1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include <stdarg.h>
29 #include <limits.h>
30 
31 #include "strtod.h"
32 #include "bignum.h"
33 #include "cached-powers.h"
34 #include "ieee.h"
35 
36 namespace double_conversion {
37 
38 // 2^53 = 9007199254740992.
39 // Any integer with at most 15 decimal digits will hence fit into a double
40 // (which has a 53bit significand) without loss of precision.
41 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
42 // 2^64 = 18446744073709551616 > 10^19
43 static const int kMaxUint64DecimalDigits = 19;
44 
45 // Max double: 1.7976931348623157 x 10^308
46 // Min non-zero double: 4.9406564584124654 x 10^-324
47 // Any x >= 10^309 is interpreted as +infinity.
48 // Any x <= 10^-324 is interpreted as 0.
49 // Note that 2.5e-324 (despite being smaller than the min double) will be read
50 // as non-zero (equal to the min non-zero double).
51 static const int kMaxDecimalPower = 309;
52 static const int kMinDecimalPower = -324;
53 
54 // 2^64 = 18446744073709551616
55 static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
56 
57 
58 static const double exact_powers_of_ten[] = {
59   1.0,  // 10^0
60   10.0,
61   100.0,
62   1000.0,
63   10000.0,
64   100000.0,
65   1000000.0,
66   10000000.0,
67   100000000.0,
68   1000000000.0,
69   10000000000.0,  // 10^10
70   100000000000.0,
71   1000000000000.0,
72   10000000000000.0,
73   100000000000000.0,
74   1000000000000000.0,
75   10000000000000000.0,
76   100000000000000000.0,
77   1000000000000000000.0,
78   10000000000000000000.0,
79   100000000000000000000.0,  // 10^20
80   1000000000000000000000.0,
81   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
82   10000000000000000000000.0
83 };
84 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
85 
86 // Maximum number of significant digits in the decimal representation.
87 // In fact the value is 772 (see conversions.cc), but to give us some margin
88 // we round up to 780.
89 static const int kMaxSignificantDecimalDigits = 780;
90 
TrimLeadingZeros(Vector<const char> buffer)91 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
92   for (int i = 0; i < buffer.length(); i++) {
93     if (buffer[i] != '0') {
94       return buffer.SubVector(i, buffer.length());
95     }
96   }
97   return Vector<const char>(buffer.start(), 0);
98 }
99 
100 
TrimTrailingZeros(Vector<const char> buffer)101 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
102   for (int i = buffer.length() - 1; i >= 0; --i) {
103     if (buffer[i] != '0') {
104       return buffer.SubVector(0, i + 1);
105     }
106   }
107   return Vector<const char>(buffer.start(), 0);
108 }
109 
110 
CutToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)111 static void CutToMaxSignificantDigits(Vector<const char> buffer,
112                                        int exponent,
113                                        char* significant_buffer,
114                                        int* significant_exponent) {
115   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
116     significant_buffer[i] = buffer[i];
117   }
118   // The input buffer has been trimmed. Therefore the last digit must be
119   // different from '0'.
120   ASSERT(buffer[buffer.length() - 1] != '0');
121   // Set the last digit to be non-zero. This is sufficient to guarantee
122   // correct rounding.
123   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
124   *significant_exponent =
125       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
126 }
127 
128 
129 // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
130 // If possible the input-buffer is reused, but if the buffer needs to be
131 // modified (due to cutting), then the input needs to be copied into the
132 // buffer_copy_space.
TrimAndCut(Vector<const char> buffer,int exponent,char * buffer_copy_space,int space_size,Vector<const char> * trimmed,int * updated_exponent)133 static void TrimAndCut(Vector<const char> buffer, int exponent,
134                        char* buffer_copy_space, int space_size,
135                        Vector<const char>* trimmed, int* updated_exponent) {
136   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
137   Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
138   exponent += left_trimmed.length() - right_trimmed.length();
139   if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
140     (void) space_size;  // Mark variable as used.
141     ASSERT(space_size >= kMaxSignificantDecimalDigits);
142     CutToMaxSignificantDigits(right_trimmed, exponent,
143                               buffer_copy_space, updated_exponent);
144     *trimmed = Vector<const char>(buffer_copy_space,
145                                  kMaxSignificantDecimalDigits);
146   } else {
147     *trimmed = right_trimmed;
148     *updated_exponent = exponent;
149   }
150 }
151 
152 
153 // Reads digits from the buffer and converts them to a uint64.
154 // Reads in as many digits as fit into a uint64.
