1 //////////////////////////////////////////////////////////////////////////////
2 //
3 // (C) Copyright Ion Gaztanaga 2005-2013. Distributed under the Boost
4 // Software License, Version 1.0. (See accompanying file
5 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 //
7 // See http://www.boost.org/libs/container for documentation.
8 //
9 //////////////////////////////////////////////////////////////////////////////
10 
11 #ifndef BOOST_CONTAINER_DETAIL_ADAPTIVE_NODE_POOL_IMPL_HPP
12 #define BOOST_CONTAINER_DETAIL_ADAPTIVE_NODE_POOL_IMPL_HPP
13 
14 #ifndef BOOST_CONFIG_HPP
15 #  include <boost/config.hpp>
16 #endif
17 
18 #if defined(BOOST_HAS_PRAGMA_ONCE)
19 #  pragma once
20 #endif
21 
22 #include <boost/container/detail/config_begin.hpp>
23 #include <boost/container/detail/workaround.hpp>
24 
25 // container
26 #include <boost/container/container_fwd.hpp>
27 #include <boost/container/throw_exception.hpp>
28 // container/detail
29 #include <boost/container/detail/pool_common.hpp>
30 #include <boost/container/detail/iterator.hpp>
31 #include <boost/container/detail/iterator_to_raw_pointer.hpp>
32 #include <boost/container/detail/math_functions.hpp>
33 #include <boost/container/detail/mpl.hpp>
34 #include <boost/container/detail/to_raw_pointer.hpp>
35 #include <boost/container/detail/type_traits.hpp>
36 // intrusive
37 #include <boost/intrusive/pointer_traits.hpp>
38 #include <boost/intrusive/set.hpp>
39 #include <boost/intrusive/list.hpp>
40 #include <boost/intrusive/slist.hpp>
41 // other
42 #include <boost/assert.hpp>
43 #include <boost/core/no_exceptions_support.hpp>
44 #include <cstddef>
45 
46 namespace boost {
47 namespace container {
48 
49 namespace adaptive_pool_flag {
50 
51 static const unsigned int none            = 0u;
52 static const unsigned int align_only      = 1u << 0u;
53 static const unsigned int size_ordered    = 1u << 1u;
54 static const unsigned int address_ordered = 1u << 2u;
55 
56 }  //namespace adaptive_pool_flag{
57 
58 namespace container_detail {
59 
60 template<class size_type>
61 struct hdr_offset_holder_t
62 {
hdr_offset_holder_tboost::container::container_detail::hdr_offset_holder_t63    hdr_offset_holder_t(size_type offset = 0)
64       : hdr_offset(offset)
65    {}
66    size_type hdr_offset;
67 };
68 
69 template<class SizeType, unsigned int Flags>
70 struct less_func;
71 
72 template<class SizeType>
73 struct less_func<SizeType, adaptive_pool_flag::none>
74 {
lessboost::container::container_detail::less_func75    static bool less(SizeType, SizeType, const void *, const void *)
76    {  return true;   }
77 };
78 
79 template<class SizeType>
80 struct less_func<SizeType, adaptive_pool_flag::size_ordered>
81 {
lessboost::container::container_detail::less_func82    static bool less(SizeType ls, SizeType rs, const void *, const void *)
83    {  return ls < rs;   }
84 };
85 
86 template<class SizeType>
87 struct less_func<SizeType, adaptive_pool_flag::address_ordered>
88 {
lessboost::container::container_detail::less_func89    static bool less(SizeType, SizeType, const void *la, const void *ra)
90    {  return &la < &ra;   }
91 };
92 
93 template<class SizeType>
94 struct less_func<SizeType, adaptive_pool_flag::size_ordered | adaptive_pool_flag::address_ordered>
95 {
lessboost::container::container_detail::less_func96    static bool less(SizeType ls, SizeType rs, const void *la, const void *ra)
97    {  return (ls < rs) || ((ls == rs) && (la < ra));  }
98 };
99 
100 template<class VoidPointer, class SizeType, bool ordered>
101 struct block_container_traits
102 {
103    typedef typename bi::make_set_base_hook
104       < bi::void_pointer<VoidPointer>
105       , bi::optimize_size<true>
106       , bi::link_mode<bi::normal_link> >::type hook_t;
107 
108    template<class T>
109    struct container
110    {
111       typedef typename bi::make_multiset
112          <T, bi::base_hook<hook_t>, bi::size_type<SizeType> >::type  type;
113    };
114 
115    template<class Container>
reinsert_was_usedboost::container::container_detail::block_container_traits116    static void reinsert_was_used(Container &container, typename Container::reference v, bool)
117    {
118       typedef typename Container::const_iterator const_block_iterator;
119       const const_block_iterator this_block
120          (Container::s_iterator_to(const_cast<typename Container::const_reference>(v)));
121       const_block_iterator next_block(this_block);
122       if(++next_block != container.cend()){
123          if(this_block->free_nodes.size() > next_block->free_nodes.size()){
124             container.erase(this_block);
125             container.insert(v);
126          }
127       }
128    }
129 
130    template<class Container>
insert_was_emptyboost::container::container_detail::block_container_traits131    static void insert_was_empty(Container &container, typename Container::value_type &v, bool)
132    {
133       container.insert(v);
134    }
135 
136    template<class Container>
erase_firstboost::container::container_detail::block_container_traits137    static void erase_first(Container &container)
138    {
139       container.erase(container.cbegin());
140    }
141 
