1 // Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
2 //
3 // See the LICENSE.txt file in the Gmsh root directory for license information.
4 // Please report all issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
5 
6 #include "robustPredicates.h"
7 #include "qualityMeasures.h"
8 #include "BDS.h"
9 #include "MVertex.h"
10 #include "MTriangle.h"
11 #include "MQuadrangle.h"
12 #include "MTetrahedron.h"
13 #include "MPrism.h"
14 #include "MHexahedron.h"
15 #include "Numeric.h"
16 #include "polynomialBasis.h"
17 #include "JacobianBasis.h"
18 #include "GmshMessage.h"
19 #include <limits>
20 #include <string.h>
21 
22 namespace {
23 
24   // Compute unit vector and gradients w.r.t. x0, y0, z0
25   // Remark: gradients w.r.t. x1, y1, z1 not computed as they are just the
26   // opposite
unitVecAndGrad(const SPoint3 & p0,const SPoint3 & p1,SVector3 & vec,std::vector<SVector3> & grad)27   inline void unitVecAndGrad(const SPoint3 &p0, const SPoint3 &p1,
28                              SVector3 &vec, std::vector<SVector3> &grad)
29   {
30     vec = SVector3(p0, p1);
31     const double n = vec.normalize(), invN = 1 / n;
32     grad[0] = invN * vec[0] * vec;
33     grad[0][0] -= invN; // dv01/dx0
34     grad[1] = invN * vec[1] * vec;
35     grad[1][1] -= invN; // dv01/dy0
36     grad[2] = invN * vec[2] * vec;
37     grad[2][2] -= invN; // dv01/dz0
38   }
39 
40   // Given vectors (0, 1) and (0, 2), their gradients and opposite of gradients,
41   // and the unit normal vector, compute NCJ from area of triangle defined by
42   // both vectors and gradients w.r.t. x0, y0, z0, x1, y1, z1, x2, y2, z2
43   inline void
NCJAndGrad2D(const SVector3 & v01,const std::vector<SVector3> & dv01dp0,const std::vector<SVector3> & dv01dp1,const SVector3 & v02,const std::vector<SVector3> & dv02dp0,const std::vector<SVector3> & dv02dp2,const SVector3 & normal,double & NCJ,std::vector<double> & dNCJ)44   NCJAndGrad2D(const SVector3 &v01, const std::vector<SVector3> &dv01dp0,
45                const std::vector<SVector3> &dv01dp1, const SVector3 &v02,
46                const std::vector<SVector3> &dv02dp0,
47                const std::vector<SVector3> &dv02dp2, const SVector3 &normal,
48                double &NCJ, std::vector<double> &dNCJ)
49   {
50     const SVector3 dvndx0 =
51       crossprod(v01, dv02dp0[0]) +
52       crossprod(dv01dp0[0], v02); // v01 x dv02/dx0 + dv01/dx0 x v02
53     const SVector3 dvndy0 =
54       crossprod(v01, dv02dp0[1]) +
55       crossprod(dv01dp0[1], v02); // v01 x dv02/dy0 + dv01/dy0 x v02
56     const SVector3 dvndz0 =
57       crossprod(v01, dv02dp0[2]) +
58       crossprod(dv01dp0[2], v02); // v01 x dv02/dz0 + dv01/dz0 x v02
59     const SVector3 dvndx1 =
60       crossprod(dv01dp1[0], v02); // dv01/dx1 x v02 (= -dv01/dx0 x v02)
61     const SVector3 dvndy1 =
62       crossprod(dv01dp1[1], v02); // dv01/dy1 x v02 (= -dv01/dy0 x v02)
63     const SVector3 dvndz1 =
64       crossprod(dv01dp1[2], v02); // dv01/dz1 x v02 (= -dv01/dz0 x v02)
65     const SVector3 dvndx2 =
66       crossprod(v01, dv02dp2[0]); // v01 x dv02/dx2 (= v01 x -dv02/dx0)
67     const SVector3 dvndy2 =
68       crossprod(v01, dv02dp2[1]); // v01 x dv02/dy2 (= v01 x -dv02/dy0)
69     const SVector3 dvndz2 =
70       crossprod(v01, dv02dp2[2]); // v01 x dv02/dz2 (= v01 x -dv02/dz0)
71 
72     SVector3 vn = crossprod(v01, v02);
73     NCJ = dot(vn, normal); // NCJ
74     dNCJ[0] = dot(dvndx0, normal); // dNCJ/dx0
75     dNCJ[1] = dot(dvndy0, normal); // dNCJ/dy0
76     dNCJ[2] = dot(dvndz0, normal); // dNCJ/dz0
77     dNCJ[3] = dot(dvndx1, normal); // dNCJ/dx1
78     dNCJ[4] = dot(dvndy1, normal); // dNCJ/dy1
79     dNCJ[5] = dot(dvndz1, normal); // dNCJ/dz1
80     dNCJ[6] = dot(dvndx2, normal); // dNCJ/dx2
81     dNCJ[7] = dot(dvndy2, normal); // dNCJ/dy2
82     dNCJ[8] = dot(dvndz2, normal); // dNCJ/dz2
83   }
84 
85   //// Revert vector and gradients
86   // inline void revertVG(const fullMatrix<double> &vg, fullMatrix<double> &res)
87   //{
88   //  res(0, 0) = -vg(0, 3); res(0, 1) = -vg(0, 4); res(0, 2) = -vg(0, 5);
89   //  res(0, 6) = -vg(0, 6); res(1, 0) = -vg(1, 3); res(1, 1) = -vg(1, 4);
90   //  res(1, 2) = -vg(1, 5); res(1, 6) = -vg(1, 6); res(2, 0) = -vg(2, 3);
91   //  res(2, 1) = -vg(2, 4); res(2, 2) = -vg(2, 5); res(2, 6) = -vg(2, 6);
92   //}
93 
94   // Scatter the NCJ gradients at vertex iV w.r.t vertices i0, i1 and i2
95   // in the vector of gradients for 2D element of nV vertices
96   template <int iV, int nV, int i0, int i1, int i2>
