1 /*-------------------------------------------------------------------------
2  *
3  * lock.h
4  *	  POSTGRES low-level lock mechanism
5  *
6  *
7  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * src/include/storage/lock.h
11  *
12  *-------------------------------------------------------------------------
13  */
14 #ifndef LOCK_H_
15 #define LOCK_H_
16 
17 #ifdef FRONTEND
18 #error "lock.h may not be included from frontend code"
19 #endif
20 
21 #include "storage/lockdefs.h"
22 #include "storage/backendid.h"
23 #include "storage/lwlock.h"
24 #include "storage/shmem.h"
25 
26 
27 /* struct PGPROC is declared in proc.h, but must forward-reference it */
28 typedef struct PGPROC PGPROC;
29 
30 typedef struct PROC_QUEUE
31 {
32 	SHM_QUEUE	links;			/* head of list of PGPROC objects */
33 	int			size;			/* number of entries in list */
34 } PROC_QUEUE;
35 
36 /* GUC variables */
37 extern int	max_locks_per_xact;
38 
39 #ifdef LOCK_DEBUG
40 extern int	Trace_lock_oidmin;
41 extern bool Trace_locks;
42 extern bool Trace_userlocks;
43 extern int	Trace_lock_table;
44 extern bool Debug_deadlocks;
45 #endif							/* LOCK_DEBUG */
46 
47 
48 /*
49  * Top-level transactions are identified by VirtualTransactionIDs comprising
50  * the BackendId of the backend running the xact, plus a locally-assigned
51  * LocalTransactionId.  These are guaranteed unique over the short term,
52  * but will be reused after a database restart; hence they should never
53  * be stored on disk.
54  *
55  * Note that struct VirtualTransactionId can not be assumed to be atomically
56  * assignable as a whole.  However, type LocalTransactionId is assumed to
57  * be atomically assignable, and the backend ID doesn't change often enough
58  * to be a problem, so we can fetch or assign the two fields separately.
59  * We deliberately refrain from using the struct within PGPROC, to prevent
60  * coding errors from trying to use struct assignment with it; instead use
61  * GET_VXID_FROM_PGPROC().
62  */
63 typedef struct
64 {
65 	BackendId	backendId;		/* determined at backend startup */
66 	LocalTransactionId localTransactionId;	/* backend-local transaction id */
67 } VirtualTransactionId;
68 
69 #define InvalidLocalTransactionId		0
70 #define LocalTransactionIdIsValid(lxid) ((lxid) != InvalidLocalTransactionId)
71 #define VirtualTransactionIdIsValid(vxid) \
72 	(((vxid).backendId != InvalidBackendId) && \
73 	 LocalTransactionIdIsValid((vxid).localTransactionId))
74 #define VirtualTransactionIdEquals(vxid1, vxid2) \
75 	((vxid1).backendId == (vxid2).backendId && \
76 	 (vxid1).localTransactionId == (vxid2).localTransactionId)
77 #define SetInvalidVirtualTransactionId(vxid) \
78 	((vxid).backendId = InvalidBackendId, \
79 	 (vxid).localTransactionId = InvalidLocalTransactionId)
80 #define GET_VXID_FROM_PGPROC(vxid, proc) \
81 	((vxid).backendId = (proc).backendId, \
82 	 (vxid).localTransactionId = (proc).lxid)
83 
84 /* MAX_LOCKMODES cannot be larger than the # of bits in LOCKMASK */
85 #define MAX_LOCKMODES		10
86 
87 #define LOCKBIT_ON(lockmode) (1 << (lockmode))
88 #define LOCKBIT_OFF(lockmode) (~(1 << (lockmode)))
89 
90 
91 /*
92  * This data structure defines the locking semantics associated with a
93  * "lock method".  The semantics specify the meaning of each lock mode
94  * (by defining which lock modes it conflicts with).
95  * All of this data is constant and is kept in const tables.
