1 /*
2  * jmemmgr.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2016, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README.ijg
9  * file.
10  *
11  * This file contains the JPEG system-independent memory management
12  * routines.  This code is usable across a wide variety of machines; most
13  * of the system dependencies have been isolated in a separate file.
14  * The major functions provided here are:
15  *   * pool-based allocation and freeing of memory;
16  *   * policy decisions about how to divide available memory among the
17  *     virtual arrays;
18  *   * control logic for swapping virtual arrays between main memory and
19  *     backing storage.
20  * The separate system-dependent file provides the actual backing-storage
21  * access code, and it contains the policy decision about how much total
22  * main memory to use.
23  * This file is system-dependent in the sense that some of its functions
24  * are unnecessary in some systems.  For example, if there is enough virtual
25  * memory so that backing storage will never be used, much of the virtual
26  * array control logic could be removed.  (Of course, if you have that much
27  * memory then you shouldn't care about a little bit of unused code...)
28  */
29 
30 #define JPEG_INTERNALS
31 #define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
32 #include "jinclude.h"
33 #include "jpeglib.h"
34 #include "jmemsys.h"            /* import the system-dependent declarations */
35 
36 #ifndef NO_GETENV
37 #ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
38 extern char *getenv (const char *name);
39 #endif
40 #endif
41 
42 
43 LOCAL(size_t)
round_up_pow2(size_t a,size_t b)44 round_up_pow2 (size_t a, size_t b)
45 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
46 /* Assumes a >= 0, b > 0, and b is a power of 2 */
47 {
48   return ((a + b - 1) & (~(b - 1)));
49 }
50 
51 
52 /*
53  * Some important notes:
54  *   The allocation routines provided here must never return NULL.
55  *   They should exit to error_exit if unsuccessful.
56  *
57  *   It's not a good idea to try to merge the sarray and barray routines,
58  *   even though they are textually almost the same, because samples are
59  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
60  *   in machines where byte pointers have a different representation from
61  *   word pointers, the resulting machine code could not be the same.
62  */
63 
64 
65 /*
66  * Many machines require storage alignment: longs must start on 4-byte
67  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
68  * always returns pointers that are multiples of the worst-case alignment
69  * requirement, and we had better do so too.
70  * There isn't any really portable way to determine the worst-case alignment
71  * requirement.  This module assumes that the alignment requirement is
72  * multiples of ALIGN_SIZE.
73  * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on
74  * some workstations (where doubles really do need 8-byte alignment) and will
75  * work fine on nearly everything.  If your machine has lesser alignment needs,
76  * you can save a few bytes by making ALIGN_SIZE smaller.
77  * The only place I know of where this will NOT work is certain Macintosh
78  * 680x0 compilers that define double as a 10-byte IEEE extended float.
79  * Doing 10-byte alignment is counterproductive because longwords won't be
80  * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
81  * such a compiler.
82  */
83 
84 #ifndef ALIGN_SIZE              /* so can override from jconfig.h */
85 #ifndef WITH_SIMD
86 #define ALIGN_SIZE  sizeof(double)
87 #else
88 #define ALIGN_SIZE  16 /* Most SIMD implementations require this */
89 #endif
90 #endif
91 
92 /*
93  * We allocate objects from "pools", where each pool is gotten with a single
94  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
95  * overhead within a pool, except for alignment padding.  Each pool has a
96  * header with a link to the next pool of the same class.
97  * Small and large pool headers are identical.
98  */
99 
100 typedef struct small_pool_struct *small_pool_ptr;
101 
102 typedef struct small_pool_struct {
103   small_pool_ptr next;  /* next in list of pools */
104   size_t bytes_used;            /* how many bytes already used within pool */
105   size_t bytes_left;            /* bytes still available in this pool */
106 } small_pool_hdr;
107 
108 typedef struct large_pool_struct *large_pool_ptr;
109 
110 typedef struct large_pool_struct {
111   large_pool_ptr next;  /* next in list of pools */
112   size_t bytes_used;            /* how many bytes already used within pool */
113   size_t bytes_left;            /* bytes still available in this pool */
114 } large_pool_hdr;
115 
116 /*
117  * Here is the full definition of a memory manager object.
118  */
119 
120 typedef struct {
121   struct jpeg_memory_mgr pub;   /* public fields */
122 
123   /* Each pool identifier (lifetime class) names a linked list of pools. */
124   small_pool_ptr small_list[JPOOL_NUMPOOLS];
125   large_pool_ptr large_list[JPOOL_NUMPOOLS];
126 
127   /* Since we only have one lifetime class of virtual arrays, only one
128    * linked list is necessary (for each datatype).  Note that the virtual
129    * array control blocks being linked together are actually stored somewhere
130    * in the small-pool list.
131    */
132   jvirt_sarray_ptr virt_sarray_list;
133   jvirt_barray_ptr virt_barray_list;
134 
135   /* This counts total space obtained from jpeg_get_small/large */
136   size_t total_space_allocated;
137 
138   /* alloc_sarray and alloc_barray set this value for use by virtual
139    * array routines.
140    */
141   JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
142 } my_memory_mgr;
143 
144 typedef my_memory_mgr *my_mem_ptr;
145 
146 
147 /*
148  * The control blocks for virtual arrays.
