1 // Copyright 2005 and onwards Google Inc.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 //     * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 //     * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following disclaimer
11 // in the documentation and/or other materials provided with the
12 // distribution.
13 //     * Neither the name of Google Inc. nor the names of its
14 // contributors may be used to endorse or promote products derived from
15 // this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 
29 #include <math.h>
30 #include <stdlib.h>
31 
32 
33 #include <algorithm>
34 #include <string>
35 #include <vector>
36 
37 #include "snappy.h"
38 #include "snappy-internal.h"
39 #include "snappy-test.h"
40 #include "snappy-sinksource.h"
41 
42 DEFINE_int32(start_len, -1,
43              "Starting prefix size for testing (-1: just full file contents)");
44 DEFINE_int32(end_len, -1,
45              "Starting prefix size for testing (-1: just full file contents)");
46 DEFINE_int32(bytes, 10485760,
47              "How many bytes to compress/uncompress per file for timing");
48 
49 DEFINE_bool(zlib, false,
50             "Run zlib compression (http://www.zlib.net)");
51 DEFINE_bool(lzo, false,
52             "Run LZO compression (http://www.oberhumer.com/opensource/lzo/)");
53 DEFINE_bool(quicklz, false,
54             "Run quickLZ compression (http://www.quicklz.com/)");
55 DEFINE_bool(liblzf, false,
56             "Run libLZF compression "
57             "(http://www.goof.com/pcg/marc/liblzf.html)");
58 DEFINE_bool(fastlz, false,
59             "Run FastLZ compression (http://www.fastlz.org/");
60 DEFINE_bool(snappy, true, "Run snappy compression");
61 
62 
63 DEFINE_bool(write_compressed, false,
64             "Write compressed versions of each file to <file>.comp");
65 DEFINE_bool(write_uncompressed, false,
66             "Write uncompressed versions of each file to <file>.uncomp");
67 
68 namespace snappy {
69 
70 
71 #ifdef HAVE_FUNC_MMAP
72 
73 // To test against code that reads beyond its input, this class copies a
74 // string to a newly allocated group of pages, the last of which
75 // is made unreadable via mprotect. Note that we need to allocate the
76 // memory with mmap(), as POSIX allows mprotect() only on memory allocated
77 // with mmap(), and some malloc/posix_memalign implementations expect to
78 // be able to read previously allocated memory while doing heap allocations.
79 class DataEndingAtUnreadablePage {
80  public:
DataEndingAtUnreadablePage(const string & s)81   explicit DataEndingAtUnreadablePage(const string& s) {
82     const size_t page_size = getpagesize();
83     const size_t size = s.size();
84     // Round up space for string to a multiple of page_size.
85     size_t space_for_string = (size + page_size - 1) & ~(page_size - 1);
86     alloc_size_ = space_for_string + page_size;
87     mem_ = mmap(NULL, alloc_size_,
88                 PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
89     CHECK_NE(MAP_FAILED, mem_);
90     protected_page_ = reinterpret_cast<char*>(mem_) + space_for_string;
91     char* dst = protected_page_ - size;
92     memcpy(dst, s.data(), size);
93     data_ = dst;
94     size_ = size;
95     // Make guard page unreadable.
96     CHECK_EQ(0, mprotect(protected_page_, page_size, PROT_NONE));
97   }
98 
~DataEndingAtUnreadablePage()99   ~DataEndingAtUnreadablePage() {
100     // Undo the mprotect.
101     CHECK_EQ(0, mprotect(protected_page_, getpagesize(), PROT_READ|PROT_WRITE));
102     CHECK_EQ(0, munmap(mem_, alloc_size_));
103   }
104 
data() const105   const char* data() const { return data_; }
size() const106   size_t size() const { return size_; }
107 
108  private:
109   size_t alloc_size_;
110   void* mem_;
111   char* protected_page_;
112   const char* data_;
113   size_t size_;
114 };
115 
116 #else  // HAVE_FUNC_MMAP
117 
118 // Fallback for systems without mmap.
119 typedef string DataEndingAtUnreadablePage;
120 
121 #endif
122 
123 enum CompressorType {
124   ZLIB, LZO, LIBLZF, QUICKLZ, FASTLZ, SNAPPY
125 };
126 
127 const char* names[] = {
128   "ZLIB", "LZO", "LIBLZF", "QUICKLZ", "FASTLZ", "SNAPPY"
129 };
130 
MinimumRequiredOutputSpace(size_t input_size,CompressorType comp)131 static size_t MinimumRequiredOutputSpace(size_t input_size,
132                                          CompressorType comp) {
133   switch (comp) {
134 #ifdef ZLIB_VERSION
135     case ZLIB:
136       return ZLib::MinCompressbufSize(input_size);
137 #endif  // ZLIB_VERSION
138 
139 #ifdef LZO_VERSION
140     case LZO:
141       return input_size + input_size/64 + 16 + 3;
142 #endif  // LZO_VERSION
143 
144 #ifdef LZF_VERSION
145     case LIBLZF:
146       return input_size;
147 #endif  // LZF_VERSION
148 
149 #ifdef QLZ_VERSION_MAJOR
150     case QUICKLZ:
151       return input_size + 36000;  // 36000 is used for scratch.
152 #endif  // QLZ_VERSION_MAJOR
153 
154 #ifdef FASTLZ_VERSION
155     case FASTLZ:
156       return max(static_cast<int>(ceil(input_size * 1.05)), 66);
157 #endif  // FASTLZ_VERSION
158 
159     case SNAPPY:
160       return snappy::MaxCompressedLength(input_size);
161 
162     default:
163       LOG(FATAL) << "Unknown compression type number " << comp;
164   }
165 }
166 
167 // Returns true if we successfully compressed, false otherwise.
168 //
169 // If compressed_is_preallocated is set, do not resize the compressed buffer.
170 // This is typically what you want for a benchmark, in order to not spend
171 // time in the memory allocator. If you do set this flag, however,
172 // "compressed" must be preinitialized to at least MinCompressbufSize(comp)
173 // number of bytes, and may contain junk bytes at the end after return.
