1 /*
2  * jfdctflt.c
3  *
4  * Copyright (C) 1994-1996, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README.ijg
7  * file.
8  *
9  * This file contains a floating-point implementation of the
10  * forward DCT (Discrete Cosine Transform).
11  *
12  * This implementation should be more accurate than either of the integer
13  * DCT implementations.  However, it may not give the same results on all
14  * machines because of differences in roundoff behavior.  Speed will depend
15  * on the hardware's floating point capacity.
16  *
17  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
18  * on each column.  Direct algorithms are also available, but they are
19  * much more complex and seem not to be any faster when reduced to code.
20  *
21  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
22  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
23  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
24  * JPEG textbook (see REFERENCES section in file README.ijg).  The following
25  * code is based directly on figure 4-8 in P&M.
26  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
27  * possible to arrange the computation so that many of the multiplies are
28  * simple scalings of the final outputs.  These multiplies can then be
29  * folded into the multiplications or divisions by the JPEG quantization
30  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
31  * to be done in the DCT itself.
32  * The primary disadvantage of this method is that with a fixed-point
33  * implementation, accuracy is lost due to imprecise representation of the
34  * scaled quantization values.  However, that problem does not arise if
35  * we use floating point arithmetic.
36  */
37 
38 #define JPEG_INTERNALS
39 #include "jinclude.h"
40 #include "jpeglib.h"
41 #include "jdct.h"               /* Private declarations for DCT subsystem */
42 
43 #ifdef DCT_FLOAT_SUPPORTED
44 
45 
46 /*
47  * This module is specialized to the case DCTSIZE = 8.
48  */
49 
50 #if DCTSIZE != 8
51   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
52 #endif
53 
54 
55 /*
56  * Perform the forward DCT on one block of samples.
57  */
58 
59 GLOBAL(void)
60 jpeg_fdct_float (FAST_FLOAT *data)
61 {
62   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
63   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
64   FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
65   FAST_FLOAT *dataptr;
66   int ctr;
67 
68   /* Pass 1: process rows. */
69 
70   dataptr = data;
71   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
72     tmp0 = dataptr[0] + dataptr[7];
73     tmp7 = dataptr[0] - dataptr[7];
74     tmp1 = dataptr[1] + dataptr[6];
75     tmp6 = dataptr[1] - dataptr[6];
76     tmp2 = dataptr[2] + dataptr[5];
77     tmp5 = dataptr[2] - dataptr[5];
78     tmp3 = dataptr[3] + dataptr[4];
79     tmp4 = dataptr[3] - dataptr[4];
80 
81     /* Even part */
82 
83     tmp10 = tmp0 + tmp3;        /* phase 2 */
84     tmp13 = tmp0 - tmp3;
85     tmp11 = tmp1 + tmp2;
86     tmp12 = tmp1 - tmp2;
87 
88     dataptr[0] = tmp10 + tmp11; /* phase 3 */
89     dataptr[4] = tmp10 - tmp11;
90 
91     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
92     dataptr[2] = tmp13 + z1;    /* phase 5 */
93     dataptr[6] = tmp13 - z1;
94 
95     /* Odd part */
96 
97     tmp10 = tmp4 + tmp5;        /* phase 2 */
98     tmp11 = tmp5 + tmp6;
99     tmp12 = tmp6 + tmp7;
100 
101     /* The rotator is modified from fig 4-8 to avoid extra negations. */
102     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
103     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
104     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
105     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
106 
107     z11 = tmp7 + z3;            /* phase 5 */
108     z13 = tmp7 - z3;
109 
110     dataptr[5] = z13 + z2;      /* phase 6 */
111     dataptr[3] = z13 - z2;
112     dataptr[1] = z11 + z4;
113     dataptr[7] = z11 - z4;
114 
115     dataptr += DCTSIZE;         /* advance pointer to next row */
116   }
117 
118   /* Pass 2: process columns. */
119 
120   dataptr = data;
121   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
122     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
123     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
124     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
125     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
126     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
127     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
128     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
129     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
130 
131     /* Even part */
132 
133     tmp10 = tmp0 + tmp3;        /* phase 2 */
134     tmp13 = tmp0 - tmp3;
135     tmp11 = tmp1 + tmp2;
136     tmp12 = tmp1 - tmp2;
137 
138     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
139     dataptr[DCTSIZE*4] = tmp10 - tmp11;
140 
141     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
142     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
143     dataptr[DCTSIZE*6] = tmp13 - z1;
144 
145     /* Odd part */
146 
147     tmp10 = tmp4 + tmp5;        /* phase 2 */
148     tmp11 = tmp5 + tmp6;
149     tmp12 = tmp6 + tmp7;
150 
151     /* The rotator is modified from fig 4-8 to avoid extra negations. */
152     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
153     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
154     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
155     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
156 
157     z11 = tmp7 + z3;            /* phase 5 */
158     z13 = tmp7 - z3;
159 
160     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
161     dataptr[DCTSIZE*3] = z13 - z2;
162     dataptr[DCTSIZE*1] = z11 + z4;
163     dataptr[DCTSIZE*7] = z11 - z4;
164 
165     dataptr++;                  /* advance pointer to next column */
166   }
167 }
168 
169 #endif /* DCT_FLOAT_SUPPORTED */
170