149  * Note that these blocks are allocated in the "small" pool area.
150  * System-dependent info for the associated backing store (if any) is hidden
151  * inside the backing_store_info struct.
152  */
153 
154 struct jvirt_sarray_control {
155   JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
156   JDIMENSION rows_in_array;     /* total virtual array height */
157   JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
158   JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
159   JDIMENSION rows_in_mem;       /* height of memory buffer */
160   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
161   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
162   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
163   boolean pre_zero;             /* pre-zero mode requested? */
164   boolean dirty;                /* do current buffer contents need written? */
165   boolean b_s_open;             /* is backing-store data valid? */
166   jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
167   backing_store_info b_s_info;  /* System-dependent control info */
168 };
169 
170 struct jvirt_barray_control {
171   JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
172   JDIMENSION rows_in_array;     /* total virtual array height */
173   JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
174   JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
175   JDIMENSION rows_in_mem;       /* height of memory buffer */
176   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
177   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
178   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
179   boolean pre_zero;             /* pre-zero mode requested? */
180   boolean dirty;                /* do current buffer contents need written? */
181   boolean b_s_open;             /* is backing-store data valid? */
182   jvirt_barray_ptr next;        /* link to next virtual barray control block */
183   backing_store_info b_s_info;  /* System-dependent control info */
184 };
185 
186 
187 #ifdef MEM_STATS                /* optional extra stuff for statistics */
188 
189 LOCAL(void)
print_mem_stats(j_common_ptr cinfo,int pool_id)190 print_mem_stats (j_common_ptr cinfo, int pool_id)
191 {
192   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
193   small_pool_ptr shdr_ptr;
194   large_pool_ptr lhdr_ptr;
195 
196   /* Since this is only a debugging stub, we can cheat a little by using
197    * fprintf directly rather than going through the trace message code.
198    * This is helpful because message parm array can't handle longs.
199    */
200   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
201           pool_id, mem->total_space_allocated);
202 
203   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
204        lhdr_ptr = lhdr_ptr->next) {
205     fprintf(stderr, "  Large chunk used %ld\n",
206             (long) lhdr_ptr->bytes_used);
207   }
208 
209   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
210        shdr_ptr = shdr_ptr->next) {
211     fprintf(stderr, "  Small chunk used %ld free %ld\n",
212             (long) shdr_ptr->bytes_used,
213             (long) shdr_ptr->bytes_left);
214   }
215 }
216 
217 #endif /* MEM_STATS */
218 
219 
220 LOCAL(void)
out_of_memory(j_common_ptr cinfo,int which)221 out_of_memory (j_common_ptr cinfo, int which)
222 /* Report an out-of-memory error and stop execution */
223 /* If we compiled MEM_STATS support, report alloc requests before dying */
224 {
225 #ifdef MEM_STATS
226   cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
227 #endif
228   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
229 }
230 
231 
232 /*
233  * Allocation of "small" objects.
234  *
235  * For these, we use pooled storage.  When a new pool must be created,
236  * we try to get enough space for the current request plus a "slop" factor,
237  * where the slop will be the amount of leftover space in the new pool.
238  * The speed vs. space tradeoff is largely determined by the slop values.
239  * A different slop value is provided for each pool class (lifetime),
240  * and we also distinguish the first pool of a class from later ones.
241  * NOTE: the values given work fairly well on both 16- and 32-bit-int
242  * machines, but may be too small if longs are 64 bits or more.
243  *
244  * Since we do not know what alignment malloc() gives us, we have to
245  * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
246  * adjustment.
247  */
248 
249 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
250 {
251         1600,                   /* first PERMANENT pool */
252         16000                   /* first IMAGE pool */
253 };
254 
255 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
256 {
257         0,                      /* additional PERMANENT pools */
258         5000                    /* additional IMAGE pools */
259 };
260 
261 #define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
262 
263 
264 METHODDEF(void *)
alloc_small(j_common_ptr cinfo,int pool_id,size_t sizeofobject)265 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
266 /* Allocate a "small" object */
267 {
268   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
269   small_pool_ptr hdr_ptr, prev_hdr_ptr;
270   char *data_ptr;
271   size_t min_request, slop;
272 
273   /*
274    * Round up the requested size to a multiple of ALIGN_SIZE in order
275    * to assure alignment for the next object allocated in the same pool
276    * and so that algorithms can straddle outside the proper area up
277    * to the next alignment.