142    template<class Container>
erase_lastboost::container::container_detail::block_container_traits143    static void erase_last(Container &container)
144    {
145       container.erase(--container.cend());
146    }
147 };
148 
149 template<class VoidPointer, class SizeType>
150 struct block_container_traits<VoidPointer, SizeType, false>
151 {
152    typedef typename bi::make_list_base_hook
153       < bi::void_pointer<VoidPointer>
154       , bi::link_mode<bi::normal_link> >::type hook_t;
155 
156    template<class T>
157    struct container
158    {
159       typedef typename bi::make_list
160          <T, bi::base_hook<hook_t>, bi::size_type<SizeType>, bi::constant_time_size<false> >::type  type;
161    };
162 
163    template<class Container>
reinsert_was_usedboost::container::container_detail::block_container_traits164    static void reinsert_was_used(Container &container, typename Container::value_type &v, bool is_full)
165    {
166       if(is_full){
167          container.erase(Container::s_iterator_to(v));
168          container.push_back(v);
169       }
170    }
171 
172    template<class Container>
insert_was_emptyboost::container::container_detail::block_container_traits173    static void insert_was_empty(Container &container, typename Container::value_type &v, bool is_full)
174    {
175       if(is_full){
176          container.push_back(v);
177       }
178       else{
179          container.push_front(v);
180       }
181    }
182 
183    template<class Container>
erase_firstboost::container::container_detail::block_container_traits184    static void erase_first(Container &container)
185    {
186       container.pop_front();
187    }
188 
189    template<class Container>
erase_lastboost::container::container_detail::block_container_traits190    static void erase_last(Container &container)
191    {
192       container.pop_back();
193    }
194 };
195 
196 template<class MultiallocationChain, class VoidPointer, class SizeType, unsigned int Flags>
197 struct adaptive_pool_types
198 {
199    typedef VoidPointer void_pointer;
200    static const bool ordered = (Flags & (adaptive_pool_flag::size_ordered | adaptive_pool_flag::address_ordered)) != 0;
201    typedef block_container_traits<VoidPointer, SizeType, ordered> block_container_traits_t;
202    typedef typename block_container_traits_t::hook_t hook_t;
203    typedef hdr_offset_holder_t<SizeType> hdr_offset_holder;
204    static const unsigned int order_flags = Flags & (adaptive_pool_flag::size_ordered | adaptive_pool_flag::address_ordered);
205    typedef MultiallocationChain free_nodes_t;
206 
207    struct block_info_t
208       : public hdr_offset_holder,
209         public hook_t
210    {
211       //An intrusive list of free node from this block
212       free_nodes_t free_nodes;
operator <boost::container::container_detail::adaptive_pool_types213       friend bool operator <(const block_info_t &l, const block_info_t &r)
214       {
215          return less_func<SizeType, order_flags>::
216             less(l.free_nodes.size(), r.free_nodes.size(), &l , &r);
217       }
218 
operator ==boost::container::container_detail::adaptive_pool_types219       friend bool operator ==(const block_info_t &l, const block_info_t &r)
220       {  return &l == &r;  }
221    };
222    typedef typename block_container_traits_t:: template container<block_info_t>::type  block_container_t;
223 };
224 
225 template<class size_type>
calculate_alignment(size_type overhead_percent,size_type real_node_size,size_type hdr_size,size_type hdr_offset_size,size_type payload_per_allocation)226 inline size_type calculate_alignment
227    ( size_type overhead_percent, size_type real_node_size
228    , size_type hdr_size, size_type hdr_offset_size, size_type payload_per_allocation)
229 {
230    //to-do: handle real_node_size != node_size
231    const size_type divisor  = overhead_percent*real_node_size;
232    const size_type dividend = hdr_offset_size*100;
233    size_type elements_per_subblock = (dividend - 1)/divisor + 1;
234    size_type candidate_power_of_2 =
235       upper_power_of_2(elements_per_subblock*real_node_size + hdr_offset_size);
236    bool overhead_satisfied = false;
237    //Now calculate the wors-case overhead for a subblock
238    const size_type max_subblock_overhead  = hdr_size + payload_per_allocation;
239    while(!overhead_satisfied){
240       elements_per_subblock = (candidate_power_of_2 - max_subblock_overhead)/real_node_size;
241       const size_type overhead_size = candidate_power_of_2 - elements_per_subblock*real_node_size;
242       if(overhead_size*100/candidate_power_of_2 < overhead_percent){
243          overhead_satisfied = true;
244       }
245       else{
246          candidate_power_of_2 <<= 1;
247       }
248    }
249    return candidate_power_of_2;
250 }
251 
252 template<class size_type>
calculate_num_subblocks(size_type alignment,size_type real_node_size,size_type elements_per_block,size_type & num_subblocks,size_type & real_num_node,size_type overhead_percent,size_type hdr_size,size_type hdr_offset_size,size_type payload_per_allocation)253 inline void calculate_num_subblocks