96  *
97  * numLockModes -- number of lock modes (READ,WRITE,etc) that
98  *		are defined in this lock method.  Must be less than MAX_LOCKMODES.
99  *
100  * conflictTab -- this is an array of bitmasks showing lock
101  *		mode conflicts.  conflictTab[i] is a mask with the j-th bit
102  *		turned on if lock modes i and j conflict.  Lock modes are
103  *		numbered 1..numLockModes; conflictTab[0] is unused.
104  *
105  * lockModeNames -- ID strings for debug printouts.
106  *
107  * trace_flag -- pointer to GUC trace flag for this lock method.  (The
108  * GUC variable is not constant, but we use "const" here to denote that
109  * it can't be changed through this reference.)
110  */
111 typedef struct LockMethodData
112 {
113 	int			numLockModes;
114 	const LOCKMASK *conflictTab;
115 	const char *const *lockModeNames;
116 	const bool *trace_flag;
117 } LockMethodData;
118 
119 typedef const LockMethodData *LockMethod;
120 
121 /*
122  * Lock methods are identified by LOCKMETHODID.  (Despite the declaration as
123  * uint16, we are constrained to 256 lockmethods by the layout of LOCKTAG.)
124  */
125 typedef uint16 LOCKMETHODID;
126 
127 /* These identify the known lock methods */
128 #define DEFAULT_LOCKMETHOD	1
129 #define USER_LOCKMETHOD		2
130 
131 /*
132  * LOCKTAG is the key information needed to look up a LOCK item in the
133  * lock hashtable.  A LOCKTAG value uniquely identifies a lockable object.
134  *
135  * The LockTagType enum defines the different kinds of objects we can lock.
136  * We can handle up to 256 different LockTagTypes.
137  */
138 typedef enum LockTagType
139 {
140 	LOCKTAG_RELATION,			/* whole relation */
141 	/* ID info for a relation is DB OID + REL OID; DB OID = 0 if shared */
142 	LOCKTAG_RELATION_EXTEND,	/* the right to extend a relation */
143 	/* same ID info as RELATION */
144 	LOCKTAG_PAGE,				/* one page of a relation */
145 	/* ID info for a page is RELATION info + BlockNumber */
146 	LOCKTAG_TUPLE,				/* one physical tuple */
147 	/* ID info for a tuple is PAGE info + OffsetNumber */
148 	LOCKTAG_TRANSACTION,		/* transaction (for waiting for xact done) */
149 	/* ID info for a transaction is its TransactionId */
150 	LOCKTAG_VIRTUALTRANSACTION, /* virtual transaction (ditto) */
151 	/* ID info for a virtual transaction is its VirtualTransactionId */
152 	LOCKTAG_SPECULATIVE_TOKEN,	/* speculative insertion Xid and token */
153 	/* ID info for a transaction is its TransactionId */
154 	LOCKTAG_OBJECT,				/* non-relation database object */
155 	/* ID info for an object is DB OID + CLASS OID + OBJECT OID + SUBID */
156 
157 	/*
158 	 * Note: object ID has same representation as in pg_depend and
159 	 * pg_description, but notice that we are constraining SUBID to 16 bits.
160 	 * Also, we use DB OID = 0 for shared objects such as tablespaces.
161 	 */
162 	LOCKTAG_USERLOCK,			/* reserved for old contrib/userlock code */
163 	LOCKTAG_ADVISORY,			/* advisory user locks */
164 	LOCKTAG_DATABASE_FROZEN_IDS	/* pg_database.datfrozenxid */
165 	/* ID info for frozen IDs is DB OID */
166 } LockTagType;
167 
168 #define LOCKTAG_LAST_TYPE	LOCKTAG_DATABASE_FROZEN_IDS
169 
170 extern const char *const LockTagTypeNames[];
171 
172 /*
173  * The LOCKTAG struct is defined with malice aforethought to fit into 16
174  * bytes with no padding.  Note that this would need adjustment if we were
175  * to widen Oid, BlockNumber, or TransactionId to more than 32 bits.