278    */
279   if (sizeofobject > MAX_ALLOC_CHUNK) {
280     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
281        is close to SIZE_MAX. */
282     out_of_memory(cinfo, 7);
283   }
284   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
285 
286   /* Check for unsatisfiable request (do now to ensure no overflow below) */
287   if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
288       MAX_ALLOC_CHUNK)
289     out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
290 
291   /* See if space is available in any existing pool */
292   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
293     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
294   prev_hdr_ptr = NULL;
295   hdr_ptr = mem->small_list[pool_id];
296   while (hdr_ptr != NULL) {
297     if (hdr_ptr->bytes_left >= sizeofobject)
298       break;                    /* found pool with enough space */
299     prev_hdr_ptr = hdr_ptr;
300     hdr_ptr = hdr_ptr->next;
301   }
302 
303   /* Time to make a new pool? */
304   if (hdr_ptr == NULL) {
305     /* min_request is what we need now, slop is what will be leftover */
306     min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
307     if (prev_hdr_ptr == NULL)   /* first pool in class? */
308       slop = first_pool_slop[pool_id];
309     else
310       slop = extra_pool_slop[pool_id];
311     /* Don't ask for more than MAX_ALLOC_CHUNK */
312     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
313       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
314     /* Try to get space, if fail reduce slop and try again */
315     for (;;) {
316       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
317       if (hdr_ptr != NULL)
318         break;
319       slop /= 2;
320       if (slop < MIN_SLOP)      /* give up when it gets real small */
321         out_of_memory(cinfo, 2); /* jpeg_get_small failed */
322     }
323     mem->total_space_allocated += min_request + slop;
324     /* Success, initialize the new pool header and add to end of list */
325     hdr_ptr->next = NULL;
326     hdr_ptr->bytes_used = 0;
327     hdr_ptr->bytes_left = sizeofobject + slop;
328     if (prev_hdr_ptr == NULL)   /* first pool in class? */
329       mem->small_list[pool_id] = hdr_ptr;
330     else
331       prev_hdr_ptr->next = hdr_ptr;
332   }
333 
334   /* OK, allocate the object from the current pool */
335   data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
336   data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
337   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
338     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
339   data_ptr += hdr_ptr->bytes_used; /* point to place for object */
340   hdr_ptr->bytes_used += sizeofobject;
341   hdr_ptr->bytes_left -= sizeofobject;
342 
343   return (void *) data_ptr;
344 }
345 
346 
347 /*
348  * Allocation of "large" objects.
349  *
350  * The external semantics of these are the same as "small" objects.  However,
351  * the pool management heuristics are quite different.  We assume that each
352  * request is large enough that it may as well be passed directly to
353  * jpeg_get_large; the pool management just links everything together
354  * so that we can free it all on demand.
355  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
356  * structures.  The routines that create these structures (see below)
357  * deliberately bunch rows together to ensure a large request size.
358  */
359 
360 METHODDEF(void *)
alloc_large(j_common_ptr cinfo,int pool_id,size_t sizeofobject)361 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
362 /* Allocate a "large" object */
363 {
364   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
365   large_pool_ptr hdr_ptr;
366   char *data_ptr;
367 
368   /*
369    * Round up the requested size to a multiple of ALIGN_SIZE so that
370    * algorithms can straddle outside the proper area up to the next
371    * alignment.
372    */
373   if (sizeofobject > MAX_ALLOC_CHUNK) {
374     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
375        is close to SIZE_MAX. */
376     out_of_memory(cinfo, 8);
377   }
378   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
379 
380   /* Check for unsatisfiable request (do now to ensure no overflow below) */
381   if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
382       MAX_ALLOC_CHUNK)
383     out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
384 
385   /* Always make a new pool */
386   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
387     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
388 
389   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
390                                             sizeof(large_pool_hdr) +
391                                             ALIGN_SIZE - 1);
392   if (hdr_ptr == NULL)
393     out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
394   mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) +
395                                 ALIGN_SIZE - 1;
396 
397   /* Success, initialize the new pool header and add to list */
398   hdr_ptr->next = mem->large_list[pool_id];
399   /* We maintain space counts in each pool header for statistical purposes,
400    * even though they are not needed for allocation.
401    */
402   hdr_ptr->bytes_used = sizeofobject;
403   hdr_ptr->bytes_left = 0;
404   mem->large_list[pool_id] = hdr_ptr;
405 
406   data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
407   data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
408   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
409     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
410 
411   return (void *) data_ptr;
412 }
413 
414 
415 /*
416  * Creation of 2-D sample arrays.
417  *
418  * To minimize allocation overhead and to allow I/O of large contiguous
419  * blocks, we allocate the sample rows in groups of as many rows as possible
420  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
421  * NB: the virtual array control routines, later in this file, know about
422  * this chunking of rows.  The rowsperchunk value is left in the mem manager
423  * object so that it can be saved away if this sarray is the workspace for
424  * a virtual array.
425  *
426  * Since we are often upsampling with a factor 2, we align the size (not
427  * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
428  * to be as careful about size.
429  */
430 
431 METHODDEF(JSAMPARRAY)
alloc_sarray(j_common_ptr cinfo,int pool_id,JDIMENSION samplesperrow,JDIMENSION numrows)432 alloc_sarray (j_common_ptr cinfo, int pool_id,
433               JDIMENSION samplesperrow, JDIMENSION numrows)
434 /* Allocate a 2-D sample array */
435 {
436   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
437   JSAMPARRAY result;
438   JSAMPROW workspace;
439   JDIMENSION rowsperchunk, currow, i;
440   long ltemp;
441 
442   /* Make sure each row is properly aligned */
443   if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0)
444     out_of_memory(cinfo, 5);    /* safety check */
445 
446   if (samplesperrow > MAX_ALLOC_CHUNK) {
447     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
448        is close to SIZE_MAX. */
449     out_of_memory(cinfo, 9);
450   }
451   samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) /
452                                                            sizeof(JSAMPLE));
453 
454   /* Calculate max # of rows allowed in one allocation chunk */
455   ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
456           ((long) samplesperrow * sizeof(JSAMPLE));
457   if (ltemp <= 0)
458     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
459   if (ltemp < (long) numrows)
460     rowsperchunk = (JDIMENSION) ltemp;
461   else
462     rowsperchunk = numrows;
463   mem->last_rowsperchunk = rowsperchunk;
464 
465   /* Get space for row pointers (small object) */
466   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
467                                     (size_t) (numrows * sizeof(JSAMPROW)));
468 
469   /* Get the rows themselves (large objects) */
470   currow = 0;
471   while (currow < numrows) {
472     rowsperchunk = MIN(rowsperchunk, numrows - currow);
473     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
474         (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
475                   * sizeof(JSAMPLE)));
476     for (i = rowsperchunk; i > 0; i--) {
477       result[currow++] = workspace;
478       workspace += samplesperrow;
479     }
480   }
481 
482   return result;
483 }
484 
485 
486 /*
487  * Creation of 2-D coefficient-block arrays.
