(fd, &rsa, &len); err != nil {
1188		return
1189	}
1190	return anyToSockaddr(fd, &rsa)
1191}
1192
1193func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
1194	var value IPMreqn
1195	vallen := _Socklen(SizeofIPMreqn)
1196	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1197	return &value, err
1198}
1199
1200func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
1201	var value Ucred
1202	vallen := _Socklen(SizeofUcred)
1203	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1204	return &value, err
1205}
1206
1207func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
1208	var value TCPInfo
1209	vallen := _Socklen(SizeofTCPInfo)
1210	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1211	return &value, err
1212}
1213
1214// GetsockoptString returns the string value of the socket option opt for the
1215// socket associated with fd at the given socket level.
1216func GetsockoptString(fd, level, opt int) (string, error) {
1217	buf := make([]byte, 256)
1218	vallen := _Socklen(len(buf))
1219	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1220	if err != nil {
1221		if err == ERANGE {
1222			buf = make([]byte, vallen)
1223			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1224		}
1225		if err != nil {
1226			return "", err
1227		}
1228	}
1229	return string(buf[:vallen-1]), nil
1230}
1231
1232func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
1233	var value TpacketStats
1234	vallen := _Socklen(SizeofTpacketStats)
1235	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1236	return &value, err
1237}
1238
1239func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
1240	var value TpacketStatsV3
1241	vallen := _Socklen(SizeofTpacketStatsV3)
1242	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1243	return &value, err
1244}
1245
1246func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
1247	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1248}
1249
1250func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
1251	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1252}
1253
1254// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
1255// socket to filter incoming packets.  See 'man 7 socket' for usage information.
1256func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1257	return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1258}
1259
1260func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1261	var p unsafe.Pointer
1262	if len(filter) > 0 {
1263		p = unsafe.Pointer(&filter[0])
1264	}
1265	return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1266}
1267
1268func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
1269	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1270}
1271
1272func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
1273	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1274}
1275
1276// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1277
1278// KeyctlInt calls keyctl commands in which each argument is an int.
1279// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1280// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1281// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1282// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1283//sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1284
1285// KeyctlBuffer calls keyctl commands in which the third and fourth
1286// arguments are a buffer and its length, respectively.
1287// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1288//sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1289
1290// KeyctlString calls keyctl commands which return a string.
1291// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1292func KeyctlString(cmd int, id int) (string, error) {
1293	// We must loop as the string data may change in between the syscalls.
1294	// We could allocate a large buffer here to reduce the chance that the
1295	// syscall needs to be called twice; however, this is unnecessary as
1296	// the performance loss is negligible.
1297	var buffer []byte
1298	for {
1299		// Try to fill the buffer with data
1300		length, err := KeyctlBuffer(cmd, id, buffer, 0)
1301		if err != nil {
1302			return "", err
1303		}
1304
1305		// Check if the data was written
1306		if length <= len(buffer) {
1307			// Exclude the null terminator
1308			return string(buffer[:length-1]), nil
1309		}
1310
1311		// Make a bigger buffer if needed
1312		buffer = make([]byte, length)
1313	}
1314}
1315
1316// Keyctl commands with special signatures.
1317
1318// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1319// See the full documentation at:
1320// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1321func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1322	createInt := 0
1323	if create {
1324		createInt = 1
1325	}
1326	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1327}
1328
1329// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1330// key handle permission mask as described in the "keyctl setperm" section of
1331// http://man7.org/linux/man-pages/man1/keyctl.1.html.
1332// See the full documentation at:
1333// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1334func KeyctlSetperm(id int, perm uint32) error {
1335	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1336	return err
1337}
1338
1339//sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1340
1341// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1342// See the full documentation at:
1343// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1344func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1345	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1346}
1347
1348//sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1349
1350// KeyctlSearch implements the KEYCTL_SEARCH command.
1351// See the full documentation at:
1352// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1353func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1354	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1355}
1356
1357//sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1358
1359// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1360// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1361// of Iovec (each of which represents a buffer) instead of a single buffer.