176  *
177  * We include lockmethodid in the locktag so that a single hash table in
178  * shared memory can store locks of different lockmethods.
179  */
180 typedef struct LOCKTAG
181 {
182 	uint32		locktag_field1; /* a 32-bit ID field */
183 	uint32		locktag_field2; /* a 32-bit ID field */
184 	uint32		locktag_field3; /* a 32-bit ID field */
185 	uint16		locktag_field4; /* a 16-bit ID field */
186 	uint8		locktag_type;	/* see enum LockTagType */
187 	uint8		locktag_lockmethodid;	/* lockmethod indicator */
188 } LOCKTAG;
189 
190 /*
191  * These macros define how we map logical IDs of lockable objects into
192  * the physical fields of LOCKTAG.  Use these to set up LOCKTAG values,
193  * rather than accessing the fields directly.  Note multiple eval of target!
194  */
195 #define SET_LOCKTAG_RELATION(locktag,dboid,reloid) \
196 	((locktag).locktag_field1 = (dboid), \
197 	 (locktag).locktag_field2 = (reloid), \
198 	 (locktag).locktag_field3 = 0, \
199 	 (locktag).locktag_field4 = 0, \
200 	 (locktag).locktag_type = LOCKTAG_RELATION, \
201 	 (locktag).locktag_lockmethodid = DEFAULT_LOCKMETHOD)
202 
203 #define SET_LOCKTAG_RELATION_EXTEND(locktag,dboid,reloid) \
204 	((locktag).locktag_field1 = (dboid), \
205 	 (locktag).locktag_field2 = (reloid), \
206 	 (locktag).locktag_field3 = 0, \
207 	 (locktag).locktag_field4 = 0, \
208 	 (locktag).locktag_type = LOCKTAG_RELATION_EXTEND, \
209 	 (locktag).locktag_lockmethodid = DEFAULT_LOCKMETHOD)
210 
211 #define SET_LOCKTAG_DATABASE_FROZEN_IDS(locktag,dboid) \
212 	((locktag).locktag_field1 = (dboid), \
213 	 (locktag).locktag_field2 = 0, \
214 	 (locktag).locktag_field3 = 0, \
215 	 (locktag).locktag_field4 = 0, \
216 	 (locktag).locktag_type = LOCKTAG_DATABASE_FROZEN_IDS, \
217 	 (locktag).locktag_lockmethodid = DEFAULT_LOCKMETHOD)
218 
219 #define SET_LOCKTAG_PAGE(locktag,dboid,reloid,blocknum) \
220 	((locktag).locktag_field1 = (dboid), \
221 	 (locktag).locktag_field2 = (reloid), \
222 	 (locktag).locktag_field3 = (blocknum), \
223 	 (locktag).locktag_field4 = 0, \
224 	 (locktag).locktag_type = LOCKTAG_PAGE, \
225 	 (locktag).locktag_lockmethodid = DEFAULT_LOCKMETHOD)
226 
227 #define SET_LOCKTAG_TUPLE(locktag,dboid,reloid,blocknum,offnum) \
228 	((locktag).locktag_field1 = (dboid), \
229 	 (locktag).locktag_field2 = (reloid), \
230 	 (locktag).locktag_field3 = (blocknum), \
231 	 (locktag).locktag_field4 = (offnum), \
232 	 (locktag).locktag_type = LOCKTAG_TUPLE, \
233 	 (locktag).locktag_lockmethodid = DEFAULT_LOCKMETHOD)
234 
235 #define SET_LOCKTAG_TRANSACTION(locktag,xid) \
236 	((locktag).locktag_field1 = (xid), \
237 	 (locktag).locktag_field2 = 0, \
238 	 (locktag).locktag_field3 = 0, \
239 	 (locktag).locktag_field4 = 0, \
240 	 (locktag).locktag_type = LOCKTAG_TRANSACTION, \
241 	 (locktag).locktag_lockmethodid = DEFAULT_LOCKMETHOD)
242 
243 #define SET_LOCKTAG_VIRTUALTRANSACTION(locktag,vxid) \
244 	((locktag).locktag_field1 = (vxid).backendId, \
245 	 (locktag).locktag_field2 = (vxid).localTransactionId, \
246 	 (locktag).locktag_field3 = 0, \
247 	 (locktag).locktag_field4 = 0, \