scatterNCJGrad(const std::vector<double> & dNCJi,std::vector<double> & dNCJ)97   inline void scatterNCJGrad(const std::vector<double> &dNCJi,
98                              std::vector<double> &dNCJ)
99   {
100     dNCJ[(iV * nV + i0) * 3] = dNCJi[0];
101     dNCJ[(iV * nV + i0) * 3 + 1] = dNCJi[1];
102     dNCJ[(iV * nV + i0) * 3 + 2] = dNCJi[2];
103     dNCJ[(iV * nV + i1) * 3] = dNCJi[3];
104     dNCJ[(iV * nV + i1) * 3 + 1] = dNCJi[4];
105     dNCJ[(iV * nV + i1) * 3 + 2] = dNCJi[5];
106     dNCJ[(iV * nV + i2) * 3] = dNCJi[6];
107     dNCJ[(iV * nV + i2) * 3 + 1] = dNCJi[7];
108     dNCJ[(iV * nV + i2) * 3 + 2] = dNCJi[8];
109   }
110 
111   // Scatter the NCJ gradients at vertex iV w.r.t vertices i0, i1, i2 and i3
112   // in the vector of gradients for 3D element of nV vertices
113   template <int iV, int nV, int i0, int i1, int i2, int i3>
scatterNCJGrad(const std::vector<double> & dNCJi,std::vector<double> & dNCJ)114   inline void scatterNCJGrad(const std::vector<double> &dNCJi,
115                              std::vector<double> &dNCJ)
116   {
117     dNCJ[iV * nV + i0 * 3] = dNCJi[0];
118     dNCJ[iV * nV + i0 * 3 + 1] = dNCJi[1];
119     dNCJ[iV * nV + i0 * 3 + 2] = dNCJi[2];
120     dNCJ[iV * nV + i1 * 3] = dNCJi[3];
121     dNCJ[iV * nV + i1 * 3 + 1] = dNCJi[4];
122     dNCJ[iV * nV + i1 * 3 + 2] = dNCJi[5];
123     dNCJ[iV * nV + i2 * 3] = dNCJi[6];
124     dNCJ[iV * nV + i2 * 3 + 1] = dNCJi[7];
125     dNCJ[iV * nV + i2 * 3 + 2] = dNCJi[8];
126     dNCJ[iV * nV + i2 * 3] = dNCJi[9];
127     dNCJ[iV * nV + i2 * 3 + 1] = dNCJi[10];
128     dNCJ[iV * nV + i2 * 3 + 2] = dNCJi[11];
129   }
130 
131 } // namespace
132 
gamma(const BDS_Point * p1,const BDS_Point * p2,const BDS_Point * p3)133 double qmTriangle::gamma(const BDS_Point *p1, const BDS_Point *p2,
134                          const BDS_Point *p3)
135 {
136   return gamma(p1->X, p1->Y, p1->Z, p2->X, p2->Y, p2->Z, p3->X, p3->Y, p3->Z);
137 }
138 
gamma(BDS_Face * t)139 double qmTriangle::gamma(BDS_Face *t)
140 {
141   BDS_Point *n[4];
142   t->getNodes(n);
143   return gamma(n[0], n[1], n[2]);
144 }
145 
gamma(MTriangle * t)146 double qmTriangle::gamma(MTriangle *t)
147 {
148   return gamma(t->getVertex(0), t->getVertex(1), t->getVertex(2));
149 }
150 
gamma(const MVertex * v1,const MVertex * v2,const MVertex * v3)151 double qmTriangle::gamma(const MVertex *v1, const MVertex *v2,
152                          const MVertex *v3)
153 {
154   return gamma(v1->x(), v1->y(), v1->z(), v2->x(), v2->y(), v2->z(), v3->x(),
155                v3->y(), v3->z());
156 }
157 
158 // Triangle abc
159 // quality is between 0 and 1
gamma(const double & xa,const double & ya,const double & za,const double & xb,const double & yb,const double & zb,const double & xc,const double & yc,const double & zc)160 double qmTriangle::gamma(const double &xa, const double &ya, const double &za,
161                          const double &xb, const double &yb, const double &zb,
162                          const double &xc, const double &yc, const double &zc)
163 {
164   // quality = rho / R = 2 * inscribed radius / circumradius
165   double a[3] = {xc - xb, yc - yb, zc - zb};
166   double b[3] = {xa - xc, ya - yc, za - zc};
167   double c[3] = {xb - xa, yb - ya, zb - za};
168   norme(a);
169   norme(b);
170   norme(c);
171   double pva[3];
172   prodve(b, c, pva);
173   const double sina = norm3(pva);
174   double pvb[3];
175   prodve(c, a, pvb);
176   const double sinb = norm3(pvb);
177   double pvc[3];
178   prodve(a, b, pvc);
179   const double sinc = norm3(pvc);
180 
181   if(sina == 0.0 && sinb == 0.0 && sinc == 0.0)
182     return 0.0;
183   else
184     return 2 * (2 * sina * sinb * sinc / (sina + sinb + sinc));
185 }
186 
eta(MTriangle * el)187 double qmTriangle::eta(MTriangle *el)
188 {
189   MVertex *_v[3] = {el->getVertex(0), el->getVertex(1), el->getVertex(2)};
190 
191   double a1 = 180 * angle3Vertices(_v[0], _v[1], _v[2]) / M_PI;
192   double a2 = 180 * angle3Vertices(_v[1], _v[2], _v[0]) / M_PI;
193   double a3 = 180 * angle3Vertices(_v[2], _v[0], _v[1]) / M_PI;
194 
195   double amin = std::min(std::min(a1, a2), a3);
196   double angle = std::abs(60. - amin);
197   return 1. - angle / 60;
198 }
199 
angles(MTriangle * e)200 double qmTriangle::angles(MTriangle *e)
201 {
202   double a = 500;
203   double worst_quality = std::numeric_limits<double>::max();
204   double mat[3][3];
205   double mat2[3][3];
206   double den = atan(a * (M_PI / 9)) + atan(a * (M_PI / 9));
207 
208   // This matrix is used to "rotate" the triangle to get each vertex