155 // When the string starts with "1844674407370955161" no further digit is read.
156 // Since 2^64 = 18446744073709551616 it would still be possible read another
157 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)158 static uint64_t ReadUint64(Vector<const char> buffer,
159                            int* number_of_read_digits) {
160   uint64_t result = 0;
161   int i = 0;
162   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
163     int digit = buffer[i++] - '0';
164     ASSERT(0 <= digit && digit <= 9);
165     result = 10 * result + digit;
166   }
167   *number_of_read_digits = i;
168   return result;
169 }
170 
171 
172 // Reads a DiyFp from the buffer.
173 // The returned DiyFp is not necessarily normalized.
174 // If remaining_decimals is zero then the returned DiyFp is accurate.
175 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)176 static void ReadDiyFp(Vector<const char> buffer,
177                       DiyFp* result,
178                       int* remaining_decimals) {
179   int read_digits;
180   uint64_t significand = ReadUint64(buffer, &read_digits);
181   if (buffer.length() == read_digits) {
182     *result = DiyFp(significand, 0);
183     *remaining_decimals = 0;
184   } else {
185     // Round the significand.
186     if (buffer[read_digits] >= '5') {
187       significand++;
188     }
189     // Compute the binary exponent.
190     int exponent = 0;
191     *result = DiyFp(significand, exponent);
192     *remaining_decimals = buffer.length() - read_digits;
193   }
194 }
195 
196 
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)197 static bool DoubleStrtod(Vector<const char> trimmed,
198                          int exponent,
199                          double* result) {
200 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
201   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
202   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
203   // result is not accurate.
204   // We know that Windows32 uses 64 bits and is therefore accurate.
205   // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
206   // the same problem.
207   return false;
208 #endif
209   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
210     int read_digits;
211     // The trimmed input fits into a double.
212     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
213     // can compute the result-double simply by multiplying (resp. dividing) the
214     // two numbers.
215     // This is possible because IEEE guarantees that floating-point operations
216     // return the best possible approximation.
217     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
218       // 10^-exponent fits into a double.
219       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
220       ASSERT(read_digits == trimmed.length());
221       *result /= exact_powers_of_ten[-exponent];
222       return true;
223     }
224     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
225       // 10^exponent fits into a double.
226       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
227       ASSERT(read_digits == trimmed.length());
228       *result *= exact_powers_of_ten[exponent];
229       return true;
230     }
231     int remaining_digits =
232         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
233     if ((0 <= exponent) &&
234         (exponent - remaining_digits < kExactPowersOfTenSize)) {
235       // The trimmed string was short and we can multiply it with
236       // 10^remaining_digits. As a result the remaining exponent now fits
237       // into a double too.
238       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
239       ASSERT(read_digits == trimmed.length());
240       *result *= exact_powers_of_ten[remaining_digits];
241       *result *= exact_powers_of_ten[exponent - remaining_digits];
242       return true;
243     }
244   }
245   return false;
246 }
247 
248 
249 // Returns 10^exponent as an exact DiyFp.
250 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)251 static DiyFp AdjustmentPowerOfTen(int exponent) {
252   ASSERT(0 < exponent);
253   ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
254   // Simply hardcode the remaining powers for the given decimal exponent
255   // distance.
256   ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
257   switch (exponent) {
258     case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
259     case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
260     case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
261     case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
262     case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
263     case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
264     case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
265     default:
266       UNREACHABLE();
267   }
268 }
269 
270 
271 // If the function returns true then the result is the correct double.
272 // Otherwise it is either the correct double or the double that is just below
273 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)274 static bool DiyFpStrtod(Vector<const char> buffer,
275                         int exponent,
276                         double* result) {
277   DiyFp input;
278   int remaining_decimals;
279   ReadDiyFp(buffer, &input, &remaining_decimals);
280   // Since we may have dropped some digits the input is not accurate.
281   // If remaining_decimals is different than 0 than the error is at most
282   // .5 ulp (unit in the last place).
283   // We don't want to deal with fractions and therefore keep a common
284   // denominator.
285   const int kDenominatorLog = 3;
286   const int kDenominator = 1 << kDenominatorLog;
287   // Move the remaining decimals into the exponent.
288   exponent += remaining_decimals;
289   uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
290 
291   int old_e = input.e();
292   input.Normalize();
293   error <<= old_e - input.e();
294 
295   ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
296   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
297     *result = 0.0;
298     return true;
299   }
300   DiyFp cached_power;
301   int cached_decimal_exponent;
302   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
303                                                      &cached_power,
304                                                      &cached_decimal_exponent);
305 
306   if (cached_decimal_exponent != exponent) {
307     int adjustment_exponent = exponent - cached_decimal_exponent;
308     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
309     input.Multiply(adjustment_power);
310     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
311       // The product of input with the adjustment power fits into a 64 bit
312       // integer.