1362// See the full documentation at:
1363// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1364func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1365	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1366}
1367
1368//sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1369
1370// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1371// computes a Diffie-Hellman shared secret based on the provide params. The
1372// secret is written to the provided buffer and the returned size is the number
1373// of bytes written (returning an error if there is insufficient space in the
1374// buffer). If a nil buffer is passed in, this function returns the minimum
1375// buffer length needed to store the appropriate data. Note that this differs
1376// from KEYCTL_READ's behavior which always returns the requested payload size.
1377// See the full documentation at:
1378// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1379func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1380	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1381}
1382
1383// KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
1384// command limits the set of keys that can be linked to the keyring, regardless
1385// of keyring permissions. The command requires the "setattr" permission.
1386//
1387// When called with an empty keyType the command locks the keyring, preventing
1388// any further keys from being linked to the keyring.
1389//
1390// The "asymmetric" keyType defines restrictions requiring key payloads to be
1391// DER encoded X.509 certificates signed by keys in another keyring. Restrictions
1392// for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
1393// "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
1394//
1395// As of Linux 4.12, only the "asymmetric" keyType defines type-specific
1396// restrictions.
1397//
1398// See the full documentation at:
1399// http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
1400// http://man7.org/linux/man-pages/man2/keyctl.2.html
1401func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
1402	if keyType == "" {
1403		return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
1404	}
1405	return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
1406}
1407
1408//sys	keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
1409//sys	keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
1410
1411func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
1412	var msg Msghdr
1413	var rsa RawSockaddrAny
1414	msg.Name = (*byte)(unsafe.Pointer(&rsa))
1415	msg.Namelen = uint32(SizeofSockaddrAny)
1416	var iov Iovec
1417	if len(p) > 0 {
1418		iov.Base = &p[0]
1419		iov.SetLen(len(p))
1420	}
1421	var dummy byte
1422	if len(oob) > 0 {
1423		if len(p) == 0 {
1424			var sockType int
1425			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1426			if err != nil {
1427				return
1428			}
1429			// receive at least one normal byte
1430			if sockType != SOCK_DGRAM {
1431				iov.Base = &dummy
1432				iov.SetLen(1)
1433			}
1434		}
1435		msg.Control = &oob[0]
1436		msg.SetControllen(len(oob))
1437	}
1438	msg.Iov = &iov
1439	msg.Iovlen = 1
1440	if n, err = recvmsg(fd, &msg, flags); err != nil {
1441		return
1442	}
1443	oobn = int(msg.Controllen)
1444	recvflags = int(msg.Flags)
1445	// source address is only specified if the socket is unconnected
1446	if rsa.Addr.Family != AF_UNSPEC {
1447		from, err = anyToSockaddr(fd, &rsa)
1448	}
1449	return
1450}
1451
1452func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1453	_, err = SendmsgN(fd, p, oob, to, flags)
1454	return
1455}
1456
1457func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1458	var ptr unsafe.Pointer
1459	var salen _Socklen
1460	if to != nil {
1461		var err error
1462		ptr, salen, err = to.sockaddr()
1463		if err != nil {
1464			return 0, err
1465		}
1466	}
1467	var msg Msghdr
1468	msg.Name = (*byte)(ptr)
1469	msg.Namelen = uint32(salen)
1470	var iov Iovec
1471	if len(p) > 0 {
1472		iov.Base = &p[0]
1473		iov.SetLen(len(p))
1474	}
1475	var dummy byte
1476	if len(oob) > 0 {
1477		if len(p) == 0 {
1478			var sockType int
1479			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1480			if err != nil {
1481				return 0, err
1482			}
1483			// send at least one normal byte
1484			if sockType != SOCK_DGRAM {
1485				iov.Base = &dummy
1486				iov.SetLen(1)
1487			}
1488		}
1489		msg.Control = &oob[0]
1490		msg.SetControllen(len(oob))
1491	}
1492	msg.Iov = &iov
1493	msg.Iovlen = 1
1494	if n, err = sendmsg(fd, &msg, flags); err != nil {
1495		return 0, err
1496	}
1497	if len(oob) > 0 && len(p) == 0 {
1498		n = 0
1499	}
1500	return n, nil
1501}
1502
1503// BindToDevice binds the socket associated with fd to device.
