1 /*
2  *  ReplayGainAnalysis - analyzes input samples and give the recommended dB change
3  *  Copyright (C) 2001 David Robinson and Glen Sawyer
4  *  Improvements and optimizations added by Frank Klemm, and by Marcel M�ller
5  *
6  *  This library is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU Lesser General Public
8  *  License as published by the Free Software Foundation; either
9  *  version 2.1 of the License, or (at your option) any later version.
10  *
11  *  This library is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  *  Lesser General Public License for more details.
15  *
16  *  You should have received a copy of the GNU Lesser General Public
17  *  License along with this library; if not, write to the Free Software
18  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  *
20  *  concept and filter values by David Robinson (David@Robinson.org)
21  *    -- blame him if you think the idea is flawed
22  *  original coding by Glen Sawyer (mp3gain@hotmail.com)
23  *    -- blame him if you think this runs too slowly, or the coding is otherwise flawed
24  *
25  *  lots of code improvements by Frank Klemm ( http://www.uni-jena.de/~pfk/mpp/ )
26  *    -- credit him for all the _good_ programming ;)
27  *
28  *
29  *  For an explanation of the concepts and the basic algorithms involved, go to:
30  *    http://www.replaygain.org/
31  */
32 
33 /*
34  *  Here's the deal. Call
35  *
36  *    InitGainAnalysis ( long samplefreq );
37  *
38  *  to initialize everything. Call
39  *
40  *    AnalyzeSamples ( const Float_t*  left_samples,
41  *                     const Float_t*  right_samples,
42  *                     size_t          num_samples,
43  *                     int             num_channels );
44  *
45  *  as many times as you want, with as many or as few samples as you want.
46  *  If mono, pass the sample buffer in through left_samples, leave
47  *  right_samples NULL, and make sure num_channels = 1.
48  *
49  *    GetTitleGain()
50  *
51  *  will return the recommended dB level change for all samples analyzed
52  *  SINCE THE LAST TIME you called GetTitleGain() OR InitGainAnalysis().
53  *
54  *    GetAlbumGain()
55  *
56  *  will return the recommended dB level change for all samples analyzed
57  *  since InitGainAnalysis() was called and finalized with GetTitleGain().
58  *
59  *  Pseudo-code to process an album:
60  *
61  *    Float_t       l_samples [4096];
62  *    Float_t       r_samples [4096];
63  *    size_t        num_samples;
64  *    unsigned int  num_songs;
65  *    unsigned int  i;
66  *
67  *    InitGainAnalysis ( 44100 );
68  *    for ( i = 1; i <= num_songs; i++ ) {
69  *        while ( ( num_samples = getSongSamples ( song[i], left_samples, right_samples ) ) > 0 )
70  *            AnalyzeSamples ( left_samples, right_samples, num_samples, 2 );
71  *        fprintf ("Recommended dB change for song %2d: %+6.2f dB\n", i, GetTitleGain() );
72  *    }
73  *    fprintf ("Recommended dB change for whole album: %+6.2f dB\n", GetAlbumGain() );
74  */
75 
76 /*
77  *  So here's the main source of potential code confusion:
78  *
79  *  The filters applied to the incoming samples are IIR filters,
80  *  meaning they rely on up to <filter order> number of previous samples
81  *  AND up to <filter order> number of previous filtered samples.
82  *
83  *  I set up the AnalyzeSamples routine to minimize memory usage and interface
84  *  complexity. The speed isn't compromised too much (I don't think), but the
85  *  internal complexity is higher than it should be for such a relatively
86  *  simple routine.
87  *
88  *  Optimization/clarity suggestions are welcome.