313       ASSERT(DiyFp::kSignificandSize == 64);
314     } else {
315       // The adjustment power is exact. There is hence only an error of 0.5.
316       error += kDenominator / 2;
317     }
318   }
319 
320   input.Multiply(cached_power);
321   // The error introduced by a multiplication of a*b equals
322   //   error_a + error_b + error_a*error_b/2^64 + 0.5
323   // Substituting a with 'input' and b with 'cached_power' we have
324   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
325   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
326   int error_b = kDenominator / 2;
327   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
328   int fixed_error = kDenominator / 2;
329   error += error_b + error_ab + fixed_error;
330 
331   old_e = input.e();
332   input.Normalize();
333   error <<= old_e - input.e();
334 
335   // See if the double's significand changes if we add/subtract the error.
336   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
337   int effective_significand_size =
338       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
339   int precision_digits_count =
340       DiyFp::kSignificandSize - effective_significand_size;
341   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
342     // This can only happen for very small denormals. In this case the
343     // half-way multiplied by the denominator exceeds the range of an uint64.
344     // Simply shift everything to the right.
345     int shift_amount = (precision_digits_count + kDenominatorLog) -
346         DiyFp::kSignificandSize + 1;
347     input.set_f(input.f() >> shift_amount);
348     input.set_e(input.e() + shift_amount);
349     // We add 1 for the lost precision of error, and kDenominator for
350     // the lost precision of input.f().
351     error = (error >> shift_amount) + 1 + kDenominator;
352     precision_digits_count -= shift_amount;
353   }
354   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
355   ASSERT(DiyFp::kSignificandSize == 64);
356   ASSERT(precision_digits_count < 64);
357   uint64_t one64 = 1;
358   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
359   uint64_t precision_bits = input.f() & precision_bits_mask;
360   uint64_t half_way = one64 << (precision_digits_count - 1);
361   precision_bits *= kDenominator;
362   half_way *= kDenominator;
363   DiyFp rounded_input(input.f() >> precision_digits_count,
364                       input.e() + precision_digits_count);
365   if (precision_bits >= half_way + error) {
366     rounded_input.set_f(rounded_input.f() + 1);
367   }
368   // If the last_bits are too close to the half-way case than we are too
369   // inaccurate and round down. In this case we return false so that we can
370   // fall back to a more precise algorithm.
371 
372   *result = Double(rounded_input).value();
373   if (half_way - error < precision_bits && precision_bits < half_way + error) {
374     // Too imprecise. The caller will have to fall back to a slower version.
375     // However the returned number is guaranteed to be either the correct
376     // double, or the next-lower double.
377     return false;
378   } else {
379     return true;
380   }
381 }
382 
383 
384 // Returns
385 //   - -1 if buffer*10^exponent < diy_fp.
386 //   -  0 if buffer*10^exponent == diy_fp.
387 //   - +1 if buffer*10^exponent > diy_fp.
388 // Preconditions:
389 //   buffer.length() + exponent <= kMaxDecimalPower + 1
390 //   buffer.length() + exponent > kMinDecimalPower
391 //   buffer.length() <= kMaxDecimalSignificantDigits
CompareBufferWithDiyFp(Vector<const char> buffer,int exponent,DiyFp diy_fp)392 static int CompareBufferWithDiyFp(Vector<const char> buffer,
393                                   int exponent,
394                                   DiyFp diy_fp) {
395   ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
396   ASSERT(buffer.length() + exponent > kMinDecimalPower);
397   ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
398   // Make sure that the Bignum will be able to hold all our numbers.
399   // Our Bignum implementation has a separate field for exponents. Shifts will
400   // consume at most one bigit (< 64 bits).
401   // ln(10) == 3.3219...
402   ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
403   Bignum buffer_bignum;
404   Bignum diy_fp_bignum;
405   buffer_bignum.AssignDecimalString(buffer);
406   diy_fp_bignum.AssignUInt64(diy_fp.f());
407   if (exponent >= 0) {
408     buffer_bignum.MultiplyByPowerOfTen(exponent);
409   } else {
410     diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
411   }
412   if (diy_fp.e() > 0) {
413     diy_fp_bignum.ShiftLeft(diy_fp.e());
414   } else {
415     buffer_bignum.ShiftLeft(-diy_fp.e());
416   }
417   return Bignum::Compare(buffer_bignum, diy_fp_bignum);
418 }
419 
420 
421 // Returns true if the guess is the correct double.