1504func BindToDevice(fd int, device string) (err error) {
1505	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1506}
1507
1508//sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1509
1510func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1511	// The peek requests are machine-size oriented, so we wrap it
1512	// to retrieve arbitrary-length data.
1513
1514	// The ptrace syscall differs from glibc's ptrace.
1515	// Peeks returns the word in *data, not as the return value.
1516
1517	var buf [SizeofPtr]byte
1518
1519	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1520	// access (PEEKUSER warns that it might), but if we don't
1521	// align our reads, we might straddle an unmapped page
1522	// boundary and not get the bytes leading up to the page
1523	// boundary.
1524	n := 0
1525	if addr%SizeofPtr != 0 {
1526		err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1527		if err != nil {
1528			return 0, err
1529		}
1530		n += copy(out, buf[addr%SizeofPtr:])
1531		out = out[n:]
1532	}
1533
1534	// Remainder.
1535	for len(out) > 0 {
1536		// We use an internal buffer to guarantee alignment.
1537		// It's not documented if this is necessary, but we're paranoid.
1538		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1539		if err != nil {
1540			return n, err
1541		}
1542		copied := copy(out, buf[0:])
1543		n += copied
1544		out = out[copied:]
1545	}
1546
1547	return n, nil
1548}
1549
1550func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1551	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1552}
1553
1554func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1555	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1556}
1557
1558func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1559	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1560}
1561
1562func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1563	// As for ptracePeek, we need to align our accesses to deal
1564	// with the possibility of straddling an invalid page.
1565
1566	// Leading edge.
1567	n := 0
1568	if addr%SizeofPtr != 0 {
1569		var buf [SizeofPtr]byte
1570		err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1571		if err != nil {
1572			return 0, err
1573		}
1574		n += copy(buf[addr%SizeofPtr:], data)
1575		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1576		err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1577		if err != nil {
1578			return 0, err
1579		}
1580		data = data[n:]
1581	}
1582
1583	// Interior.
1584	for len(data) > SizeofPtr {
1585		word := *((*uintptr)(unsafe.Pointer(&data[0])))
1586		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1587		if err != nil {
1588			return n, err
1589		}
1590		n += SizeofPtr
1591		data = data[SizeofPtr:]
1592	}
1593
1594	// Trailing edge.
1595	if len(data) > 0 {
1596		var buf [SizeofPtr]byte
1597		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1598		if err != nil {
1599			return n, err
1600		}
1601		copy(buf[0:], data)
1602		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1603		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1604		if err != nil {
1605			return n, err
1606		}
1607		n += len(data)
1608	}
1609
1610	return n, nil
1611}
1612
1613func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1614	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1615}
1616
1617func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1618	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1619}
1620
1621func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1622	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1623}
1624
1625func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1626	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1627}
1628
1629func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1630	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1631}
1632
1633func PtraceSetOptions(pid int, options int) (err error) {
1634	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1635}
1636
1637func PtraceGetEventMsg(pid int) (msg uint, err error) {
1638	var data _C_long
1639	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1640	msg = uint(data)
1641	return
1642}
1643
1644func PtraceCont(pid int, signal int) (err error) {
1645	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1646}
1647
1648func PtraceSyscall(pid int, signal int) (err error) {
1649	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1650}
1651
1652func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1653
1654func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
1655
1656func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1657
1658func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
1659
1660func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1661
1662//sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1663
1664func Reboot(cmd int) (err error) {
1665	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1666}
1667
1668func direntIno(buf []byte) (uint64, bool) {
1669	return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
1670}
1671
1672func direntReclen(buf []byte) (uint64, bool) {
1673	return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
1674}
1675
1676func direntNamlen(buf []byte) (uint64, bool) {
1677	reclen, ok := direntReclen(buf)
1678	if !ok {
1679		return 0, false
1680	}
1681	return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
1682}
1683
1684//sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1685
1686func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1687	// Certain file systems get rather angry and EINVAL if you give
1688	// them an empty string of data, rather than NULL.