248 	 (locktag).locktag_type = LOCKTAG_VIRTUALTRANSACTION, \
249 	 (locktag).locktag_lockmethodid = DEFAULT_LOCKMETHOD)
250 
251 #define SET_LOCKTAG_SPECULATIVE_INSERTION(locktag,xid,token) \
252 	((locktag).locktag_field1 = (xid), \
253 	 (locktag).locktag_field2 = (token),		\
254 	 (locktag).locktag_field3 = 0, \
255 	 (locktag).locktag_field4 = 0, \
256 	 (locktag).locktag_type = LOCKTAG_SPECULATIVE_TOKEN, \
257 	 (locktag).locktag_lockmethodid = DEFAULT_LOCKMETHOD)
258 
259 #define SET_LOCKTAG_OBJECT(locktag,dboid,classoid,objoid,objsubid) \
260 	((locktag).locktag_field1 = (dboid), \
261 	 (locktag).locktag_field2 = (classoid), \
262 	 (locktag).locktag_field3 = (objoid), \
263 	 (locktag).locktag_field4 = (objsubid), \
264 	 (locktag).locktag_type = LOCKTAG_OBJECT, \
265 	 (locktag).locktag_lockmethodid = DEFAULT_LOCKMETHOD)
266 
267 #define SET_LOCKTAG_ADVISORY(locktag,id1,id2,id3,id4) \
268 	((locktag).locktag_field1 = (id1), \
269 	 (locktag).locktag_field2 = (id2), \
270 	 (locktag).locktag_field3 = (id3), \
271 	 (locktag).locktag_field4 = (id4), \
272 	 (locktag).locktag_type = LOCKTAG_ADVISORY, \
273 	 (locktag).locktag_lockmethodid = USER_LOCKMETHOD)
274 
275 
276 /*
277  * Per-locked-object lock information:
278  *
279  * tag -- uniquely identifies the object being locked
280  * grantMask -- bitmask for all lock types currently granted on this object.
281  * waitMask -- bitmask for all lock types currently awaited on this object.
282  * procLocks -- list of PROCLOCK objects for this lock.
283  * waitProcs -- queue of processes waiting for this lock.
284  * requested -- count of each lock type currently requested on the lock
285  *		(includes requests already granted!!).
286  * nRequested -- total requested locks of all types.
287  * granted -- count of each lock type currently granted on the lock.
288  * nGranted -- total granted locks of all types.
289  *
290  * Note: these counts count 1 for each backend.  Internally to a backend,
291  * there may be multiple grabs on a particular lock, but this is not reflected
292  * into shared memory.
293  */
294 typedef struct LOCK
295 {
296 	/* hash key */
297 	LOCKTAG		tag;			/* unique identifier of lockable object */
298 
299 	/* data */
300 	LOCKMASK	grantMask;		/* bitmask for lock types already granted */
301 	LOCKMASK	waitMask;		/* bitmask for lock types awaited */
302 	SHM_QUEUE	procLocks;		/* list of PROCLOCK objects assoc. with lock */
303 	PROC_QUEUE	waitProcs;		/* list of PGPROC objects waiting on lock */
304 	int			requested[MAX_LOCKMODES];	/* counts of requested locks */
305 	int			nRequested;		/* total of requested[] array */
306 	int			granted[MAX_LOCKMODES]; /* counts of granted locks */
307 	int			nGranted;		/* total of granted[] array */
308 } LOCK;
309 
310 #define LOCK_LOCKMETHOD(lock) ((LOCKMETHODID) (lock).tag.locktag_lockmethodid)
311 
312 
313 /*
314  * We may have several different backends holding or awaiting locks
315  * on the same lockable object.  We need to store some per-holder/waiter
316  * information for each such holder (or would-be holder).  This is kept in
317  * a PROCLOCK struct.