254    (size_type alignment, size_type real_node_size, size_type elements_per_block
255    , size_type &num_subblocks, size_type &real_num_node, size_type overhead_percent
256    , size_type hdr_size, size_type hdr_offset_size, size_type payload_per_allocation)
257 {
258    const size_type hdr_subblock_elements = (alignment - hdr_size - payload_per_allocation)/real_node_size;
259    size_type elements_per_subblock = (alignment - hdr_offset_size)/real_node_size;
260    size_type possible_num_subblock = (elements_per_block - 1)/elements_per_subblock + 1;
261    while(((possible_num_subblock-1)*elements_per_subblock + hdr_subblock_elements) < elements_per_block){
262       ++possible_num_subblock;
263    }
264    elements_per_subblock = (alignment - hdr_offset_size)/real_node_size;
265    bool overhead_satisfied = false;
266    while(!overhead_satisfied){
267       const size_type total_data = (elements_per_subblock*(possible_num_subblock-1) + hdr_subblock_elements)*real_node_size;
268       const size_type total_size = alignment*possible_num_subblock;
269       if((total_size - total_data)*100/total_size < overhead_percent){
270          overhead_satisfied = true;
271       }
272       else{
273          ++possible_num_subblock;
274       }
275    }
276    num_subblocks = possible_num_subblock;
277    real_num_node = (possible_num_subblock-1)*elements_per_subblock + hdr_subblock_elements;
278 }
279 
280 template<class SegmentManagerBase, unsigned int Flags>
281 class private_adaptive_node_pool_impl
282 {
283    //Non-copyable
284    private_adaptive_node_pool_impl();
285    private_adaptive_node_pool_impl(const private_adaptive_node_pool_impl &);
286    private_adaptive_node_pool_impl &operator=(const private_adaptive_node_pool_impl &);
287    typedef private_adaptive_node_pool_impl this_type;
288 
289    typedef typename SegmentManagerBase::void_pointer void_pointer;
290    static const typename SegmentManagerBase::
291       size_type PayloadPerAllocation = SegmentManagerBase::PayloadPerAllocation;
292    //Flags
293    //align_only
294    static const bool AlignOnly      = (Flags & adaptive_pool_flag::align_only) != 0;
295    typedef bool_<AlignOnly>            IsAlignOnly;
296    typedef true_                       AlignOnlyTrue;
297    typedef false_                      AlignOnlyFalse;
298    //size_ordered
299    static const bool SizeOrdered    = (Flags & adaptive_pool_flag::size_ordered) != 0;
300    typedef bool_<SizeOrdered>          IsSizeOrdered;
301    typedef true_                       SizeOrderedTrue;
302    typedef false_                      SizeOrderedFalse;
303    //address_ordered
304    static const bool AddressOrdered = (Flags & adaptive_pool_flag::address_ordered) != 0;
305    typedef bool_<AddressOrdered>       IsAddressOrdered;
306    typedef true_                       AddressOrderedTrue;
307    typedef false_                      AddressOrderedFalse;
308 
309    public:
310    typedef typename SegmentManagerBase::multiallocation_chain        multiallocation_chain;
311    typedef typename SegmentManagerBase::size_type                    size_type;
312 
313    private:
314    typedef adaptive_pool_types
315       <multiallocation_chain, void_pointer, size_type, Flags>        adaptive_pool_types_t;
316    typedef typename adaptive_pool_types_t::free_nodes_t              free_nodes_t;
317    typedef typename adaptive_pool_types_t::block_info_t              block_info_t;
318    typedef typename adaptive_pool_types_t::block_container_t         block_container_t;
319    typedef typename adaptive_pool_types_t::block_container_traits_t  block_container_traits_t;
320    typedef typename block_container_t::iterator                      block_iterator;
321    typedef typename block_container_t::const_iterator                const_block_iterator;
322    typedef typename adaptive_pool_types_t::hdr_offset_holder         hdr_offset_holder;
323 
324    static const size_type MaxAlign = alignment_of<void_pointer>::value;
325    static const size_type HdrSize  = ((sizeof(block_info_t)-1)/MaxAlign+1)*MaxAlign;
326    static const size_type HdrOffsetSize = ((sizeof(hdr_offset_holder)-1)/MaxAlign+1)*MaxAlign;
327 
328    public:
329    //!Segment manager typedef
330    typedef SegmentManagerBase                 segment_manager_base_type;
331 
332    //!Constructor from a segment manager. Never throws
private_adaptive_node_pool_impl(segment_manager_base_type * segment_mngr_base,size_type node_size,size_type nodes_per_block,size_type max_free_blocks,unsigned char overhead_percent)333    private_adaptive_node_pool_impl
334       ( segment_manager_base_type *segment_mngr_base
335       , size_type node_size
336       , size_type nodes_per_block
337       , size_type max_free_blocks
338       , unsigned char overhead_percent
339       )
340    :  m_max_free_blocks(max_free_blocks)
341    ,  m_real_node_size(lcm(node_size, size_type(alignment_of<void_pointer>::value)))
342       //Round the size to a power of two value.
343       //This is the total memory size (including payload) that we want to
344       //allocate from the general-purpose allocator
345    ,  m_real_block_alignment
346          (AlignOnly ?