1689	if data == "" {
1690		return mount(source, target, fstype, flags, nil)
1691	}
1692	datap, err := BytePtrFromString(data)
1693	if err != nil {
1694		return err
1695	}
1696	return mount(source, target, fstype, flags, datap)
1697}
1698
1699func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1700	if raceenabled {
1701		raceReleaseMerge(unsafe.Pointer(&ioSync))
1702	}
1703	return sendfile(outfd, infd, offset, count)
1704}
1705
1706// Sendto
1707// Recvfrom
1708// Socketpair
1709
1710/*
1711 * Direct access
1712 */
1713//sys	Acct(path string) (err error)
1714//sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1715//sys	Adjtimex(buf *Timex) (state int, err error)
1716//sysnb	Capget(hdr *CapUserHeader, data *CapUserData) (err error)
1717//sysnb	Capset(hdr *CapUserHeader, data *CapUserData) (err error)
1718//sys	Chdir(path string) (err error)
1719//sys	Chroot(path string) (err error)
1720//sys	ClockGetres(clockid int32, res *Timespec) (err error)
1721//sys	ClockGettime(clockid int32, time *Timespec) (err error)
1722//sys	ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1723//sys	Close(fd int) (err error)
1724//sys	CloseRange(first uint, last uint, flags uint) (err error)
1725//sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1726//sys	DeleteModule(name string, flags int) (err error)
1727//sys	Dup(oldfd int) (fd int, err error)
1728
1729func Dup2(oldfd, newfd int) error {
1730	// Android O and newer blocks dup2; riscv and arm64 don't implement dup2.
1731	if runtime.GOOS == "android" || runtime.GOARCH == "riscv64" || runtime.GOARCH == "arm64" {
1732		return Dup3(oldfd, newfd, 0)
1733	}
1734	return dup2(oldfd, newfd)
1735}
1736
1737//sys	Dup3(oldfd int, newfd int, flags int) (err error)
1738//sysnb	EpollCreate1(flag int) (fd int, err error)
1739//sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1740//sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1741//sys	Exit(code int) = SYS_EXIT_GROUP
1742//sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1743//sys	Fchdir(fd int) (err error)
1744//sys	Fchmod(fd int, mode uint32) (err error)
1745//sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1746//sys	Fdatasync(fd int) (err error)
1747//sys	Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1748//sys	FinitModule(fd int, params string, flags int) (err error)
1749//sys	Flistxattr(fd int, dest []byte) (sz int, err error)
1750//sys	Flock(fd int, how int) (err error)
1751//sys	Fremovexattr(fd int, attr string) (err error)
1752//sys	Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1753//sys	Fsync(fd int) (err error)
1754//sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1755//sysnb	Getpgid(pid int) (pgid int, err error)
1756
1757func Getpgrp() (pid int) {
1758	pid, _ = Getpgid(0)
1759	return
1760}
1761
1762//sysnb	Getpid() (pid int)
1763//sysnb	Getppid() (ppid int)
1764//sys	Getpriority(which int, who int) (prio int, err error)
1765//sys	Getrandom(buf []byte, flags int) (n int, err error)
1766//sysnb	Getrusage(who int, rusage *Rusage) (err error)
1767//sysnb	Getsid(pid int) (sid int, err error)
1768//sysnb	Gettid() (tid int)
1769//sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
1770//sys	InitModule(moduleImage []byte, params string) (err error)
1771//sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1772//sysnb	InotifyInit1(flags int) (fd int, err error)
1773//sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1774//sysnb	Kill(pid int, sig syscall.Signal) (err error)
1775//sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1776//sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1777//sys	Listxattr(path string, dest []byte) (sz int, err error)
1778//sys	Llistxattr(path string, dest []byte) (sz int, err error)
1779//sys	Lremovexattr(path string, attr string) (err error)
1780//sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1781//sys	MemfdCreate(name string, flags int) (fd int, err error)
1782//sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
1783//sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1784//sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
1785//sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1786//sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1787//sysnb	prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1788//sys	Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1789//sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1790//sys	read(fd int, p []byte) (n int, err error)
1791//sys	Removexattr(path string, attr string) (err error)
1792//sys	Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1793//sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1794//sys	Setdomainname(p []byte) (err error)
1795//sys	Sethostname(p []byte) (err error)
1796//sysnb	Setpgid(pid int, pgid int) (err error)
1797//sysnb	Setsid() (pid int, err error)
1798//sysnb	Settimeofday(tv *Timeval) (err error)
1799//sys	Setns(fd int, nstype int) (err error)
1800
1801// PrctlRetInt performs a prctl operation specified by option and further
1802// optional arguments arg2 through arg5 depending on option. It returns a
1803// non-negative integer that is returned by the prctl syscall.