422 // Returns false, when guess is either correct or the next-lower double.
ComputeGuess(Vector<const char> trimmed,int exponent,double * guess)423 static bool ComputeGuess(Vector<const char> trimmed, int exponent,
424                          double* guess) {
425   if (trimmed.length() == 0) {
426     *guess = 0.0;
427     return true;
428   }
429   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
430     *guess = Double::Infinity();
431     return true;
432   }
433   if (exponent + trimmed.length() <= kMinDecimalPower) {
434     *guess = 0.0;
435     return true;
436   }
437 
438   if (DoubleStrtod(trimmed, exponent, guess) ||
439       DiyFpStrtod(trimmed, exponent, guess)) {
440     return true;
441   }
442   if (*guess == Double::Infinity()) {
443     return true;
444   }
445   return false;
446 }
447 
Strtod(Vector<const char> buffer,int exponent)448 double Strtod(Vector<const char> buffer, int exponent) {
449   char copy_buffer[kMaxSignificantDecimalDigits];
450   Vector<const char> trimmed;
451   int updated_exponent;
452   TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
453              &trimmed, &updated_exponent);
454   exponent = updated_exponent;
455 
456   double guess;
457   bool is_correct = ComputeGuess(trimmed, exponent, &guess);
458   if (is_correct) return guess;
459 
460   DiyFp upper_boundary = Double(guess).UpperBoundary();
461   int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
462   if (comparison < 0) {
463     return guess;
464   } else if (comparison > 0) {
465     return Double(guess).NextDouble();
466   } else if ((Double(guess).Significand() & 1) == 0) {
467     // Round towards even.
468     return guess;
469   } else {
470     return Double(guess).NextDouble();
471   }
472 }
473 
Strtof(Vector<const char> buffer,int exponent)474 float Strtof(Vector<const char> buffer, int exponent) {
475   char copy_buffer[kMaxSignificantDecimalDigits];
476   Vector<const char> trimmed;
477   int updated_exponent;
478   TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
479              &trimmed, &updated_exponent);
480   exponent = updated_exponent;
481 
482   double double_guess;
483   bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
484 
485   float float_guess = static_cast<float>(double_guess);
486   if (float_guess == double_guess) {
487     // This shortcut triggers for integer values.
488     return float_guess;
489   }
490 
491   // We must catch double-rounding. Say the double has been rounded up, and is
492   // now a boundary of a float, and rounds up again. This is why we have to
493   // look at previous too.
494   // Example (in decimal numbers):
495   //    input: 12349
496   //    high-precision (4 digits): 1235
497   //    low-precision (3 digits):
498   //       when read from input: 123
499   //       when rounded from high precision: 124.
500   // To do this we simply look at the neigbors of the correct result and see
501   // if they would round to the same float. If the guess is not correct we have
502   // to look at four values (since two different doubles could be the correct
503   // double).
504 
505   double double_next = Double(double_guess).NextDouble();
506   double double_previous = Double(double_guess).PreviousDouble();
507 
508   float f1 = static_cast<float>(double_previous);
509   float f2 = float_guess;
510   float f3 = static_cast<float>(double_next);
511   float f4;
512   if (is_correct) {
513     f4 = f3;
514   } else {
515     double double_next2 = Double(double_next).NextDouble();
516     f4 = static_cast<float>(double_next2);
517   }
518   (void) f2;  // Mark variable as used.
519   ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
520 
521   // If the guess doesn't lie near a single-precision boundary we can simply
522   // return its float-value.
523   if (f1 == f4) {
524     return float_guess;
525   }
526 
527   ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
528          (f1 == f2 && f2 != f3 && f3 == f4) ||
529          (f1 == f2 && f2 == f3 && f3 != f4));
530 
531   // guess and next are the two possible canditates (in the same way that
532   // double_guess was the lower candidate for a double-precision guess).
533   float guess = f1;
534   float next = f4;
535   DiyFp upper_boundary;
536   if (guess == 0.0f) {
537     float min_float = 1e-45f;
538     upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
539   } else {
540     upper_boundary = Single(guess).UpperBoundary();
541   }
542   int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
543   if (comparison < 0) {
544     return guess;
545   } else if (comparison > 0) {
546     return next;
547   } else if ((Single(guess).Significand() & 1) == 0) {
548     // Round towards even.
549     return guess;
550   } else {
551     return next;
552   }
553 }
554 
555 }  // namespace double_conversion
556