347             upper_power_of_2(HdrSize + m_real_node_size*nodes_per_block) :
348             calculate_alignment( (size_type)overhead_percent, m_real_node_size
349                                , HdrSize, HdrOffsetSize, PayloadPerAllocation))
350       //This is the real number of nodes per block
351    ,  m_num_subblocks(0)
352    ,  m_real_num_node(AlignOnly ? (m_real_block_alignment - PayloadPerAllocation - HdrSize)/m_real_node_size : 0)
353       //General purpose allocator
354    ,  mp_segment_mngr_base(segment_mngr_base)
355    ,  m_block_container()
356    ,  m_totally_free_blocks(0)
357    {
358       if(!AlignOnly){
359          calculate_num_subblocks
360             ( m_real_block_alignment
361             , m_real_node_size
362             , nodes_per_block
363             , m_num_subblocks
364             , m_real_num_node
365             , (size_type)overhead_percent
366             , HdrSize
367             , HdrOffsetSize
368             , PayloadPerAllocation);
369       }
370    }
371 
372    //!Destructor. Deallocates all allocated blocks. Never throws
~private_adaptive_node_pool_impl()373    ~private_adaptive_node_pool_impl()
374    {  this->priv_clear();  }
375 
get_real_num_node() const376    size_type get_real_num_node() const
377    {  return m_real_num_node; }
378 
379    //!Returns the segment manager. Never throws
get_segment_manager_base() const380    segment_manager_base_type* get_segment_manager_base()const
381    {  return container_detail::to_raw_pointer(mp_segment_mngr_base);  }
382 
383    //!Allocates array of count elements. Can throw
allocate_node()384    void *allocate_node()
385    {
386       this->priv_invariants();
387       //If there are no free nodes we allocate a new block
388       if(!m_block_container.empty()){
389          //We take the first free node the multiset can't be empty
390          free_nodes_t &free_nodes = m_block_container.begin()->free_nodes;
391          BOOST_ASSERT(!free_nodes.empty());
392          const size_type free_nodes_count = free_nodes.size();
393          void *first_node = container_detail::to_raw_pointer(free_nodes.pop_front());
394          if(free_nodes.empty()){
395             block_container_traits_t::erase_first(m_block_container);
396          }
397          m_totally_free_blocks -= static_cast<size_type>(free_nodes_count == m_real_num_node);
398          this->priv_invariants();
399          return first_node;
400       }
401       else{
402          multiallocation_chain chain;
403          this->priv_append_from_new_blocks(1, chain, IsAlignOnly());
404          return container_detail::to_raw_pointer(chain.pop_front());
405       }
406    }
407 
408    //!Deallocates an array pointed by ptr. Never throws
deallocate_node(void * pElem)409    void deallocate_node(void *pElem)
410    {
411       this->priv_invariants();
412       block_info_t &block_info = *this->priv_block_from_node(pElem);
413       BOOST_ASSERT(block_info.free_nodes.size() < m_real_num_node);
414 
415       //We put the node at the beginning of the free node list
416       block_info.free_nodes.push_back(void_pointer(pElem));
417 
418       //The loop reinserts all blocks except the last one
419       this->priv_reinsert_block(block_info, block_info.free_nodes.size() == 1);
420       this->priv_deallocate_free_blocks(m_max_free_blocks);
421       this->priv_invariants();
422    }
423 
424    //!Allocates n nodes.
425    //!Can throw
allocate_nodes(const size_type n,multiallocation_chain & chain)426    void allocate_nodes(const size_type n, multiallocation_chain &chain)
427    {
428       size_type i = 0;
429       BOOST_TRY{
430          this->priv_invariants();
431          while(i != n){
432             //If there are no free nodes we allocate all needed blocks
433             if (m_block_container.empty()){
434                this->priv_append_from_new_blocks(n - i, chain, IsAlignOnly());
435                BOOST_ASSERT(m_block_container.empty() || (++m_block_container.cbegin() == m_block_container.cend()));
436                BOOST_ASSERT(chain.size() == n);
437                break;
438             }
439             free_nodes_t &free_nodes = m_block_container.begin()->free_nodes;
440             const size_type free_nodes_count_before = free_nodes.size();
441             m_totally_free_blocks -= static_cast<size_type>(free_nodes_count_before == m_real_num_node);
442             const size_type num_left  = n-i;
443             const size_type num_elems = (num_left < free_nodes_count_before) ? num_left : free_nodes_count_before;
444             typedef typename free_nodes_t::iterator free_nodes_iterator;
445 
446             if(num_left < free_nodes_count_before){
447                const free_nodes_iterator it_bbeg(free_nodes.before_begin());
448                free_nodes_iterator it_bend(it_bbeg);
449                for(size_type j = 0; j != num_elems; ++j){
450                   ++it_bend;
451                }
452                free_nodes_iterator it_end = it_bend; ++it_end;
453                free_nodes_iterator it_beg = it_bbeg; ++it_beg;
454                free_nodes.erase_after(it_bbeg, it_end, num_elems);
455                chain.incorporate_after(chain.last(), &*it_beg, &*it_bend, num_elems);
456                //chain.splice_after(chain.last(), free_nodes, it_bbeg, it_bend, num_elems);
457                BOOST_ASSERT(!free_nodes.empty());
458             }
459             else{
460                const free_nodes_iterator it_beg(free_nodes.begin()), it_bend(free_nodes.last());
461                free_nodes.clear();
462                chain.incorporate_after(chain.last(), &*it_beg, &*it_bend, num_elems);
463                block_container_traits_t::erase_first(m_block_container);
464             }
465             i += num_elems;
466          }
467       }
468       BOOST_CATCH(...){
469          this->deallocate_nodes(chain);
470          BOOST_RETHROW
471       }
472       BOOST_CATCH_END
473       this->priv_invariants();
474    }
475 
476    //!Deallocates a linked list of nodes. Never throws
deallocate_nodes(multiallocation_chain & nodes)477    void deallocate_nodes(multiallocation_chain &nodes)
478    {
479       this->priv_invariants();
480       //To take advantage of node locality, wait until two
481       //nodes belong to different blocks. Only then reinsert
482       //the block of the first node in the block tree.