89  */
90 
91 #include <stdio.h>
92 #include <stdlib.h>
93 #include <string.h>
94 #include <math.h>
95 
96 #include "gain_analysis.h"
97 
98 typedef unsigned short  Uint16_t;
99 typedef signed short    Int16_t;
100 typedef unsigned int    Uint32_t;
101 typedef signed int      Int32_t;
102 
103 #define YULE_ORDER         10
104 #define BUTTER_ORDER        2
105 #define YULE_FILTER     filterYule
106 #define BUTTER_FILTER   filterButter
107 #define RMS_PERCENTILE      0.95        // percentile which is louder than the proposed level
108 #define MAX_SAMP_FREQ   48000.          // maximum allowed sample frequency [Hz]
109 #define RMS_WINDOW_TIME     0.050       // Time slice size [s]
110 #define STEPS_per_dB      100.          // Table entries per dB
111 #define MAX_dB            120.          // Table entries for 0...MAX_dB (normal max. values are 70...80 dB)
112 
113 #define MAX_ORDER               (BUTTER_ORDER > YULE_ORDER ? BUTTER_ORDER : YULE_ORDER)
114 #define MAX_SAMPLES_PER_WINDOW  (size_t) (MAX_SAMP_FREQ * RMS_WINDOW_TIME)      // max. Samples per Time slice
115 #define PINK_REF                64.82 //298640883795                              // calibration value
116 
117 Float_t          linprebuf [MAX_ORDER * 2];
118 Float_t*         linpre;                                          // left input samples, with pre-buffer
119 Float_t          lstepbuf  [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
120 Float_t*         lstep;                                           // left "first step" (i.e. post first filter) samples
121 Float_t          loutbuf   [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
122 Float_t*         lout;                                            // left "out" (i.e. post second filter) samples
123 Float_t          rinprebuf [MAX_ORDER * 2];
124 Float_t*         rinpre;                                          // right input samples ...
125 Float_t          rstepbuf  [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
126 Float_t*         rstep;
127 Float_t          routbuf   [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
128 Float_t*         rout;
129 long             sampleWindow;                                    // number of samples required to reach number of milliseconds required for RMS window
130 long             totsamp;
131 double           lsum;
132 double           rsum;
133 int              freqindex;
134 int              first;
135 static Uint32_t  A [(size_t)(STEPS_per_dB * MAX_dB)];
136 static Uint32_t  B [(size_t)(STEPS_per_dB * MAX_dB)];
137 
138 // for each filter:
139 // [0] 48 kHz, [1] 44.1 kHz, [2] 32 kHz, [3] 24 kHz, [4] 22050 Hz, [5] 16 kHz, [6] 12 kHz, [7] is 11025 Hz, [8] 8 kHz
140 
141 #ifdef WIN32
142 #ifndef __GNUC__
143 #pragma warning ( disable : 4305 )
144 #endif
145 #endif
146 
147 static const Float_t ABYule[9][2*YULE_ORDER + 1] = {
148     {0.03857599435200, -3.84664617118067, -0.02160367184185,  7.81501653005538, -0.00123395316851,-11.34170355132042, -0.00009291677959, 13.05504219327545, -0.01655260341619,-12.28759895145294,  0.02161526843274,  9.48293806319790, -0.02074045215285, -5.87257861775999,  0.00594298065125,  2.75465861874613,  0.00306428023191, -0.86984376593551,  0.00012025322027,  0.13919314567432,  0.00288463683916 },
149     {0.05418656406430, -3.47845948550071, -0.02911007808948,  6.36317777566148, -0.00848709379851, -8.54751527471874, -0.00851165645469,  9.47693607801280, -0.00834990904936, -8.81498681370155,  0.02245293253339,  6.85401540936998, -0.02596338512915, -4.39470996079559,  0.01624864962975,  2.19611684890774, -0.00240879051584, -0.75104302451432,  0.00674613682247,  0.13149317958808, -0.00187763777362 },
150     {0.15457299681924, -2.37898834973084, -0.09331049056315,  2.84868151156327, -0.06247880153653, -2.64577170229825,  0.02163541888798,  2.23697657451713, -0.05588393329856, -1.67148153367602,  0.04781476674921,  1.00595954808547,  0.00222312597743, -0.45953458054983,  0.03174092540049,  0.16378164858596, -0.01390589421898, -0.05032077717131,  0.00651420667831,  0.02347897407020, -0.00881362733839 },