Compress(const char * input,size_t input_size,CompressorType comp,string * compressed,bool compressed_is_preallocated)174 static bool Compress(const char* input, size_t input_size, CompressorType comp,
175                      string* compressed, bool compressed_is_preallocated) {
176   if (!compressed_is_preallocated) {
177     compressed->resize(MinimumRequiredOutputSpace(input_size, comp));
178   }
179 
180   switch (comp) {
181 #ifdef ZLIB_VERSION
182     case ZLIB: {
183       ZLib zlib;
184       uLongf destlen = compressed->size();
185       int ret = zlib.Compress(
186           reinterpret_cast<Bytef*>(string_as_array(compressed)),
187           &destlen,
188           reinterpret_cast<const Bytef*>(input),
189           input_size);
190       CHECK_EQ(Z_OK, ret);
191       if (!compressed_is_preallocated) {
192         compressed->resize(destlen);
193       }
194       return true;
195     }
196 #endif  // ZLIB_VERSION
197 
198 #ifdef LZO_VERSION
199     case LZO: {
200       unsigned char* mem = new unsigned char[LZO1X_1_15_MEM_COMPRESS];
201       lzo_uint destlen;
202       int ret = lzo1x_1_15_compress(
203           reinterpret_cast<const uint8*>(input),
204           input_size,
205           reinterpret_cast<uint8*>(string_as_array(compressed)),
206           &destlen,
207           mem);
208       CHECK_EQ(LZO_E_OK, ret);
209       delete[] mem;
210       if (!compressed_is_preallocated) {
211         compressed->resize(destlen);
212       }
213       break;
214     }
215 #endif  // LZO_VERSION
216 
217 #ifdef LZF_VERSION
218     case LIBLZF: {
219       int destlen = lzf_compress(input,
220                                  input_size,
221                                  string_as_array(compressed),
222                                  input_size);
223       if (destlen == 0) {
224         // lzf *can* cause lots of blowup when compressing, so they
225         // recommend to limit outsize to insize, and just not compress
226         // if it's bigger.  Ideally, we'd just swap input and output.
227         compressed->assign(input, input_size);
228         destlen = input_size;
229       }
230       if (!compressed_is_preallocated) {
231         compressed->resize(destlen);
232       }
233       break;
234     }
235 #endif  // LZF_VERSION
236 
237 #ifdef QLZ_VERSION_MAJOR
238     case QUICKLZ: {
239       qlz_state_compress *state_compress = new qlz_state_compress;
240       int destlen = qlz_compress(input,
241                                  string_as_array(compressed),
242                                  input_size,
243                                  state_compress);
244       delete state_compress;
245       CHECK_NE(0, destlen);
246       if (!compressed_is_preallocated) {
247         compressed->resize(destlen);
248       }
249       break;
250     }
251 #endif  // QLZ_VERSION_MAJOR
252 
253 #ifdef FASTLZ_VERSION
254     case FASTLZ: {
255       // Use level 1 compression since we mostly care about speed.
256       int destlen = fastlz_compress_level(
257           1,
258           input,
259           input_size,
260           string_as_array(compressed));
261       if (!compressed_is_preallocated) {
262         compressed->resize(destlen);
263       }
264       CHECK_NE(destlen, 0);
265       break;
266     }
267 #endif  // FASTLZ_VERSION
268 
269     case SNAPPY: {
270       size_t destlen;
271       snappy::RawCompress(input, input_size,
272                           string_as_array(compressed),
273                           &destlen);
274       CHECK_LE(destlen, snappy::MaxCompressedLength(input_size));
275       if (!compressed_is_preallocated) {
276         compressed->resize(destlen);
277       }
278       break;
279     }
280 
281 
282     default: {
283       return false;     // the asked-for library wasn't compiled in
284     }
285   }
286   return true;
287 }
288 
Uncompress(const string & compressed,CompressorType comp,int size,string * output)289 static bool Uncompress(const string& compressed, CompressorType comp,
290                        int size, string* output) {
291   switch (comp) {
292 #ifdef ZLIB_VERSION
293     case ZLIB: {
294       output->resize(size);
295       ZLib zlib;
296       uLongf destlen = output->size();
297       int ret = zlib.Uncompress(
298           reinterpret_cast<Bytef*>(string_as_array(output)),
299           &destlen,
300           reinterpret_cast<const Bytef*>(compressed.data()),
301           compressed.size());
302       CHECK_EQ(Z_OK, ret);
303       CHECK_EQ(static_cast<uLongf>(size), destlen);
304       break;
305     }
306 #endif  // ZLIB_VERSION
307 
308 #ifdef LZO_VERSION
309     case LZO: {
310       output->resize(size);
311       lzo_uint destlen;
312       int ret = lzo1x_decompress(
313           reinterpret_cast<const uint8*>(compressed.data()),
314           compressed.size(),
315           reinterpret_cast<uint8*>(string_as_array(output)),
316           &destlen,
317           NULL);
318       CHECK_EQ(LZO_E_OK, ret);
319       CHECK_EQ(static_cast<lzo_uint>(size), destlen);
320       break;
321     }
322 #endif  // LZO_VERSION
323 
324 #ifdef LZF_VERSION
325     case LIBLZF: {
326       output->resize(size);
327       int destlen = lzf_decompress(compressed.data(),
328                                    compressed.size(),
329                                    string_as_array(output),
330                                    output->size());
331       if (destlen == 0) {
332         // This error probably means we had decided not to compress,
333         // and thus have stored input in output directly.
334         output->assign(compressed.data(), compressed.size());
335         destlen = compressed.size();
336       }
337       CHECK_EQ(destlen, size);
338       break;
339     }
340 #endif  // LZF_VERSION
341 
342 #ifdef QLZ_VERSION_MAJOR
343     case QUICKLZ: {
344       output->resize(size);
345       qlz_state_decompress *state_decompress = new qlz_state_decompress;
346       int destlen = qlz_decompress(compressed.data(),
347                                    string_as_array(output),
348                                    state_decompress);
349       delete state_decompress;
350       CHECK_EQ(destlen, size);
351       break;
352     }
353 #endif  // QLZ_VERSION_MAJOR
354 
355 #ifdef FASTLZ_VERSION
356     case FASTLZ: {
357       output->resize(size);
358       int destlen = fastlz_decompress(compressed.data(),
359                                       compressed.length(),
360                                       string_as_array(output),
361                                       size);
362       CHECK_EQ(destlen, size);
363       break;
364     }
365 #endif  // FASTLZ_VERSION
366 
367     case SNAPPY: {
368       snappy::RawUncompress(compressed.data(), compressed.size(),
369                             string_as_array(output));
370       break;
371     }
372 
373 
374     default: {
375       return false;     // the asked-for library wasn't compiled in
376     }
377   }
378   return true;
379 }
380 
Measure(const char * data,size_t length,CompressorType comp,int repeats,int block_size)381 static void Measure(const char* data,
382                     size_t length,
383                     CompressorType comp,
384                     int repeats,
385                     int block_size) {
386   // Run tests a few time and pick median running times
387   static const int kRuns = 5;
388   double ctime[kRuns];
389   double utime[kRuns];
390   int compressed_size = 0;
391 
392   {
393     // Chop the input into blocks
394     int num_blocks = (length + block_size - 1) / block_size;
395     vector<const char*> input(num_blocks);
396     vector<size_t> input_length(num_blocks);
397     vector<string> compressed(num_blocks);
398     vector<string> output(num_blocks);
399     for (int b = 0; b < num_blocks; b++) {
400       int input_start = b * block_size;
401       int input_limit = min<int>((b+1)*block_size, length);
402       input[b] = data+input_start;
403       input_length[b] = input_limit-input_start;
404 
405       // Pre-grow the output buffer so we don't measure string append time.