488  * This is essentially the same as the code for sample arrays, above.
489  */
490 
491 METHODDEF(JBLOCKARRAY)
alloc_barray(j_common_ptr cinfo,int pool_id,JDIMENSION blocksperrow,JDIMENSION numrows)492 alloc_barray (j_common_ptr cinfo, int pool_id,
493               JDIMENSION blocksperrow, JDIMENSION numrows)
494 /* Allocate a 2-D coefficient-block array */
495 {
496   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
497   JBLOCKARRAY result;
498   JBLOCKROW workspace;
499   JDIMENSION rowsperchunk, currow, i;
500   long ltemp;
501 
502   /* Make sure each row is properly aligned */
503   if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
504     out_of_memory(cinfo, 6);    /* safety check */
505 
506   /* Calculate max # of rows allowed in one allocation chunk */
507   ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
508           ((long) blocksperrow * sizeof(JBLOCK));
509   if (ltemp <= 0)
510     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
511   if (ltemp < (long) numrows)
512     rowsperchunk = (JDIMENSION) ltemp;
513   else
514     rowsperchunk = numrows;
515   mem->last_rowsperchunk = rowsperchunk;
516 
517   /* Get space for row pointers (small object) */
518   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
519                                      (size_t) (numrows * sizeof(JBLOCKROW)));
520 
521   /* Get the rows themselves (large objects) */
522   currow = 0;
523   while (currow < numrows) {
524     rowsperchunk = MIN(rowsperchunk, numrows - currow);
525     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
526         (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
527                   * sizeof(JBLOCK)));
528     for (i = rowsperchunk; i > 0; i--) {
529       result[currow++] = workspace;
530       workspace += blocksperrow;
531     }
532   }
533 
534   return result;
535 }
536 
537 
538 /*
539  * About virtual array management:
540  *
541  * The above "normal" array routines are only used to allocate strip buffers
542  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
543  * are handled as "virtual" arrays.  The array is still accessed a strip at a
544  * time, but the memory manager must save the whole array for repeated
545  * accesses.  The intended implementation is that there is a strip buffer in
546  * memory (as high as is possible given the desired memory limit), plus a
547  * backing file that holds the rest of the array.
548  *
549  * The request_virt_array routines are told the total size of the image and
550  * the maximum number of rows that will be accessed at once.  The in-memory
551  * buffer must be at least as large as the maxaccess value.
552  *
553  * The request routines create control blocks but not the in-memory buffers.
554  * That is postponed until realize_virt_arrays is called.  At that time the
555  * total amount of space needed is known (approximately, anyway), so free
556  * memory can be divided up fairly.
557  *
558  * The access_virt_array routines are responsible for making a specific strip
559  * area accessible (after reading or writing the backing file, if necessary).
560  * Note that the access routines are told whether the caller intends to modify
561  * the accessed strip; during a read-only pass this saves having to rewrite
562  * data to disk.  The access routines are also responsible for pre-zeroing
563  * any newly accessed rows, if pre-zeroing was requested.
564  *
565  * In current usage, the access requests are usually for nonoverlapping
566  * strips; that is, successive access start_row numbers differ by exactly
567  * num_rows = maxaccess.  This means we can get good performance with simple
568  * buffer dump/reload logic, by making the in-memory buffer be a multiple
569  * of the access height; then there will never be accesses across bufferload
570  * boundaries.  The code will still work with overlapping access requests,
571  * but it doesn't handle bufferload overlaps very efficiently.