151     {0.30296907319327, -1.61273165137247, -0.22613988682123,  1.07977492259970, -0.08587323730772, -0.25656257754070,  0.03282930172664, -0.16276719120440, -0.00915702933434, -0.22638893773906, -0.02364141202522,  0.39120800788284, -0.00584456039913, -0.22138138954925,  0.06276101321749,  0.04500235387352, -0.00000828086748,  0.02005851806501,  0.00205861885564,  0.00302439095741, -0.02950134983287 },
152     {0.33642304856132, -1.49858979367799, -0.25572241425570,  0.87350271418188, -0.11828570177555,  0.12205022308084,  0.11921148675203, -0.80774944671438, -0.07834489609479,  0.47854794562326, -0.00469977914380, -0.12453458140019, -0.00589500224440, -0.04067510197014,  0.05724228140351,  0.08333755284107,  0.00832043980773, -0.04237348025746, -0.01635381384540,  0.02977207319925, -0.01760176568150 },
153     {0.44915256608450, -0.62820619233671, -0.14351757464547,  0.29661783706366, -0.22784394429749, -0.37256372942400, -0.01419140100551,  0.00213767857124,  0.04078262797139, -0.42029820170918, -0.12398163381748,  0.22199650564824,  0.04097565135648,  0.00613424350682,  0.10478503600251,  0.06747620744683, -0.01863887810927,  0.05784820375801, -0.03193428438915,  0.03222754072173,  0.00541907748707 },
154     {0.56619470757641, -1.04800335126349, -0.75464456939302,  0.29156311971249,  0.16242137742230, -0.26806001042947,  0.16744243493672,  0.00819999645858, -0.18901604199609,  0.45054734505008,  0.30931782841830, -0.33032403314006, -0.27562961986224,  0.06739368333110,  0.00647310677246, -0.04784254229033,  0.08647503780351,  0.01639907836189, -0.03788984554840,  0.01807364323573, -0.00588215443421 },
155     {0.58100494960553, -0.51035327095184, -0.53174909058578, -0.31863563325245, -0.14289799034253, -0.20256413484477,  0.17520704835522,  0.14728154134330,  0.02377945217615,  0.38952639978999,  0.15558449135573, -0.23313271880868, -0.25344790059353, -0.05246019024463,  0.01628462406333, -0.02505961724053,  0.06920467763959,  0.02442357316099, -0.03721611395801,  0.01818801111503, -0.00749618797172 },
156     {0.53648789255105, -0.25049871956020, -0.42163034350696, -0.43193942311114, -0.00275953611929, -0.03424681017675,  0.04267842219415, -0.04678328784242, -0.10214864179676,  0.26408300200955,  0.14590772289388,  0.15113130533216, -0.02459864859345, -0.17556493366449, -0.11202315195388, -0.18823009262115, -0.04060034127000,  0.05477720428674,  0.04788665548180,  0.04704409688120, -0.02217936801134 }
157 };
158 
159 static const Float_t ABButter[9][2*BUTTER_ORDER + 1] = {
160     {0.98621192462708, -1.97223372919527, -1.97242384925416,  0.97261396931306,  0.98621192462708 },
161     {0.98500175787242, -1.96977855582618, -1.97000351574484,  0.97022847566350,  0.98500175787242 },
162     {0.97938932735214, -1.95835380975398, -1.95877865470428,  0.95920349965459,  0.97938932735214 },
163     {0.97531843204928, -1.95002759149878, -1.95063686409857,  0.95124613669835,  0.97531843204928 },
164     {0.97316523498161, -1.94561023566527, -1.94633046996323,  0.94705070426118,  0.97316523498161 },
165     {0.96454515552826, -1.92783286977036, -1.92909031105652,  0.93034775234268,  0.96454515552826 },
166     {0.96009142950541, -1.91858953033784, -1.92018285901082,  0.92177618768381,  0.96009142950541 },
167     {0.95856916599601, -1.91542108074780, -1.91713833199203,  0.91885558323625,  0.95856916599601 },
168     {0.94597685600279, -1.88903307939452, -1.89195371200558,  0.89487434461664,  0.94597685600279 }
169 };
170 
171 
172 #ifdef WIN32
173 #ifndef __GNUC__
174 #pragma warning ( default : 4305 )
175 #endif
176 #endif
177 
178 // When calling these filter procedures, make sure that ip[-order] and op[-order] point to real data!