406       compressed[b].resize(MinimumRequiredOutputSpace(block_size, comp));
407     }
408 
409     // First, try one trial compression to make sure the code is compiled in
410     if (!Compress(input[0], input_length[0], comp, &compressed[0], true)) {
411       LOG(WARNING) << "Skipping " << names[comp] << ": "
412                    << "library not compiled in";
413       return;
414     }
415 
416     for (int run = 0; run < kRuns; run++) {
417       CycleTimer ctimer, utimer;
418 
419       for (int b = 0; b < num_blocks; b++) {
420         // Pre-grow the output buffer so we don't measure string append time.
421         compressed[b].resize(MinimumRequiredOutputSpace(block_size, comp));
422       }
423 
424       ctimer.Start();
425       for (int b = 0; b < num_blocks; b++)
426         for (int i = 0; i < repeats; i++)
427           Compress(input[b], input_length[b], comp, &compressed[b], true);
428       ctimer.Stop();
429 
430       // Compress once more, with resizing, so we don't leave junk
431       // at the end that will confuse the decompressor.
432       for (int b = 0; b < num_blocks; b++) {
433         Compress(input[b], input_length[b], comp, &compressed[b], false);
434       }
435 
436       for (int b = 0; b < num_blocks; b++) {
437         output[b].resize(input_length[b]);
438       }
439 
440       utimer.Start();
441       for (int i = 0; i < repeats; i++)
442         for (int b = 0; b < num_blocks; b++)
443           Uncompress(compressed[b], comp, input_length[b], &output[b]);
444       utimer.Stop();
445 
446       ctime[run] = ctimer.Get();
447       utime[run] = utimer.Get();
448     }
449 
450     compressed_size = 0;
451     for (int i = 0; i < compressed.size(); i++) {
452       compressed_size += compressed[i].size();
453     }
454   }
455 
456   sort(ctime, ctime + kRuns);
457   sort(utime, utime + kRuns);
458   const int med = kRuns/2;
459 
460   float comp_rate = (length / ctime[med]) * repeats / 1048576.0;
461   float uncomp_rate = (length / utime[med]) * repeats / 1048576.0;
462   string x = names[comp];
463   x += ":";
464   string urate = (uncomp_rate >= 0)
465                  ? StringPrintf("%.1f", uncomp_rate)
466                  : string("?");
467   printf("%-7s [b %dM] bytes %6d -> %6d %4.1f%%  "
468          "comp %5.1f MB/s  uncomp %5s MB/s\n",
469          x.c_str(),
470          block_size/(1<<20),
471          static_cast<int>(length), static_cast<uint32>(compressed_size),
472          (compressed_size * 100.0) / max<int>(1, length),
473          comp_rate,
474          urate.c_str());
475 }
476 
477 
VerifyString(const string & input)478 static int VerifyString(const string& input) {
479   string compressed;
480   DataEndingAtUnreadablePage i(input);
481   const size_t written = snappy::Compress(i.data(), i.size(), &compressed);
482   CHECK_EQ(written, compressed.size());
483   CHECK_LE(compressed.size(),
484            snappy::MaxCompressedLength(input.size()));
485   CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
486 
487   string uncompressed;
488   DataEndingAtUnreadablePage c(compressed);
489   CHECK(snappy::Uncompress(c.data(), c.size(), &uncompressed));
490   CHECK_EQ(uncompressed, input);
491   return uncompressed.size();
492 }
493 
494 
VerifyIOVec(const string & input)495 static void VerifyIOVec(const string& input) {
496   string compressed;
497   DataEndingAtUnreadablePage i(input);
498   const size_t written = snappy::Compress(i.data(), i.size(), &compressed);
499   CHECK_EQ(written, compressed.size());
500   CHECK_LE(compressed.size(),
501            snappy::MaxCompressedLength(input.size()));
502   CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
503 
504   // Try uncompressing into an iovec containing a random number of entries
505   // ranging from 1 to 10.
506   char* buf = new char[input.size()];
507   ACMRandom rnd(input.size());
508   int num = rnd.Next() % 10 + 1;
509   if (input.size() < num) {
510     num = input.size();
511   }
512   struct iovec* iov = new iovec[num];
513   int used_so_far = 0;
514   for (int i = 0; i < num; ++i) {
515     iov[i].iov_base = buf + used_so_far;
516     if (i == num - 1) {
517       iov[i].iov_len = input.size() - used_so_far;
518     } else {
519       // Randomly choose to insert a 0 byte entry.
520       if (rnd.OneIn(5)) {
521         iov[i].iov_len = 0;
522       } else {
523         iov[i].iov_len = rnd.Uniform(input.size());
524       }
525     }
526     used_so_far += iov[i].iov_len;
527   }
528   CHECK(snappy::RawUncompressToIOVec(
529       compressed.data(), compressed.size(), iov, num));
530   CHECK(!memcmp(buf, input.data(), input.size()));
531   delete[] iov;
532   delete[] buf;
533 }
534 
535 // Test that data compressed by a compressor that does not
536 // obey block sizes is uncompressed properly.
VerifyNonBlockedCompression(const string & input)537 static void VerifyNonBlockedCompression(const string& input) {
538   if (input.length() > snappy::kBlockSize) {
539     // We cannot test larger blocks than the maximum block size, obviously.
540     return;
541   }
542 
543   string prefix;
544   Varint::Append32(&prefix, input.size());
545 
546   // Setup compression table
547   snappy::internal::WorkingMemory wmem;
548   int table_size;
549   uint16* table = wmem.GetHashTable(input.size(), &table_size);
550 
551   // Compress entire input in one shot
552   string compressed;
553   compressed += prefix;
554   compressed.resize(prefix.size()+snappy::MaxCompressedLength(input.size()));
555   char* dest = string_as_array(&compressed) + prefix.size();
556   char* end = snappy::internal::CompressFragment(input.data(), input.size(),
557                                                 dest, table, table_size);
558   compressed.resize(end - compressed.data());
559 
560   // Uncompress into string
561   string uncomp_str;
562   CHECK(snappy::Uncompress(compressed.data(), compressed.size(), &uncomp_str));
563   CHECK_EQ(uncomp_str, input);
564 
565 }
566 
567 // Expand the input so that it is at least K times as big as block size
Expand(const string & input)568 static string Expand(const string& input) {
569   static const int K = 3;
570   string data = input;
571   while (data.size() < K * snappy::kBlockSize) {
572     data += input;
573   }
574   return data;
575 }
576 
Verify(const string & input)577 static int Verify(const string& input) {
578   VLOG(1) << "Verifying input of size " << input.size();
579 
580   // Compress using string based routines
581   const int result = VerifyString(input);
582 
583 
584   VerifyNonBlockedCompression(input);
585   VerifyIOVec(input);
586   if (!input.empty()) {
587     const string expanded = Expand(input);
588     VerifyNonBlockedCompression(expanded);
589     VerifyIOVec(input);
590   }
591 
592 
593   return result;
594 }
595 
596 // This test checks to ensure that snappy doesn't coredump if it gets
597 // corrupted data.