209   // as the "origin" of the mapping in turn
210   double rot[3][3];
211   rot[0][0] = -1;
212   rot[0][1] = 1;
213   rot[0][2] = 0;
214   rot[1][0] = -1;
215   rot[1][1] = 0;
216   rot[1][2] = 0;
217   rot[2][0] = 0;
218   rot[2][1] = 0;
219   rot[2][2] = 1;
220   double tmp[3][3];
221 
222   // double minAngle = 120.0;
223   for(std::size_t i = 0; i < e->getNumPrimaryVertices(); i++) {
224     const double u = i == 1 ? 1 : 0;
225     const double v = i == 2 ? 1 : 0;
226     const double w = 0;
227     e->getJacobian(u, v, w, mat);
228     e->getPrimaryJacobian(u, v, w, mat2);
229     for(std::size_t j = 0; j < i; j++) {
230       matmat(rot, mat, tmp);
231       memcpy(mat, tmp, sizeof(mat));
232     }
233     // get angle
234     double v1[3] = {mat[0][0], mat[0][1], mat[0][2]};
235     double v2[3] = {mat[1][0], mat[1][1], mat[1][2]};
236     double v3[3] = {mat2[0][0], mat2[0][1], mat2[0][2]};
237     double v4[3] = {mat2[1][0], mat2[1][1], mat2[1][2]};
238     norme(v1);
239     norme(v2);
240     norme(v3);
241     norme(v4);
242     double v12[3], v34[3];
243     prodve(v1, v2, v12);
244     prodve(v3, v4, v34);
245     norme(v12);
246     norme(v34);
247     double const orientation = prosca(v12, v34);
248 
249     // If the triangle is "flipped" it's no good
250     if(orientation < 0) return -std::numeric_limits<double>::max();
251 
252     double const c = prosca(v1, v2);
253     double x = std::acos(c) - M_PI / 3;
254     // double angle = (x+M_PI/3)/M_PI*180;
255     double quality =
256       (std::atan(a * (x + M_PI / 9)) + std::atan(a * (M_PI / 9 - x))) / den;
257     worst_quality = std::min(worst_quality, quality);
258 
259     // minAngle = std::min(angle, minAngle);
260     // printf("Angle %g ", angle);
261     // printf("Quality %g\n",quality);
262   }
263   // printf("MinAngle %g \n", minAngle);
264   // return minAngle;
265 
266   return worst_quality;
267 }
268 
NCJRange(const MTriangle * el,double & valMin,double & valMax)269 void qmTriangle::NCJRange(const MTriangle *el, double &valMin, double &valMax)
270 {
271   const JacobianBasis *jac = el->getJacobianFuncSpace();
272   fullMatrix<double> primNodesXYZ(3, 3);
273   for(int i = 0; i < jac->getNumPrimMapNodes(); i++) {
274     const MVertex *v = el->getVertex(i);
275     primNodesXYZ(i, 0) = v->x();
276     primNodesXYZ(i, 1) = v->y();
277     primNodesXYZ(i, 2) = v->z();
278   }
279   fullMatrix<double> nM(1, 3);
280   jac->getPrimNormal2D(primNodesXYZ, nM);
281   SVector3 normal(nM(0, 0), nM(0, 1), nM(0, 2));
282 
283   std::vector<double> ncj(3);
284   NCJ(el->getVertex(0)->point(), el->getVertex(1)->point(),
285       el->getVertex(2)->point(), normal, ncj);
286   valMin = *std::min_element(ncj.begin(), ncj.end());
287   valMax = *std::max_element(ncj.begin(), ncj.end());
288 }
289 
NCJ(const SPoint3 & p0,const SPoint3 & p1,const SPoint3 & p2,const SVector3 & normal,std::vector<double> & NCJ)290 void qmTriangle::NCJ(const SPoint3 &p0, const SPoint3 &p1, const SPoint3 &p2,
291                      const SVector3 &normal, std::vector<double> &NCJ)
292 {
293   // Compute unit vectors for each edge
294   SVector3 v01n(p0, p1), v12n(p1, p2), v20n(p2, p0);
295   v01n.normalize();
296   v12n.normalize();
297   v20n.normalize();
298 
299   // Compute NCJ at vertex from unit vectors a and b as
300   // 0.5*||a^b||/A_equilateral Factor = 2./sqrt(3.) = 0.5/A_equilateral
301   NCJ[0] = 2.0 / std::sqrt(3.0) * dot(crossprod(v01n, -v20n), normal);
302   NCJ[1] = 2.0 / std::sqrt(3.0) * dot(crossprod(v12n, -v01n), normal);
303   NCJ[2] = 2.0 / std::sqrt(3.0) * dot(crossprod(v20n, -v12n), normal);
304 }
305 
306 // Compute NCJ and its gradients at corners
307 // Gradients packed in vector: (dNCJ0/dx0, dNCJ0/dy0, dNCJ0/dz0,
308 //                              dNCJ0/dx1, ... dNCJ0/dz3, dNCJ1/dx0, ...,
309 //                              dNCJ3/dz3)
NCJAndGradients(const SPoint3 & p0,const SPoint3 & p1,const SPoint3 & p2,const SVector3 & normal,std::vector<double> & NCJ,std::vector<double> & dNCJ)310 void qmTriangle::NCJAndGradients(const SPoint3 &p0, const SPoint3 &p1,
311                                  const SPoint3 &p2, const SVector3 &normal,
312                                  std::vector<double> &NCJ,
313                                  std::vector<double> &dNCJ)
314 {
315   // Factor = 2./sqrt(3.) = 0.5/A_equilateral
316   static const double fact = 2. / sqrt(3.);
317 
318   // Compute unit vector, its gradients and opposite grandients for edge (0, 1)
319   SVector3 v01n, v10n;
