1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef DOUBLE_CONVERSION_UTILS_H_
29 #define DOUBLE_CONVERSION_UTILS_H_
30 
31 #include <stdlib.h>
32 #include <string.h>
33 
34 #include "mozilla/Assertions.h"
35 #ifndef ASSERT
36 #define ASSERT(condition)      MOZ_ASSERT(condition)
37 #endif
38 #ifndef UNIMPLEMENTED
39 #define UNIMPLEMENTED() MOZ_CRASH()
40 #endif
41 #ifndef UNREACHABLE
42 #define UNREACHABLE()   MOZ_CRASH()
43 #endif
44 
45 // Double operations detection based on target architecture.
46 // Linux uses a 80bit wide floating point stack on x86. This induces double
47 // rounding, which in turn leads to wrong results.
48 // An easy way to test if the floating-point operations are correct is to
49 // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then
50 // the result is equal to 89255e-22.
51 // The best way to test this, is to create a division-function and to compare
52 // the output of the division with the expected result. (Inlining must be
53 // disabled.)
54 // On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
55 #if defined(_M_X64) || defined(__x86_64__) || \
56     defined(__ARMEL__) || defined(__avr32__) || \
57     defined(__hppa__) || defined(__ia64__) || \
58     defined(__mips__) || \
59     defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \
60     defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
61     defined(__SH4__) || defined(__alpha__) || \
62     defined(_MIPS_ARCH_MIPS32R2) || \
63     defined(__AARCH64EL__) || defined(__aarch64__)
64 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
65 #elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
66 #if defined(_WIN32)
67 // Windows uses a 64bit wide floating point stack.
68 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
69 #else
70 #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
71 #endif  // _WIN32
72 #else
73 #error Target architecture was not detected as supported by Double-Conversion.
74 #endif
75 
76 
77 #include <stdint.h>
78 
79 // The following macro works on both 32 and 64-bit platforms.
80 // Usage: instead of writing 0x1234567890123456
81 //      write UINT64_2PART_C(0x12345678,90123456);
82 #define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
83 
84 
85 // The expression ARRAY_SIZE(a) is a compile-time constant of type
86 // size_t which represents the number of elements of the given
87 // array. You should only use ARRAY_SIZE on statically allocated
88 // arrays.
89 #ifndef ARRAY_SIZE
90 #define ARRAY_SIZE(a)                                   \
91   ((sizeof(a) / sizeof(*(a))) /                         \
92   static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
93 #endif
94 
95 // A macro to disallow the evil copy constructor and operator= functions
96 // This should be used in the private: declarations for a class
97 #ifndef DISALLOW_COPY_AND_ASSIGN
98 #define DISALLOW_COPY_AND_ASSIGN(TypeName)      \
99   TypeName(const TypeName&);                    \
100   void operator=(const TypeName&)
101 #endif
102 
103 // A macro to disallow all the implicit constructors, namely the
104 // default constructor, copy constructor and operator= functions.
105 //
106 // This should be used in the private: declarations for a class
107 // that wants to prevent anyone from instantiating it. This is
108 // especially useful for classes containing only static methods.
109 #ifndef DISALLOW_IMPLICIT_CONSTRUCTORS
110 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
111   TypeName();                                    \
112   DISALLOW_COPY_AND_ASSIGN(TypeName)
113 #endif
114 
115 namespace double_conversion {
116 
117 static const int kCharSize = sizeof(char);
118 
119 // Returns the maximum of the two parameters.
120 template <typename T>
Max(T a,T b)121 static T Max(T a, T b) {
122   return a < b ? b : a;
123 }
124 
125 
126 // Returns the minimum of the two parameters.
127 template <typename T>
Min(T a,T b)128 static T Min(T a, T b) {
129   return a < b ? a : b;
130 }
131 
132 
StrLength(const char * string)133 inline int StrLength(const char* string) {
134   size_t length = strlen(string);
135   ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
136   return static_cast<int>(length);
137 }
138 
139 // This is a simplified version of V8's Vector class.
140 template <typename T>
141 class Vector {
142  public:
Vector()143   Vector() : start_(NULL), length_(0) {}
Vector(T * data,int len)144   Vector(T* data, int len) : start_(data), length_(len) {
145     ASSERT(len == 0 || (len > 0 && data != NULL));
146   }
147 
148   // Returns a vector using the same backing storage as this one,
149   // spanning from and including 'from', to but not including 'to'.
SubVector(int from,int to)150   Vector<T> SubVector(int from, int to) {
151     ASSERT(to <= length_);
152     ASSERT(from < to);
153     ASSERT(0 <= from);
154     return Vector<T>(start() + from, to - from);
155   }
156 
157   // Returns the length of the vector.
length()158   int length() const { return length_; }
159 
160   // Returns whether or not the vector is empty.
is_empty()161   bool is_empty() const { return length_ == 0; }
162 
163   // Returns the pointer to the start of the data in the vector.
start()164   T* start() const { return start_; }
165 
166   // Access individual vector elements - checks bounds in debug mode.