598 
IsValidCompressedBuffer(const string & c)599 static bool IsValidCompressedBuffer(const string& c) {
600   return snappy::IsValidCompressedBuffer(c.data(), c.size());
601 }
Uncompress(const string & c,string * u)602 static bool Uncompress(const string& c, string* u) {
603   return snappy::Uncompress(c.data(), c.size(), u);
604 }
605 
TYPED_TEST(CorruptedTest,VerifyCorrupted)606 TYPED_TEST(CorruptedTest, VerifyCorrupted) {
607   string source = "making sure we don't crash with corrupted input";
608   VLOG(1) << source;
609   string dest;
610   TypeParam uncmp;
611   snappy::Compress(source.data(), source.size(), &dest);
612 
613   // Mess around with the data. It's hard to simulate all possible
614   // corruptions; this is just one example ...
615   CHECK_GT(dest.size(), 3);
616   dest[1]--;
617   dest[3]++;
618   // this really ought to fail.
619   CHECK(!IsValidCompressedBuffer(TypeParam(dest)));
620   CHECK(!Uncompress(TypeParam(dest), &uncmp));
621 
622   // This is testing for a security bug - a buffer that decompresses to 100k
623   // but we lie in the snappy header and only reserve 0 bytes of memory :)
624   source.resize(100000);
625   for (int i = 0; i < source.length(); ++i) {
626     source[i] = 'A';
627   }
628   snappy::Compress(source.data(), source.size(), &dest);
629   dest[0] = dest[1] = dest[2] = dest[3] = 0;
630   CHECK(!IsValidCompressedBuffer(TypeParam(dest)));
631   CHECK(!Uncompress(TypeParam(dest), &uncmp));
632 
633   if (sizeof(void *) == 4) {
634     // Another security check; check a crazy big length can't DoS us with an
635     // over-allocation.
636     // Currently this is done only for 32-bit builds.  On 64-bit builds,
637     // where 3 GB might be an acceptable allocation size, Uncompress()
638     // attempts to decompress, and sometimes causes the test to run out of
639     // memory.
640     dest[0] = dest[1] = dest[2] = dest[3] = 0xff;
641     // This decodes to a really large size, i.e., about 3 GB.
642     dest[4] = 'k';
643     CHECK(!IsValidCompressedBuffer(TypeParam(dest)));
644     CHECK(!Uncompress(TypeParam(dest), &uncmp));
645   } else {
646     LOG(WARNING) << "Crazy decompression lengths not checked on 64-bit build";
647   }
648 
649   // This decodes to about 2 MB; much smaller, but should still fail.
650   dest[0] = dest[1] = dest[2] = 0xff;
651   dest[3] = 0x00;
652   CHECK(!IsValidCompressedBuffer(TypeParam(dest)));
653   CHECK(!Uncompress(TypeParam(dest), &uncmp));
654 
655   // try reading stuff in from a bad file.
656   for (int i = 1; i <= 3; ++i) {
657     string data = ReadTestDataFile(StringPrintf("baddata%d.snappy", i).c_str(),
658                                    0);
659     string uncmp;
660     // check that we don't return a crazy length
661     size_t ulen;
662     CHECK(!snappy::GetUncompressedLength(data.data(), data.size(), &ulen)
663           || (ulen < (1<<20)));
664     uint32 ulen2;
665     snappy::ByteArraySource source(data.data(), data.size());
666     CHECK(!snappy::GetUncompressedLength(&source, &ulen2) ||
667           (ulen2 < (1<<20)));
668     CHECK(!IsValidCompressedBuffer(TypeParam(data)));
669     CHECK(!Uncompress(TypeParam(data), &uncmp));
670   }
671 }
672 
673 // Helper routines to construct arbitrary compressed strings.
674 // These mirror the compression code in snappy.cc, but are copied
675 // here so that we can bypass some limitations in the how snappy.cc
676 // invokes these routines.
AppendLiteral(string * dst,const string & literal)677 static void AppendLiteral(string* dst, const string& literal) {
678   if (literal.empty()) return;
679   int n = literal.size() - 1;
680   if (n < 60) {
681     // Fit length in tag byte
682     dst->push_back(0 | (n << 2));
683   } else {
684     // Encode in upcoming bytes
685     char number[4];
686     int count = 0;
687     while (n > 0) {
688       number[count++] = n & 0xff;
689       n >>= 8;
690     }
691     dst->push_back(0 | ((59+count) << 2));
692     *dst += string(number, count);
693   }
694   *dst += literal;
695 }
696 
AppendCopy(string * dst,int offset,int length)697 static void AppendCopy(string* dst, int offset, int length) {
698   while (length > 0) {
699     // Figure out how much to copy in one shot
700     int to_copy;
701     if (length >= 68) {
702       to_copy = 64;
703     } else if (length > 64) {
704       to_copy = 60;
705     } else {
706       to_copy = length;
707     }
708     length -= to_copy;
709 
710     if ((to_copy >= 4) && (to_copy < 12) && (offset < 2048)) {
711       assert(to_copy-4 < 8);            // Must fit in 3 bits
712       dst->push_back(1 | ((to_copy-4) << 2) | ((offset >> 8) << 5));
713       dst->push_back(offset & 0xff);
714     } else if (offset < 65536) {
715       dst->push_back(2 | ((to_copy-1) << 2));
716       dst->push_back(offset & 0xff);
717       dst->push_back(offset >> 8);
718     } else {
719       dst->push_back(3 | ((to_copy-1) << 2));
720       dst->push_back(offset & 0xff);
721       dst->push_back((offset >> 8) & 0xff);
722       dst->push_back((offset >> 16) & 0xff);
723       dst->push_back((offset >> 24) & 0xff);
724     }
725   }
726 }
727 
TEST(Snappy,SimpleTests)728 TEST(Snappy, SimpleTests) {
729   Verify("");
730   Verify("a");
731   Verify("ab");
732   Verify("abc");
733 
734   Verify("aaaaaaa" + string(16, 'b') + string("aaaaa") + "abc");
735   Verify("aaaaaaa" + string(256, 'b') + string("aaaaa") + "abc");
736   Verify("aaaaaaa" + string(2047, 'b') + string("aaaaa") + "abc");
737   Verify("aaaaaaa" + string(65536, 'b') + string("aaaaa") + "abc");
738   Verify("abcaaaaaaa" + string(65536, 'b') + string("aaaaa") + "abc");
739 }
740 
741 // Verify max blowup (lots of four-byte copies)
TEST(Snappy,MaxBlowup)742 TEST(Snappy, MaxBlowup) {
743   string input;
744   for (int i = 0; i < 20000; i++) {
745     ACMRandom rnd(i);
746     uint32 bytes = static_cast<uint32>(rnd.Next());
747     input.append(reinterpret_cast<char*>(&bytes), sizeof(bytes));
748   }
749   for (int i = 19999; i >= 0; i--) {
750     ACMRandom rnd(i);
751     uint32 bytes = static_cast<uint32>(rnd.Next());
752     input.append(reinterpret_cast<char*>(&bytes), sizeof(bytes));
753   }
754   Verify(input);
755 }
756 
TEST(Snappy,RandomData)757 TEST(Snappy, RandomData) {
758   ACMRandom rnd(FLAGS_test_random_seed);
759 
760   const int num_ops = 20000;
761   for (int i = 0; i < num_ops; i++) {
762     if ((i % 1000) == 0) {
763       VLOG(0) << "Random op " << i << " of " << num_ops;
764     }
765 
766     string x;
767     int len = rnd.Uniform(4096);
768     if (i < 100) {
769       len = 65536 + rnd.Uniform(65536);
770     }
771     while (x.size() < len) {
772       int run_len = 1;
773       if (rnd.OneIn(10)) {
774         run_len = rnd.Skewed(8);
775       }
776       char c = (i < 100) ? rnd.Uniform(256) : rnd.Skewed(3);
777       while (run_len-- > 0 && x.size() < len) {
778         x += c;
779       }
780     }
781 
782     Verify(x);
783   }
784 }
785 
TEST(Snappy,FourByteOffset)786 TEST(Snappy, FourByteOffset) {
787   // The new compressor cannot generate four-byte offsets since
788   // it chops up the input into 32KB pieces.  So we hand-emit the
789   // copy manually.