572  */
573 
574 
575 METHODDEF(jvirt_sarray_ptr)
request_virt_sarray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION samplesperrow,JDIMENSION numrows,JDIMENSION maxaccess)576 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
577                      JDIMENSION samplesperrow, JDIMENSION numrows,
578                      JDIMENSION maxaccess)
579 /* Request a virtual 2-D sample array */
580 {
581   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
582   jvirt_sarray_ptr result;
583 
584   /* Only IMAGE-lifetime virtual arrays are currently supported */
585   if (pool_id != JPOOL_IMAGE)
586     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
587 
588   /* get control block */
589   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
590                                           sizeof(struct jvirt_sarray_control));
591 
592   result->mem_buffer = NULL;    /* marks array not yet realized */
593   result->rows_in_array = numrows;
594   result->samplesperrow = samplesperrow;
595   result->maxaccess = maxaccess;
596   result->pre_zero = pre_zero;
597   result->b_s_open = FALSE;     /* no associated backing-store object */
598   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
599   mem->virt_sarray_list = result;
600 
601   return result;
602 }
603 
604 
605 METHODDEF(jvirt_barray_ptr)
request_virt_barray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION blocksperrow,JDIMENSION numrows,JDIMENSION maxaccess)606 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
607                      JDIMENSION blocksperrow, JDIMENSION numrows,
608                      JDIMENSION maxaccess)
609 /* Request a virtual 2-D coefficient-block array */
610 {
611   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
612   jvirt_barray_ptr result;
613 
614   /* Only IMAGE-lifetime virtual arrays are currently supported */
615   if (pool_id != JPOOL_IMAGE)
616     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
617 
618   /* get control block */
619   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
620                                           sizeof(struct jvirt_barray_control));
621 
622   result->mem_buffer = NULL;    /* marks array not yet realized */
623   result->rows_in_array = numrows;
624   result->blocksperrow = blocksperrow;
625   result->maxaccess = maxaccess;
626   result->pre_zero = pre_zero;
627   result->b_s_open = FALSE;     /* no associated backing-store object */
628   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
629   mem->virt_barray_list = result;
630 
631   return result;
632 }
633 
634 
635 METHODDEF(void)
realize_virt_arrays(j_common_ptr cinfo)636 realize_virt_arrays (j_common_ptr cinfo)
637 /* Allocate the in-memory buffers for any unrealized virtual arrays */
638 {
639   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
640   size_t space_per_minheight, maximum_space, avail_mem;
641   size_t minheights, max_minheights;
642   jvirt_sarray_ptr sptr;
643   jvirt_barray_ptr bptr;
644 
645   /* Compute the minimum space needed (maxaccess rows in each buffer)
646    * and the maximum space needed (full image height in each buffer).
647    * These may be of use to the system-dependent jpeg_mem_available routine.
648    */
649   space_per_minheight = 0;
650   maximum_space = 0;
651   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
652     if (sptr->mem_buffer == NULL) { /* if not realized yet */
653       space_per_minheight += (long) sptr->maxaccess *
654                              (long) sptr->samplesperrow * sizeof(JSAMPLE);
655       maximum_space += (long) sptr->rows_in_array *
656                        (long) sptr->samplesperrow * sizeof(JSAMPLE);
657     }
658   }
659   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
660     if (bptr->mem_buffer == NULL) { /* if not realized yet */
661       space_per_minheight += (long) bptr->maxaccess *
662                              (long) bptr->blocksperrow * sizeof(JBLOCK);
663       maximum_space += (long) bptr->rows_in_array *
664                        (long) bptr->blocksperrow * sizeof(JBLOCK);
665     }
666   }
667 
668   if (space_per_minheight <= 0)
669     return;                     /* no unrealized arrays, no work */
670 
671   /* Determine amount of memory to actually use; this is system-dependent. */
672   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
673                                  mem->total_space_allocated);
674 
675   /* If the maximum space needed is available, make all the buffers full
676    * height; otherwise parcel it out with the same number of minheights
677    * in each buffer.
678    */
679   if (avail_mem >= maximum_space)
680     max_minheights = 1000000000L;
681   else {
682     max_minheights = avail_mem / space_per_minheight;
683     /* If there doesn't seem to be enough space, try to get the minimum
684      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
685      */
686     if (max_minheights <= 0)
687       max_minheights = 1;
688   }
689 
690   /* Allocate the in-memory buffers and initialize backing store as needed. */
691 
692   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
693     if (sptr->mem_buffer == NULL) { /* if not realized yet */
694       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
695       if (minheights <= max_minheights) {
696         /* This buffer fits in memory */
697         sptr->rows_in_mem = sptr->rows_in_array;
698       } else {
699         /* It doesn't fit in memory, create backing store. */
700         sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
701         jpeg_open_backing_store(cinfo, & sptr->b_s_info,
702                                 (long) sptr->rows_in_array *
703                                 (long) sptr->samplesperrow *
704                                 (long) sizeof(JSAMPLE));
705         sptr->b_s_open = TRUE;
706       }
707       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
708                                       sptr->samplesperrow, sptr->rows_in_mem);
709       sptr->rowsperchunk = mem->last_rowsperchunk;
710       sptr->cur_start_row = 0;
711       sptr->first_undef_row = 0;
712       sptr->dirty = FALSE;
713     }
714   }
715 
716   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
717     if (bptr->mem_buffer == NULL) { /* if not realized yet */
718       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
719       if (minheights <= max_minheights) {
720         /* This buffer fits in memory */
721         bptr->rows_in_mem = bptr->rows_in_array;
722       } else {