318  *
319  * PROCLOCKTAG is the key information needed to look up a PROCLOCK item in the
320  * proclock hashtable.  A PROCLOCKTAG value uniquely identifies the combination
321  * of a lockable object and a holder/waiter for that object.  (We can use
322  * pointers here because the PROCLOCKTAG need only be unique for the lifespan
323  * of the PROCLOCK, and it will never outlive the lock or the proc.)
324  *
325  * Internally to a backend, it is possible for the same lock to be held
326  * for different purposes: the backend tracks transaction locks separately
327  * from session locks.  However, this is not reflected in the shared-memory
328  * state: we only track which backend(s) hold the lock.  This is OK since a
329  * backend can never block itself.
330  *
331  * The holdMask field shows the already-granted locks represented by this
332  * proclock.  Note that there will be a proclock object, possibly with
333  * zero holdMask, for any lock that the process is currently waiting on.
334  * Otherwise, proclock objects whose holdMasks are zero are recycled
335  * as soon as convenient.
336  *
337  * releaseMask is workspace for LockReleaseAll(): it shows the locks due
338  * to be released during the current call.  This must only be examined or
339  * set by the backend owning the PROCLOCK.
340  *
341  * Each PROCLOCK object is linked into lists for both the associated LOCK
342  * object and the owning PGPROC object.  Note that the PROCLOCK is entered
343  * into these lists as soon as it is created, even if no lock has yet been
344  * granted.  A PGPROC that is waiting for a lock to be granted will also be
345  * linked into the lock's waitProcs queue.
346  */
347 typedef struct PROCLOCKTAG
348 {
349 	/* NB: we assume this struct contains no padding! */
350 	LOCK	   *myLock;			/* link to per-lockable-object information */
351 	PGPROC	   *myProc;			/* link to PGPROC of owning backend */
352 } PROCLOCKTAG;
353 
354 typedef struct PROCLOCK
355 {
356 	/* tag */
357 	PROCLOCKTAG tag;			/* unique identifier of proclock object */
358 
359 	/* data */
360 	PGPROC	   *groupLeader;	/* proc's lock group leader, or proc itself */
361 	LOCKMASK	holdMask;		/* bitmask for lock types currently held */
362 	LOCKMASK	releaseMask;	/* bitmask for lock types to be released */
363 	SHM_QUEUE	lockLink;		/* list link in LOCK's list of proclocks */
364 	SHM_QUEUE	procLink;		/* list link in PGPROC's list of proclocks */
365 } PROCLOCK;
366 
367 #define PROCLOCK_LOCKMETHOD(proclock) \
368 	LOCK_LOCKMETHOD(*((proclock).tag.myLock))
369 
370 /*
371  * Each backend also maintains a local hash table with information about each
372  * lock it is currently interested in.  In particular the local table counts
373  * the number of times that lock has been acquired.  This allows multiple
374  * requests for the same lock to be executed without additional accesses to
375  * shared memory.  We also track the number of lock acquisitions per
376  * ResourceOwner, so that we can release just those locks belonging to a
377  * particular ResourceOwner.
378  *
379  * When holding a lock taken "normally", the lock and proclock fields always
380  * point to the associated objects in shared memory.  However, if we acquired
381  * the lock via the fast-path mechanism, the lock and proclock fields are set
382  * to NULL, since there probably aren't any such objects in shared memory.