1804func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
1805	ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
1806	if err != 0 {
1807		return 0, err
1808	}
1809	return int(ret), nil
1810}
1811
1812// issue 1435.
1813// On linux Setuid and Setgid only affects the current thread, not the process.
1814// This does not match what most callers expect so we must return an error
1815// here rather than letting the caller think that the call succeeded.
1816
1817func Setuid(uid int) (err error) {
1818	return EOPNOTSUPP
1819}
1820
1821func Setgid(uid int) (err error) {
1822	return EOPNOTSUPP
1823}
1824
1825// SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
1826// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
1827// If the call fails due to other reasons, current fsgid will be returned.
1828func SetfsgidRetGid(gid int) (int, error) {
1829	return setfsgid(gid)
1830}
1831
1832// SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
1833// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
1834// If the call fails due to other reasons, current fsuid will be returned.
1835func SetfsuidRetUid(uid int) (int, error) {
1836	return setfsuid(uid)
1837}
1838
1839func Setfsgid(gid int) error {
1840	_, err := setfsgid(gid)
1841	return err
1842}
1843
1844func Setfsuid(uid int) error {
1845	_, err := setfsuid(uid)
1846	return err
1847}
1848
1849func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
1850	return signalfd(fd, sigmask, _C__NSIG/8, flags)
1851}
1852
1853//sys	Setpriority(which int, who int, prio int) (err error)
1854//sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
1855//sys	signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
1856//sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1857//sys	Sync()
1858//sys	Syncfs(fd int) (err error)
1859//sysnb	Sysinfo(info *Sysinfo_t) (err error)
1860//sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1861//sysnb	TimerfdCreate(clockid int, flags int) (fd int, err error)
1862//sysnb	TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
1863//sysnb	TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
1864//sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1865//sysnb	Times(tms *Tms) (ticks uintptr, err error)
1866//sysnb	Umask(mask int) (oldmask int)
1867//sysnb	Uname(buf *Utsname) (err error)
1868//sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1869//sys	Unshare(flags int) (err error)
1870//sys	write(fd int, p []byte) (n int, err error)
1871//sys	exitThread(code int) (err error) = SYS_EXIT
1872//sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1873//sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1874//sys	readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
1875//sys	writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
1876//sys	preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
1877//sys	pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
1878//sys	preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
1879//sys	pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
1880
1881func bytes2iovec(bs [][]byte) []Iovec {
1882	iovecs := make([]Iovec, len(bs))
1883	for i, b := range bs {
1884		iovecs[i].SetLen(len(b))
1885		if len(b) > 0 {
1886			iovecs[i].Base = &b[0]
1887		} else {
1888			iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
1889		}
1890	}
1891	return iovecs
1892}
1893
1894// offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
1895// systems, hi will always be 0. On 32-bit systems, offs will be split in half.
1896// preadv/pwritev chose this calling convention so they don't need to add a
1897// padding-register for alignment on ARM.