179 
180 // If your compiler complains that "'operation on 'output' may be undefined", you can
181 // either ignore the warnings or uncomment the three "y" lines (and comment out the indicated line)
182 
183 static void
filterYule(const Float_t * input,Float_t * output,size_t nSamples,const Float_t * kernel)184 filterYule (const Float_t* input, Float_t* output, size_t nSamples, const Float_t* kernel)
185 {
186 
187     while (nSamples--) {
188        *output =  1e-10  /* 1e-10 is a hack to avoid slowdown because of denormals */
189          + input [0]  * kernel[0]
190          - output[-1] * kernel[1]
191          + input [-1] * kernel[2]
192          - output[-2] * kernel[3]
193          + input [-2] * kernel[4]
194          - output[-3] * kernel[5]
195          + input [-3] * kernel[6]
196          - output[-4] * kernel[7]
197          + input [-4] * kernel[8]
198          - output[-5] * kernel[9]
199          + input [-5] * kernel[10]
200          - output[-6] * kernel[11]
201          + input [-6] * kernel[12]
202          - output[-7] * kernel[13]
203          + input [-7] * kernel[14]
204          - output[-8] * kernel[15]
205          + input [-8] * kernel[16]
206          - output[-9] * kernel[17]
207          + input [-9] * kernel[18]
208          - output[-10]* kernel[19]
209          + input [-10]* kernel[20];
210         ++output;
211         ++input;
212     }
213 }
214 
215 static void
filterButter(const Float_t * input,Float_t * output,size_t nSamples,const Float_t * kernel)216 filterButter (const Float_t* input, Float_t* output, size_t nSamples, const Float_t* kernel)
217 {
218 
219     while (nSamples--) {
220         *output =
221            input [0]  * kernel[0]
222          - output[-1] * kernel[1]
223          + input [-1] * kernel[2]
224          - output[-2] * kernel[3]
225          + input [-2] * kernel[4];
226         ++output;
227         ++input;
228     }
229 }
230 
231 
232 // returns a INIT_GAIN_ANALYSIS_OK if successful, INIT_GAIN_ANALYSIS_ERROR if not
233 
234 int
ResetSampleFrequency(long samplefreq)235 ResetSampleFrequency ( long samplefreq ) {
236     int  i;
237 
238     // zero out initial values
239     for ( i = 0; i < MAX_ORDER; i++ )
240         linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] = routbuf[i] = 0.;
241 
242     switch ( (int)(samplefreq) ) {
243         case 48000: freqindex = 0; break;
244         case 44100: freqindex = 1; break;
245         case 32000: freqindex = 2; break;
246         case 24000: freqindex = 3; break;
247         case 22050: freqindex = 4; break;
248         case 16000: freqindex = 5; break;
249         case 12000: freqindex = 6; break;
250         case 11025: freqindex = 7; break;
251         case  8000: freqindex = 8; break;
252         default:    return INIT_GAIN_ANALYSIS_ERROR;
253     }
254 
255     sampleWindow = (int) ceil (samplefreq * RMS_WINDOW_TIME);
256 
257     lsum         = 0.;
258     rsum         = 0.;
259     totsamp      = 0;
260 
261     memset ( A, 0, sizeof(A) );
262 
263     return INIT_GAIN_ANALYSIS_OK;
264 }
265 
266 int
InitGainAnalysis(long samplefreq)267 InitGainAnalysis ( long samplefreq )
268 {
269     if (ResetSampleFrequency(samplefreq) != INIT_GAIN_ANALYSIS_OK) {
270         return INIT_GAIN_ANALYSIS_ERROR;
271     }
272 
273     linpre       = linprebuf + MAX_ORDER;
274     rinpre       = rinprebuf + MAX_ORDER;
275     lstep        = lstepbuf  + MAX_ORDER;
276     rstep        = rstepbuf  + MAX_ORDER;
277     lout         = loutbuf   + MAX_ORDER;
278     rout         = routbuf   + MAX_ORDER;
279 
280     memset ( B, 0, sizeof(B) );
281 
282     return INIT_GAIN_ANALYSIS_OK;
283 }
284 