723         /* It doesn't fit in memory, create backing store. */
724         bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
725         jpeg_open_backing_store(cinfo, & bptr->b_s_info,
726                                 (long) bptr->rows_in_array *
727                                 (long) bptr->blocksperrow *
728                                 (long) sizeof(JBLOCK));
729         bptr->b_s_open = TRUE;
730       }
731       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
732                                       bptr->blocksperrow, bptr->rows_in_mem);
733       bptr->rowsperchunk = mem->last_rowsperchunk;
734       bptr->cur_start_row = 0;
735       bptr->first_undef_row = 0;
736       bptr->dirty = FALSE;
737     }
738   }
739 }
740 
741 
742 LOCAL(void)
do_sarray_io(j_common_ptr cinfo,jvirt_sarray_ptr ptr,boolean writing)743 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
744 /* Do backing store read or write of a virtual sample array */
745 {
746   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
747 
748   bytesperrow = (long) ptr->samplesperrow * sizeof(JSAMPLE);
749   file_offset = ptr->cur_start_row * bytesperrow;
750   /* Loop to read or write each allocation chunk in mem_buffer */
751   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
752     /* One chunk, but check for short chunk at end of buffer */
753     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
754     /* Transfer no more than is currently defined */
755     thisrow = (long) ptr->cur_start_row + i;
756     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
757     /* Transfer no more than fits in file */
758     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
759     if (rows <= 0)              /* this chunk might be past end of file! */
760       break;
761     byte_count = rows * bytesperrow;
762     if (writing)
763       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
764                                             (void *) ptr->mem_buffer[i],
765                                             file_offset, byte_count);
766     else
767       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
768                                            (void *) ptr->mem_buffer[i],
769                                            file_offset, byte_count);
770     file_offset += byte_count;
771   }
772 }
773 
774 
775 LOCAL(void)
do_barray_io(j_common_ptr cinfo,jvirt_barray_ptr ptr,boolean writing)776 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
777 /* Do backing store read or write of a virtual coefficient-block array */
778 {
779   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
780 
781   bytesperrow = (long) ptr->blocksperrow * sizeof(JBLOCK);
782   file_offset = ptr->cur_start_row * bytesperrow;
783   /* Loop to read or write each allocation chunk in mem_buffer */
784   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
785     /* One chunk, but check for short chunk at end of buffer */
786     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
787     /* Transfer no more than is currently defined */
788     thisrow = (long) ptr->cur_start_row + i;
789     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
790     /* Transfer no more than fits in file */
791     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
792     if (rows <= 0)              /* this chunk might be past end of file! */
793       break;
794     byte_count = rows * bytesperrow;
795     if (writing)
796       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
797                                             (void *) ptr->mem_buffer[i],
798                                             file_offset, byte_count);
799     else
800       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
801                                            (void *) ptr->mem_buffer[i],
802                                            file_offset, byte_count);
803     file_offset += byte_count;
804   }
805 }
806 
807 
808 METHODDEF(JSAMPARRAY)
access_virt_sarray(j_common_ptr cinfo,jvirt_sarray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)809 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
810                     JDIMENSION start_row, JDIMENSION num_rows,
811                     boolean writable)
812 /* Access the part of a virtual sample array starting at start_row */
813 /* and extending for num_rows rows.  writable is true if  */
814 /* caller intends to modify the accessed area. */
815 {
816   JDIMENSION end_row = start_row + num_rows;
817   JDIMENSION undef_row;
818 
819   /* debugging check */
820   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
821       ptr->mem_buffer == NULL)
822     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
823 
824   /* Make the desired part of the virtual array accessible */
825   if (start_row < ptr->cur_start_row ||
826       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
827     if (! ptr->b_s_open)
828       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
829     /* Flush old buffer contents if necessary */
830     if (ptr->dirty) {
831       do_sarray_io(cinfo, ptr, TRUE);
832       ptr->dirty = FALSE;
833     }
834     /* Decide what part of virtual array to access.
835      * Algorithm: if target address > current window, assume forward scan,
836      * load starting at target address.  If target address < current window,
837      * assume backward scan, load so that target area is top of window.
838      * Note that when switching from forward write to forward read, will have
839      * start_row = 0, so the limiting case applies and we load from 0 anyway.
840      */
841     if (start_row > ptr->cur_start_row) {
842       ptr->cur_start_row = start_row;
843     } else {
844       /* use long arithmetic here to avoid overflow & unsigned problems */
845       long ltemp;
846 
847       ltemp = (long) end_row - (long) ptr->rows_in_mem;
848       if (ltemp < 0)
849         ltemp = 0;              /* don't fall off front end of file */
850       ptr->cur_start_row = (JDIMENSION) ltemp;
851     }
852     /* Read in the selected part of the array.
853      * During the initial write pass, we will do no actual read
854      * because the selected part is all undefined.
855      */
856     do_sarray_io(cinfo, ptr, FALSE);
857   }
858   /* Ensure the accessed part of the array is defined; prezero if needed.
859    * To improve locality of access, we only prezero the part of the array
860    * that the caller is about to access, not the entire in-memory array.