1898func offs2lohi(offs int64) (lo, hi uintptr) {
1899	return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
1900}
1901
1902func Readv(fd int, iovs [][]byte) (n int, err error) {
1903	iovecs := bytes2iovec(iovs)
1904	n, err = readv(fd, iovecs)
1905	readvRacedetect(iovecs, n, err)
1906	return n, err
1907}
1908
1909func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
1910	iovecs := bytes2iovec(iovs)
1911	lo, hi := offs2lohi(offset)
1912	n, err = preadv(fd, iovecs, lo, hi)
1913	readvRacedetect(iovecs, n, err)
1914	return n, err
1915}
1916
1917func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
1918	iovecs := bytes2iovec(iovs)
1919	lo, hi := offs2lohi(offset)
1920	n, err = preadv2(fd, iovecs, lo, hi, flags)
1921	readvRacedetect(iovecs, n, err)
1922	return n, err
1923}
1924
1925func readvRacedetect(iovecs []Iovec, n int, err error) {
1926	if !raceenabled {
1927		return
1928	}
1929	for i := 0; n > 0 && i < len(iovecs); i++ {
1930		m := int(iovecs[i].Len)
1931		if m > n {
1932			m = n
1933		}
1934		n -= m
1935		if m > 0 {
1936			raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
1937		}
1938	}
1939	if err == nil {
1940		raceAcquire(unsafe.Pointer(&ioSync))
1941	}
1942}
1943
1944func Writev(fd int, iovs [][]byte) (n int, err error) {
1945	iovecs := bytes2iovec(iovs)
1946	if raceenabled {
1947		raceReleaseMerge(unsafe.Pointer(&ioSync))
1948	}
1949	n, err = writev(fd, iovecs)
1950	writevRacedetect(iovecs, n)
1951	return n, err
1952}
1953
1954func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
1955	iovecs := bytes2iovec(iovs)
1956	if raceenabled {
1957		raceReleaseMerge(unsafe.Pointer(&ioSync))
1958	}
1959	lo, hi := offs2lohi(offset)
1960	n, err = pwritev(fd, iovecs, lo, hi)
1961	writevRacedetect(iovecs, n)
1962	return n, err
1963}
1964
1965func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
1966	iovecs := bytes2iovec(iovs)
1967	if raceenabled {
1968		raceReleaseMerge(unsafe.Pointer(&ioSync))
1969	}
1970	lo, hi := offs2lohi(offset)
1971	n, err = pwritev2(fd, iovecs, lo, hi, flags)
1972	writevRacedetect(iovecs, n)
1973	return n, err
1974}
1975
1976func writevRacedetect(iovecs []Iovec, n int) {
1977	if !raceenabled {
1978		return
1979	}
1980	for i := 0; n > 0 && i < len(iovecs); i++ {
1981		m := int(iovecs[i].Len)
1982		if m > n {
1983			m = n
1984		}
1985		n -= m
1986		if m > 0 {
1987			raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
1988		}
1989	}
1990}
1991
1992// mmap varies by architecture; see syscall_linux_*.go.
1993//sys	munmap(addr uintptr, length uintptr) (err error)
1994
1995var mapper = &mmapper{
1996	active: make(map[*byte][]byte),
1997	mmap:   mmap,
1998	munmap: munmap,
1999}
2000
2001func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
2002	return mapper.Mmap(fd, offset, length, prot, flags)
2003}
2004
2005func Munmap(b []byte) (err error) {
2006	return mapper.Munmap(b)
2007}
2008
2009//sys	Madvise(b []byte, advice int) (err error)
2010//sys	Mprotect(b []byte, prot int) (err error)
2011//sys	Mlock(b []byte) (err error)
2012//sys	Mlockall(flags int) (err error)
2013//sys	Msync(b []byte, flags int) (err error)
2014//sys	Munlock(b []byte) (err error)
2015//sys	Munlockall() (err error)
2016
2017// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
2018// using the specified flags.