285 // returns GAIN_ANALYSIS_OK if successful, GAIN_ANALYSIS_ERROR if not
286 
fsqr(const double d)287 static __inline double fsqr(const double d)
288 {  return d*d;
289 }
290 
291 int
AnalyzeSamples(const Float_t * left_samples,const Float_t * right_samples,size_t num_samples,int num_channels)292 AnalyzeSamples ( const Float_t* left_samples, const Float_t* right_samples, size_t num_samples, int num_channels )
293 {
294     const Float_t*  curleft;
295     const Float_t*  curright;
296     long            batchsamples;
297     long            cursamples;
298     long            cursamplepos;
299     int             i;
300 
301     if ( num_samples == 0 )
302         return GAIN_ANALYSIS_OK;
303 
304     cursamplepos = 0;
305     batchsamples = num_samples;
306 
307     switch ( num_channels) {
308     case  1: right_samples = left_samples;
309     case  2: break;
310     default: return GAIN_ANALYSIS_ERROR;
311     }
312 
313     if ( num_samples < MAX_ORDER ) {
314         memcpy ( linprebuf + MAX_ORDER, left_samples , num_samples * sizeof(Float_t) );
315         memcpy ( rinprebuf + MAX_ORDER, right_samples, num_samples * sizeof(Float_t) );
316     }
317     else {
318         memcpy ( linprebuf + MAX_ORDER, left_samples,  MAX_ORDER   * sizeof(Float_t) );
319         memcpy ( rinprebuf + MAX_ORDER, right_samples, MAX_ORDER   * sizeof(Float_t) );
320     }
321 
322     while ( batchsamples > 0 ) {
323         cursamples = batchsamples > sampleWindow-totsamp  ?  sampleWindow - totsamp  :  batchsamples;
324         if ( cursamplepos < MAX_ORDER ) {
325             curleft  = linpre+cursamplepos;
326             curright = rinpre+cursamplepos;
327             if (cursamples > MAX_ORDER - cursamplepos )
328                 cursamples = MAX_ORDER - cursamplepos;
329         }
330         else {
331             curleft  = left_samples  + cursamplepos;
332             curright = right_samples + cursamplepos;
333         }
334 
335         YULE_FILTER ( curleft , lstep + totsamp, cursamples, ABYule[freqindex]);
336         YULE_FILTER ( curright, rstep + totsamp, cursamples, ABYule[freqindex]);
337 
338         BUTTER_FILTER ( lstep + totsamp, lout + totsamp, cursamples, ABButter[freqindex]);
339         BUTTER_FILTER ( rstep + totsamp, rout + totsamp, cursamples, ABButter[freqindex]);
340 
341         curleft = lout + totsamp;                   // Get the squared values
342         curright = rout + totsamp;
343 
344         i = cursamples % 16;
345         while (i--)
346         {   lsum += fsqr(*curleft++);
347             rsum += fsqr(*curright++);
348         }
349         i = cursamples / 16;
350         while (i--)
351         {   lsum += fsqr(curleft[0])
352                   + fsqr(curleft[1])
353                   + fsqr(curleft[2])
354                   + fsqr(curleft[3])
355                   + fsqr(curleft[4])
356                   + fsqr(curleft[5])
357                   + fsqr(curleft[6])
358                   + fsqr(curleft[7])
359                   + fsqr(curleft[8])
360                   + fsqr(curleft[9])
361                   + fsqr(curleft[10])
362                   + fsqr(curleft[11])
363                   + fsqr(curleft[12])
364                   + fsqr(curleft[13])
365                   + fsqr(curleft[14])
366                   + fsqr(curleft[15]);
367             curleft += 16;
368             rsum += fsqr(curright[0])
369                   + fsqr(curright[1])
370                   + fsqr(curright[2])
371                   + fsqr(curright[3])
372                   + fsqr(curright[4])
373                   + fsqr(curright[5])
374                   + fsqr(curright[6])
375                   + fsqr(curright[7])
376                   + fsqr(curright[8])