483       //Cache of the previous block
484       block_info_t *prev_block_info = 0;
485 
486       //If block was empty before this call, it's not already
487       //inserted in the block tree.
488       bool prev_block_was_empty     = false;
489       typedef typename free_nodes_t::iterator free_nodes_iterator;
490       {
491          const free_nodes_iterator itbb(nodes.before_begin()), ite(nodes.end());
492          free_nodes_iterator itf(nodes.begin()), itbf(itbb);
493          size_type splice_node_count = size_type(-1);
494          while(itf != ite){
495             void *pElem = container_detail::to_raw_pointer(container_detail::iterator_to_raw_pointer(itf));
496             block_info_t &block_info = *this->priv_block_from_node(pElem);
497             BOOST_ASSERT(block_info.free_nodes.size() < m_real_num_node);
498             ++splice_node_count;
499 
500             //If block change is detected calculate the cached block position in the tree
501             if(&block_info != prev_block_info){
502                if(prev_block_info){ //Make sure we skip the initial "dummy" cache
503                   free_nodes_iterator it(itbb); ++it;
504                   nodes.erase_after(itbb, itf, splice_node_count);
505                   prev_block_info->free_nodes.incorporate_after(prev_block_info->free_nodes.last(), &*it, &*itbf, splice_node_count);
506                   this->priv_reinsert_block(*prev_block_info, prev_block_was_empty);
507                   splice_node_count = 0;
508                }
509                //Update cache with new data
510                prev_block_was_empty = block_info.free_nodes.empty();
511                prev_block_info = &block_info;
512             }
513             itbf = itf;
514             ++itf;
515          }
516       }
517       if(prev_block_info){
518          //The loop reinserts all blocks except the last one
519          const free_nodes_iterator itfirst(nodes.begin()), itlast(nodes.last());
520          const size_type splice_node_count = nodes.size();
521          nodes.clear();
522          prev_block_info->free_nodes.incorporate_after(prev_block_info->free_nodes.last(), &*itfirst, &*itlast, splice_node_count);
523          this->priv_reinsert_block(*prev_block_info, prev_block_was_empty);
524          this->priv_invariants();
525          this->priv_deallocate_free_blocks(m_max_free_blocks);
526       }
527    }
528 
deallocate_free_blocks()529    void deallocate_free_blocks()
530    {  this->priv_deallocate_free_blocks(0);  }
531 
num_free_nodes()532    size_type num_free_nodes()
533    {
534       typedef typename block_container_t::const_iterator citerator;
535       size_type count = 0;
536       citerator it (m_block_container.begin()), itend(m_block_container.end());
537       for(; it != itend; ++it){
538          count += it->free_nodes.size();
539       }
540       return count;
541    }
542 
swap(private_adaptive_node_pool_impl & other)543    void swap(private_adaptive_node_pool_impl &other)
544    {
545       BOOST_ASSERT(m_max_free_blocks == other.m_max_free_blocks);
546       BOOST_ASSERT(m_real_node_size == other.m_real_node_size);
547       BOOST_ASSERT(m_real_block_alignment == other.m_real_block_alignment);
548       BOOST_ASSERT(m_real_num_node == other.m_real_num_node);
549       std::swap(mp_segment_mngr_base, other.mp_segment_mngr_base);
550       std::swap(m_totally_free_blocks, other.m_totally_free_blocks);
551       m_block_container.swap(other.m_block_container);
552    }
553 
554    //Deprecated, use deallocate_free_blocks
deallocate_free_chunks()555    void deallocate_free_chunks()
556    {  this->priv_deallocate_free_blocks(0);   }
557 
558    private:
559 
priv_deallocate_free_blocks(size_type max_free_blocks)560    void priv_deallocate_free_blocks(size_type max_free_blocks)
561    {  //Trampoline function to ease inlining
562       if(m_totally_free_blocks > max_free_blocks){
563          this->priv_deallocate_free_blocks_impl(max_free_blocks);
564       }
565    }
566 
priv_deallocate_free_blocks_impl(size_type max_free_blocks)567    void priv_deallocate_free_blocks_impl(size_type max_free_blocks)
568    {
569       this->priv_invariants();
570       //Now check if we've reached the free nodes limit
571       //and check if we have free blocks. If so, deallocate as much
572       //as we can to stay below the limit
573       multiallocation_chain chain;
574       {
575          const const_block_iterator itend = m_block_container.cend();
576          const_block_iterator it = itend;
577          --it;
578          size_type totally_free_blocks = m_totally_free_blocks;
579 
580          for( ; totally_free_blocks > max_free_blocks; --totally_free_blocks){
581             BOOST_ASSERT(it->free_nodes.size() == m_real_num_node);
582             void *addr = priv_first_subblock_from_block(const_cast<block_info_t*>(&*it));
583             --it;
584             block_container_traits_t::erase_last(m_block_container);
585             chain.push_front(void_pointer(addr));
586          }
587          BOOST_ASSERT((m_totally_free_blocks - max_free_blocks) == chain.size());
588          m_totally_free_blocks = max_free_blocks;
589       }
590       this->mp_segment_mngr_base->deallocate_many(chain);
591    }
592 