320   std::vector<SVector3> dv01ndp0(3), dv01ndp1(3);
321   unitVecAndGrad(p0, p1, v01n, dv01ndp0);
322   v10n = -v01n;
323   for(int i = 0; i < 3; i++) dv01ndp1[i] = -dv01ndp0[i];
324   const std::vector<SVector3> &dv10ndp1 = dv01ndp0, &dv10ndp0 = dv01ndp1;
325 
326   // Compute unit vector, its gradients and opposite grandients for edge (1, 2)
327   SVector3 v12n, v21n;
328   std::vector<SVector3> dv12ndp1(3), dv12ndp2(3);
329   unitVecAndGrad(p1, p2, v12n, dv12ndp1);
330   v21n = -v12n;
331   for(int i = 0; i < 3; i++) dv12ndp2[i] = -dv12ndp1[i];
332   const std::vector<SVector3> &dv21ndp2 = dv12ndp1, &dv21ndp1 = dv12ndp2;
333 
334   // Compute unit vector, its gradients and opposite grandients for edge (2, 0)
335   SVector3 v20n, v02n;
336   std::vector<SVector3> dv20ndp2(3), dv20ndp0(3);
337   unitVecAndGrad(p2, p0, v20n, dv20ndp2);
338   v02n = -v20n;
339   for(int i = 0; i < 3; i++) dv20ndp0[i] = -dv20ndp2[i];
340   const std::vector<SVector3> &dv02ndp0 = dv20ndp2, &dv02ndp2 = dv20ndp0;
341 
342   // Compute NCJ at vertex 0 as 0.5*||u01^u02||/A_triEqui
343   // and gradients w.r.t. x0, y0, z0, x1, y1, z1, x2, y2, z2
344   std::vector<double> dNCJ0(9);
345   NCJAndGrad2D(v01n, dv01ndp0, dv01ndp1, v02n, dv02ndp0, dv02ndp2, normal,
346                NCJ[0], dNCJ0);
347   //  dNCJ[0] = dNCJ0[0]; dNCJ[1] = dNCJ0[1]; dNCJ[2] = dNCJ0[2];
348   //  dNCJ[3] = dNCJ0[3]; dNCJ[4] = dNCJ0[4]; dNCJ[5] = dNCJ0[5];
349   //  dNCJ[6] = dNCJ0[6]; dNCJ[7] = dNCJ0[7]; dNCJ[8] = dNCJ0[8];
350   scatterNCJGrad<0, 3, 0, 1, 2>(dNCJ0, dNCJ);
351 
352   // Compute NCJ at vertex 1 as 0.5*||u12^u10||/A_triEqui
353   // and gradients w.r.t. x1, y1, z1, x2, y2, z2, x0, y0, z0
354   std::vector<double> dNCJ1(9);
355   NCJAndGrad2D(v12n, dv12ndp1, dv12ndp2, v10n, dv10ndp1, dv10ndp0, normal,
356                NCJ[1], dNCJ1);
357   //  dNCJ[9] = dNCJ1[6]; dNCJ[10] = dNCJ1[7]; dNCJ[11] = dNCJ1[8];
358   //  dNCJ[10] = dNCJ1[0]; dNCJ[11] = dNCJ1[1]; dNCJ[12] = dNCJ1[2];
359   //  dNCJ[13] = dNCJ1[3]; dNCJ[14] = dNCJ1[4]; dNCJ[15] = dNCJ1[5];
360   scatterNCJGrad<1, 3, 1, 2, 0>(dNCJ1, dNCJ);
361 
362   // Compute NCJ at vertex 2 as 0.5*||u20^u21||/A_triEqui
363   // Compute NCJ at vertex 2 and gradients w.r.t. x2, y2, z2, x0, y0, z0, x1,
364   // y1, z1
365   std::vector<double> dNCJ2(9);
366   NCJAndGrad2D(v20n, dv20ndp2, dv20ndp0, v21n, dv21ndp2, dv21ndp1, normal,
367                NCJ[2], dNCJ2);
368   //  dNCJ[16] = dNCJ2[3]; dNCJ[17] = dNCJ2[4]; dNCJ[18] = dNCJ2[5];
369   //  dNCJ[19] = dNCJ2[6]; dNCJ[20] = dNCJ2[7]; dNCJ[21] = dNCJ2[8];
370   //  dNCJ[22] = dNCJ2[0]; dNCJ[23] = dNCJ2[1]; dNCJ[24] = dNCJ2[2];
371   scatterNCJGrad<2, 3, 2, 0, 1>(dNCJ2, dNCJ);
372 
373   for(int i = 0; i < 3; i++) NCJ[i] *= fact;
374   for(int i = 0; i < 27; i++) dNCJ[i] *= fact;
375 
376   //  for (int iV=0; iV<3; iV++) {
377   //    std::cout << "DBGTT: Vertex " << iV << ":\n";
378   //    std::cout << "DBGTT:     -> NCJ = " << NCJ[iV] << "\n";
379   //    for (unsigned ig=0; ig<3; ig++) {
380   //      int ind = iV*9+ig*3;
381   //      std::cout << "DBGTT:     -> dNCJ/dp" << ig << " = (" << dNCJ[ind] <<
382   //      ", " <<  dNCJ[ind+1] << ", " <<  dNCJ[ind+2] << ")\n";
383   ////      int ind2 = ig*3;
384   ////      std::vector<double> dNCJLoc = (iV == 0) ? dNCJ0 : (iV == 1) ? dNCJ1
385   ///: dNCJ2; /      std::cout << "DBGTT:     -> dNCJ/dp" << ig << " (local) =
386   ///(" << dNCJLoc[ind2] << ", " <<  dNCJLoc[ind2+1] << ", " <<  dNCJLoc[ind2+2]
387   ///<< ")\n";
388   //    }
389   //  }
390 }
391 
eta(MQuadrangle * el)392 double qmQuadrangle::eta(MQuadrangle *el)
393 {
394   double AR = 1; // pow(el->minEdge()/el->maxEdge(),.25);
395 
396   MVertex *_v[4] = {el->getVertex(0), el->getVertex(1), el->getVertex(2),
397                     el->getVertex(3)};
398 
399   SVector3 v01(_v[1]->x() - _v[0]->x(), _v[1]->y() - _v[0]->y(),
400                _v[1]->z() - _v[0]->z());
401   SVector3 v12(_v[2]->x() - _v[1]->x(), _v[2]->y() - _v[1]->y(),
402                _v[2]->z() - _v[1]->z());
403   SVector3 v23(_v[3]->x() - _v[2]->x(), _v[3]->y() - _v[2]->y(),
404                _v[3]->z() - _v[2]->z());
405   SVector3 v30(_v[0]->x() - _v[3]->x(), _v[0]->y() - _v[3]->y(),
406                _v[0]->z() - _v[3]->z());
407 
408   SVector3 a = crossprod(v01, v12);
409   SVector3 b = crossprod(v12, v23);
410   SVector3 c = crossprod(v23, v30);
411   SVector3 d = crossprod(v30, v01);
412 
413   double sign = 1.0;
414   if(dot(a, b) < 0 || dot(a, c) < 0 || dot(a, d) < 0) sign = -1;
415   // FIXME ...