383  * (If the lock later gets promoted to normal representation, we may eventually
384  * update our locallock's lock/proclock fields after finding the shared
385  * objects.)
386  *
387  * Caution: a locallock object can be left over from a failed lock acquisition
388  * attempt.  In this case its lock/proclock fields are untrustworthy, since
389  * the shared lock object is neither held nor awaited, and hence is available
390  * to be reclaimed.  If nLocks > 0 then these pointers must either be valid or
391  * NULL, but when nLocks == 0 they should be considered garbage.
392  */
393 typedef struct LOCALLOCKTAG
394 {
395 	LOCKTAG		lock;			/* identifies the lockable object */
396 	LOCKMODE	mode;			/* lock mode for this table entry */
397 } LOCALLOCKTAG;
398 
399 typedef struct LOCALLOCKOWNER
400 {
401 	/*
402 	 * Note: if owner is NULL then the lock is held on behalf of the session;
403 	 * otherwise it is held on behalf of my current transaction.
404 	 *
405 	 * Must use a forward struct reference to avoid circularity.
406 	 */
407 	struct ResourceOwnerData *owner;
408 	int64		nLocks;			/* # of times held by this owner */
409 } LOCALLOCKOWNER;
410 
411 typedef struct LOCALLOCK
412 {
413 	/* tag */
414 	LOCALLOCKTAG tag;			/* unique identifier of locallock entry */
415 
416 	/* data */
417 	LOCK	   *lock;			/* associated LOCK object, if any */
418 	PROCLOCK   *proclock;		/* associated PROCLOCK object, if any */
419 	uint32		hashcode;		/* copy of LOCKTAG's hash value */
420 	int64		nLocks;			/* total number of times lock is held */
421 	int			numLockOwners;	/* # of relevant ResourceOwners */
422 	int			maxLockOwners;	/* allocated size of array */
423 	bool		holdsStrongLockCount;	/* bumped FastPathStrongRelationLocks */
424 	bool		lockCleared;	/* we read all sinval msgs for lock */
425 	LOCALLOCKOWNER *lockOwners; /* dynamically resizable array */
426 } LOCALLOCK;
427 
428 #define LOCALLOCK_LOCKMETHOD(llock) ((llock).tag.lock.locktag_lockmethodid)
429 
430 
431 /*
432  * These structures hold information passed from lmgr internals to the lock
433  * listing user-level functions (in lockfuncs.c).
434  */
435 
436 typedef struct LockInstanceData
437 {
438 	LOCKTAG		locktag;		/* tag for locked object */
439 	LOCKMASK	holdMask;		/* locks held by this PGPROC */
440 	LOCKMODE	waitLockMode;	/* lock awaited by this PGPROC, if any */
441 	BackendId	backend;		/* backend ID of this PGPROC */
442 	LocalTransactionId lxid;	/* local transaction ID of this PGPROC */
443 	int			pid;			/* pid of this PGPROC */
444 	int			leaderPid;		/* pid of group leader; = pid if no group */
445 	bool		fastpath;		/* taken via fastpath? */
446 } LockInstanceData;
447 
448 typedef struct LockData
449 {
450 	int			nelements;		/* The length of the array */
451 	LockInstanceData *locks;	/* Array of per-PROCLOCK information */
452 } LockData;
453 
454 typedef struct BlockedProcData
455 {
456 	int			pid;			/* pid of a blocked PGPROC */
457 	/* Per-PROCLOCK information about PROCLOCKs of the lock the pid awaits */
458 	/* (these fields refer to indexes in BlockedProcsData.locks[]) */