790 
791   // The two fragments that make up the input string.
792   string fragment1 = "012345689abcdefghijklmnopqrstuvwxyz";
793   string fragment2 = "some other string";
794 
795   // How many times each fragment is emitted.
796   const int n1 = 2;
797   const int n2 = 100000 / fragment2.size();
798   const int length = n1 * fragment1.size() + n2 * fragment2.size();
799 
800   string compressed;
801   Varint::Append32(&compressed, length);
802 
803   AppendLiteral(&compressed, fragment1);
804   string src = fragment1;
805   for (int i = 0; i < n2; i++) {
806     AppendLiteral(&compressed, fragment2);
807     src += fragment2;
808   }
809   AppendCopy(&compressed, src.size(), fragment1.size());
810   src += fragment1;
811   CHECK_EQ(length, src.size());
812 
813   string uncompressed;
814   CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
815   CHECK(snappy::Uncompress(compressed.data(), compressed.size(),
816                            &uncompressed));
817   CHECK_EQ(uncompressed, src);
818 }
819 
TEST(Snappy,IOVecEdgeCases)820 TEST(Snappy, IOVecEdgeCases) {
821   // Test some tricky edge cases in the iovec output that are not necessarily
822   // exercised by random tests.
823 
824   // Our output blocks look like this initially (the last iovec is bigger
825   // than depicted):
826   // [  ] [ ] [    ] [        ] [        ]
827   static const int kLengths[] = { 2, 1, 4, 8, 128 };
828 
829   struct iovec iov[ARRAYSIZE(kLengths)];
830   for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
831     iov[i].iov_base = new char[kLengths[i]];
832     iov[i].iov_len = kLengths[i];
833   }
834 
835   string compressed;
836   Varint::Append32(&compressed, 22);
837 
838   // A literal whose output crosses three blocks.
839   // [ab] [c] [123 ] [        ] [        ]
840   AppendLiteral(&compressed, "abc123");
841 
842   // A copy whose output crosses two blocks (source and destination
843   // segments marked).
844   // [ab] [c] [1231] [23      ] [        ]
845   //           ^--^   --
846   AppendCopy(&compressed, 3, 3);
847 
848   // A copy where the input is, at first, in the block before the output:
849   //
850   // [ab] [c] [1231] [231231  ] [        ]
851   //           ^---     ^---
852   // Then during the copy, the pointers move such that the input and
853   // output pointers are in the same block:
854   //
855   // [ab] [c] [1231] [23123123] [        ]
856   //                  ^-    ^-
857   // And then they move again, so that the output pointer is no longer
858   // in the same block as the input pointer:
859   // [ab] [c] [1231] [23123123] [123     ]
860   //                    ^--      ^--
861   AppendCopy(&compressed, 6, 9);
862 
863   // Finally, a copy where the input is from several blocks back,
864   // and it also crosses three blocks:
865   //
866   // [ab] [c] [1231] [23123123] [123b    ]
867   //   ^                            ^
868   // [ab] [c] [1231] [23123123] [123bc   ]
869   //       ^                         ^
870   // [ab] [c] [1231] [23123123] [123bc12 ]
871   //           ^-                     ^-
872   AppendCopy(&compressed, 17, 4);
873 
874   CHECK(snappy::RawUncompressToIOVec(
875       compressed.data(), compressed.size(), iov, ARRAYSIZE(iov)));
876   CHECK_EQ(0, memcmp(iov[0].iov_base, "ab", 2));
877   CHECK_EQ(0, memcmp(iov[1].iov_base, "c", 1));
878   CHECK_EQ(0, memcmp(iov[2].iov_base, "1231", 4));
879   CHECK_EQ(0, memcmp(iov[3].iov_base, "23123123", 8));
880   CHECK_EQ(0, memcmp(iov[4].iov_base, "123bc12", 7));
881 
882   for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
883     delete[] reinterpret_cast<char *>(iov[i].iov_base);
884   }
885 }
886 
TEST(Snappy,IOVecLiteralOverflow)887 TEST(Snappy, IOVecLiteralOverflow) {
888   static const int kLengths[] = { 3, 4 };
889 
890   struct iovec iov[ARRAYSIZE(kLengths)];
891   for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
892     iov[i].iov_base = new char[kLengths[i]];
893     iov[i].iov_len = kLengths[i];
894   }
895 
896   string compressed;
897   Varint::Append32(&compressed, 8);
898 
899   AppendLiteral(&compressed, "12345678");
900 
901   CHECK(!snappy::RawUncompressToIOVec(
902       compressed.data(), compressed.size(), iov, ARRAYSIZE(iov)));
903 
904   for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
905     delete[] reinterpret_cast<char *>(iov[i].iov_base);
906   }
907 }
908 
TEST(Snappy,IOVecCopyOverflow)909 TEST(Snappy, IOVecCopyOverflow) {
910   static const int kLengths[] = { 3, 4 };
911 
912   struct iovec iov[ARRAYSIZE(kLengths)];
913   for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
914     iov[i].iov_base = new char[kLengths[i]];
915     iov[i].iov_len = kLengths[i];
916   }
917 
918   string compressed;
919   Varint::Append32(&compressed, 8);
920 
921   AppendLiteral(&compressed, "123");
922   AppendCopy(&compressed, 3, 5);
923 
924   CHECK(!snappy::RawUncompressToIOVec(
925       compressed.data(), compressed.size(), iov, ARRAYSIZE(iov)));
926 
927   for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
928     delete[] reinterpret_cast<char *>(iov[i].iov_base);
929   }
930 }
931 
932 
CheckUncompressedLength(const string & compressed,size_t * ulength)933 static bool CheckUncompressedLength(const string& compressed,
934                                     size_t* ulength) {
935   const bool result1 = snappy::GetUncompressedLength(compressed.data(),
936                                                      compressed.size(),
937                                                      ulength);
938 
939   snappy::ByteArraySource source(compressed.data(), compressed.size());
940   uint32 length;