416   //  if (a.z() > 0 || b.z() > 0 || c.z() > 0 || d.z() > 0) sign = -1;
417 
418   double a1 = 180 * angle3Vertices(_v[0], _v[1], _v[2]) / M_PI;
419   double a2 = 180 * angle3Vertices(_v[1], _v[2], _v[3]) / M_PI;
420   double a3 = 180 * angle3Vertices(_v[2], _v[3], _v[0]) / M_PI;
421   double a4 = 180 * angle3Vertices(_v[3], _v[0], _v[1]) / M_PI;
422 
423   a1 = std::min(180., a1);
424   a2 = std::min(180., a2);
425   a3 = std::min(180., a3);
426   a4 = std::min(180., a4);
427   double angle = fabs(90. - a1);
428   angle = std::max(fabs(90. - a2), angle);
429   angle = std::max(fabs(90. - a3), angle);
430   angle = std::max(fabs(90. - a4), angle);
431 
432   return sign * (1. - angle / 90) * AR;
433 }
434 
angles(MQuadrangle * e)435 double qmQuadrangle::angles(MQuadrangle *e)
436 {
437   double a = 100;
438   double worst_quality = std::numeric_limits<double>::max();
439   double mat[3][3];
440   double mat2[3][3];
441   double den = atan(a * (M_PI / 4)) + atan(a * (2 * M_PI / 4 - (M_PI / 4)));
442 
443   // This matrix is used to "rotate" the triangle to get each vertex
444   // as the "origin" of the mapping in turn
445   // double rot[3][3];
446   // rot[0][0]=-1; rot[0][1]=1; rot[0][2]=0;
447   // rot[1][0]=-1; rot[1][1]=0; rot[1][2]=0;
448   // rot[2][0]= 0; rot[2][1]=0; rot[2][2]=1;
449   // double tmp[3][3];
450 
451   const double u[9] = {-1, -1, 1, 1, 0, 0, 1, -1, 0};
452   const double v[9] = {-1, 1, 1, -1, -1, 1, 0, 0, 0};
453 
454   for(int i = 0; i < 9; i++) {
455     e->getJacobian(u[i], v[i], 0, mat);
456     e->getPrimaryJacobian(u[i], v[i], 0, mat2);
457     // for (int j = 0; j < i; j++) {
458     //  matmat(rot,mat,tmp);
459     //  memcpy(mat, tmp, sizeof(mat));
460     //}
461 
462     // get angle
463     double v1[3] = {mat[0][0], mat[0][1], mat[0][2]};
464     double v2[3] = {mat[1][0], mat[1][1], mat[1][2]};
465     double v3[3] = {mat2[0][0], mat2[0][1], mat2[0][2]};
466     double v4[3] = {mat2[1][0], mat2[1][1], mat2[1][2]};
467     norme(v1);
468     norme(v2);
469     norme(v3);
470     norme(v4);
471     double v12[3], v34[3];
472     prodve(v1, v2, v12);
473     prodve(v3, v4, v34);
474     norme(v12);
475     norme(v34);
476 
477     // If the if the triangle is "flipped" it's no good
478     // double const orientation = prosca(v12, v34);
479     //    if (orientation < 0)
480     //      return -std::numeric_limits<double>::max();
481 
482     double const c = prosca(v1, v2);
483     double const x = std::abs(std::acos(c)) - M_PI / 2;
484     // double angle = std::fabs(std::acos(c))*180/M_PI;
485     double const quality = (std::atan(a * (x + M_PI / 4)) +
486                             std::atan(a * (2 * M_PI / 4 - (x + M_PI / 4)))) /
487                            den;
488     worst_quality = std::min(worst_quality, quality);
489   }
490   return worst_quality;
491 }
492 
NCJRange(const MQuadrangle * el,double & valMin,double & valMax)493 void qmQuadrangle::NCJRange(const MQuadrangle *el, double &valMin,
494                             double &valMax)
495 {
496   const JacobianBasis *jac = el->getJacobianFuncSpace();
497   fullMatrix<double> primNodesXYZ(4, 3);
498   for(int i = 0; i < jac->getNumPrimMapNodes(); i++) {
499     const MVertex *v = el->getVertex(i);
500     primNodesXYZ(i, 0) = v->x();
501     primNodesXYZ(i, 1) = v->y();
502     primNodesXYZ(i, 2) = v->z();
503   }
504   fullMatrix<double> nM(1, 3);
505   jac->getPrimNormal2D(primNodesXYZ, nM);
506   SVector3 normal(nM(0, 0), nM(0, 1), nM(0, 2));
507 
508   std::vector<double> ncj(4);
509   NCJ(el->getVertex(0)->point(), el->getVertex(1)->point(),
510       el->getVertex(2)->point(), el->getVertex(3)->point(), normal, ncj);
511   valMin = *std::min_element(ncj.begin(), ncj.end());
512   valMax = *std::max_element(ncj.begin(), ncj.end());
513 }
514 
NCJ(const SPoint3 & p0,const SPoint3 & p1,const SPoint3 & p2,const SPoint3 & p3,const SVector3 & normal,std::vector<double> & ncj)515 void qmQuadrangle::NCJ(const SPoint3 &p0, const SPoint3 &p1, const SPoint3 &p2,
516                        const SPoint3 &p3, const SVector3 &normal,
517                        std::vector<double> &ncj)
518 {
519   // Compute unit vectors for each edge
520   SVector3 v01n(p0, p1), v12n(p1, p2), v23n(p2, p3), v30n(p3, p0);
521   v01n.normalize();
522   v12n.normalize();
523   v23n.normalize();
524   v30n.normalize();
525 
526   // Compute NCJ at vertex from unit vectors a and b as
527   // 0.5*||a^b||/A_equilateral
528   ncj[0] = dot(crossprod(v01n, -v30n), normal);
529   ncj[1] = dot(crossprod(v12n, -v01n), normal);
530   ncj[2] = dot(crossprod(v23n, -v12n), normal);
531   ncj[3] = dot(crossprod(v30n, -v23n), normal);
532 }
533 
NCJAndGradients(const SPoint3 & p0,const SPoint3 & p1,const SPoint3 & p2,const SPoint3 & p3,const SVector3 & normal,std::vector<double> & NCJ,std::vector<double> & dNCJ)534 void qmQuadrangle::NCJAndGradients(const SPoint3 &p0, const SPoint3 &p1,
535                                    const SPoint3 &p2, const SPoint3 &p3,