priv_reinsert_block(block_info_t & prev_block_info,const bool prev_block_was_empty)593    void priv_reinsert_block(block_info_t &prev_block_info, const bool prev_block_was_empty)
594    {
595       //Cache the free nodes from the block
596       const size_type this_block_free_nodes = prev_block_info.free_nodes.size();
597       const bool is_full = this_block_free_nodes == m_real_num_node;
598 
599       //Update free block count
600       m_totally_free_blocks += static_cast<size_type>(is_full);
601       if(prev_block_was_empty){
602          block_container_traits_t::insert_was_empty(m_block_container, prev_block_info, is_full);
603       }
604       else{
605          block_container_traits_t::reinsert_was_used(m_block_container, prev_block_info, is_full);
606       }
607    }
608 
609    class block_destroyer;
610    friend class block_destroyer;
611 
612    class block_destroyer
613    {
614       public:
block_destroyer(const this_type * impl,multiallocation_chain & chain)615       block_destroyer(const this_type *impl, multiallocation_chain &chain)
616          :  mp_impl(impl), m_chain(chain)
617       {}
618 
operator ()(typename block_container_t::pointer to_deallocate)619       void operator()(typename block_container_t::pointer to_deallocate)
620       {  return this->do_destroy(to_deallocate, IsAlignOnly()); }
621 
622       private:
do_destroy(typename block_container_t::pointer to_deallocate,AlignOnlyTrue)623       void do_destroy(typename block_container_t::pointer to_deallocate, AlignOnlyTrue)
624       {
625          BOOST_ASSERT(to_deallocate->free_nodes.size() == mp_impl->m_real_num_node);
626          m_chain.push_back(to_deallocate);
627       }
628 
do_destroy(typename block_container_t::pointer to_deallocate,AlignOnlyFalse)629       void do_destroy(typename block_container_t::pointer to_deallocate, AlignOnlyFalse)
630       {
631          BOOST_ASSERT(to_deallocate->free_nodes.size() == mp_impl->m_real_num_node);
632          BOOST_ASSERT(0 == to_deallocate->hdr_offset);
633          hdr_offset_holder *hdr_off_holder =
634             mp_impl->priv_first_subblock_from_block(container_detail::to_raw_pointer(to_deallocate));
635          m_chain.push_back(hdr_off_holder);
636       }
637 
638       const this_type *mp_impl;
639       multiallocation_chain &m_chain;
640    };
641 
642    //This macro will activate invariant checking. Slow, but helpful for debugging the code.
643    //#define BOOST_CONTAINER_ADAPTIVE_NODE_POOL_CHECK_INVARIANTS
priv_invariants()644    void priv_invariants()
645    #ifdef BOOST_CONTAINER_ADAPTIVE_NODE_POOL_CHECK_INVARIANTS
646    #undef BOOST_CONTAINER_ADAPTIVE_NODE_POOL_CHECK_INVARIANTS
647    {
648       const const_block_iterator itend(m_block_container.end());
649 
650       {  //We iterate through the block tree to free the memory
651          const_block_iterator it(m_block_container.begin());
652 
653          if(it != itend){
654             for(++it; it != itend; ++it){
655                const_block_iterator prev(it);
656                --prev;
657                BOOST_ASSERT(*prev < *it);
658                (void)prev;   (void)it;
659             }
660          }
661       }
662       {  //Check that the total free nodes are correct
663          const_block_iterator it(m_block_container.cbegin());
664          size_type total_free_nodes = 0;
665          for(; it != itend; ++it){
666             total_free_nodes += it->free_nodes.size();
667          }
668          BOOST_ASSERT(total_free_nodes >= m_totally_free_blocks*m_real_num_node);
669       }
670       {  //Check that the total totally free blocks are correct
671          BOOST_ASSERT(m_block_container.size() >= m_totally_free_blocks);
672          const_block_iterator it = m_block_container.cend();
673          size_type total_free_blocks = m_totally_free_blocks;
674          while(total_free_blocks--){
675             BOOST_ASSERT((--it)->free_nodes.size() == m_real_num_node);
676          }
677       }
678 
679       if(!AlignOnly){
680          //Check that header offsets are correct
681          const_block_iterator it = m_block_container.begin();
682          for(; it != itend; ++it){
683             hdr_offset_holder *hdr_off_holder = this->priv_first_subblock_from_block(const_cast<block_info_t *>(&*it));
684             for(size_type i = 0, max = m_num_subblocks; i < max; ++i){
685                const size_type offset = reinterpret_cast<char*>(const_cast<block_info_t *>(&*it)) - reinterpret_cast<char*>(hdr_off_holder);
686                BOOST_ASSERT(hdr_off_holder->hdr_offset == offset);
687                BOOST_ASSERT(0 == ((size_type)hdr_off_holder & (m_real_block_alignment - 1)));
688                BOOST_ASSERT(0 == (hdr_off_holder->hdr_offset & (m_real_block_alignment - 1)));
689                hdr_off_holder = reinterpret_cast<hdr_offset_holder *>(reinterpret_cast<char*>(hdr_off_holder) + m_real_block_alignment);
690             }
691          }
692       }
693    }
694    #else
695    {} //empty
696    #endif
697 
698    //!Deallocates all used memory. Never throws
priv_clear()699    void priv_clear()
700    {
701       #ifndef NDEBUG
702       block_iterator it    = m_block_container.begin();
703       block_iterator itend = m_block_container.end();