167   T& operator[](int index) const {
168     ASSERT(0 <= index && index < length_);
169     return start_[index];
170   }
171 
first()172   T& first() { return start_[0]; }
173 
last()174   T& last() { return start_[length_ - 1]; }
175 
176  private:
177   T* start_;
178   int length_;
179 };
180 
181 
182 // Helper class for building result strings in a character buffer. The
183 // purpose of the class is to use safe operations that checks the
184 // buffer bounds on all operations in debug mode.
185 class StringBuilder {
186  public:
StringBuilder(char * buffer,int buffer_size)187   StringBuilder(char* buffer, int buffer_size)
188       : buffer_(buffer, buffer_size), position_(0) { }
189 
~StringBuilder()190   ~StringBuilder() { if (!is_finalized()) Finalize(); }
191 
size()192   int size() const { return buffer_.length(); }
193 
194   // Get the current position in the builder.
position()195   int position() const {
196     ASSERT(!is_finalized());
197     return position_;
198   }
199 
200   // Reset the position.
Reset()201   void Reset() { position_ = 0; }
202 
203   // Add a single character to the builder. It is not allowed to add
204   // 0-characters; use the Finalize() method to terminate the string
205   // instead.
AddCharacter(char c)206   void AddCharacter(char c) {
207     ASSERT(c != '\0');
208     ASSERT(!is_finalized() && position_ < buffer_.length());
209     buffer_[position_++] = c;
210   }
211 
212   // Add an entire string to the builder. Uses strlen() internally to
213   // compute the length of the input string.
AddString(const char * s)214   void AddString(const char* s) {
215     AddSubstring(s, StrLength(s));
216   }
217 
218   // Add the first 'n' characters of the given string 's' to the
219   // builder. The input string must have enough characters.
AddSubstring(const char * s,int n)220   void AddSubstring(const char* s, int n) {
221     ASSERT(!is_finalized() && position_ + n < buffer_.length());
222     ASSERT(static_cast<size_t>(n) <= strlen(s));
223     memmove(&buffer_[position_], s, n * kCharSize);
224     position_ += n;
225   }
226 
227 
228   // Add character padding to the builder. If count is non-positive,
229   // nothing is added to the builder.
AddPadding(char c,int count)230   void AddPadding(char c, int count) {
231     for (int i = 0; i < count; i++) {
232       AddCharacter(c);
233     }
234   }
235 
236   // Finalize the string by 0-terminating it and returning the buffer.
Finalize()237   char* Finalize() {
238     ASSERT(!is_finalized() && position_ < buffer_.length());
239     buffer_[position_] = '\0';
240     // Make sure nobody managed to add a 0-character to the
241     // buffer while building the string.
242     ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_));
243     position_ = -1;
244     ASSERT(is_finalized());
245     return buffer_.start();
246   }
247 
248  private:
249   Vector<char> buffer_;
250   int position_;
251 
is_finalized()252   bool is_finalized() const { return position_ < 0; }
253 
254   DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
255 };
256 
257 // The type-based aliasing rule allows the compiler to assume that pointers of
258 // different types (for some definition of different) never alias each other.
259 // Thus the following code does not work:
260 //
261 // float f = foo();
262 // int fbits = *(int*)(&f);
263 //
264 // The compiler 'knows' that the int pointer can't refer to f since the types
265 // don't match, so the compiler may cache f in a register, leaving random data
266 // in fbits.  Using C++ style casts makes no difference, however a pointer to
267 // char data is assumed to alias any other pointer.  This is the 'memcpy
268 // exception'.
269 //
270 // Bit_cast uses the memcpy exception to move the bits from a variable of one
271 // type of a variable of another type.  Of course the end result is likely to
272 // be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
273 // will completely optimize BitCast away.
274 //
275 // There is an additional use for BitCast.
276 // Recent gccs will warn when they see casts that may result in breakage due to
277 // the type-based aliasing rule.  If you have checked that there is no breakage
278 // you can use BitCast to cast one pointer type to another.  This confuses gcc
279 // enough that it can no longer see that you have cast one pointer type to
280 // another thus avoiding the warning.
281 template <class Dest, class Source>
BitCast(const Source & source)282 inline Dest BitCast(const Source& source) {
283   static_assert(sizeof(Dest) == sizeof(Source),
284                 "BitCast's source and destination types must be the same size");
285 
286   Dest dest;
287   memmove(&dest, &source, sizeof(dest));
288   return dest;
289 }
290 
291 template <class Dest, class Source>
BitCast(Source * source)292 inline Dest BitCast(Source* source) {
293   return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
294 }
295 
296 }  // namespace double_conversion
297 
298 #endif  // DOUBLE_CONVERSION_UTILS_H_
299