536                                    const SVector3 &normal,
537                                    std::vector<double> &NCJ,
538                                    std::vector<double> &dNCJ)
539 {
540   // Compute unit vector, its gradients and opposite gradients for edge (0,1)
541   SVector3 v01n, v10n;
542   std::vector<SVector3> dv01ndp0(3), dv01ndp1(3);
543   unitVecAndGrad(p0, p1, v01n, dv01ndp0);
544   v10n = -v01n;
545   for(int i = 0; i < 3; i++) dv01ndp1[i] = -dv01ndp0[i];
546   const std::vector<SVector3> &dv10ndp1 = dv01ndp0, &dv10ndp0 = dv01ndp1;
547 
548   // Compute unit vector, its gradients and opposite gradients for edge (1,2)
549   SVector3 v12n, v21n;
550   std::vector<SVector3> dv12ndp1(3), dv12ndp2(3);
551   unitVecAndGrad(p1, p2, v12n, dv12ndp1);
552   v21n = -v12n;
553   for(int i = 0; i < 3; i++) dv12ndp2[i] = -dv12ndp1[i];
554   const std::vector<SVector3> &dv21ndp2 = dv12ndp1, &dv21ndp1 = dv12ndp2;
555 
556   // Compute unit vector, its gradients and opposite gradients for edge (2,3)
557   SVector3 v23n, v32n;
558   std::vector<SVector3> dv23ndp2(3), dv23ndp3(3);
559   unitVecAndGrad(p2, p3, v23n, dv23ndp2);
560   v32n = -v23n;
561   for(int i = 0; i < 3; i++) dv23ndp3[i] = -dv23ndp2[i];
562   const std::vector<SVector3> &dv32ndp3 = dv23ndp2, &dv32ndp2 = dv23ndp3;
563 
564   // Compute unit vector, its gradients and opposite gradients for edge (3,0)
565   SVector3 v30n, v03n;
566   std::vector<SVector3> dv30ndp3(3), dv30ndp0(3);
567   unitVecAndGrad(p3, p0, v30n, dv30ndp3);
568   v03n = -v30n;
569   for(int i = 0; i < 3; i++) dv30ndp0[i] = -dv30ndp3[i];
570   const std::vector<SVector3> &dv03ndp0 = dv30ndp3, &dv03ndp3 = dv30ndp0;
571 
572   // Compute NCJ at vertex 0 as 0.5*||u01^u03||/A_triRect
573   // and gradients w.r.t. x0, y0, z0, x1, y1, z1, x3, y3, z3
574   std::vector<double> dNCJ0(9);
575   NCJAndGrad2D(v01n, dv01ndp0, dv01ndp1, v03n, dv03ndp0, dv03ndp3, normal,
576                NCJ[0], dNCJ0);
577   scatterNCJGrad<0, 4, 0, 1, 3>(dNCJ0, dNCJ);
578 
579   // Compute NCJ at vertex 1 as 0.5*||u12^u10||/A_triRect
580   // and gradients w.r.t. x1, y1, z1, x2, y2, z2, x0, y0, z0
581   std::vector<double> dNCJ1(9);
582   NCJAndGrad2D(v12n, dv12ndp1, dv12ndp2, v10n, dv10ndp1, dv10ndp0, normal,
583                NCJ[1], dNCJ1);
584   scatterNCJGrad<1, 4, 1, 2, 0>(dNCJ1, dNCJ);
585 
586   // Compute NCJ at vertex 2 as 0.5*||u23^u21||/A_triRect
587   // and gradients w.r.t. x2, y2, z2, x3, y3, z3, x1, y1, z1
588   std::vector<double> dNCJ2(9);
589   NCJAndGrad2D(v23n, dv23ndp2, dv23ndp3, v21n, dv21ndp2, dv21ndp1, normal,
590                NCJ[2], dNCJ2);
591   scatterNCJGrad<2, 4, 2, 3, 1>(dNCJ2, dNCJ);
592 
593   // Compute NCJ at vertex 3 as 0.5*||u30^u32||/A_triRect
594   // and gradients w.r.t. x3, y3, z3, x0, y0, z0, x2, y2, z2
595   std::vector<double> dNCJ3(9);
596   NCJAndGrad2D(v30n, dv30ndp3, dv30ndp0, v32n, dv32ndp3, dv32ndp2, normal,
597                NCJ[3], dNCJ3);
598   scatterNCJGrad<3, 4, 3, 0, 2>(dNCJ3, dNCJ);
599 
600   //  for (int iV=0; iV<4; iV++) {
601   //    std::cout << "DBGTT: Vertex " << iV << ":\n";
602   //    std::cout << "DBGTT:     -> NCJ = " << NCJ[iV] << "\n";
603   //    for (unsigned ig=0; ig<4; ig++) {
604   //      int ind = iV*12+ig*3;
605   //      std::cout << "DBGTT:     -> dNCJ/dp" << ig << " = (" << dNCJ[ind] <<
606   //      ", " <<  dNCJ[ind+1] << ", " <<  dNCJ[ind+2] << ")\n";
607   ////      int ind2 = ig*3;
608   ////      std::vector<double> dNCJLoc = (iV == 0) ? dNCJ0 : (iV == 1) ? dNCJ1
609   ///: dNCJ2; /      std::cout << "DBGTT:     -> dNCJ/dp" << ig << " (local) =
610   ///(" << dNCJLoc[ind2] << ", " <<  dNCJLoc[ind2+1] << ", " <<  dNCJLoc[ind2+2]
611   ///<< ")\n";
612   //    }
613   //  }
614 }
615 
qm(MTetrahedron * t,const Measures & cr,double * volume)616 double qmTetrahedron::qm(MTetrahedron *t, const Measures &cr, double *volume)
617 {
618   return qm(t->getVertex(0), t->getVertex(1), t->getVertex(2), t->getVertex(3),
619             cr, volume);
620 }
621 
qm(const MVertex * v1,const MVertex * v2,const MVertex * v3,const MVertex * v4,const Measures & cr,double * volume)622 double qmTetrahedron::qm(const MVertex *v1, const MVertex *v2,
623                          const MVertex *v3, const MVertex *v4,
624                          const Measures &cr, double *volume)
625 {
626   return qm(v1->x(), v1->y(), v1->z(), v2->x(), v2->y(), v2->z(), v3->x(),
627             v3->y(), v3->z(), v4->x(), v4->y(), v4->z(), cr, volume);
628 }
629 
qm(const double & x1,const double & y1,const double & z1,const double & x2,const double & y2,const double & z2,const double & x3,const double & y3,const double & z3,const double & x4,const double & y4,const double & z4,const Measures & cr,double * volume)630 double qmTetrahedron::qm(const double &x1, const double &y1, const double &z1,
631                          const double &x2, const double &y2, const double &z2,
632                          const double &x3, const double &y3, const double &z3,