704       size_type n_free_nodes = 0;
705       for(; it != itend; ++it){
706          //Check for memory leak
707          BOOST_ASSERT(it->free_nodes.size() == m_real_num_node);
708          ++n_free_nodes;
709       }
710       BOOST_ASSERT(n_free_nodes == m_totally_free_blocks);
711       #endif
712       //Check for memory leaks
713       this->priv_invariants();
714       multiallocation_chain chain;
715       m_block_container.clear_and_dispose(block_destroyer(this, chain));
716       this->mp_segment_mngr_base->deallocate_many(chain);
717       m_totally_free_blocks = 0;
718    }
719 
priv_block_from_node(void * node,AlignOnlyFalse) const720    block_info_t *priv_block_from_node(void *node, AlignOnlyFalse) const
721    {
722       hdr_offset_holder *hdr_off_holder =
723          reinterpret_cast<hdr_offset_holder*>((std::size_t)node & size_type(~(m_real_block_alignment - 1)));
724       BOOST_ASSERT(0 == ((std::size_t)hdr_off_holder & (m_real_block_alignment - 1)));
725       BOOST_ASSERT(0 == (hdr_off_holder->hdr_offset & (m_real_block_alignment - 1)));
726       block_info_t *block = reinterpret_cast<block_info_t *>
727          (reinterpret_cast<char*>(hdr_off_holder) + hdr_off_holder->hdr_offset);
728       BOOST_ASSERT(block->hdr_offset == 0);
729       return block;
730    }
731 
priv_block_from_node(void * node,AlignOnlyTrue) const732    block_info_t *priv_block_from_node(void *node, AlignOnlyTrue) const
733    {
734       return (block_info_t *)((std::size_t)node & std::size_t(~(m_real_block_alignment - 1)));
735    }
736 
priv_block_from_node(void * node) const737    block_info_t *priv_block_from_node(void *node) const
738    {  return this->priv_block_from_node(node, IsAlignOnly());   }
739 
priv_first_subblock_from_block(block_info_t * block) const740    hdr_offset_holder *priv_first_subblock_from_block(block_info_t *block) const
741    {  return this->priv_first_subblock_from_block(block, IsAlignOnly());   }
742 
priv_first_subblock_from_block(block_info_t * block,AlignOnlyFalse) const743    hdr_offset_holder *priv_first_subblock_from_block(block_info_t *block, AlignOnlyFalse) const
744    {
745       hdr_offset_holder *const hdr_off_holder = reinterpret_cast<hdr_offset_holder*>
746             (reinterpret_cast<char*>(block) - (m_num_subblocks-1)*m_real_block_alignment);
747       BOOST_ASSERT(hdr_off_holder->hdr_offset == size_type(reinterpret_cast<char*>(block) - reinterpret_cast<char*>(hdr_off_holder)));
748       BOOST_ASSERT(0 == ((std::size_t)hdr_off_holder & (m_real_block_alignment - 1)));
749       BOOST_ASSERT(0 == (hdr_off_holder->hdr_offset & (m_real_block_alignment - 1)));
750       return hdr_off_holder;
751    }
752 
priv_first_subblock_from_block(block_info_t * block,AlignOnlyTrue) const753    hdr_offset_holder *priv_first_subblock_from_block(block_info_t *block, AlignOnlyTrue) const
754    {
755       return reinterpret_cast<hdr_offset_holder*>(block);
756    }
757 
priv_dispatch_block_chain_or_free(multiallocation_chain & chain,block_info_t & c_info,size_type num_node,char * mem_address,size_type total_elements,bool insert_block_if_free)758    void priv_dispatch_block_chain_or_free
759       ( multiallocation_chain &chain, block_info_t &c_info, size_type num_node
760       , char *mem_address, size_type total_elements, bool insert_block_if_free)
761    {
762       BOOST_ASSERT(chain.size() <= total_elements);
763       //First add all possible nodes to the chain
764       const size_type left = total_elements - chain.size();
765       const size_type max_chain = (num_node < left) ? num_node : left;
766       mem_address = static_cast<char *>(container_detail::to_raw_pointer
767          (chain.incorporate_after(chain.last(), void_pointer(mem_address), m_real_node_size, max_chain)));
768       //Now store remaining nodes in the free list
769       if(const size_type max_free = num_node - max_chain){
770          free_nodes_t & free_nodes = c_info.free_nodes;
771          free_nodes.incorporate_after(free_nodes.last(), void_pointer(mem_address), m_real_node_size, max_free);
772          if(insert_block_if_free){
773             m_block_container.push_front(c_info);
774          }
775       }
776    }
777 
778    //!Allocates a several blocks of nodes. Can throw
priv_append_from_new_blocks(size_type min_elements,multiallocation_chain & chain,AlignOnlyTrue)779    void priv_append_from_new_blocks(size_type min_elements, multiallocation_chain &chain, AlignOnlyTrue)
780    {
781       BOOST_ASSERT(m_block_container.empty());
782       BOOST_ASSERT(min_elements > 0);
783       const size_type n = (min_elements - 1)/m_real_num_node + 1;
784       const size_type real_block_size = m_real_block_alignment - PayloadPerAllocation;
785       const size_type total_elements = chain.size() + min_elements;
786       for(size_type i = 0; i != n; ++i){
787          //We allocate a new NodeBlock and put it the last
788          //element of the tree
789          char *mem_address = static_cast<char*>
790             (mp_segment_mngr_base->allocate_aligned(real_block_size, m_real_block_alignment));
791          if(!mem_address){
792             //In case of error, free memory deallocating all nodes (the new ones allocated
793             //in this function plus previously stored nodes in chain).