459 	int			first_lock;		/* index of first relevant LockInstanceData */
460 	int			num_locks;		/* number of relevant LockInstanceDatas */
461 	/* PIDs of PGPROCs that are ahead of "pid" in the lock's wait queue */
462 	/* (these fields refer to indexes in BlockedProcsData.waiter_pids[]) */
463 	int			first_waiter;	/* index of first preceding waiter */
464 	int			num_waiters;	/* number of preceding waiters */
465 } BlockedProcData;
466 
467 typedef struct BlockedProcsData
468 {
469 	BlockedProcData *procs;		/* Array of per-blocked-proc information */
470 	LockInstanceData *locks;	/* Array of per-PROCLOCK information */
471 	int		   *waiter_pids;	/* Array of PIDs of other blocked PGPROCs */
472 	int			nprocs;			/* # of valid entries in procs[] array */
473 	int			maxprocs;		/* Allocated length of procs[] array */
474 	int			nlocks;			/* # of valid entries in locks[] array */
475 	int			maxlocks;		/* Allocated length of locks[] array */
476 	int			npids;			/* # of valid entries in waiter_pids[] array */
477 	int			maxpids;		/* Allocated length of waiter_pids[] array */
478 } BlockedProcsData;
479 
480 
481 /* Result codes for LockAcquire() */
482 typedef enum
483 {
484 	LOCKACQUIRE_NOT_AVAIL,		/* lock not available, and dontWait=true */
485 	LOCKACQUIRE_OK,				/* lock successfully acquired */
486 	LOCKACQUIRE_ALREADY_HELD,	/* incremented count for lock already held */
487 	LOCKACQUIRE_ALREADY_CLEAR	/* incremented count for lock already clear */
488 } LockAcquireResult;
489 
490 /* Deadlock states identified by DeadLockCheck() */
491 typedef enum
492 {
493 	DS_NOT_YET_CHECKED,			/* no deadlock check has run yet */
494 	DS_NO_DEADLOCK,				/* no deadlock detected */
495 	DS_SOFT_DEADLOCK,			/* deadlock avoided by queue rearrangement */
496 	DS_HARD_DEADLOCK,			/* deadlock, no way out but ERROR */
497 	DS_BLOCKED_BY_AUTOVACUUM	/* no deadlock; queue blocked by autovacuum
498 								 * worker */
499 } DeadLockState;
500 
501 /*
502  * The lockmgr's shared hash tables are partitioned to reduce contention.
503  * To determine which partition a given locktag belongs to, compute the tag's
504  * hash code with LockTagHashCode(), then apply one of these macros.
505  * NB: NUM_LOCK_PARTITIONS must be a power of 2!
506  */
507 #define LockHashPartition(hashcode) \
508 	((hashcode) % NUM_LOCK_PARTITIONS)
509 #define LockHashPartitionLock(hashcode) \
510 	(&MainLWLockArray[LOCK_MANAGER_LWLOCK_OFFSET + \
511 		LockHashPartition(hashcode)].lock)
512 #define LockHashPartitionLockByIndex(i) \
513 	(&MainLWLockArray[LOCK_MANAGER_LWLOCK_OFFSET + (i)].lock)
514 
515 /*
516  * The deadlock detector needs to be able to access lockGroupLeader and
517  * related fields in the PGPROC, so we arrange for those fields to be protected
518  * by one of the lock hash partition locks.  Since the deadlock detector
519  * acquires all such locks anyway, this makes it safe for it to access these
520  * fields without doing anything extra.  To avoid contention as much as
521  * possible, we map different PGPROCs to different partition locks.  The lock
522  * used for a given lock group is determined by the group leader's pgprocno.