861    */
862   if (ptr->first_undef_row < end_row) {
863     if (ptr->first_undef_row < start_row) {
864       if (writable)             /* writer skipped over a section of array */
865         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
866       undef_row = start_row;    /* but reader is allowed to read ahead */
867     } else {
868       undef_row = ptr->first_undef_row;
869     }
870     if (writable)
871       ptr->first_undef_row = end_row;
872     if (ptr->pre_zero) {
873       size_t bytesperrow = (size_t) ptr->samplesperrow * sizeof(JSAMPLE);
874       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
875       end_row -= ptr->cur_start_row;
876       while (undef_row < end_row) {
877         jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
878         undef_row++;
879       }
880     } else {
881       if (! writable)           /* reader looking at undefined data */
882         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
883     }
884   }
885   /* Flag the buffer dirty if caller will write in it */
886   if (writable)
887     ptr->dirty = TRUE;
888   /* Return address of proper part of the buffer */
889   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
890 }
891 
892 
893 METHODDEF(JBLOCKARRAY)
access_virt_barray(j_common_ptr cinfo,jvirt_barray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)894 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
895                     JDIMENSION start_row, JDIMENSION num_rows,
896                     boolean writable)
897 /* Access the part of a virtual block array starting at start_row */
898 /* and extending for num_rows rows.  writable is true if  */
899 /* caller intends to modify the accessed area. */
900 {
901   JDIMENSION end_row = start_row + num_rows;
902   JDIMENSION undef_row;
903 
904   /* debugging check */
905   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
906       ptr->mem_buffer == NULL)
907     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
908 
909   /* Make the desired part of the virtual array accessible */
910   if (start_row < ptr->cur_start_row ||
911       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
912     if (! ptr->b_s_open)
913       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
914     /* Flush old buffer contents if necessary */
915     if (ptr->dirty) {
916       do_barray_io(cinfo, ptr, TRUE);
917       ptr->dirty = FALSE;
918     }
919     /* Decide what part of virtual array to access.
920      * Algorithm: if target address > current window, assume forward scan,
921      * load starting at target address.  If target address < current window,
922      * assume backward scan, load so that target area is top of window.
923      * Note that when switching from forward write to forward read, will have
924      * start_row = 0, so the limiting case applies and we load from 0 anyway.
925      */
926     if (start_row > ptr->cur_start_row) {
927       ptr->cur_start_row = start_row;
928     } else {
929       /* use long arithmetic here to avoid overflow & unsigned problems */
930       long ltemp;
931 
932       ltemp = (long) end_row - (long) ptr->rows_in_mem;
933       if (ltemp < 0)
934         ltemp = 0;              /* don't fall off front end of file */
935       ptr->cur_start_row = (JDIMENSION) ltemp;
936     }
937     /* Read in the selected part of the array.
938      * During the initial write pass, we will do no actual read
939      * because the selected part is all undefined.
940      */
941     do_barray_io(cinfo, ptr, FALSE);
942   }
943   /* Ensure the accessed part of the array is defined; prezero if needed.
944    * To improve locality of access, we only prezero the part of the array
945    * that the caller is about to access, not the entire in-memory array.
946    */
947   if (ptr->first_undef_row < end_row) {
948     if (ptr->first_undef_row < start_row) {
949       if (writable)             /* writer skipped over a section of array */
950         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
951       undef_row = start_row;    /* but reader is allowed to read ahead */
952     } else {
953       undef_row = ptr->first_undef_row;
954     }
955     if (writable)
956       ptr->first_undef_row = end_row;
957     if (ptr->pre_zero) {
958       size_t bytesperrow = (size_t) ptr->blocksperrow * sizeof(JBLOCK);
959       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
960       end_row -= ptr->cur_start_row;
961       while (undef_row < end_row) {
962         jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
963         undef_row++;
964       }
965     } else {
966       if (! writable)           /* reader looking at undefined data */
967         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
968     }
969   }
970   /* Flag the buffer dirty if caller will write in it */
971   if (writable)
972     ptr->dirty = TRUE;
973   /* Return address of proper part of the buffer */
974   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
975 }
976 
977 
978 /*
979  * Release all objects belonging to a specified pool.
980  */
981 
982 METHODDEF(void)
free_pool(j_common_ptr cinfo,int pool_id)983 free_pool (j_common_ptr cinfo, int pool_id)
984 {
985   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
986   small_pool_ptr shdr_ptr;
987   large_pool_ptr lhdr_ptr;
988   size_t space_freed;
989 
990   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
991     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
992 
993 #ifdef MEM_STATS
994   if (cinfo->err->trace_level > 1)
995     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
996 #endif
997 
998   /* If freeing IMAGE pool, close any virtual arrays first */
999   if (pool_id == JPOOL_IMAGE) {
1000     jvirt_sarray_ptr sptr;
1001     jvirt_barray_ptr bptr;
1002 
1003     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
1004       if (sptr->b_s_open) {     /* there may be no backing store */
1005         sptr->b_s_open = FALSE; /* prevent recursive close if error */
1006         (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
1007       }
1008     }
1009     mem->virt_sarray_list = NULL;
1010     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
1011       if (bptr->b_s_open) {     /* there may be no backing store */
1012         bptr->b_s_open = FALSE; /* prevent recursive close if error */
1013         (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
1014       }
1015     }
1016     mem->virt_barray_list = NULL;
1017   }
1018 
1019   /* Release large objects */
1020   lhdr_ptr = mem->large_list[pool_id];
1021   mem->large_list[pool_id] = NULL;
1022 
1023   while (lhdr_ptr != NULL) {
1024     large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
1025     space_freed = lhdr_ptr->bytes_used +
1026                   lhdr_ptr->bytes_left +
1027                   sizeof(large_pool_hdr);
1028     jpeg_free_large(cinfo, (void *) lhdr_ptr, space_freed);
1029     mem->total_space_allocated -= space_freed;
1030     lhdr_ptr = next_lhdr_ptr;
1031   }
1032 
1033   /* Release small objects */
1034   shdr_ptr = mem->small_list[pool_id];
1035   mem->small_list[pool_id] = NULL;
1036 
1037   while (shdr_ptr != NULL) {
1038     small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1039     space_freed = shdr_ptr->bytes_used +
1040                   shdr_ptr->bytes_left +
1041                   sizeof(small_pool_hdr);
1042     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
1043     mem->total_space_allocated -= space_freed;
1044     shdr_ptr = next_shdr_ptr;
1045   }
1046 }
1047 
1048 
1049 /*
1050  * Close up shop entirely.