941   const bool result2 = snappy::GetUncompressedLength(&source, &length);
942   CHECK_EQ(result1, result2);
943   return result1;
944 }
945 
TEST(SnappyCorruption,TruncatedVarint)946 TEST(SnappyCorruption, TruncatedVarint) {
947   string compressed, uncompressed;
948   size_t ulength;
949   compressed.push_back('\xf0');
950   CHECK(!CheckUncompressedLength(compressed, &ulength));
951   CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
952   CHECK(!snappy::Uncompress(compressed.data(), compressed.size(),
953                             &uncompressed));
954 }
955 
TEST(SnappyCorruption,UnterminatedVarint)956 TEST(SnappyCorruption, UnterminatedVarint) {
957   string compressed, uncompressed;
958   size_t ulength;
959   compressed.push_back(128);
960   compressed.push_back(128);
961   compressed.push_back(128);
962   compressed.push_back(128);
963   compressed.push_back(128);
964   compressed.push_back(10);
965   CHECK(!CheckUncompressedLength(compressed, &ulength));
966   CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
967   CHECK(!snappy::Uncompress(compressed.data(), compressed.size(),
968                             &uncompressed));
969 }
970 
TEST(Snappy,ReadPastEndOfBuffer)971 TEST(Snappy, ReadPastEndOfBuffer) {
972   // Check that we do not read past end of input
973 
974   // Make a compressed string that ends with a single-byte literal
975   string compressed;
976   Varint::Append32(&compressed, 1);
977   AppendLiteral(&compressed, "x");
978 
979   string uncompressed;
980   DataEndingAtUnreadablePage c(compressed);
981   CHECK(snappy::Uncompress(c.data(), c.size(), &uncompressed));
982   CHECK_EQ(uncompressed, string("x"));
983 }
984 
985 // Check for an infinite loop caused by a copy with offset==0
TEST(Snappy,ZeroOffsetCopy)986 TEST(Snappy, ZeroOffsetCopy) {
987   const char* compressed = "\x40\x12\x00\x00";
988   //  \x40              Length (must be > kMaxIncrementCopyOverflow)
989   //  \x12\x00\x00      Copy with offset==0, length==5
990   char uncompressed[100];
991   EXPECT_FALSE(snappy::RawUncompress(compressed, 4, uncompressed));
992 }
993 
TEST(Snappy,ZeroOffsetCopyValidation)994 TEST(Snappy, ZeroOffsetCopyValidation) {
995   const char* compressed = "\x05\x12\x00\x00";
996   //  \x05              Length
997   //  \x12\x00\x00      Copy with offset==0, length==5
998   EXPECT_FALSE(snappy::IsValidCompressedBuffer(compressed, 4));
999 }
1000 
1001 
1002 namespace {
1003 
TestFindMatchLength(const char * s1,const char * s2,unsigned length)1004 int TestFindMatchLength(const char* s1, const char *s2, unsigned length) {
1005   return snappy::internal::FindMatchLength(s1, s2, s2 + length);
1006 }
1007 
1008 }  // namespace
1009 
TEST(Snappy,FindMatchLength)1010 TEST(Snappy, FindMatchLength) {
1011   // Exercise all different code paths through the function.
1012   // 64-bit version:
1013 
1014   // Hit s1_limit in 64-bit loop, hit s1_limit in single-character loop.
1015   EXPECT_EQ(6, TestFindMatchLength("012345", "012345", 6));
1016   EXPECT_EQ(11, TestFindMatchLength("01234567abc", "01234567abc", 11));
1017 
1018   // Hit s1_limit in 64-bit loop, find a non-match in single-character loop.
1019   EXPECT_EQ(9, TestFindMatchLength("01234567abc", "01234567axc", 9));
1020 
1021   // Same, but edge cases.
1022   EXPECT_EQ(11, TestFindMatchLength("01234567abc!", "01234567abc!", 11));
1023   EXPECT_EQ(11, TestFindMatchLength("01234567abc!", "01234567abc?", 11));
1024 
1025   // Find non-match at once in first loop.
1026   EXPECT_EQ(0, TestFindMatchLength("01234567xxxxxxxx", "?1234567xxxxxxxx", 16));
1027   EXPECT_EQ(1, TestFindMatchLength("01234567xxxxxxxx", "0?234567xxxxxxxx", 16));
1028   EXPECT_EQ(4, TestFindMatchLength("01234567xxxxxxxx", "01237654xxxxxxxx", 16));
1029   EXPECT_EQ(7, TestFindMatchLength("01234567xxxxxxxx", "0123456?xxxxxxxx", 16));
1030 
1031   // Find non-match in first loop after one block.
1032   EXPECT_EQ(8, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
1033                                    "abcdefgh?1234567xxxxxxxx", 24));
1034   EXPECT_EQ(9, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
1035                                    "abcdefgh0?234567xxxxxxxx", 24));
1036   EXPECT_EQ(12, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
1037                                     "abcdefgh01237654xxxxxxxx", 24));
1038   EXPECT_EQ(15, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
1039                                     "abcdefgh0123456?xxxxxxxx", 24));
1040 
1041   // 32-bit version:
1042 
1043   // Short matches.
1044   EXPECT_EQ(0, TestFindMatchLength("01234567", "?1234567", 8));
1045   EXPECT_EQ(1, TestFindMatchLength("01234567", "0?234567", 8));
1046   EXPECT_EQ(2, TestFindMatchLength("01234567", "01?34567", 8));
1047   EXPECT_EQ(3, TestFindMatchLength("01234567", "012?4567", 8));
1048   EXPECT_EQ(4, TestFindMatchLength("01234567", "0123?567", 8));
1049   EXPECT_EQ(5, TestFindMatchLength("01234567", "01234?67", 8));
1050   EXPECT_EQ(6, TestFindMatchLength("01234567", "012345?7", 8));
1051   EXPECT_EQ(7, TestFindMatchLength("01234567", "0123456?", 8));
1052   EXPECT_EQ(7, TestFindMatchLength("01234567", "0123456?", 7));
1053   EXPECT_EQ(7, TestFindMatchLength("01234567!", "0123456??", 7));
1054 
1055   // Hit s1_limit in 32-bit loop, hit s1_limit in single-character loop.
1056   EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd", "xxxxxxabcd", 10));
1057   EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd?", "xxxxxxabcd?", 10));
1058   EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcdef", "xxxxxxabcdef", 13));
1059 
1060   // Same, but edge cases.