523  */
524 #define LockHashPartitionLockByProc(leader_pgproc) \
525 	LockHashPartitionLock((leader_pgproc)->pgprocno)
526 
527 /*
528  * function prototypes
529  */
530 extern void InitLocks(void);
531 extern LockMethod GetLocksMethodTable(const LOCK *lock);
532 extern LockMethod GetLockTagsMethodTable(const LOCKTAG *locktag);
533 extern uint32 LockTagHashCode(const LOCKTAG *locktag);
534 extern bool DoLockModesConflict(LOCKMODE mode1, LOCKMODE mode2);
535 extern LockAcquireResult LockAcquire(const LOCKTAG *locktag,
536 			LOCKMODE lockmode,
537 			bool sessionLock,
538 			bool dontWait);
539 extern LockAcquireResult LockAcquireExtended(const LOCKTAG *locktag,
540 					LOCKMODE lockmode,
541 					bool sessionLock,
542 					bool dontWait,
543 					bool reportMemoryError,
544 					LOCALLOCK **locallockp);
545 extern void AbortStrongLockAcquire(void);
546 extern void MarkLockClear(LOCALLOCK *locallock);
547 extern bool LockRelease(const LOCKTAG *locktag,
548 			LOCKMODE lockmode, bool sessionLock);
549 extern void LockReleaseAll(LOCKMETHODID lockmethodid, bool allLocks);
550 extern void LockReleaseSession(LOCKMETHODID lockmethodid);
551 extern void LockReleaseCurrentOwner(LOCALLOCK **locallocks, int nlocks);
552 extern void LockReassignCurrentOwner(LOCALLOCK **locallocks, int nlocks);
553 extern bool LockHasWaiters(const LOCKTAG *locktag,
554 			   LOCKMODE lockmode, bool sessionLock);
555 extern VirtualTransactionId *GetLockConflicts(const LOCKTAG *locktag,
556 				 LOCKMODE lockmode);
557 extern void AtPrepare_Locks(void);
558 extern void PostPrepare_Locks(TransactionId xid);
559 extern int LockCheckConflicts(LockMethod lockMethodTable,
560 				   LOCKMODE lockmode,
561 				   LOCK *lock, PROCLOCK *proclock);
562 extern void GrantLock(LOCK *lock, PROCLOCK *proclock, LOCKMODE lockmode);
563 extern void GrantAwaitedLock(void);
564 extern void RemoveFromWaitQueue(PGPROC *proc, uint32 hashcode);
565 extern Size LockShmemSize(void);
566 extern LockData *GetLockStatusData(void);
567 extern BlockedProcsData *GetBlockerStatusData(int blocked_pid);
568 
569 extern xl_standby_lock *GetRunningTransactionLocks(int *nlocks);
570 extern const char *GetLockmodeName(LOCKMETHODID lockmethodid, LOCKMODE mode);
571 
572 extern void lock_twophase_recover(TransactionId xid, uint16 info,
573 					  void *recdata, uint32 len);
574 extern void lock_twophase_postcommit(TransactionId xid, uint16 info,
575 						 void *recdata, uint32 len);
576 extern void lock_twophase_postabort(TransactionId xid, uint16 info,
577 						void *recdata, uint32 len);
578 extern void lock_twophase_standby_recover(TransactionId xid, uint16 info,
579 							  void *recdata, uint32 len);
580 
581 extern DeadLockState DeadLockCheck(PGPROC *proc);
582 extern PGPROC *GetBlockingAutoVacuumPgproc(void);
583 extern void DeadLockReport(void) pg_attribute_noreturn();
584 extern void RememberSimpleDeadLock(PGPROC *proc1,
585 					   LOCKMODE lockmode,
586 					   LOCK *lock,
587 					   PGPROC *proc2);
588 extern void InitDeadLockChecking(void);
589 
590 extern int	LockWaiterCount(const LOCKTAG *locktag);
591 
592 #ifdef LOCK_DEBUG
593 extern void DumpLocks(PGPROC *proc);
594 extern void DumpAllLocks(void);
595 #endif
596 
597 /* Lock a VXID (used to wait for a transaction to finish) */
598 extern void VirtualXactLockTableInsert(VirtualTransactionId vxid);
599 extern void VirtualXactLockTableCleanup(void);
600 extern bool VirtualXactLock(VirtualTransactionId vxid, bool wait);
601 
602 #endif							/* LOCK_H */
603