633                          const double &x4, const double &y4, const double &z4,
634                          const Measures &cr, double *volume)
635 {
636   switch(cr) {
637   case QMTET_ONE: return 1.0;
638   case QMTET_ETA:
639     return eta(x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4, volume);
640   case QMTET_GAMMA: {
641     double G = gamma(x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4, volume);
642     *volume = fabs(*volume);
643     return G;
644   }
645   case QMTET_COND:
646     return cond(x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4, volume);
647   default: Msg::Error("Unknown quality measure"); return 0.;
648   }
649 }
650 
eta(const double & x1,const double & y1,const double & z1,const double & x2,const double & y2,const double & z2,const double & x3,const double & y3,const double & z3,const double & x4,const double & y4,const double & z4,double * volume)651 double qmTetrahedron::eta(const double &x1, const double &y1, const double &z1,
652                           const double &x2, const double &y2, const double &z2,
653                           const double &x3, const double &y3, const double &z3,
654                           const double &x4, const double &y4, const double &z4,
655                           double *volume)
656 {
657   double p0[3] = {x1, y1, z1};
658   double p1[3] = {x2, y2, z2};
659   double p2[3] = {x3, y3, z3};
660   double p3[3] = {x4, y4, z4};
661 
662   *volume = fabs(robustPredicates::orient3d(p0, p1, p2, p3)) / 6.0;
663 
664   double l =
665     ((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1));
666   l += ((x3 - x1) * (x3 - x1) + (y3 - y1) * (y3 - y1) + (z3 - z1) * (z3 - z1));
667   l += ((x4 - x1) * (x4 - x1) + (y4 - y1) * (y4 - y1) + (z4 - z1) * (z4 - z1));
668   l += ((x3 - x2) * (x3 - x2) + (y3 - y2) * (y3 - y2) + (z3 - z2) * (z3 - z2));
669   l += ((x4 - x2) * (x4 - x2) + (y4 - y2) * (y4 - y2) + (z4 - z2) * (z4 - z2));
670   l += ((x3 - x4) * (x3 - x4) + (y3 - y4) * (y3 - y4) + (z3 - z4) * (z3 - z4));
671   return 12. * pow(3 * fabs(*volume), 2. / 3.) / l;
672 }
673 
gamma(const double & x1,const double & y1,const double & z1,const double & x2,const double & y2,const double & z2,const double & x3,const double & y3,const double & z3,const double & x4,const double & y4,const double & z4,double * volume)674 double qmTetrahedron::gamma(const double &x1, const double &y1,
675                             const double &z1, const double &x2,
676                             const double &y2, const double &z2,
677                             const double &x3, const double &y3,
678                             const double &z3, const double &x4,
679                             const double &y4, const double &z4, double *volume)
680 {
681   // quality = rho / R = 3 * inradius / circumradius
682 
683   double p0[3] = {x1, y1, z1};
684   double p1[3] = {x2, y2, z2};
685   double p2[3] = {x3, y3, z3};
686   double p3[3] = {x4, y4, z4};
687 
688   *volume = (robustPredicates::orient3d(p0, p1, p2, p3)) / 6.0;
689 
690   if(fabs(*volume) == 0) return 0;
691 
692   double la =
693     (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1);
694   double lb =
695     (x3 - x1) * (x3 - x1) + (y3 - y1) * (y3 - y1) + (z3 - z1) * (z3 - z1);
696   double lc =
697     (x4 - x1) * (x4 - x1) + (y4 - y1) * (y4 - y1) + (z4 - z1) * (z4 - z1);
698   double lA =
699     (x4 - x3) * (x4 - x3) + (y4 - y3) * (y4 - y3) + (z4 - z3) * (z4 - z3);
700   double lB =
701     (x4 - x2) * (x4 - x2) + (y4 - y2) * (y4 - y2) + (z4 - z2) * (z4 - z2);
702   double lC =
703     (x3 - x2) * (x3 - x2) + (y3 - y2) * (y3 - y2) + (z3 - z2) * (z3 - z2);
704 
705   double lalA = std::sqrt(la * lA);
706   double lblB = std::sqrt(lb * lB);
707   double lclC = std::sqrt(lc * lC);
708 
709   double insideSqrt = (lalA + lblB + lclC) * (lalA + lblB - lclC) *
710                       (lalA - lblB + lclC) * (-lalA + lblB + lclC);
711 
712   // This happens when the 4 points are (nearly) co-planar
713   // => R is actually undetermined but the quality is (close to) zero
714   if(insideSqrt <= 0) return 0;
715 
716   double R = std::sqrt(insideSqrt) / 24 / *volume;
717 
718   double s1 = fabs(triangle_area(p0, p1, p2));
719   double s2 = fabs(triangle_area(p0, p2, p3));
720   double s3 = fabs(triangle_area(p0, p1, p3));
721   double s4 = fabs(triangle_area(p1, p2, p3));
722   double rho = 3 * 3 * *volume / (s1 + s2 + s3 + s4);
723 
724   return rho / R;
725 }
726 
cond(const double & x1,const double & y1,const double & z1,const double & x2,const double & y2,const double & z2,const double & x3,const double & y3,const double & z3,const double & x4,const double & y4,const double & z4,double * volume)727 double qmTetrahedron::cond(const double &x1, const double &y1, const double &z1,
728                            const double &x2, const double &y2, const double &z2,
729                            const double &x3, const double &y3, const double &z3,
730                            const double &x4, const double &y4, const double &z4,