1061   EXPECT_EQ(12, TestFindMatchLength("xxxxxx0123abc!", "xxxxxx0123abc!", 12));
1062   EXPECT_EQ(12, TestFindMatchLength("xxxxxx0123abc!", "xxxxxx0123abc?", 12));
1063 
1064   // Hit s1_limit in 32-bit loop, find a non-match in single-character loop.
1065   EXPECT_EQ(11, TestFindMatchLength("xxxxxx0123abc", "xxxxxx0123axc", 13));
1066 
1067   // Find non-match at once in first loop.
1068   EXPECT_EQ(6, TestFindMatchLength("xxxxxx0123xxxxxxxx",
1069                                    "xxxxxx?123xxxxxxxx", 18));
1070   EXPECT_EQ(7, TestFindMatchLength("xxxxxx0123xxxxxxxx",
1071                                    "xxxxxx0?23xxxxxxxx", 18));
1072   EXPECT_EQ(8, TestFindMatchLength("xxxxxx0123xxxxxxxx",
1073                                    "xxxxxx0132xxxxxxxx", 18));
1074   EXPECT_EQ(9, TestFindMatchLength("xxxxxx0123xxxxxxxx",
1075                                    "xxxxxx012?xxxxxxxx", 18));
1076 
1077   // Same, but edge cases.
1078   EXPECT_EQ(6, TestFindMatchLength("xxxxxx0123", "xxxxxx?123", 10));
1079   EXPECT_EQ(7, TestFindMatchLength("xxxxxx0123", "xxxxxx0?23", 10));
1080   EXPECT_EQ(8, TestFindMatchLength("xxxxxx0123", "xxxxxx0132", 10));
1081   EXPECT_EQ(9, TestFindMatchLength("xxxxxx0123", "xxxxxx012?", 10));
1082 
1083   // Find non-match in first loop after one block.
1084   EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd0123xx",
1085                                     "xxxxxxabcd?123xx", 16));
1086   EXPECT_EQ(11, TestFindMatchLength("xxxxxxabcd0123xx",
1087                                     "xxxxxxabcd0?23xx", 16));
1088   EXPECT_EQ(12, TestFindMatchLength("xxxxxxabcd0123xx",
1089                                     "xxxxxxabcd0132xx", 16));
1090   EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcd0123xx",
1091                                     "xxxxxxabcd012?xx", 16));
1092 
1093   // Same, but edge cases.
1094   EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd?123", 14));
1095   EXPECT_EQ(11, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd0?23", 14));
1096   EXPECT_EQ(12, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd0132", 14));
1097   EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd012?", 14));
1098 }
1099 
TEST(Snappy,FindMatchLengthRandom)1100 TEST(Snappy, FindMatchLengthRandom) {
1101   const int kNumTrials = 10000;
1102   const int kTypicalLength = 10;
1103   ACMRandom rnd(FLAGS_test_random_seed);
1104 
1105   for (int i = 0; i < kNumTrials; i++) {
1106     string s, t;
1107     char a = rnd.Rand8();
1108     char b = rnd.Rand8();
1109     while (!rnd.OneIn(kTypicalLength)) {
1110       s.push_back(rnd.OneIn(2) ? a : b);
1111       t.push_back(rnd.OneIn(2) ? a : b);
1112     }
1113     DataEndingAtUnreadablePage u(s);
1114     DataEndingAtUnreadablePage v(t);
1115     int matched = snappy::internal::FindMatchLength(
1116         u.data(), v.data(), v.data() + t.size());
1117     if (matched == t.size()) {
1118       EXPECT_EQ(s, t);
1119     } else {
1120       EXPECT_NE(s[matched], t[matched]);
1121       for (int j = 0; j < matched; j++) {
1122         EXPECT_EQ(s[j], t[j]);
1123       }
1124     }
1125   }
1126 }
1127 
1128 
CompressFile(const char * fname)1129 static void CompressFile(const char* fname) {
1130   string fullinput;
1131   file::GetContents(fname, &fullinput, file::Defaults()).CheckSuccess();
1132 
1133   string compressed;
1134   Compress(fullinput.data(), fullinput.size(), SNAPPY, &compressed, false);
1135 
1136   file::SetContents(string(fname).append(".comp"), compressed, file::Defaults())
1137       .CheckSuccess();
1138 }
1139 
UncompressFile(const char * fname)1140 static void UncompressFile(const char* fname) {
1141   string fullinput;
1142   file::GetContents(fname, &fullinput, file::Defaults()).CheckSuccess();
1143 
1144   size_t uncompLength;
1145   CHECK(CheckUncompressedLength(fullinput, &uncompLength));
1146 
1147   string uncompressed;
1148   uncompressed.resize(uncompLength);
1149   CHECK(snappy::Uncompress(fullinput.data(), fullinput.size(), &uncompressed));
1150 
1151   file::SetContents(string(fname).append(".uncomp"), uncompressed,
1152                     file::Defaults()).CheckSuccess();
1153 }
1154 
MeasureFile(const char * fname)1155 static void MeasureFile(const char* fname) {
1156   string fullinput;
1157   file::GetContents(fname, &fullinput, file::Defaults()).CheckSuccess();
1158   printf("%-40s :\n", fname);
1159 
1160   int start_len = (FLAGS_start_len < 0) ? fullinput.size() : FLAGS_start_len;
1161   int end_len = fullinput.size();
1162   if (FLAGS_end_len >= 0) {
1163     end_len = min<int>(fullinput.size(), FLAGS_end_len);
1164   }
1165   for (int len = start_len; len <= end_len; len++) {
1166     const char* const input = fullinput.data();
1167     int repeats = (FLAGS_bytes + len) / (len + 1);
1168     if (FLAGS_zlib)     Measure(input, len, ZLIB, repeats, 1024<<10);
1169     if (FLAGS_lzo)      Measure(input, len, LZO, repeats, 1024<<10);
1170     if (FLAGS_liblzf)   Measure(input, len, LIBLZF, repeats, 1024<<10);
1171     if (FLAGS_quicklz)  Measure(input, len, QUICKLZ, repeats, 1024<<10);
1172     if (FLAGS_fastlz)   Measure(input, len, FASTLZ, repeats, 1024<<10);
1173     if (FLAGS_snappy)    Measure(input, len, SNAPPY, repeats, 4096<<10);
1174 
1175     // For block-size based measurements
1176     if (0 && FLAGS_snappy) {
1177       Measure(input, len, SNAPPY, repeats, 8<<10);
1178       Measure(input, len, SNAPPY, repeats, 16<<10);
1179       Measure(input, len, SNAPPY, repeats, 32<<10);
1180       Measure(input, len, SNAPPY, repeats, 64<<10);
1181       Measure(input, len, SNAPPY, repeats, 256<<10);
1182       Measure(input, len, SNAPPY, repeats, 1024<<10);
1183     }
1184   }
1185 }
1186 
1187 static struct {
1188   const char* label;
1189   const char* filename;
1190   size_t size_limit;