2019func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
2020	var p unsafe.Pointer
2021	if len(iovs) > 0 {
2022		p = unsafe.Pointer(&iovs[0])
2023	}
2024
2025	n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
2026	if errno != 0 {
2027		return 0, syscall.Errno(errno)
2028	}
2029
2030	return int(n), nil
2031}
2032
2033func isGroupMember(gid int) bool {
2034	groups, err := Getgroups()
2035	if err != nil {
2036		return false
2037	}
2038
2039	for _, g := range groups {
2040		if g == gid {
2041			return true
2042		}
2043	}
2044	return false
2045}
2046
2047//sys	faccessat(dirfd int, path string, mode uint32) (err error)
2048//sys	Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
2049
2050func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
2051	if flags == 0 {
2052		return faccessat(dirfd, path, mode)
2053	}
2054
2055	if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
2056		return err
2057	}
2058
2059	// The Linux kernel faccessat system call does not take any flags.
2060	// The glibc faccessat implements the flags itself; see
2061	// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
2062	// Because people naturally expect syscall.Faccessat to act
2063	// like C faccessat, we do the same.
2064
2065	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
2066		return EINVAL
2067	}
2068
2069	var st Stat_t
2070	if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
2071		return err
2072	}
2073
2074	mode &= 7
2075	if mode == 0 {
2076		return nil
2077	}
2078
2079	var uid int
2080	if flags&AT_EACCESS != 0 {
2081		uid = Geteuid()
2082	} else {
2083		uid = Getuid()
2084	}
2085
2086	if uid == 0 {
2087		if mode&1 == 0 {
2088			// Root can read and write any file.
2089			return nil
2090		}
2091		if st.Mode&0111 != 0 {
2092			// Root can execute any file that anybody can execute.
2093			return nil
2094		}
2095		return EACCES
2096	}
2097
2098	var fmode uint32
2099	if uint32(uid) == st.Uid {
2100		fmode = (st.Mode >> 6) & 7
2101	} else {
2102		var gid int
2103		if flags&AT_EACCESS != 0 {
2104			gid = Getegid()
2105		} else {
2106			gid = Getgid()
2107		}
2108
2109		if uint32(gid) == st.Gid || isGroupMember(gid) {
2110			fmode = (st.Mode >> 3) & 7
2111		} else {
2112			fmode = st.Mode & 7
2113		}
2114	}
2115
2116	if fmode&mode == mode {
2117		return nil
2118	}
2119
2120	return EACCES
2121}
2122
2123//sys	nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
2124//sys	openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
2125
2126// fileHandle is the argument to nameToHandleAt and openByHandleAt. We
2127// originally tried to generate it via unix/linux/types.go with "type
2128// fileHandle C.struct_file_handle" but that generated empty structs
2129// for mips64 and mips64le. Instead, hard code it for now (it's the
2130// same everywhere else) until the mips64 generator issue is fixed.
2131type fileHandle struct {
2132	Bytes uint32
2133	Type  int32
2134}
2135
2136// FileHandle represents the C struct file_handle used by
2137// name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
2138// OpenByHandleAt).
2139type FileHandle struct {
2140	*fileHandle
2141}
2142
2143// NewFileHandle constructs a FileHandle.
2144func NewFileHandle(handleType int32, handle []byte) FileHandle {
2145	const hdrSize = unsafe.Sizeof(fileHandle{})
2146	buf := make([]byte, hdrSize+uintptr(len(handle)))
2147	copy(buf[hdrSize:], handle)
2148	fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2149	fh.Type = handleType
2150	fh.Bytes = uint32(len(handle))
2151	return FileHandle{fh}
2152}
2153
2154func (fh *FileHandle) Size() int   { return int(fh.fileHandle.Bytes) }
2155func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
2156func (fh *FileHandle) Bytes() []byte {
2157	n := fh.Size()
2158	if n == 0 {
2159		return nil
2160	}
2161	return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
2162}
2163
2164// NameToHandleAt wraps the name_to_handle_at system call; it obtains
2165// a handle for a path name.
2166func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
2167	var mid _C_int
2168	// Try first with a small buffer, assuming the handle will
2169	// only be 32 bytes.