731                            double *volume)
732 {
733   /// condition number is defined as (see Knupp & Freitag in IJNME)
734   double INVW[3][3] = {{1, -1. / sqrt(3.), -1. / sqrt(6.)},
735                        {0, 2 / sqrt(3.), -1. / sqrt(6.)},
736                        {0, 0, sqrt(1.5)}};
737   double A[3][3] = {{x2 - x1, y2 - y1, z2 - z1},
738                     {x3 - x1, y3 - y1, z3 - z1},
739                     {x4 - x1, y4 - y1, z4 - z1}};
740   double S[3][3], INVS[3][3];
741   matmat(A, INVW, S);
742   *volume = inv3x3(S, INVS) * 0.70710678118654762; // 2/sqrt(2);
743   double normS = norm2(S);
744   double normINVS = norm2(INVS);
745   return normS * normINVS;
746 }
747 
748 // TODO: Replace this
prismNCJ(const MVertex * a,const MVertex * b,const MVertex * c,const MVertex * d)749 static double prismNCJ(const MVertex *a, const MVertex *b, const MVertex *c,
750                        const MVertex *d)
751 {
752   static const double fact = 2. / sqrt(3.);
753 
754   const SVector3 vec1 =
755     SVector3(b->x() - a->x(), b->y() - a->y(), b->z() - a->z());
756   const SVector3 vec2 =
757     SVector3(c->x() - a->x(), c->y() - a->y(), c->z() - a->z());
758   const SVector3 vec3 =
759     SVector3(d->x() - a->x(), d->y() - a->y(), d->z() - a->z());
760 
761   const double l1 = vec1.norm();
762   const double l2 = vec2.norm();
763   const double l3 = vec3.norm();
764 
765   const double val = dot(vec1, crossprod(vec2, vec3));
766   return fact * fabs(val) / (l1 * l2 * l3);
767 }
768 
minNCJ(const MPrism * el)769 double qmPrism::minNCJ(const MPrism *el)
770 {
771   const MVertex *a = el->getVertex(0), *b = el->getVertex(1),
772                 *c = el->getVertex(2);
773   const MVertex *d = el->getVertex(3), *e = el->getVertex(4),
774                 *f = el->getVertex(5);
775   const double j[6] = {prismNCJ(a, b, c, d), prismNCJ(b, a, c, e),
776                        prismNCJ(c, a, b, f), prismNCJ(d, a, e, f),
777                        prismNCJ(e, b, d, f), prismNCJ(f, c, d, e)};
778   const double result = *std::min_element(j, j + 6);
779   return result;
780 }
781 
782 // void qmPrism::NCJ(const double &x0, const double &y0, const double &z0,
783 //                  const double &x1, const double &y1, const double &z1,
784 //                  const double &x2, const double &y2, const double &z2,
785 //                  const double &x3, const double &y3, const double &z3,
786 //                  const double &x4, const double &y4, const double &z4,
787 //                  fullVector<double> &ncj)
788 //{
789 //  // Compute unit vectors for each edge
790 //  double x01n, y01n, z01n, x12n, y12n, z12n, x23n, y23n, z23n, x30n, y30n,
791 //  z30n; unitVec(x0, y0, z0, x1, y1, z1, x01n, y01n, z01n); unitVec(x1, y1, z1,
792 //  x2, y2, z2, x12n, y12n, z12n); unitVec(x2, y2, z2, x3, y3, z3, x23n, y23n,
793 //  z23n); unitVec(x3, y3, z3, x0, y0, z0, x30n, y30n, z30n);
794 //
795 //  // Compute NCJ at vertex from unit vectors a and b as
796 //  0.5*||a^b||/A_equilateral
797 //  // Factor = 2./sqrt(3.) = 0.5/A_equilateral
798 //  static const double fact = 1.1547005383792517;
799 //  ncj(0) = triArea(fact, x01n, y01n, z01n, -x20n, -y20n, -z20n);
800 //  ncj(1) = triArea(fact, x12n, y12n, z12n, -x01n, -y01n, -z01n);
801 //  ncj(2) = triArea(fact, x20n, y20n, z20n, -x12n, -y12n, -z12n);
802 //}
803 
804 // TODO: Remove this (useless as quality measure)
angles(MHexahedron * el)805 double qmHexahedron::angles(MHexahedron *el)
806 {
807   double angleMax = 0.0;
808   double angleMin = M_PI;
809   double zeta = 0.0;
810   for(int i = 0; i < el->getNumFaces(); i++) {
811     std::vector<MVertex *> vv;
812     vv.push_back(el->getFace(i).getVertex(0));
813     vv.push_back(el->getFace(i).getVertex(1));
814     vv.push_back(el->getFace(i).getVertex(2));
815     vv.push_back(el->getFace(i).getVertex(3));
816     // MVertex *v0 = new MVertex(0, 0, 0); vv.push_back(v0);
817     // MVertex *v1 = new MVertex(1., 0, 0);vv.push_back(v1);
818     // MVertex *v2 = new MVertex(2., 1., 0);vv.push_back(v2);
819     // MVertex *v3 = new MVertex(1, 1., 0);vv.push_back(v3);
820     for(int j = 0; j < 4; j++) {
821       SVector3 a(vv[(j + 2) % 4]->x() - vv[(j + 1) % 4]->x(),
822                  vv[(j + 2) % 4]->y() - vv[(j + 1) % 4]->y(),
823                  vv[(j + 2) % 4]->z() - vv[(j + 1) % 4]->z());
824       SVector3 b(vv[(j + 1) % 4]->x() - vv[(j) % 4]->x(),
825                  vv[(j + 1) % 4]->y() - vv[(j) % 4]->y(),
826                  vv[(j + 1) % 4]->z() - vv[(j) % 4]->z());
827       double angle = acos(dot(a, b) / (norm(a) * norm(b))); //*180/M_PI;
828       angleMax = std::max(angleMax, angle);
829       angleMin = std::min(angleMin, angle);
830     }
831     // printf("angle max =%g min =%g \n", angleMax*180/M_PI, angleMin*180/M_PI);
832   }
833   zeta = 1. - std::max((angleMax - 0.5 * M_PI) / (0.5 * M_PI),
834                        (0.5 * M_PI - angleMin) / (0.5 * M_PI));
835   return zeta;
836 }
837