1191 } files[] = {
1192   { "html", "html", 0 },
1193   { "urls", "urls.10K", 0 },
1194   { "jpg", "fireworks.jpeg", 0 },
1195   { "jpg_200", "fireworks.jpeg", 200 },
1196   { "pdf", "paper-100k.pdf", 0 },
1197   { "html4", "html_x_4", 0 },
1198   { "txt1", "alice29.txt", 0 },
1199   { "txt2", "asyoulik.txt", 0 },
1200   { "txt3", "lcet10.txt", 0 },
1201   { "txt4", "plrabn12.txt", 0 },
1202   { "pb", "geo.protodata", 0 },
1203   { "gaviota", "kppkn.gtb", 0 },
1204 };
1205 
BM_UFlat(int iters,int arg)1206 static void BM_UFlat(int iters, int arg) {
1207   StopBenchmarkTiming();
1208 
1209   // Pick file to process based on "arg"
1210   CHECK_GE(arg, 0);
1211   CHECK_LT(arg, ARRAYSIZE(files));
1212   string contents = ReadTestDataFile(files[arg].filename,
1213                                      files[arg].size_limit);
1214 
1215   string zcontents;
1216   snappy::Compress(contents.data(), contents.size(), &zcontents);
1217   char* dst = new char[contents.size()];
1218 
1219   SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
1220                              static_cast<int64>(contents.size()));
1221   SetBenchmarkLabel(files[arg].label);
1222   StartBenchmarkTiming();
1223   while (iters-- > 0) {
1224     CHECK(snappy::RawUncompress(zcontents.data(), zcontents.size(), dst));
1225   }
1226   StopBenchmarkTiming();
1227 
1228   delete[] dst;
1229 }
1230 BENCHMARK(BM_UFlat)->DenseRange(0, ARRAYSIZE(files) - 1);
1231 
BM_UValidate(int iters,int arg)1232 static void BM_UValidate(int iters, int arg) {
1233   StopBenchmarkTiming();
1234 
1235   // Pick file to process based on "arg"
1236   CHECK_GE(arg, 0);
1237   CHECK_LT(arg, ARRAYSIZE(files));
1238   string contents = ReadTestDataFile(files[arg].filename,
1239                                      files[arg].size_limit);
1240 
1241   string zcontents;
1242   snappy::Compress(contents.data(), contents.size(), &zcontents);
1243 
1244   SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
1245                              static_cast<int64>(contents.size()));
1246   SetBenchmarkLabel(files[arg].label);
1247   StartBenchmarkTiming();
1248   while (iters-- > 0) {
1249     CHECK(snappy::IsValidCompressedBuffer(zcontents.data(), zcontents.size()));
1250   }
1251   StopBenchmarkTiming();
1252 }
1253 BENCHMARK(BM_UValidate)->DenseRange(0, 4);
1254 
BM_UIOVec(int iters,int arg)1255 static void BM_UIOVec(int iters, int arg) {
1256   StopBenchmarkTiming();
1257 
1258   // Pick file to process based on "arg"
1259   CHECK_GE(arg, 0);
1260   CHECK_LT(arg, ARRAYSIZE(files));
1261   string contents = ReadTestDataFile(files[arg].filename,
1262                                      files[arg].size_limit);
1263 
1264   string zcontents;
1265   snappy::Compress(contents.data(), contents.size(), &zcontents);
1266 
1267   // Uncompress into an iovec containing ten entries.
1268   const int kNumEntries = 10;
1269   struct iovec iov[kNumEntries];
1270   char *dst = new char[contents.size()];
1271   int used_so_far = 0;
1272   for (int i = 0; i < kNumEntries; ++i) {
1273     iov[i].iov_base = dst + used_so_far;
1274     if (used_so_far == contents.size()) {
1275       iov[i].iov_len = 0;
1276       continue;
1277     }
1278 
1279     if (i == kNumEntries - 1) {
1280       iov[i].iov_len = contents.size() - used_so_far;
1281     } else {
1282       iov[i].iov_len = contents.size() / kNumEntries;
1283     }
1284     used_so_far += iov[i].iov_len;
1285   }
1286 
1287   SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
1288                              static_cast<int64>(contents.size()));
1289   SetBenchmarkLabel(files[arg].label);
1290   StartBenchmarkTiming();
1291   while (iters-- > 0) {
1292     CHECK(snappy::RawUncompressToIOVec(zcontents.data(), zcontents.size(), iov,
1293                                        kNumEntries));
1294   }
1295   StopBenchmarkTiming();
1296 
1297   delete[] dst;
1298 }
1299 BENCHMARK(BM_UIOVec)->DenseRange(0, 4);
1300 
1301 
BM_ZFlat(int iters,int arg)1302 static void BM_ZFlat(int iters, int arg) {
1303   StopBenchmarkTiming();
1304 
1305   // Pick file to process based on "arg"
1306   CHECK_GE(arg, 0);
1307   CHECK_LT(arg, ARRAYSIZE(files));
1308   string contents = ReadTestDataFile(files[arg].filename,
1309                                      files[arg].size_limit);
1310 
1311   char* dst = new char[snappy::MaxCompressedLength(contents.size())];
1312 
1313   SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
1314                              static_cast<int64>(contents.size()));
1315   StartBenchmarkTiming();
1316 
1317   size_t zsize = 0;
1318   while (iters-- > 0) {
1319     snappy::RawCompress(contents.data(), contents.size(), dst, &zsize);
1320   }
1321   StopBenchmarkTiming();
1322   const double compression_ratio =
1323       static_cast<double>(zsize) / std::max<size_t>(1, contents.size());
1324   SetBenchmarkLabel(StringPrintf("%s (%.2f %%)",
1325                                  files[arg].label, 100.0 * compression_ratio));
1326   VLOG(0) << StringPrintf("compression for %s: %zd -> %zd bytes",
1327                           files[arg].label, contents.size(), zsize);
1328   delete[] dst;
1329 }
1330 BENCHMARK(BM_ZFlat)->DenseRange(0, ARRAYSIZE(files) - 1);
1331 
1332 
1333 }  // namespace snappy
1334 
1335 
main(int argc,char ** argv)1336 int main(int argc, char** argv) {
1337   InitGoogle(argv[0], &argc, &argv, true);
1338   RunSpecifiedBenchmarks();
1339 
1340 
1341   if (argc >= 2) {
1342     for (int arg = 1; arg < argc; arg++) {
1343       if (FLAGS_write_compressed) {
1344         CompressFile(argv[arg]);
1345       } else if (FLAGS_write_uncompressed) {
1346         UncompressFile(argv[arg]);
1347       } else {
1348         MeasureFile(argv[arg]);
1349       }
1350     }
1351     return 0;
1352   }
1353 
1354   return RUN_ALL_TESTS();
1355 }
1356