377                   + fsqr(curright[9])
378                   + fsqr(curright[10])
379                   + fsqr(curright[11])
380                   + fsqr(curright[12])
381                   + fsqr(curright[13])
382                   + fsqr(curright[14])
383                   + fsqr(curright[15]);
384             curright += 16;
385         }
386 
387         batchsamples -= cursamples;
388         cursamplepos += cursamples;
389         totsamp      += cursamples;
390         if ( totsamp == sampleWindow ) {  // Get the Root Mean Square (RMS) for this set of samples
391             double  val  = STEPS_per_dB * 10. * log10 ( (lsum+rsum) / totsamp * 0.5 + 1.e-37 );
392             int     ival = (int) val;
393             if ( ival <                     0 ) ival = 0;
394             if ( ival >= (int)(sizeof(A)/sizeof(*A)) ) ival = sizeof(A)/sizeof(*A) - 1;
395             A [ival]++;
396             lsum = rsum = 0.;
397             memmove ( loutbuf , loutbuf  + totsamp, MAX_ORDER * sizeof(Float_t) );
398             memmove ( routbuf , routbuf  + totsamp, MAX_ORDER * sizeof(Float_t) );
399             memmove ( lstepbuf, lstepbuf + totsamp, MAX_ORDER * sizeof(Float_t) );
400             memmove ( rstepbuf, rstepbuf + totsamp, MAX_ORDER * sizeof(Float_t) );
401             totsamp = 0;
402         }
403         if ( totsamp > sampleWindow )   // somehow I really screwed up: Error in programming! Contact author about totsamp > sampleWindow
404             return GAIN_ANALYSIS_ERROR;
405     }
406     if ( num_samples < MAX_ORDER ) {
407         memmove ( linprebuf,                           linprebuf + num_samples, (MAX_ORDER-num_samples) * sizeof(Float_t) );
408         memmove ( rinprebuf,                           rinprebuf + num_samples, (MAX_ORDER-num_samples) * sizeof(Float_t) );
409         memcpy  ( linprebuf + MAX_ORDER - num_samples, left_samples,          num_samples             * sizeof(Float_t) );
410         memcpy  ( rinprebuf + MAX_ORDER - num_samples, right_samples,         num_samples             * sizeof(Float_t) );
411     }
412     else {
413         memcpy  ( linprebuf, left_samples  + num_samples - MAX_ORDER, MAX_ORDER * sizeof(Float_t) );
414         memcpy  ( rinprebuf, right_samples + num_samples - MAX_ORDER, MAX_ORDER * sizeof(Float_t) );
415     }
416 
417     return GAIN_ANALYSIS_OK;
418 }
419 
420 
421 static Float_t
analyzeResult(Uint32_t * Array,size_t len)422 analyzeResult ( Uint32_t* Array, size_t len )
423 {
424     Uint32_t  elems;
425     Int32_t   upper;
426     size_t    i;
427 
428     elems = 0;
429     for ( i = 0; i < len; i++ )
430         elems += Array[i];
431     if ( elems == 0 )
432         return GAIN_NOT_ENOUGH_SAMPLES;
433 
434     upper = (Int32_t) ceil (elems * (1. - RMS_PERCENTILE));
435     for ( i = len; i-- > 0; ) {
436         if ( (upper -= Array[i]) <= 0 )
437             break;
438     }
439 
440     return (Float_t) ((Float_t)PINK_REF - (Float_t)i / (Float_t)STEPS_per_dB);
441 }
442 
443 
444 Float_t
GetTitleGain(void)445 GetTitleGain ( void )
446 {
447     Float_t  retval;
448     int    i;
449 
450     retval = analyzeResult ( A, sizeof(A)/sizeof(*A) );
451 
452     for ( i = 0; i < (int)(sizeof(A)/sizeof(*A)); i++ ) {
453         B[i] += A[i];
454         A[i]  = 0;
455     }
456 
457     for ( i = 0; i < MAX_ORDER; i++ )
458         linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] = routbuf[i] = 0.f;
459 
460     totsamp = 0;
461     lsum    = rsum = 0.;
462     return retval;
463 }
464 
465 
466 Float_t
GetAlbumGain(void)467 GetAlbumGain ( void )
468 {
469     return analyzeResult ( B, sizeof(B)/sizeof(*B) );
470 }
471 
472 /* end of gain_analysis.c */
473