2170	size := uint32(32 + unsafe.Sizeof(fileHandle{}))
2171	didResize := false
2172	for {
2173		buf := make([]byte, size)
2174		fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2175		fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
2176		err = nameToHandleAt(dirfd, path, fh, &mid, flags)
2177		if err == EOVERFLOW {
2178			if didResize {
2179				// We shouldn't need to resize more than once
2180				return
2181			}
2182			didResize = true
2183			size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
2184			continue
2185		}
2186		if err != nil {
2187			return
2188		}
2189		return FileHandle{fh}, int(mid), nil
2190	}
2191}
2192
2193// OpenByHandleAt wraps the open_by_handle_at system call; it opens a
2194// file via a handle as previously returned by NameToHandleAt.
2195func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
2196	return openByHandleAt(mountFD, handle.fileHandle, flags)
2197}
2198
2199// Klogset wraps the sys_syslog system call; it sets console_loglevel to
2200// the value specified by arg and passes a dummy pointer to bufp.
2201func Klogset(typ int, arg int) (err error) {
2202	var p unsafe.Pointer
2203	_, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
2204	if errno != 0 {
2205		return errnoErr(errno)
2206	}
2207	return nil
2208}
2209
2210// RemoteIovec is Iovec with the pointer replaced with an integer.
2211// It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
2212// refers to a location in a different process' address space, which
2213// would confuse the Go garbage collector.
2214type RemoteIovec struct {
2215	Base uintptr
2216	Len  int
2217}
2218
2219//sys	ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
2220//sys	ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
2221
2222/*
2223 * Unimplemented
2224 */
2225// AfsSyscall
2226// Alarm
2227// ArchPrctl
2228// Brk
2229// ClockNanosleep
2230// ClockSettime
2231// Clone
2232// EpollCtlOld
2233// EpollPwait
2234// EpollWaitOld
2235// Execve
2236// Fork
2237// Futex
2238// GetKernelSyms
2239// GetMempolicy
2240// GetRobustList
2241// GetThreadArea
2242// Getitimer
2243// Getpmsg
2244// IoCancel
2245// IoDestroy
2246// IoGetevents
2247// IoSetup
2248// IoSubmit
2249// IoprioGet
2250// IoprioSet
2251// KexecLoad
2252// LookupDcookie
2253// Mbind
2254// MigratePages
2255// Mincore
2256// ModifyLdt
2257// Mount
2258// MovePages
2259// MqGetsetattr
2260// MqNotify
2261// MqOpen
2262// MqTimedreceive
2263// MqTimedsend
2264// MqUnlink
2265// Mremap
2266// Msgctl
2267// Msgget
2268// Msgrcv
2269// Msgsnd
2270// Nfsservctl
2271// Personality
2272// Pselect6
2273// Ptrace
2274// Putpmsg
2275// Quotactl
2276// Readahead
2277// Readv
2278// RemapFilePages
2279// RestartSyscall
2280// RtSigaction
2281// RtSigpending
2282// RtSigprocmask
2283// RtSigqueueinfo
2284// RtSigreturn
2285// RtSigsuspend
2286// RtSigtimedwait
2287// SchedGetPriorityMax
2288// SchedGetPriorityMin
2289// SchedGetparam
2290// SchedGetscheduler
2291// SchedRrGetInterval
2292// SchedSetparam
2293// SchedYield
2294// Security
2295// Semctl
2296// Semget
2297// Semop
2298// Semtimedop
2299// SetMempolicy
2300// SetRobustList
2301// SetThreadArea
2302// SetTidAddress
2303// Shmat
2304// Shmctl
2305// Shmdt
2306// Shmget
2307// Sigaltstack
2308// Swapoff
2309// Swapon
2310// Sysfs
2311// TimerCreate
2312// TimerDelete
2313// TimerGetoverrun
2314// TimerGettime
2315// TimerSettime
2316// Tkill (obsolete)
2317// Tuxcall
2318// Umount2
2319// Uselib
2320// Utimensat
2321// Vfork
2322// Vhangup
2323// Vserver
2324// Waitid
2325// _Sysctl
2326