794             this->deallocate_nodes(chain);
795             throw_bad_alloc();
796          }
797          block_info_t &c_info = *new(mem_address)block_info_t();
798          mem_address += HdrSize;
799          if(i != (n-1)){
800             chain.incorporate_after(chain.last(), void_pointer(mem_address), m_real_node_size, m_real_num_node);
801          }
802          else{
803             this->priv_dispatch_block_chain_or_free(chain, c_info, m_real_num_node, mem_address, total_elements, true);
804          }
805       }
806    }
807 
priv_append_from_new_blocks(size_type min_elements,multiallocation_chain & chain,AlignOnlyFalse)808    void priv_append_from_new_blocks(size_type min_elements, multiallocation_chain &chain, AlignOnlyFalse)
809    {
810       BOOST_ASSERT(m_block_container.empty());
811       BOOST_ASSERT(min_elements > 0);
812       const size_type n = (min_elements - 1)/m_real_num_node + 1;
813       const size_type real_block_size = m_real_block_alignment*m_num_subblocks - PayloadPerAllocation;
814       const size_type elements_per_subblock = (m_real_block_alignment - HdrOffsetSize)/m_real_node_size;
815       const size_type hdr_subblock_elements = (m_real_block_alignment - HdrSize - PayloadPerAllocation)/m_real_node_size;
816       const size_type total_elements = chain.size() + min_elements;
817 
818       for(size_type i = 0; i != n; ++i){
819          //We allocate a new NodeBlock and put it the last
820          //element of the tree
821          char *mem_address = static_cast<char*>
822             (mp_segment_mngr_base->allocate_aligned(real_block_size, m_real_block_alignment));
823          if(!mem_address){
824             //In case of error, free memory deallocating all nodes (the new ones allocated
825             //in this function plus previously stored nodes in chain).
826             this->deallocate_nodes(chain);
827             throw_bad_alloc();
828          }
829          //First initialize header information on the last subblock
830          char *hdr_addr = mem_address + m_real_block_alignment*(m_num_subblocks-1);
831          block_info_t &c_info = *new(hdr_addr)block_info_t();
832          //Some structural checks
833          BOOST_ASSERT(static_cast<void*>(&static_cast<hdr_offset_holder&>(c_info).hdr_offset) ==
834                       static_cast<void*>(&c_info));   (void)c_info;
835          if(i != (n-1)){
836             for( size_type subblock = 0, maxsubblock = m_num_subblocks - 1
837                ; subblock < maxsubblock
838                ; ++subblock, mem_address += m_real_block_alignment){
839                //Initialize header offset mark
840                new(mem_address) hdr_offset_holder(size_type(hdr_addr - mem_address));
841                chain.incorporate_after
842                   (chain.last(), void_pointer(mem_address + HdrOffsetSize), m_real_node_size, elements_per_subblock);
843             }
844             chain.incorporate_after(chain.last(), void_pointer(hdr_addr + HdrSize), m_real_node_size, hdr_subblock_elements);
845          }
846          else{
847             for( size_type subblock = 0, maxsubblock = m_num_subblocks - 1
848                ; subblock < maxsubblock
849                ; ++subblock, mem_address += m_real_block_alignment){
850                //Initialize header offset mark
851                new(mem_address) hdr_offset_holder(size_type(hdr_addr - mem_address));
852                this->priv_dispatch_block_chain_or_free
853                   (chain, c_info, elements_per_subblock, mem_address + HdrOffsetSize, total_elements, false);
854             }
855             this->priv_dispatch_block_chain_or_free
856                (chain, c_info, hdr_subblock_elements, hdr_addr + HdrSize, total_elements, true);
857          }
858       }
859    }
860 
861    private:
862    typedef typename boost::intrusive::pointer_traits
863       <void_pointer>::template rebind_pointer<segment_manager_base_type>::type   segment_mngr_base_ptr_t;
864    const size_type m_max_free_blocks;
865    const size_type m_real_node_size;
866    //Round the size to a power of two value.
867    //This is the total memory size (including payload) that we want to
868    //allocate from the general-purpose allocator
869    const size_type m_real_block_alignment;
870    size_type m_num_subblocks;
871    //This is the real number of nodes per block
872    //const
873    size_type m_real_num_node;
874    segment_mngr_base_ptr_t             mp_segment_mngr_base;   //Segment manager
875    block_container_t                    m_block_container;       //Intrusive block list
876    size_type                           m_totally_free_blocks;  //Free blocks
877 };
878 
879 }  //namespace container_detail {
880 }  //namespace container {
881 }  //namespace boost {
882 
883 #include <boost/container/detail/config_end.hpp>
884 
885 #endif   //#ifndef BOOST_CONTAINER_DETAIL_ADAPTIVE_NODE_POOL_IMPL_HPP
886