1051  * Note that this cannot be called unless cinfo->mem is non-NULL.
1052  */
1053 
1054 METHODDEF(void)
self_destruct(j_common_ptr cinfo)1055 self_destruct (j_common_ptr cinfo)
1056 {
1057   int pool;
1058 
1059   /* Close all backing store, release all memory.
1060    * Releasing pools in reverse order might help avoid fragmentation
1061    * with some (brain-damaged) malloc libraries.
1062    */
1063   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1064     free_pool(cinfo, pool);
1065   }
1066 
1067   /* Release the memory manager control block too. */
1068   jpeg_free_small(cinfo, (void *) cinfo->mem, sizeof(my_memory_mgr));
1069   cinfo->mem = NULL;            /* ensures I will be called only once */
1070 
1071   jpeg_mem_term(cinfo);         /* system-dependent cleanup */
1072 }
1073 
1074 
1075 /*
1076  * Memory manager initialization.
1077  * When this is called, only the error manager pointer is valid in cinfo!
1078  */
1079 
1080 GLOBAL(void)
jinit_memory_mgr(j_common_ptr cinfo)1081 jinit_memory_mgr (j_common_ptr cinfo)
1082 {
1083   my_mem_ptr mem;
1084   long max_to_use;
1085   int pool;
1086   size_t test_mac;
1087 
1088   cinfo->mem = NULL;            /* for safety if init fails */
1089 
1090   /* Check for configuration errors.
1091    * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1092    * doesn't reflect any real hardware alignment requirement.
1093    * The test is a little tricky: for X>0, X and X-1 have no one-bits
1094    * in common if and only if X is a power of 2, ie has only one one-bit.
1095    * Some compilers may give an "unreachable code" warning here; ignore it.
1096    */
1097   if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
1098     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1099   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1100    * a multiple of ALIGN_SIZE.
1101    * Again, an "unreachable code" warning may be ignored here.
1102    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1103    */
1104   test_mac = (size_t) MAX_ALLOC_CHUNK;
1105   if ((long) test_mac != MAX_ALLOC_CHUNK ||
1106       (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1107     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1108 
1109   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1110 
1111   /* Attempt to allocate memory manager's control block */
1112   mem = (my_mem_ptr) jpeg_get_small(cinfo, sizeof(my_memory_mgr));
1113 
1114   if (mem == NULL) {
1115     jpeg_mem_term(cinfo);       /* system-dependent cleanup */
1116     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1117   }
1118 
1119   /* OK, fill in the method pointers */
1120   mem->pub.alloc_small = alloc_small;
1121   mem->pub.alloc_large = alloc_large;
1122   mem->pub.alloc_sarray = alloc_sarray;
1123   mem->pub.alloc_barray = alloc_barray;
1124   mem->pub.request_virt_sarray = request_virt_sarray;
1125   mem->pub.request_virt_barray = request_virt_barray;
1126   mem->pub.realize_virt_arrays = realize_virt_arrays;
1127   mem->pub.access_virt_sarray = access_virt_sarray;
1128   mem->pub.access_virt_barray = access_virt_barray;
1129   mem->pub.free_pool = free_pool;
1130   mem->pub.self_destruct = self_destruct;
1131 
1132   /* Make MAX_ALLOC_CHUNK accessible to other modules */
1133   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1134 
1135   /* Initialize working state */
1136   mem->pub.max_memory_to_use = max_to_use;
1137 
1138   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1139     mem->small_list[pool] = NULL;
1140     mem->large_list[pool] = NULL;
1141   }
1142   mem->virt_sarray_list = NULL;
1143   mem->virt_barray_list = NULL;
1144 
1145   mem->total_space_allocated = sizeof(my_memory_mgr);
1146 
1147   /* Declare ourselves open for business */
1148   cinfo->mem = & mem->pub;
1149 
1150   /* Check for an environment variable JPEGMEM; if found, override the
1151    * default max_memory setting from jpeg_mem_init.  Note that the
1152    * surrounding application may again override this value.
1153    * If your system doesn't support getenv(), define NO_GETENV to disable
1154    * this feature.
1155    */
1156 #ifndef NO_GETENV
1157   { char *memenv;
1158 
1159     if ((memenv = getenv("JPEGMEM")) != NULL) {
1160       char ch = 'x';
1161 
1162       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1163         if (ch == 'm' || ch == 'M')
1164           max_to_use *= 1000L;
1165         mem->pub.max_memory_to_use = max_to_use * 1000L;
1166       }
1167     }
1168   }
1169 #endif
1170 
1171 }
1172